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Learning About Climate Sensitivity

From the Instrumental Temperature Record+
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The debate over the magnitude of anthropogenically induced climate change has raged for

over a century (1-6).  Today considerable uncertainty remains about the magnitude of

greenhouse-gas-induced climate change, particularly the climate sensitivity – the

equilibrium change in global-mean surface temperature per unit of radiative forcing.  The

rapidity at which uncertainty in the climate sensitivity is resolved has significant policy

implications.  If resolution is expected soon, deferring action until the picture is clearer may

be prudent.  If uncertainty is likely to be resolved only slowly, then action today on the

basis of expected costs and damages may be the wisest course.  Here we use a Bayesian

learning model, the instrumental temperature record, and IPCC scenarios of future

emissions of greenhouse gases and SO2 to estimate the time required to reduce the

uncertainty in the climate sensitivity.  We find that more than half a century is required to

be 95% confident that the true value of the climate sensitivity lies within ±20% of the

estimated value.  Further, accelerated control of greenhouse-gas emissions significantly

slows this rate of learning, while control of SO2 emissions accelerates it.
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It might seem that it is impossible to shed any light on future resolution of uncertainty;  after

all, who can know what future research on climate will yield?  Our approach is to assume that the

process of learning about climate sensitivity that has occurred during the last 100 years will

continue to be driven by the instrumental temperature record.  Given this assumption, we can use

standard statistical methods to quantify the current uncertainty and the rate at which it can be

expected to be resolved.

One approach to estimating the climate sensitivity, λ, is to use a simple physical model to

simulate the instrumental temperature record in a best-fit, maximum-likelihood sense (7).  One

such simple physical model is (8, 9):

  
Tt = Tt − 1 + 1

α [(Ft + FSO4
St ) − Tt− 1 − Γ

λ ]− K(Tt − 1 − Ot − 1) (1a)

  Ot = Ot − 1 + L(Tt − 1 − Ot − 1) (1b)

where   Tt  is the annual global temperature (°C) difference of the upper ocean in year t from the

1961-1990 average temperature, taken to be synonymous with the surface-air temperature

difference, and   T0 = O0 = Γ is the initial temperature difference in some initial year;   Ot  is the

corresponding temperature difference for the deep ocean;   Ft  is the radiative forcing by

greenhouse gases (GHGs), including tropospheric ozone;   St  is the emission rate of sulfur dioxide

(SO2), normalized by its value in 1990 (75 TgS/yr), which is converted to sulfate aerosol in the

atmosphere;   FSO4
 is the radiative forcing by sulfate aerosols in 1990; α  is the heat capacity of the

upper ocean; and K and L equal the coefficient of heat transfer between the upper and deep ocean

divided by their respective heat capacities.  Equation (1) can be written as the following statistical

model (10),

  
Tt = Γ

αλ
+ β1Tt− 1 + β2Ft + β3St + KOt− 1 + εt , (2a)
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  Ot = Ot − 1 + L(Tt − 1 − Ot − 1), (2b)

where   εt  is an error term of mean zero.  Equation (2) could be estimated from observed records

of   Tt  and   Ot , from which   λ= β2 / (1− β1 − K)  and   FS04
= β3 / β2 .  However, the absence of an

observational record for the deep-ocean temperature,   Ot , makes it impossible to statistically

estimate all of the coefficients.  Because it is unlikely that   Ot  has changed very much over our

sample (1856-1995), we make the assumption that   Ot  is constant and thus roll   KO t− 1 into the

constant term.  Equation (2a) thus reduces  to:

  Tt = β0 + β1Tt− 1 + β2Ft + β3St + ε t = βX t + εt , (3)

where   β = (β0,β1,β2,β3)  and   X t = (1, Tt − 1,Ft ,St )T .  Equation (3) can be estimated from the

historic record.  We perform ordinary least squares (OLS) estimation of Eq. (3), using the

instrumental temperature record (1856–1995; 140 observations) (11) and the historical GHG

forcing and SO2 emissions (Fig. 1).  Results are summarized in Table 1.  Also shown in the table

is the implied value of λ.  Since we were unable to estimate K in Eq.(2), due to an absence of

deep ocean temperature observations, we have used a value of K for computing λ drawn from our

much more complex energy-balance-climate/upwelling-diffusion-ocean (EBC/UDO) model (7,12-

20).

The more familiar T2X = λ F2X (with F2X = 4.39 Wm-2) is the equilibrium temperature rise

from a doubling of GHG concentration from preindustrial levels (Table 1).  Its value of 2.30C with

a standard error of 0.70C is not inconsistent with IPCC estimates.  However, as we shall see later,

the time to reach equilibrium from a GHG shock, as implied by the coefficients in Table 1, is

unrealistically rapid.

