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be a fixed fraction of the sample size. We show that our method has better coverage
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1. Introduction

Impulse response functions (IRFs) play an important role in describing the impact

that shocks have on economic variables and they are generally obtained from Vector

Autoregressions (VAR). It is conventional to compute the response of current and fu-

ture values of economic variables to a one standard deviation increase in the current

value of the structural shocks. The estimate of the IRFs and their confidence inter-

vals are commonly based on L
..
utkepohl’s (1990) asymptotic normal approximation or

bootstrap approximations to that distribution (see Kilian (1998a, 1999)).

Existing methods for constructing IRFs and their confidence intervals, however,

may provide different results depending on whether the series are assumed to be

stationary, exactly integrated or exactly cointegrated. Even when standard methods

of inference are justified asymptotically, confidence bands may have poor coverage

properties in small samples in the presence of highly persistent variables, as shown

by Kilian and Chang (2000). These authors compare the finite-sample accuracy and

average length of commonly used confidence intervals for IRF coefficients for VAR

models in levels based on existing empirical studies. They caution applied researchers

against inference at horizons bigger than 16 quarters, as inference becomes very

unreliable. Unit root pre-tests do not solve the problem, as the actual coverage of

IRF bands obtained after a pre-test can be quite different from the nominal one.

This paper proposes a new method for constructing confidence bands for mul-

tivariate IRFs in the presence of highly persistent processes. We use asymptotic
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approximations based on local-to-unity asymptotic theory and allow the lead time

of the IRF to be a fixed fraction of the sample size. The method thus depends on

the variables being highly persistent. The assumption is therefore different (and in

many empirical examples more plausible) than the assumptions that justify existing

methods, and is intended to provide better approximations in small samples in the

presence of high persistence. The advantages of our method are that: (i) it does not

require a researcher to decide whether the process has a unit root or not; (ii) it is

easy to compute; (iii) the confidence bands contain the whole true IRF with a pre-

specified confidence level (i.e. they are not pointwise); (iv) it is robust to the presence

of deterministic components; (v) it allows for mildly non-stationary processes (e.g.

roots about 1.001). Due to the nature of our approximation, our confidence bands are

appropriate at long lead times and as long as the process is highly persistent (includ-

ing a unit root). How long the lead time in practice has to be for our approximation

to be accurate is investigated in a Monte Carlo experiment.

The empirical literature commonly estimates VARs either in levels or in first

differences, sometimes after unit root pre-test procedures, whose results are usually

sensitive to the order of integration of the economic variables. This problem in prac-

tice is either ignored or ad-hoc robustness checks are performed. That is, researchers

check if the same results hold whether one uses a specification in levels or in first

differences. However, even when the results remain largely unchanged, this approach

will not give any indication of the overall coverage of the procedure and, as we show,
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pre-tests create considerable coverage distortions. This paper not only quantifies the

size distortions that researchers face when conducting inference about IRFs after pre-

tests, but it also shows when and by how much standard methods may be improved

upon by the method proposed in this paper. Our method generally works well for

horizons bigger than or equal to ten percent of the sample size. Depending on the

degree of persistence, our method performs better than pre-test-based IRFs also for

smaller horizons. We also discuss a simple way for constructing confidence bands that

allow reliable (although conservative) inference at both longer and shorter horizons.

Alternative methods are available in the literature. Andrews (1993) and Andrews

and Chen (1994) provide bias-corrected parameter estimates for IRFs in univariate

time series. Their method is an important improvement over normal sampling meth-

ods, but the coverage is poor at long lead times and it is computationally demand-

ing. Another available method is Hansen (1999) grid-bootstrap method. However,

to date there is no extension of the aforementioned methods to deal with multivari-

ate processes. Kilian (1998a) provides a useful, improved bias-corrected bootstrap

method that explicitly accounts for the bias and skewness of the small-sample dis-

tribution of the IRF estimator. However, these methods may not be robust to the

presence of roots equal to one or mildly explosive, or deterministic terms, and it is

important to investigate whether there are alternative methods that can provide bet-

ter coverage or smaller length of the confidence bands.1 Phillips (1998) studies IRFs

1For a comparison of these methods in a univariate setup, see Pesavento and Rossi (2005). Sims
and Zha (1999) propose an alternative Bayesian method.
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in the presence of local-to-unity, formally providing their limiting distributions and

establishing their non-normality in small samples; however, he does not provide an

empirical methodology to construct the confidence bands in practice. Recent solu-

tions have been proposed by Wright (2000) and Gospodinov (2002), although only for

univariate processes. Wright (2000) relies on a local-to-unity approximation, which

inspired our proposal for a method that is robust at short horizons (discussed in Sec-

tion 6), but he proposes a Bonferroni method, which renders the confidence bands

conservative. Gospodinov (2002) relies on the inversion of a LR test in which the

constrained estimate exploits a null hypothesis on the value of the IRF at some hori-

zon of interest. His method has the correct size pointwise and confidence bands have

small length. Compared to his, our method is much less computationally intensive,

has uniform coverage at medium to long horizons, and, unlike Gospodinov (2002),

it does not require a specific null hypothesis which may not necessarily be available

in most economic applications.2 On the other hand, our method explicitly relies on

long horizon asymptotics, so it might have worse size properties at short horizons.

2. Motivation and Preview of the Results

Consider a researcher interested in analyzing whether monetary shocks have an effect

on the real exchange rate. An answer to this question would provide an important

empirical contribution to the long-standing debate on flexible versus sticky price

models of exchange rate determination. Researchers working on this topic typically

2We thank a referee for pointing this out.
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run VARs to estimate IRFs, and have to face the choice of using variables in levels

or in first differences. For example, Eichenbaum and Evans (1995) estimate a VAR

in levels, whereas Rogers (1999) relies on unit root pre-tests. Neither approach may

be satisfactory.