We now define learning, the resolution of uncertainty.  We can never be perfectly certain of

our estimate of the climate sensitivity.  Statistically, at any point in time we will only have a
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certain level of confidence in our estimate.  We use the 95% confidence level from statistics as our

criterion for having learned.  We suppose uncertainty is resolved at the time in the future when,

for a standard 95% level of confidence, the true climate sensitivity λ will first lie between   (1 − c)  ̂λ 

and   (1 + c)  ̂λ , where   ̂ λ  is the then-estimated climate sensitivity and c defines any given confidence

interval.  Note that uncertainty in the true value of λ does not mean that we are unable to reject

the hypothesis that λ is zero.

To be more precise, we are interested in the first point in time at which we fail to reject the

hypothesis, H0 at the 95% level, where   H0 = {(1− c)  ̂λ < λ< (1 + c)  ̂λ } .   For example, when with

95% probability will the true climate sensitivity first lie within ±20% (c = 0.2) of the estimated

sensitivity?  We use Bayes Rule (which uses information optimally and thus is the fastest way to

resolve uncertainty from the temperature record) to estimate β and then compute the median time

to achieve a particular confidence level for several scenarios of future GHG concentrations and

SO2 emissions, denoted High, Med, and Low, corresponding to their levels (Fig. 1).  Med (IS92a)

is the IPCC business-as-usual case with expansion in both   Ft  and   St .  Low (IS92c) is the most

aggressive control scenario, both for GHGs and SO2.  The High (IS92e) case has the largest

increase in   Ft  and   St .

We take a series of draws from the distribution of our OLS estimate of β  and the

distribution of ε  in the present (1995).  Each draw   (β1994,ε) j  together with the assumed future

  Ft  and   St  is sufficient to generate from Eq. (3) a sample century (1996-2095) of temperatures

  
Tt( )j

.  Letting   
 ̂β t  be the OLS estimate of β  based on data through year t > 1995 for a particular

trajectory, Bayes Rule (21) defines how   
 ̂β t  will evolve over time as a new observation   (Yt ,X t )  is

added to the data set, assuming ε   is normally distributed with mean zero and variance   1 /ρ:

  
 ̂β t = [  ̂P t− 1 + ρ(X t ′ X t )]− 1[  ̂P t− 1

 ̂β t− 1 + ρYtX t ] (6a)

  
 ̂P t =  ̂P t − 1 + ρ X t ′ X t( )   . (6b)
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Here   ̂ P t  is the precision of the estimate   
 ̂β t  of β , and prime denotes the transpose.  For a particular

value of c and   (β1994,ε) , the minimum value of t for which 
  
Prob (1 − c)  ̂λ < λ< (1+ c)  ̂λ { }≥ 0.95,

  τ j , is then determined numerically from the sampling distribution for   ̂ λ  which is generated by

Monte Carlo method (1000 draws) from the distribution of the OLS estimate of β .

Let   τ
+ (c)  be the median value of   τ j  taken over 1000 trajectories.    τ

+ (c)  is the time at

which we can expect the true climate sensitivity to be within a prespecified confidence interval

(±c%).  Figure 2a shows   τ
+ (c)  for each of the three scenarios, that is, the median year when we

are 95% sure that the true value of climate sensitivity lies within a specified range (±c%) of the

estimated value.  The results are striking: reducing climate sensitivity from its current uncertainty

of approximately ±50% to ±20% will take a long time.

We see from Figure 2 that learning that the value of climate sensitivity lies within ±20% of

the estimated value takes nearly a century with the High or Med scenarios.  This time is cut to

approximately 30 years for the low scenario.  The High scenario has high levels of GHGs which

increase the temperature signal, but also high SO2 emissions which reduce the signal.  The net

effect is that the signal is weaker for “High” than for “Low.”

Figure 2b decouples the effects of GHG concentrations from sulfate aerosols by fixing SO2

emissions at the levels associated with Med, the mid-range emission scenario.  Figure 2b shows

that controlling GHG emissions slows down the rate of learning about climate sensitivity.  The

most rapid learning occurs when we have the largest signal from GHGs: over 50 years to achieve

a ±20% confidence band.  Aggressive control makes the climate change trend more difficult to see

within the noisy temperature record.  The learning model has difficulty discerning between

random warm and cold years and the warm years due to emission of GHGs.  Figure 2c shows the

result for GHG concentrations set at their level in the Med scenario, and varying SO2 emission

rates.  Here aggressive control of SO2 increases the upward trend in temperature and thus makes

the climate change more visible within the noisy temperature record.
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As mentioned earlier, one troubling feature of Eq. (3) as estimated with the instrumental