To document this problem, Figure 1 shows Monte Carlo simulations for a bivariate

VAR where one variable has a root that is close to unity. The experiment, explained

in more detail in Section 4, is representative of the practical situation outlined above,

where the researcher needs to include a “key” variable (here, the real exchange rate),

but neither theory nor unit root pre-tests provide conclusive evidence on whether

this variable has a unit root or not.3 For expository purposes, below we focus on one

IRF only. The methods of constructing confidence intervals are described in details

in Section 4.

Figure 1(a) shows that IRFs based on both VARs in levels and unit root pre-

test-based VARs provide unreliable inference. The figure shows one minus the actual

coverage rate of the various methods used to construct IRFs confidence bands. The

nominal (desired) coverage rate is 0.90, so that a method performs well when its line

is around 0.10. These lines are reported as a function of δ, a parameter that denotes

the horizon of the IRF as a fraction of the total sample size, and plays an important

role in this paper. For example, in a sample of 100 monthly observations, a horizon of

3 In some cases there may be more than one large root. The results of Section 4 show that our
method is robust to misspecification of the largest root of the other variables in the VAR.
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12 months would correspond to δ = 0.12.4 The upper panel in Figure 1(a) shows that

when the root is exactly one, estimation in levels (the line with diamonds) produces

IRFs bands that undercover. In this case, a pre-test (the line with circles) would be

a much better choice, as it is approximately around 0.10 at any δ. However, when

the root is close to unity, say 0.97, the bottom panel in Figure 1(a) shows that the

situation is completely different. Unit root pre-testing lacks power and induce the

researcher to estimate a mis-specified model — the model in first differences — which

causes the coverage to be extremely poor. On the other hand, estimation in levels is

now better for relatively large horizons, δ ≥ 0.05, although the coverage is still not

equal to the nominal level. Thus, the applied researcher faces the problem of choosing

between levels and pre-test-based methods, knowing that neither method is superior

to the other, and that their relative performance crucially depends on the magnitude

of the unknown root. To our knowledge, there is no method that successfully solves

this problem. To overcome this difficulty, Rogers (1999) estimates a VAR with the

real exchange rate both in levels and in first differences. While this seems a pragmatic

solution, it is not satisfactory, as nothing guarantees that the overall coverage will be

correct.

In this paper we propose methods that have asymptotically correct coverage at

4We chose to report δ rather than the horizon because our analysis focuses on small samples, so
that the horizon per se is less important than its ratio to the available sample size. This happens
because, as explained later, the sample size determines the degree of imprecision of the estimate of
the unit root, and the horizon determines how much this imprecision is blown up. See Rossi (2001)
for more details.
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medium to long horizons no matter whether the root is unity or highly persistent,

whereas both the level and the pre-test based IRF bands may not. The dotted line

in Figure 1(a) shows one such method. It is clear that the method has approximately

correct coverage at medium to long horizons (δ ≥ 0.10), and that its coverage prop-

erties are robust to whether there is an exact unit root or not, which is exactly in the

region where the usual pre-test methods lead to unreliable inference.

In the next section we present these methods, and discuss how to implement them.

More details and Monte Carlo results are available in Section 4. Section 5 extends

this method to more than one root local to unity, and Section 6 provides a simple

modification that ensures good coverage at both short and long horizons. Section 7

discusses an empirical application to real versus nominal sources of fluctuations in

exchange rates, and shows that shocks are more persistent than commonly found in

VARs estimated in levels; thus, according to Eichenbaum and Evans (1995), shocks

would seem to disappear more quickly than they really do. Section 8 concludes.

3. The Model

Let the data generating process (hereafter DGP) be: (I − ΦL)wt = eut, where wt is
a (m× 1) vector of variables.5 Without loss of generality, we can express Φ in terms

of its eigenvalues and eigenvectors: Φ = V −1ΛV , so that we can rewrite (1) in terms

5wt may contain deterministic components (constants and time trends) but they are irrelevant,
as the IRFs are defined as deviations from the deterministic components (see Phillips (1998)).
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of rotated variables yt ≡ V wt and ut ≡ V eut:
(I − ΛL) yt = ut (1)

ut = Θ(L)²t (2)

The structural shocks in this VAR, denoted by ηt, are such that ²t = A0ηt where

A0 is the matrix that identifies the structural shocks. Θ(L) ≡ Im +
∞P
i=1
ΘiL

i, is a

matrix polynomial in the lag operator L, and the following assumptions hold:

Assumption 1: ²t is a martingale difference sequence with covariance Σ and finite

fourth moments.

Assumption 2: |Θ (z)| = 0 has roots outside the unit circle, and
∞P
i=0
i kΘik < ∞,

where kΘik = maxr,s |Θ(r,s)i |, where r, s denote the row and the column position

of an element of Θi.

Assumption 3: Λ = I + 1
TC, where C is a diagonal matrix with fixed elements

c1, c2, ...cm along the main diagonal.

Assumption 4: The matrix V is known.

Assumption 5: h
T →
T→∞

δ.

Assumption 1 and 2 are fairly standard. Assumption 1 implies that {²t} satisfies

a functional central limit theorem, while Assumption 2 ensures that ut is a stationary

process satisfying a Beveridge and Nelson decomposition, and with spectral density



9

at frequency zero Ω ≡ Θ(1)ΣΘ(1)0 such that Ω1/2 ≡ Θ(1)Σ1/2 is invertible. Assump-

tion 3 assumes that Λ is diagonal with the largest roots of the process on the main

diagonal. These roots are distinct and persistent (close to I(1)) such that their real

parts follow a local-to-unity process. This allows us to use multivariate local-to-unity

asymptotic theory (see Stock (1996) and Phillips (1998)) to improve the asymptotic

approximation in small samples. By allowing c1, c2, .., cm to be either negative or

positive, our approximation encompasses both stationary but persistent, and mildly

explosive processes. The diagonality of Λ rules out processes that behave like I(2)

in small samples, whereas the eigenvectors V describe possible cointegrating vectors.

Assumption 4 emphasizes that throughout this paper we assume that the cointegrat-

ing vectors are known (as in Elliott, Jansson and Pesavento (2002))6, which is not a

limitation as long as the researcher is interested in the structural shocks to yt, like

we assume. To obtain better asymptotic approximations to the distribution of IRF

coefficients in small samples, Assumption 5 allows the lead time of the IRF to be a

fixed fraction of the sample size.

From (1), the DGP can be rewritten as (see Rossi (2005) for a proof of this result):

yt+h =
hX
j=0

Λj
¡
I + Λ−1Θ1 + Λ−2Θ2 + ...

¢
²t+h−j + Λh+1yt−1 + at,h (3)

6The general model (1) nests some popular models as particular cases as described in an Appendix
available upon request.
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where at,h ≡
¡
Λh+1 − L−(h+1)¢ ∞P

j=0
Λj

∞P
s=j+1

Λ−sΘs²t−1−j .7 For the purposes of approx-

imating the IRF at horizon h, under Assumptions 1-5,
¡
I + Λ−1Θ1 + Λ−2Θ2 + ...

¢
can

be approximated byΘ (I), and at,h can be ignored. In fact, Λh+1
∞P
j=0
Φj

∞P
s=j+1

Λ−sΘs²t−1−j

does not depend upon ²t, whereas L−(h+1)
∞P
j=0
Λj

∞P
s=j+1

Λ−sΘs²t−1−j contains infor-

mation on ²t only through
∞P

s=h+1

Λh−sΘs, which, from the summability property in

Assumption 2, goes to zero when h → ∞.8 Hence, the reduced form and structural

IRFs can be approximated respectively as ∂yt+h
∂²t

' ΛhΘ (I) and ∂yt+h
∂ηt

=
∂yt+h
∂²t

∂²t
∂ηt

'

ΛhΘ (I)A0.

Considering assumptions 3 and 5 together, we have that Λh →
T→∞

eCδ, where eCδ

denotes a diagonal matrix with (ec1δ, ec2δ, ...ecmδ) on the main diagonal. Note that,

due to the nature of our assumptions, our confidence bands will be appropriate at

long lead times and as long as the process is highly persistent (including a unit root).

How long the lead time in practice has to be in order for our approximation to be

accurate will be investigated in a Monte Carlo experiment.

The IRF of the effect of a unitary j − th structural shock on the k − th variable

7Note that (3) is a device for obtaining better asymptotic approximations in small samples.
Assumptions 3 and 5 govern its validity. Also, (3) follows directly from eq. (15) in Rossi (2005) by
letting q →∞.

8This clearly follows as

°°°°° ∞P
s=h+1

Λh−sΘs

°°°°° ≤
∞P

s=h+1

°°Λh−s°° kΘsk ≤Ã
∞P

s=h+1

°°Λh−s°°!Ã ∞P
s=h+1

kΘsk
!
. The first factor in the last expression is bounded given As-

sumption 3, while

Ã
∞P

s=h+1

kΘsk
!

→
h→∞

0 as it is absolute summable by Assumption (2).
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in yt+h can then be approximated by:

∂y
(k)
t+h

∂η
(j)
t

' i0kΛhΘ (I)A0ij →
T→∞

i0ke
CδΘ (I)A0ij (4)

where is denotes the s − th column of the m × m identity matrix. Note that the

limiting IRF depends on the largest roots, described by C, and on the cumulated

short run dynamics, described by Θ (I). At long horizons, the uncertainty associated

with the short run parameters is of smaller order than the uncertainty associated

with the largest roots, and we can ignore the uncertainty in the estimation of Θ (I)

by simply replacing it with a consistent estimator.

Equation (4) is an approximation to the IRF that is valid under our assumptions

1-5, and that can be used to construct confidence intervals for the IRFs of yt. Al-

though C cannot be consistently estimated, methods for constructing valid confidence

intervals for the c0ks are available (e.g. Stock (1991) or Elliott and Jansson (2003)).

Let the confidence interval for ck obtained by one of such methods be denoted by

(cL,k, cU,k), for k = 1, ..m. Since the elements in (4) are monotone functions of ck, we

propose to construct confidence intervals for the IRF coefficients from the confidence

intervals for the ck’s as (eδcL,k i0k bΘ (I) bA0ij , eδcU,k i0k bΘ (I) bA0ij) where bΘ (I) and bA0 are
any consistent estimates of Θ (I) and A0. More examples on how to implement this

method in practice are provided in Sections 4 and 5.

As usual, different types of identification result in different IRFs. The long-
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run identification (Blanchard and Quah (1989)) imposes a triangular structure to

Θ (I)A0. The Wold ordering identification (Sims (1980)) imposes constraints on A0

such that A0 is the Choleski factor of Σ. We will be agnostic about the identification

procedure and will take it as given, as our goal is to provide a method for constructing

IRF bands that have correct coverage, not to propose new methods to identify shocks.

It is also important to note that, while this paper focuses on structural IRFs, we

expect that our method could also be applied to the analysis of the Generalized IRFs

proposed by Koop, Pesaran and Potter (1996), and Pesaran et al. (1998, 2004).

4. Multivariate impulse response functions with a possible unit root

This section compares various methods for the construction of confidence bands for

IRFs in multivariate models in the presence of a root local to unity, both in terms

of coverage and length. For ease of exposition, we focus on a bivariate VAR, where

one variable has an exact unit root while the other has a large root that is close to

one. This corresponds to the common situation in which the researcher “knows” that

one variable is I(1) but is unsure about whether the other variable is stationary or

not (e.g. Rogers (1999)). While this provides a useful approach when the researcher

is unsure about the persistence in only one of the variables (and, as we will show,

anyway is appropriate in case the researcher is interested in the IRFs for just that

variable), nevertheless it clearly does not represent the most general situation. At

the end of this section, we show that our method is robust to mis-specification in the

largest root of the second variable (provided that it is persistent). The next section
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will instead focus on the more general situation in which there can be more than one

local-to-unity root. The DGP is:

w1t = µ+ ρw1t−1 + u1t (5)

w2t = w2t−1 + u2t

where ρ = 1 + c
T . The dynamics of the model is determined by Ψ (L)ut = εt, where

Ψ (L) = I − ΨL. Equation (5) is a simplified version of our model (1) where Φ =

Λ =

 1 + c
T 0

0 1

 and Θ (L) = Ψ (L)−1. The elements of the spectral density at
frequency zero of ut,, Ω = Ψ (1)−1ΣΨ (1)−1

0
, are denoted as ωij , i, j = 1, 2. The

structural IRFs are computed by using a Wold causal ordering identification where

shocks to w2t do not contemporaneously affect w1t (i.e. Σ1/2 is lower triangular).

The structural IRFs at long horizons are (up to an irrelevant o(T−1/2)):

∂wt+h
∂ηt

=ΛhΩ1/2 →
T→∞

 ecδ 0

0 1

Ω1/2 (6)

Let R2 ≡ ω−111 ω12ω
−1
22 ω21 be the square of the frequency zero correlation between the

innovation in ∆w2t and the innovation in the quasi difference of w1t. As discussed

in Elliott and Jansson (2003), R2 is an important nuisance parameter that affects

the power of the EJ test, one of the tests that we use in our simulations. We are
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interested in the structural response of w1t to a unitary shock to η1t:

∂w1t+h
∂η1t

→
T→∞

ω
1/2
[11]e

cδ (7)

where ω1/2[11] is the element [1, 1] of the matrix Ω
1/2.

To compare the coverage rates of different methods, we simulated model (5) with

Ψ =

 0.2 0

0 0.3

 , R2 = 0.5,9 and T = 100 over 5000 Monte Carlo replications. The
IRF bands for the VAR in levels and in differences are computed by using L

..
utkepohl’s

(1990) method with simulated standard errors based on 500 replications.

Here is how we implement our method in detail. First, we construct a confidence

interval for c. We then obtain the confidence bands for the IRF at long horizons by

using the confidence interval for c and a consistent estimator of ω1/2[11] in the closed-

form formula (7). To construct confidence intervals for c, we invert the acceptance

region of the following tests for a unit root in w1t: the ADF, the Elliott et al. (1996,

ERS thereafter), and the Elliott and Jansson (2003, EJ thereafter) tests. These

tests differ in their power properties, and the most powerful tests will usually lead

to smaller confidence bands (often at the cost of additional computations). Thus,

each of these methods will provide different IRF bands, all of which will have the

correct coverage, but may have different lengths. To give an example, suppose that

the researcher is interested in ∂w1t+h
∂η1t

. In this case, the method is implemented in

9We choose R2 = 0.5, a case in which EJ test has significantly higher power than ERS. The reader
is referred to Elliott and Jansson (2003) for a comparison of the different tests.
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practice as follows. (i) Construct a confidence interval for c (denoted by (cL; cU ))

by inverting the acceptance region of a unit root test. For the sake of simplicity,

suppose that the researcher is interested in inverting the ADF test and that the

estimated statistic is -2.068. Thus, directly from Stock’s (1991) Table A1, p. 455-

6, the confidence interval for c is (−13.73, 2.411). (ii) Run a VAR in differences to

estimate Θ (L), A0, and use these to estimate Ω1/2. (iii) Finally, the confidence band

is obtained by plugging the estimate from (ii) into eq. (7). If T = 100 and h = 20,

then δ = 0.2, ecLδ = 0.064 and ecU δ = 1.619. Thus, the confidence interval for the

IRF is (bω1/2[11]ecU δ, bω1/2[11]ecLδ) = (0.064bω1/2[11], 1.619bω1/2[11]), where bω1/2[11] is the estimate from
the identified structural VAR.

In Figure 1 we compare our method with the use of the conventional asymptotic

normal approximations based on VARs estimated either in first differences or in levels,

where the decision between a VAR in levels or in first differences is based on a unit

root pre-test on w1t. If the pre-test fails to reject a unit root at a 5% level, then

the VAR is estimated with w1t in first differences, otherwise w1t is used in levels.

We report both cases in which the ADF and the ERS test statistics are used in the

pre-test, respectively labeled “PRET_ADF” and “PRET_ERS”. Since pre-testing

is known not to work well (Cavanagh et al. (1995)), we also report results for a

VAR in levels without pre-testing, labeled “LEV”.10 Figure 1 displays one minus the

10Given that we are pre-testing yt for a unit root, if the two stages were independent, the probability
that the confidence interval contain the true IRF when the null of c = 0 is true would be (1−0.05)2.
Using 95% confidence intervals for the IRFs allows us to do a fairer comparison of the empirical
coverage rates of the different methods. However, the two stages are not independent, because of
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coverage rate of the various IRFs bands for ρ = 1, 0.97, 0.90, 0.80. For ρ = 1, the

results are close to the nominal level (0.10) for all methods, except for the VAR in

level, for which it is around 40%. This result reflects the bias in the estimation of ρ

from a regression in levels. Our method performs very well for various values of ρ:

all three variants (ADF, ERS, EJ) have coverage rates that are close to the nominal

level at long horizons across different values of ρ. On the other hand, as ρ moves away

from unity, confidence intervals computed from the VAR in first differences start to

behave poorly, with coverage that approaches zero as the horizon increases. In fact,

for large enough (though less than one) values of ρ, pre-tests have low power to reject

the hypothesis of a unit root, and select a VAR in first difference most of the times.

As expected, different pre-tests have significantly different coverage properties. The

better coverage rate of ERS relative to ADF reflects the higher power of ERS test

against alternatives that are close to one. As ρ moves further away from unity, the

pre-tests are able to reject the hypothesis of a unit root more often, and their coverage

improves. As ρ becomes very small (say ρ = .80), Assumption 3 is no longer a good

approximation and our method starts to worsen: ADF and ERS have a coverage rate

around 60% while EJ has a coverage rate around 70%.11

the correlation between the residuals (as in Cavanagh et al. (1995)), so the pre-test coverage is not
0.90, even asymptotically. The c used here is -7, as ERS and EJ recommend.
11 In unreported results, we investigate the case in which ρ = 1.01 (a mildly explosive root) within

the same Monte Carlo design as above. We find that, as expected, our method is robust in this case
as well. The VAR in levels performs worse in general than in the other cases depicted in Figure
1 (because the process becomes more non-stationary). The pre-test procedures also perform worse
relative to the case in which ρ = 1, because we depart from the exact unit root case. In unreported
Monte Carlo simulations, we also verified the robustness of our method to the presence of a possible
deterministic trend. The results do not change if the true DGP has a deterministic trend, provided
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Table 1 reports median confidence interval lengths for the various methods. The

higher power of the EJ test is reflected in the shorter median confidence interval

length. For values of ρ that are close to one, the inversion of the EJ test produces

confidence intervals that can be a little more than half the length of confidence inter-

vals obtained by inverting ADF. At the same time, confidence intervals constructed

inverting ERS and EJ are not symmetric (results are not reported). The smaller

length of the interval comes at the cost of not having a median unbiased confidence

interval. The interval length for VAR in levels is also very small but, as we just noted,

having short intervals is irrelevant if the probability of including the true IRF is zero.

To check the robustness of our method to some of the assumptions in the model,

we compute the coverage rates for all methods when model (5) is estimated even

though the second root is not exactly equal to one. Figure 2 shows that, when the

second root is close to one (0.99), our method still produces confidence intervals

with coverage close to their nominal value. Confidence intervals from VAR either in

levels or in differences still have bad coverage at long horizons. As the second root

moves away from one, ERS and ADF still perform well, while EJ shows significant

size distortions. The robust behavior of ERS and ADF is due to the fact that they

use information only on w1t. Since we are assuming that Φ is diagonal, the mis-

specification in the estimation of the second row of Θ (I) does not affect the IRF for

w1t. On the other hand, the EJ test uses information contained in ∆w2t. Since in this

that the researcher takes this into account in estimating the parameters.
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case w2t is not really I(1), we are using incorrect information in calculating the test

statistic. Overall, our method performs well even if the other variables in the model

do not have exact unit roots. This suggests that it is possible to extend this method

to a situation in which there are many unknown unit roots, as discussed next.

FIGURES 1, 2 AND TABLE 1 HERE

5. Multivariate impulse response functions with many unit roots

It is possible to generalize our method and analyze the coverage of multivariate con-

fidence bands for IRFs when there is more than one root local to unity. We explore

this possibility in a bivariate VAR with two roots local to unity.12 The DGP is now:

w1t = µ+ ρ1w1t−1 + u1t (8)

w2t = ρ2w2t−1 + u2t

where ρi = 1 + ci
T , i = 1, 2, Ψ (L)ut = εt, and the values for Ψ (L) , Σ and the

identification strategy are the same as in the previous Section. Now the structural

IRFs at long horizons are (again, up to an irrelevant op(T−1/2) term):

∂wt+h
∂ηt

=ΛhΩ1/2 →
T→∞

 ec1δ 0

0 ec2δ

Ω1/2 (9)

12Note, however, that the method proposed in this paper can theoretically be applied to m local-
to-unity VARs, m > 2.



19

Thus:

IRF11 ≡ ∂w1t+h
∂η1t

→ ω
1/2
[11]e

c1δ, IRF12 ≡ ∂w1t+h
∂η2t

→ ω
1/2
[12]e

c1δ (10)

IRF21 ≡ ∂w2t+h
∂η1t

⇒ ω
1/2
[21]e

c2δ, IRF22 ≡ ∂w2t+h
∂η2t

⇒ ω
1/2
[22]e

c2δ (11)

The confidence intervals for the IRF are then estimated as explained in Section 4.

Here we focus on the following methods: (i) the method proposed in this paper,

where the first stage confidence interval for c is obtained by inverting the ADF test

(labeled “ADF”); (ii) confidence bands obtained after an ERS unit root pre-test on

both variables in the VAR (labeled “PRET_ERS”); (iii) confidence bands obtained

from a VAR in levels by using L
..
utkepohl’s (1990) method (labeled “LEV”).

Figure 3 shows the results. It displays one minus the coverage rate of various

confidence bands for IRFs for the above DGP with ρ1 = 0.98 and ρ2 = 0.95. Our

method delivers confidence bands with the correct coverage for δ ≥ 0.06, as before. Its

coverage is better than that of a VAR in levels even for very short horizons (δ ≥ 0.04),

while the coverage of the IRFs in the pre-test case is worse for IRF11 than for IRF22,

as the second root is closer to unity than the first root.

Overall, the results confirm the intuition provided in Figure 2 above: since Φ = Λ,

which is diagonal as it contains the roots of the process, it is possible to accurately

approximate the IRF bands by repeating the procedure discussed in Section 4 sepa-

rately for all the variables in the VAR. The diagonality assumption is important, and

it has to be verified for the particular empirical application at hand, although it is
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reasonable in many macroeconomic applications (e.g. Pesavento and Rossi (2003)).

FIGURE 3 HERE

6. A method robust at short horizons

While the main method proposed in this paper applies to long horizons, namely hori-

zons longer than ten percent of the sample size, it is also possible to refine it in order

to make it robust to short horizons too. We discuss one such method in this section.

The method is inspired by the work of Wright (2000). To overcome the difficulties

associated with the construction of confidence bands for IRFs in a univariate context,

Wright (2000) proposes a Bonferroni method that ensures that coverage is at least

equal to the nominal level at every horizon. A main advantage in our framework

is that we can apply his insight to the largest roots of a multivariate process, thus

making the method feasible for implementation in a multivariate context.13 Another

advantage of our method is that it controls coverage exactly at both short and long

horizons, while the coverage at intermediate horizons is conservative. The method is

slightly more complicated than those proposed in the previous sections, but still easy

and fast to use. However, it builds on Bonferroni methods, so it will be conservative

at medium horizons, and not median unbiased.14

The method is as follows: (a) compute a (1− α1)% confidence interval for c,

(cL, cU ) , by inverting an ADF test, α1 = 0.10. Use this confidence interval to compute

13Computationally, there is a small difference between Wright (2000) and our method, which is
implemented by not re-estimating the Θi associated to different values of c in step (a) below.
14 In general, it is more median unbiased the closer the root is to unity.
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ecLδ and ecUδ; (b) estimate a VAR in quasi differences and construct a (1− α2)%

confidence interval for Θi by using L
..
utkepohl’s (1990) method, where α2 = 0.10; (c)

for each limit of the confidence interval for Θi at each horizon, compute ecLδ Θi and

ecUδ Θi; (d) the overall confidence interval is: (mini eCLδ Θi; maxi eCU δ Θi). By the

Bonferroni inequality, its coverage should be at least (1− α2 − α1)% at each horizon

h. By construction, this method is now pointwise at any horizon.15

To offer more insights on the method, consider a simple univariate ARMA(1,q)

process: (1− ρL) yt = ut, ut =
Pq
j=0 θj²t−j , θ0 = 1. Note that ut+h =

Pq
j=0 θj²t+h−j .

The IRF of the level of yt+h to the shock ²t, h ≥ 0, is ρh
³
1 +

Pmin(h,q)
j=1 ρ−jθj

´
' ρh

³
1 +

Pmin(h,q)
j=1 θj

´
. Note that

³
1 +

Pmin(h,q)
j=1 θj

´
is also the cumulative IRF

of ut+h onto ²t. In the long horizon approximation, we only considered uncertainty

on ρh by estimating the confidence interval for ecδ and using a consistent estimate

for
³
1 +

Pmin(h,q)
j=1 θj

´
. At short horizons, however, the uncertainty on the θ0s is im-

portant, so we cannot simply plug-in an estimate of
³
1 +

Pmin(h,q)
j=1 θj

´
, but need to

evaluate its variability. To take the latter into account, we construct confidence in-

tervals for
³
1 +

Pmin(h,q)
j=1 θj

´
in step (b).16 The confidence intervals are obtained by

15We choose α1 = 0.10 because this guarantees that the coverage at long horizons is 0.90, so that
the results are comparable with our long horizon method at a nominal coverage of 0.90.
16These can be approximated by confidence intervals for the cumulative IRFs from an AR for

the quasi-differences, (1− ρL) yt. An approximation to the latter can be obtained directly as the
cumulative IRF from an AR for the first differences of yt, ∆yt ' ut, with the advantage of being
easier to implement in practice. In fact, the latter will turn out to be extremely useful in the general
VAR(p) case, where these cumulative IRFs can be obtained by standard packages as the IRF to the
level of the variables when the model is estimated in first differences. When the persistence is not
very high, it might be safer to implement this method by using quasi-differences (i.e. the residuals
from the estimation of a VAR(1) in levels) rather than first differences, as discussed in Pesavento
and Rossi (2003).
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Monte Carlo simulation. Then we combine the two confidence intervals as described

in steps (c) and (d) by using the Bonferroni inequality.

If (1− α1)% is the nominal coverage level for the confidence interval in step (a)

— the confidence interval for c — and (1− α2)% is the nominal coverage level for step

(b) — the confidence interval for Θi —, then the short-run method we propose will have

a coverage level equal to (1− α2)% at very short horizons, and equal to (1− α1)%

at very long horizons. For intermediate values of the horizon, the coverage level will

be determined by the Bonferroni inequality, and will be at least [1− (α1 + α2)]%.

The reason why we can exactly control coverage at both very short and very long

horizons is because the uncertainty on the estimate of ρ is of order Op
¡
T−1

¢
, whereas

the uncertainty on Θi is of order Op
¡
T−1/2

¢
and the uncertainty on the estimate of

ρh (when h is large) is of order Op (1) (cfr. the discussion in Rossi (2001)). IRFs at

the one period ahead horizon depend on ρ and Θi, where the uncertainty over ρ is

asymptotically irrelevant relative to the uncertainty over Θi. Thus, this implies that

the coverage at very short horizons is equal to (1− α2)%. On the other hand, IRFs

at very long horizons depend on ρh and Θi. The uncertainty over ρh is of order Op (1)

whereas the uncertainty on Θi (and on its powers) is of order Op
¡
T−1/2

¢
. Thus, at

very long horizons, the uncertainty over Θi is asymptotically irrelevant, and inference

is driven by the uncertainty over ρh. This implies that the coverage level at very long

horizons is equal to (1− α1)%. Therefore, one of the advantages of the method we

propose here relative to the approach taken in Wright (2000) is that our method
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asymptotically has a size equal to its nominal value at both very short and very long

horizons. In contrast, Wright’s (2000) method is conservative at every horizon, and

the researcher would not know the actual nominal coverage at any horizon (although

the researcher would know a bound on it, given by the Bonferroni inequality).

We perform a simple Monte Carlo experiment to evaluate the performance of this

method relative to the one proposed in the main part of the paper. The DGP is the

same as described in (5), where ρ = 0.97, T = 100. Table 2 shows the results. The

new method is labeled “Small h”. Subscripts “L” and “R” are used to denote the

empirical rejection probabilities of the true IRF laying respectively on the left and

on the right of the proposed confidence interval, which should ideally be 0.05. For

comparison, we also report the same probabilities based on our “Large h” method.

Both methods are based on confidence intervals obtained by inverting a simple ADF

test. Note that the “Small h” method improves the empirical rejection probabilities at

short horizons relative to the “Large h” method. However, it is not median unbiased

at short horizons, and it is slightly conservative. Nevertheless, its overall coverage

properties are quite good at every horizon.

TABLE 2 HERE

7. An empirical application to exchange rate dynamics

As an empirical application, we analyze the nominal versus real sources of fluctua-

tions in real and nominal exchange rates. There is a large literature on this topic.

Eichenbaum and Evans (1995) influential paper use an identification à la Sims; Clar-
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ida and Gali (1994), Lastrapes (1992) and Rogers (1999), among others, impose a

long-run identification. Different types of identification methods will result in differ-

ent restrictions on Θ (I)A0 in (4) and therefore will result in different IRF. Although

our method works regardless of the type of identification method used, here we will

focus on a short run identification based on Wold ordering.

We focus on the Eichenbaum and Evans’ (1995) influential paper, which has been

used for illustrative purposes before (e.g. Kilian (1998b)). We use the ratio of the

log of non-borrowed reserves to the log of total reserves as a measure of the policy in-

strument. The five-variables VAR also includes U.S. industrial production, U.S. CPI,

the difference between U.S. and foreign short-term rates and the real exchange rate.

The sample starts in 1973:1, with different ending dates for each country (2001:12 for

Germany, 2002:9 for Japan and the United Kingdom and 2001:5 for Italy). Following

Rogers (1999), in the VAR we use first differences of all the variables other than the

real exchange rate. Here, an increase in the real exchange rates represents a depre-

ciation of the U.S. real exchange rate. The structural IRFs are calculated using the

Wold ordering: output, prices, reserves, interest rate differential and real exchange

rate. An exogenous contractionary monetary shock is identified as the component of

a negative innovation in NBRX that is orthogonal to prices and output.17

17Data for the U.S. (industrial production, 3 months T-bill rates, Total Reserves and Non Borrowed
Reserves with extended credit) and bilateral monthly nominal exchange rates are from the Federal
Reserve Database. Data for Industrial Production and short term money markets rates for each
foreign country and CPI for all countries including the U.S. are from the IFS database. All variables
are in logarithms except for the interest rates. Since VARs are known to be sensitive to the selection
of the lag length (see Kilian (2001) and Ivanov and Kilian (2005)), in order to make our results
comparable with Eichenbaum and Evans (1995), we choose 6 lags, which is the same VAR lag length
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The descriptive statistics and unit root tests reported in Table 3 suggest that

the real exchange rate is a highly persistent variable. For most countries, we cannot

reject a unit root. However, we cannot reject many stationary, although persistent,

alternatives either. This prompted us to apply the method proposed in this paper.

Since we are interested in the medium to long horizon response of the real exchange

rate to a contractionary monetary policy shock, we focus on the method discussed in

Section 4. If instead the researcher were interested in the immediate response of the

real exchange rate then the method described in Section 6 would be more appropriate.

Both methods are feasible here, and they are expected to give similar results at

long horizons, but they will significantly differ at short horizons. As we showed in

Section 6, the method robust at short horizons is pointwise and conservative, so if

the researcher is interested in the response at medium to long horizons, as we are,

the method proposed in Section 4 is more appropriate.

Figure 4 compares various confidence intervals for the response of the real ex-

change rate to a contractionary monetary policy shock for different countries. The

two outer solid lines are the confidence bands computed with our method by inverting

ERS test for a unit root on the real exchange rate, and the middle solid line is the

median unbiased estimate of the IRF.18 The figure also reports confidence bands from

a VAR with all variables in levels (solid line with diamonds) and with all variables

that they have.
18Although inverting the ERS test produces confidence bands that are less precise than the ones

obtained by inverting EJ test, the simulations in the previous section show that EJ is also less robust
to the true DGP of the other variables.
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in first differences (dotted line with stars). Some interesting results emerge. The

confidence bands for VARs in first differences show more persistent effects than those

based on VARs in levels, as intuition may suggest. In fact, the former may remain

bounded away from zero (as for Japan and the U.K.), showing that the effects of

the shock are much more persistent and may never disappear, even in the long run.

On the other hand, the confidence bands for the VAR in levels include zero after a

few quarters. Our method is somewhere in the middle, but in general it shows that

shocks are more persistent than a VAR in levels would predict, with a dollar not de-

preciating even after a long period of time for most currencies (e.g. more than 4 years

for Germany, Japan and U.K.). As in the previous example, our method suggest a

slightly less persistent response of the real exchange than that estimated with a VAR

in first difference. As in Eichenbaum and Evans (1995), a contractionary shock to

U.S. monetary policy leads to a persistent appreciation of the real exchange rates for

Germany, Japan, and UK. For Italy, both the VAR in first differences and in levels

suggest an initial appreciation that dies out in the long run, while the inversion of

ERS suggests a small, but persistent, depreciation of the real exchange rate.

TABLE 3 AND FIGURE 4 HERE

8. Conclusions

Whether shocks have long run effects on economic variables, and how persistent these

effects are, is a highly debated issue. Results are sensitive to the order of integration

of the variables. This problem is either ignored, or ad-hoc robustness checks that lack
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theoretical justifications are routinely performed. We propose a simple method to

estimate the long run effects of the shocks and the uncertainty around these estimates.

The method has the advantage of controlling coverage over the whole IRF trajectory

at long horizons (i.e. it is not pointwise). With this method, researchers do not have

to take a stand on whether the process is I(1) or I(0) before doing inference. Thus,

the method provides a feasible alternative to unit root pre-tests, which we show imply

considerable coverage distortions.

The method that we propose for long horizons will perform well only at medium

to long horizons, so we also provide a modification based on Bonferroni methods that

allows pointwise inference at both short and long horizons. We would recommend the

former to an applied researcher who is interested only at medium to long horizons (say

horizons that are more or equal to ten percent of the sample size), but the latter if

the researcher is interested in inference at both short and long horizons. The method

proposed in this paper is a first step in the analysis of confidence bands for multi-

variate processes in the presence of high persistence. More simulation evidence will

be needed to assess its finite-sample accuracy in multivariate systems and compare it

to existing methods such as conventional and bias-corrected boostrap methods. We

leave these issues for future research.
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10. Tables and Figures

Table 1: Median confidence interval length
δ ADF ERS EJ Pret_ADF Pret_ERS Level

c = 0
0.05 0.487 0.362 0.302 0.515 0.519 0.524
0.10 0.855 0.698 0.583 0.520 0.526 0.683
0.15 1.172 1.038 0.854 0.516 0.524 0.808
0.20 1.499 1.422 1.143 0.513 0.520 0.898
0.30 2.300 2.351 1.777 0.512 0.518 1.022

c = −3
0.05 0.544 0.443 0.333 0.511 0.535 0.531
0.10 0.904 0.725 0.562 0.512 0.543 0.699
0.15 1.198 0.966 0.699 0.503 0.527 0.789
0.20 1.484 1.187 0.796 0.499 0.516 0.814
0.30 2.133 1.558 0.924 0.498 0.502 0.798

c = −10
0.05 0.570 0.472 0.442 0.487 0.577 0.502
0.10 0.856 0.608 0.562 0.464 0.607 0.579
0.15 1.048 0.640 0.570 0.433 0.509 0.505
0.20 1.190 0.615 0.544 0.418 0.449 0.414
0.30 1.417 0.527 0.452 0.413 0.386 0.277

c = −20
0.05 0.464 0.453 0.457 0.501 0.540 0.444
0.10 0.431 0.415 0.542 0.375 0.424 0.337
0.15 0.341 0.321 0.524 0.267 0.270 0.191
0.20 0.255 0.237 0.478 0.179 0.181 0.111
0.30 0.139 0.126 0.372 0.082 0.083 0.040

Note: Results are for various horizons δ and are obtained by inverting the following tests: ADF
(labeled “ADF”), ERS (labeled “ERS”), EJ (labeled “EJ”), pre-test based on ADF (labeled

“PRET_ADF”), pre-test based on ERS (labeled “PRET_ERS”) and VAR in level (labeled

”LEV”).
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Table 2: Short and long horizon comparison
δ Small hL Small hR Small h Large hL Large hR Large h
0.01 0.016 0.080 0.096 0.244 0.388 0.633
0.02 0.003 0.057 0.060 0.101 0.342 0.443
0.03 0.001 0.041 0.042 0.068 0.238 0.306
0.04 0.001 0.037 0.038 0.057 0.164 0.221
0.05 0.002 0.035 0.036 0.049 0.114 0.163
0.06 0.002 0.036 0.039 0.048 0.086 0.135
0.07 0.004 0.038 0.042 0.047 0.072 0.119
0.08 0.005 0.041 0.046 0.046 0.067 0.113
0.09 0.007 0.042 0.049 0.046 0.064 0.110
0.10 0.010 0.043 0.053 0.047 0.063 0.110
0.15 0.020 0.049 0.069 0.049 0.062 0.111
0.2 0.028 0.051 0.079 0.050 0.061 0.111
0.25 0.033 0.053 0.086 0.051 0.061 0.111
0.3 0.037 0.054 0.092 0.052 0.060 0.112

Note: Comparison of the long horizon method of Section 5 (labeled “Large h”) and the short-run

robust method of Section 6 (labeled “Small h”). The table reports the percentage of samples in

which the true value of the whole IRF lays above (subscript “L”), below (subscript “R”) or either

above or below the confidence interval. The nominal values should be, respectively,

0.05, 0.05, 0.10.

Table 3: Unit root tests for real exchange rates
(short-run identification example)

GER JAP UK ITA
ADF -1.542 -1.850 -2.470 -2.310
ERS 5.611 27.102 4.755 5.820

EJ 39.389 34.303 37.034 81.453

R̂2 0.134 0.202 0.192 0.126
EJ 5% c.v. 3.454 3.545 3.530 3.444
N. lags 6 6 6 6

Note: The 5% critical values for ADF and ERS are respectively -2.890 and 3.11. The 5% critical

values for EJ are reported and computed for each R̂2. All the tests reject for values smaller than
the critical values. The covariates used in the EJ test are all variables in the VAR other than the

real exchange rate.
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Figure 1(a): One minus coverage rate for various values of ρ, R2 = 0.5

Note: The DGP is as in (5), simulated with a constant for 100 observations.
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Figure 1(b): One minus coverage rate for various values of ρ, R2 = 0.5

Note: The DGP is as in (5), simulated with a constant for 100 observations
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Figure 2: One minus coverage rate for various values of ρ = 0.90, R2 = 0.5

for different values of the second root

Note:The DGP is as in Section 4 simulate with a constant with 100 observations.
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Figure 3: One minus coverage rate for two roots local to unity

Note:The DGP is as in Section 4 simulate with a constant with 100 observations.
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Figure 4(a): Confidence Intervals for a response of qtto a monetary shock†

Note:The confidence bands are the following: VAR in first differences (dotted line with

stars), ERS/Elliott and Stock (2001) (solid line — the central, thickest line is the median unbiased

estimate of the IRF) and a VAR in levels (solid line with diamonds). Identification is obtained

using the Wold ordering {yt, pt, NBRXt, i
∗
t−it, qt}.
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Figure 4(b): Confidence Intervals for a response of qtto a monetary shock†

Note:The confidence bands are the following: VAR in first differences (dotted line with

stars), ERS/Elliott and Stock (2001) (solid line — the central, thickest line is the median unbiased

estimate of the IRF) and a VAR in levels (solid line with diamonds). Identification is obtained

using the Wold ordering {yt, pt, NBRXt, i
∗
t−it, qt}.