record is that the response from an instantaneous and permanent increase in GHG forcing is

surprisingly, and unrealistically, rapid.  Since the effect on the temperature n years after a

hypothetical shock occurs is    β1
nT0, where T0 is the temperature at the time the shock occurred,

the closer β1 is to unity, the slower the response to a forcing shock.  Because of this, we have also

estimated Eq. (3) assuming a value of β1 that is consistent with the physical model; in fact, we use

a value obtained from our more detailed EBC/UDO model.  We obtain β1 estimates by simulating

the effects of a CO2 doubling for 245 years (equal in time to 1856-2100), using the EBC/UDO

model, for three different assumed temperature sensitivities, T2x, and then use the generated data

to estimate the appropriate coefficient values in Eq. (1) with   Ot  neglected.  For T2x = 1.5oC,

2.5oC, and 4.5oC, the results imply β1 = 0.87941, 0.92277 and 0.95167, respectively.

Consequently, we have also estimated Eq. (3) assuming a fixed value for β1 of 0.9, and then

estimated the equation again assuming β1 = 0.94.

Table 2 shows how the learning times vary with the assumed value of β1.  The table clearly

demonstrates that increasing the value of β1 only serves to slow down learning about climate

sensitivity.  This is as would be expected since fixing β1 leads to a poorer fit of Eq. (3) to the

instrumental record, and thus more error.  This logically increases the amount of time necessary to

reduce the error in the estimate of climate sensitivity.

In conclusion, using a simplified model of learning we have shown that achieving some

confidence regarding the value of climate sensitivity may take many decades.  Although additional

factors could be included in our model (such as volcanoes, the sun, and regional temperature

variations), the results suggest a very slow resolution to the question of the magnitude of climate

sensitivity.  This notwithstanding, we have shown that accelerated control of GHGs and SO2

emissions will have opposing effects on the rate at which we learn about climate sensitivity, the

former slowing learning and the latter accelerating it.  The policy implication is that if we wait



7

until uncertainty is resolved before controlling emissions of greenhouse gases, we may wait a very

long time.
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Figure Captions

Figure 1. (a) Global average temperature relative to 1961-1990 (0C); (b) Radiative forcing due to

greenhouse gases (GHGs) (22), and (c) SO2 emission (22) normalized by its 1990 value of 75

TgS/yr.

Figure 2 (a) Median year   τ
+ (c)  at which we can be 95% sure that the true climate sensitivity is

within ±c% of the estimated climate sensitivity, under emissions assumptions associated with the

Low, Med and High scenarios. (b) as in (a), except with the SO2 emission scenario fixed at the

Med(IS92a) scenario; (c) as in (a), except with the CO2 emission scenario fixed at the Med

(IS92a) scenario. Parameter estimates as in Table 1.
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 Table 1.  Ordinary Least Squares Estimates of Parameters in Equation (3)

Quantity Estimate Standard Error

  β0 -0.2209 0.0428

  β1 0.5589 0.0712

  β2 0.2295 0.0751

  β3 -0.2517 0.1455
ε NA 0.1008
λ 0.5350 0.1592

  T2x 2.3486 0.6988

NB: 1.   λ≡β2 / (1− β1 − K)  computed using K = 0.012 from complex energy-balance-

climate/upwelling-diffusion-ocean (EBC/UDO) model (7,12-20).

2.   T2x ≡ λF2x , with   F2x = 4.39Wm− 2 .

Table 2. Estimated Learning Times for Three Models.
c   β1 = 0.5589*   β1 = 0.9   β1 = 0.94
% IS92e IS92a IS92c IS92e IS92a IS92c IS92e IS92a IS92c

5 >2100 >2100 >2100 >2100 >2100 >2100 >2100 >2100 >2100
10 >2100 >2100 2077 >2100 >2100 >2100 >2100 >2100 >2100
15 2096 2085 2056 >2100 >2100 >2100 >2100 >2100 >2100
20 2089 2073 2033 >2100 >2100 >2100 >2100 >2100 >2100
30 2067 2039 2011 >2100 >2100 2081 >2100 >2100 >2100
50 2001 2001 2000 >2100 2081 2044 >2100 >2100 >2100

*Results from Eq. (3) with all parameters estimated.  Other cases involve β1 fixed at indicated

value during estimation of Eq. (3).

NB:

>2100 states that learning is resolved at some time after the year 2100, due to a lack of estimates

of greenhouse gas and sulfate forcing post-2100.

Learning time is defined as the first year in which we expect to be 95% confident that the true

climate sensitivity is within ±c% of the estimated climate sensitivity.
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Figure 1:
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Figure 2:


