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Abstract

According to Rogoff (1995), Purchasing Power Parity (PPP) fits well one empirical feature of

the data, namely the high short-run volatility of real exchange rates, but also implies that shocks

should die away in one to two years (the time interval compatible with price and wage stickiness).

However, existing point estimates of half-life deviations from PPP are in the order of 3 to 5 years.

This paper assesses how much uncertainty there is around these point estimates by using local to

unity asymptotic theory to construct confidence intervals that are robust to high persistence in

the presence of small sample sizes. The empirical evidence suggests that the lower bound of the

confidence interval is around 4 to 8 quarters for most currencies, which is not inconsistent with

PPP. However, the upper bounds are infinity for all currencies so we cannot provide conclusive

evidence in favor of PPP either.
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1. Introduction

What determines nominal exchange rates in the long-run? According to Purchasing

Power Parity (PPP), since the (bilateral) nominal exchange rate (Et) is the relative price of

two currencies,1 in equilibrium it should reflect their relative purchasing powers. So, if Pt

is the price level in the home country and P ∗t is the price level in the foreign country, then

PPP requires:

Et =
Pt
P ∗t

(1)

Thus, the logarithm of the real exchange rate, defined as yt = ln
³
EtP

∗
t

Pt

´
, should be constant

if PPP holds at every point in time. A weaker version of the PPP, which is followed in this

paper and in most of the literature, requires only that (1) holds in the long run.

The empirical evidence on PPP is mixed. Although casual evidence suggests that the

two series, Et and Pt/P ∗t , tend to revert towards each other over time, there are protracted

periods in which the nominal exchange rate deviates from its PPP level. How persistent are

these deviations? A measure of persistence is the half-life of PPP deviations. To motivate

this measure, suppose that the deviations of the logarithm of the real exchange rate yt from

its long run value y0, which is constant under PPP, follow an autoregressive process of order

one:

yt − y0 = ρ (yt−1 − y0) + ²t (2)

where ²t is a white-noise. Then, at horizon h, the percentage deviation from equilibrium

is ρh. The half-life deviation from PPP is defined as the smallest value of h such that

E (yt+h − y0| yt−s − y0, s ≤ 0) ≤ 1
2 (yt − y0) , where E is the expectation operator. That is:2

ρh =
1

2
⇒ h =

ln(1/2)

ln(ρ)
(3)

Using data under floating exchange rate regimes, estimates of h range between 2 to 5 years

for most countries, with an average of 3.7 years (see table 7.2 in Mark (2001)).3

The existing point estimates of half-life deviations from PPP are difficult to reconcile

with PPP. According to Rogoff (1995), deviations from PPP can be attributed to transitory

disturbances, like financial and monetary shocks, which buffet the nominal exchange rate

and translate into real exchange rate variability because of nominal price stickiness. Thus,
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while PPP is compatible with the enormous short-term volatility of real exchange rates,

it also implies that deviations should be short-lived, as they can only occur during a time

frame in which nominal wages and prices are sticky (that is one to two years). The existing

point estimates imply instead that deviations are much more persistent than that.

The contributions of this paper are two. First, it introduces a measure of the half-life for

a general AR(p) process that allows better asymptotic approximations in the presence of a

root close to unity. Although the methods for deriving the half-life are quite standard, there

is no such result in the literature. Abuaf and Jorion (1990) discuss half-lives in the context

of an AR(1) process only. Mark (2001) discusses measures of half-lives for general AR(p)

processes, but for stationary processes only. Andrews (1993) proposed a measure of half-life

for an AR(1) process which is robust to the presence of high persistence. Andrews and

Chen (1994) generalized the method to obtain an approximate median unbiased estimate

of AR(p) coefficients in the presence of high persistence. They showed how to construct

an approximately median unbiased estimator of the impulse-response function, but did not

provide an analytic measure of the half-life for AR(p) processes. Second, it uses this measure

to provide a simple method for constructing confidence intervals for the half-life. The issue

is complicated by both the high persistence in real exchange rates and the small samples

usually available. For these reasons, this paper considers an alternative asymptotic theory

based on local-to-unity asymptotics and a half-life that grows to infinity at the rate of the

sample size, as in Stock (1996) and Phillips (1998). How good this approximation is relative

to the conventional (normal sampling) asymptotic theory is discussed in a Monte Carlo

experiment.

This is not the first paper on inference about half-life deviations from PPP. Four re-

cent works that address this issue are Cheung and Lai (2000), Murray and Papell (2002),

Gospodinov (2002) and Kilian and Zha (2002). All these papers calculate confidence in-

tervals by estimating impulse responses with various methods: Cheung and Lai rely on

stationary, normal sampling distributions, Murray and Papell rely on Andrews and Chen

(1994), Gospodinov (2002) relies on Hansen (1999) and Kilian and Zha (2002) use Bayesian

methods. However, estimating the whole impulse-response function may quickly become

computationally intensive.

Overall, the results of this paper are not inconsistent with the PPP, although they do not
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solve the PPP puzzle either. The existing point estimates, although too high to be reconciled

with the PPP, also have huge variability. As a result, confidence intervals with 95% coverage

for most currencies include 4 to 8 quarters as their lower bound, a time interval in which

deviations from PPP are compatible with nominal price and wage stickiness. However, since

we cannot rule out the possibility of an infinite half-life, we interpret the evidence as being

simply not informative enough.

The paper is organized as follows. The next section introduces the data generating

process considered in this paper and derives the measure of half-life used in this paper.

Section 3 describes the methods used to construct the confidence intervals for h. The fourth

section discusses a small Monte Carlo experiment that compares the coverage of the various

confidence intervals discussed in section 3. The fifth section discusses the empirical results

and section 6 concludes.

2. Measuring the half-life

Let the data generating process (DGP) for the log of the real exchange rate, yt, be:

yt = dt + ut t = 1, 2..., T (4)

ut = ρut−1 + vt

where dt = µ0 is a deterministic component,
4 vt is a zero mean, stationary and ergodic

process, with finite autocovariances γ (k) = Evtvt−k, ω2 =
+∞P

k=−∞
γ (k) is finite and non-zero

and vt = b (L)
−1
²t, where ²t is a martingale difference sequence with finite fourth moments

and constant variance σ2² and b (L) is finite order and has p <∞ (stable) roots.

In order to provide better asymptotic approximations to the statistics of interest in small

samples when variables are highly persistent, we use local to unity asymptotic theory (see

Stock (1991) among others):

ρ = ec/T ' 1 + c

T
, (5)

where c is a constant (negative, if the process is highly persistent but mean reverting) and

T is the sample size. In order to provide better small sample approximations in situations

where the true half-life, h, can be “big” relative to the sample size, we derive the asymptotic
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distributions by letting h increase as the sample size T increases in such a way that their

ratio remains a fixed number δ. That is:

h

T
→

T→∞
δ (6)

We will refer to δ as the “half-life as a fraction of the sample size”.

The persistence5 of the process in small samples, measured by c, is relevant for our

purposes, since we are trying to estimate at which horizon the deviations from PPP are

back to one-half after a shock. As we will show later, the speed at which the effect of a

shock dies away depends on a function of the largest root of the process, ρh, and, under

assumption (6):

ρh →
T→∞

ecδ (7)

In order to derive an expression for the half-life in this general AR(p) process, we need

to derive an expression for the effect of the shock ²t on yt after h periods. We will derive it

in terms of the eigenvalues of the process.6 We factorize (4) as:

(1− λ1L) (1− λ2L) ... (1− λpL) (yt − dt) = ²t (8)

where, for convenience, λ1 = ρ is the root close to unity and λ2, λ3, ...,λp are the (stable)

roots, the inverse of the roots of the polynomial b (L). We also define λ to be a (p× 1)
vector containing all the eigenvalues of the data generating process, λ = [λ1, λ2, ...,λp]0.

We assume that the eigenvalues are distinct. Suppose we start at time t − 1 in the long
run equilibrium µ0, and at time t there is a shock ²t. No other shocks hit the economy

subsequently. The shock ²t measures the initial deviation from equilibrium, which we denote

by eyt ≡ yt − µ0 = ²t. It follows that the deviation from equilibrium after h periods will be

eyt+h = c0λh²t, where c is a (p× 1) vector with generic element:
ci =

λp−1i
pQ

k=1,k 6=i
(λi − λk)

(9)

and λh is the (p × 1) vector containing all the eigenvalues to the h power (see Hamilton,
p. 12). After h periods, the percentage deviation from equilibrium relative to the initial

percentage deviation from equilibrium is:7

(yt+h − µ0)
(yt − µ0)

=
∂eyt+h
∂²t

= c0λh (10)
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We call ∂eyt+h/∂²t (which is the usual definition of an impulse-response) “the effect of a
shock ²t after h periods”. By combining (9) and (10) and isolating the largest root λ1(= ρ):

∂eyt+h
∂²t

=
λh+p−11

(λ1 − λ2) (λ1 − λ3) ... (λ1 − λp)
+

pX
i=2

λh+p−1i
pQ

k=1,k 6=i
(λi − λk)

(11)

As all eigenvalues except the first one are in modulus less than one then, as h → ∞,
λh+p−1i → 0 ∀i 6= 1 so the second component in (11) disappears. Also, since by assump-

tion p is finite, by combining (6) and (7), as T → ∞ we have that λh+p−11 = ρh+p−1 =¡
1 + c

T

¢h+p−1 → ecδ (since ρp−1 → 1). Also asymptotically, λ1−λi ' 1−λi ∀i 6= 1. Notice
finally that (1− λ2) (1− λ3) ... (1− λp) = b (1). Thus, the effect of the shock after h periods

is:8

∂eyt+h
∂²t

→
T→∞

ecδb (1)
−1 (12)

The half-life is defined as the horizon h at which the effect of the shock is one-half.

Hence, from (12), we obtain that the half-life as a fraction of the sample size is:

δ∗ ≡ max
(
ln
¡
1
2b (1)

¢
c

, 0

)
(13)

where we call b (1) the “correction factor”. We let δ∗ ≡ +∞ if c ≥ 0.9 It follows that the
half-life is:

h∗ ≡ max
(
ln
¡
1
2b (1)

¢
ln ρ

, 0

)
(14)

Again, h∗ ≡ +∞ if ρ ≥ 1. Note the monotonicity of the relationship between δ∗ and c in

(13). The monotonicity arises because, in the long-run, it is the root close to unity that is

relevant. The monotonicity is not assured if the autoregressive process is not persistent.

Let us compare our measure of the half-life with those one would get by running the

regression in the form of an AR(1), thus ignoring short run dynamics (as in Abuaf and

Jorion (1990), Frankel and Rose (1996) and Lothian and Taylor (1996)), or by running the

regression in ADF form and calculating the half-life on the basis of the coefficient on the

lagged level variable only (see Mark (2001), par. 2.4, and references therein). The measure

of the half-life in the former approach, let’s call it hAR(1), would ignore the correction factor

b (1):10

hAR(1) ≡ max
(
ln
¡
1
2

¢
ln ρ

, 0

)
(15)
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By comparing (14) with (15), it is clear that they will differ unless the true DGP is an AR(1)

— in which case b (1) = 1. In the second approach, the researcher relies on estimates from

the ADF regression. As in Stock (1991), the data generating process (4), can be rearranged

to yield the following ADF regression:

yt = eµ0 + α (1) yt−1 +
kX
j=1

α∗j−1∆yt−j + ²t (16)

where α (1) = 1 + c
T b (1) , eµ0 = − c

T µ0b (1) , k = p − 1 and α∗j = −
kP

i=j+1
αj . The researcher

then calculates the half-life based on the AR(1) model (3), let’s call it ha, as:

ha ≡ max
(
ln
¡
1
2

¢
lnα (1)

, 0

)
(17)

which corresponds to an approximate half-life as a fraction of the sample size equal to:

δa ≡ max
(
ln
¡
1
2

¢
cb (1)

, 0

)
(18)

Expression (17) has also been proposed by Andrews (1993) for the simple AR(1) case.

Although α (1) is estimated from the (correct) AR(p) process, the half-life is calculated as

if α (1) were equal to the largest autoregressive root (ρ) in (2). By comparing (13) with

(18), it is clear that, again, they will differ unless the true data generating process is an

AR(1). The intuition behind this result is that (16) is not the Sims, Stock and Watson

(1990) canonical representation, and this will matter at long horizons.11

3. Econometric methods

After discussing different measures of half-lives, we address the issue of how to construct

confidence intervals with the correct coverage. First, it is well known that b (1) can be

consistently estimated by using the estimates from the ADF regression (see Stock (1991)),

so the correction factor can be consistently estimated by:

db (1) =
1− kX

j=1

bα∗j−1
 (19)

Second, there are a variety of methods for constructing confidence intervals for the root

close to unity, ρ. In the remainder of this section, we will discuss them and show how

to construct confidence intervals for the half-life. The discussion that follows focuses on
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two-sided confidence intervals; the construction of one-sided confidence intervals follows in

a straightforward way.

(i) Confidence intervals based on normal sampling distributions

Starting from (3) and a usual Augmented Dickey-Fuller (ADF ) regression (16), where

yt is the real exchange rate, some empirical papers estimates the half-life to be:

bha = ln(0.5)

ln(bα (1)) (20)

where we use “hats” above a parameter to denote its estimated value. Hence, by using

a delta method approximation, a conventional two-sided 95% confidence interval for ha,

(hal , h
a
u), is:

bha ± 1.96bσbα(1)µ ln(0.5)bα (1) [ln (bα (1))]−2
¶

(21)

where bσbα(1) is an estimate of the standard deviation of α (1).
(ii) Confidence intervals for persistent time series based on Stock (1991)

method

Stock (1991) proposed a method for constructing confidence intervals based on median

unbiased estimates of the largest autoregressive root of the process (4). Note that a given

sample size T and a given c identify the length of the half-life deviation, h, and that the true

half-life as a fraction of the sample size, δ, is a monotone decreasing function of c. It is then

possible to construct a confidence interval for the half-life by using Stock (1991) method to

construct a two-sided confidence interval for c, (bcl,bcu), and then, by monotonicity, obtain
a confidence interval for the half-life as a fraction of the sample size, (bδl,bδu) by applying
equations (13) and (18). These can be directly transformed to confidence intervals for the

half-life, (bhal ,bhau), by multiplying by the sample size T .
(iii) Confidence intervals based on Elliott and Stock (2001) method

In empirical applications, Stock’s method may deliver wide confidence intervals. The

reason is that it is based on inverting theADF test statistic, which has poor power properties

(see Elliott, Rothemberg and Stock, 1996). Another drawback of Stock’s approach is that it

allows the construction of a confidence interval by inverting a statistic for testing whether
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c = 0; in general, it might be interesting to test other null hypotheses. Elliott and Stock

(2001) discuss how to build confidence intervals based on the point optimal test proposed

by Elliott, Rothemberg and Stock (1996) and for more general null hypotheses. This section

builds on their results.

To construct the confidence interval, we follow Elliott and Stock (2001) and invert a

sequence of test statistics, each test statistic being the point-optimal one for testing H0 :

c = c0. We chose the coverage of the confidence interval constructed in this way to be at

least 95%. The lag length in the test statistic is chosen according to the MAIC criterion

based on GLS detrended data, as suggested by Ng and Perron (2001).

(iv) Hansen’s grid-bootstrap method

An alternative method for constructing confidence intervals is by applying bootstrap

methods. However, as Hansen (1999) showed, the problem with conventional bootstrap

methods is that, even in large samples, their coverage probability is quite poor if the true

value of the highest autoregressive root is close to unity and that root is the parameter of

interest.

A bootstrap method that is valid in the presence of highly persistent variables is Hansen’s

(1999) grid-α bootstrap method. Since the half-life is a monotone transformation of the

ADF parameters, by the transformation-respecting property of the percentile method we

can construct a confidence interval for the half-life by taking the monotone transformation

of the corresponding confidence interval for bα (1) . Furthermore, by the range-preserving
property of the grid-α method, the constraint that the half-life cannot be negative directly

translates into a constraint on α (1) (namely α (1) ≤ 1) so it will be automatically satisfied.12
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4. A small Monte Carlo experiment

To evaluate the performance of the methods used in this paper, we perform some small

Monte Carlo experiments. The experiments are useful to address two questions: “how big

does the true half-life have to be in order for the h
T → δ asymptotics to be better than

the usual asymptotics?” and “how does serial correlation in b (L) affect the performance of

different methods?”.

In the first experiment, data are generated as yt = ρyt−1+²t , ²t ∼ N(0, 1) , ρ =
¡
1 + c

T

¢
and we compare the coverage of the confidence intervals for different values of the true half-

life as a fraction of the sample size, δ. The number of Monte Carlo replications is 5000, the

sample size is T = 100. Results are reported in figure 1.

Insert Figure 1

The figure compares confidence intervals based on four tests:

- the normal sampling test for testing H0 : δ = δ0 (where δ0 is the true value of δ) versus

HA : δ 6= δ0, labeled “normal sampling h” test;

- the normal sampling test for testing H0 : ρ = ρ0 (where ρ0 is the true value of ρ) versus

HA : ρ 6= ρ0, labeled “normal sampling rho”;

- the ADF -t unit root test for testing H0 : ρ = 1 versus HA : ρ < 1, labeled “unit root”;

- Stock’s test as described in the previous section, labeled “Stock”.

As expected, the coverage of the normal sampling confidence intervals is fine when the

half-life is small relative to the sample size (δ is smaller than 0.02, say); however, when

the half-life is big then the normal sampling test rejects too often and, as a consequence,

coverage is lower than nominal. Note that the same problems would arise if one would

construct the confidence intervals based on impulse-response functions without taking into

account the persistent nature of the process. The problem with unit root tests, instead, is

that they lack power. Finally, notice that confidence intervals based on Stock method have

coverage close to nominal for most true half-lives (unless they are considerably short).

We also compared the performance of the various methods that are robust to high

persistence in another small Monte Carlo experiment. We generate the data as above for
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four different true half-lives: 2, 6, 20 and infinity.13 Table 1(a) reports the results. Notice

that the coverage of the confidence interval based on normal sampling asymptotic theory

(denoted by Normal) tends to zero as h increases and is pretty poor relative to, say, that

based on Stock (1991) method even for very small half-lives. Similar results hold for the

grid-bootstrap method. Elliott and Stock (2001) method seems to be the most sensitive to

the presence of stationarity.

Finally, Table 1(b) compares h∗, ha and confidence intervals based on different methods

in simple AR(p) processes (p=2,3,4,5) described by (8) for sample sizes usually available

for quarterly real exchange rates (T=100). We compare confidence intervals based on the

following methods: Stock applied to (14) (labeled “Stock”) and Stock applied to (17),

(labeled “ADF”). The table reports the actual confidence interval type I error, which ideally

should be 0.10. Stock’s method performs well as long as the roots other than ρ are not

too close to unity (as otherwise the second component in (11) becomes asymptotically

non-negligible). The performance of the ADF method worsens as the amounts of serial

correlation in b (L) increases. Some of the DGPs are calibrated on actual estimates: AR(3)

with λ2 = −0.4,λ3 = 0.4 corresponds to Denmark (results are similar for Belgium); AR(5)
with λ2 = −0.68,λ3 = λ4 = 0.15, λ5 = 0.08 corresponds to Sweden; AR(5) with λ2,λ3 = 0.3,

λ4,λ5 = −0.5 corresponds to Finland (results are similar for Greece and Japan). Table 1(b)
shows that, for the latter case, using ha rather than he may lead to slightly higher confidence

interval type I error. Most countries with AR(2) processes have a very small second root,

usually smaller than 0.2 in absolute value, for which the two methods provide similar results.

Thus, looking ahead to the empirical section, for most currencies the serial correlation is so

small that the two methods are expected to give similar results (except for Finland, Greece

and Japan).

Insert Tables 1(a) and 1(b)

5. Empirical results

The data used in this paper are from Datastream (IMF Database). Data on the nominal

exchange rate are end-of-period and data on prices are seasonally unadjusted, to avoid
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temporal aggregation issues (as discussed in Taylor, 2001a). The nominal exchange rate is

expressed as national currency units in terms of 1 U.S. dollar (that is the price of dollars

in terms of other national currency units). Data are quarterly from 1973:3 to 2002:2 for

non-EMU countries and from 1973:3 to 1998:2, for a total of 100 observations, for EMU

countries. The price indices are consumer price indexes (CPI), so they don’t distinguish

between tradeables and non-tradeables. The log of the real exchange rate is constructed as

the log of the bilateral nominal exchange rate plus the log of the CPI in the U.S. minus the

log of CPI in the reference country. The series used are “XXI64...F” (CPI) and “XXI..AE.”

(bilateral nominal exchange rate), where “XX” is the mnemonic used by the IMF to denote

the country (e.g. “US” for the U.S.).

Table 2 reports confidence intervals based on standard asymptotic theory. The lag length

of the ADF test statistic is chosen by the MAIC criterion based on OLS demeaned data.

Since the half-life cannot be negative, we imposed a lower bound of zero (which implies

immediate adjustment). According to the table, point estimates of h∗, are around 8 to

12 quarters (2 to 3 years) for most currencies. As discussed previously, researchers used

to report ha. From table 2, notice that, due to the absence of the correction factor, this

procedure generally underestimates the true half-life.14

Based on normal sampling asymptotic theory, the 95% normal confidence intervals in-

clude zero to twenty (or more) quarters for most currencies. However, the real exchange rate

is a highly persistent series. In fact, table 2 also reports the conventional Augmented-Dickey

Fuller tests for the real exchange rate series. As the 5% critical value is -2.89, we cannot

reject the null hypothesis that there is a unit root in any of the currencies considered, and

thus that the PPP does not hold. The table also reports the DF-GLS efficient test statistic

of Elliott, Rothemberg and Stock (1996), which is more powerful to reject the null hypoth-

esis of a unit root. However, even this test does not reject the hypothesis that the real

exchange rate is not mean reverting. But, although one cannot reject that the half-life can

be infinity, these results do not determine how low the lower bound for the estimated half-life

can be. To answer this question, the remainder of the paper focuses on the construction of

confidence intervals that are robust to highly persistent variables.

Insert Table 2
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Table 3 shows the estimated confidence intervals for h∗ and ha based on Stock’s method.

We reported only the lower bounds of the confidence intervals because the upper bounds

were infinity for all currencies. For a few currencies, also the median half-life is infinity.

However, the uncertainty over the estimated half-life is so big that a half-life of 6 to 8

quarters is compatible with the observed data for almost all currencies as well.15 Thus, on

the one hand, the upper bounds can be as high as infinity, invalidating the PPP. On the

other hand, the lower bounds are compatible with a time horizon in which prices may be

sticky and, thus, horizons in which deviations from PPP might be explained in the light

of monetary and financial shocks. The confidence intervals are thus too wide to provide

conclusive support in favor of the PPP.

Insert Tables 3 and 4

Table 4 reports the confidence intervals based on the Elliott and Stock (2001) and Hansen

(1999) methods. According to our estimates, the lower bounds for the half-life deviations

from PPP are between 4 to 7 quarters for most currencies, except for a few outliers (Canada

and Australia in particular). However, overall, this additional evidence delivers confidence

intervals of roughly the same magnitude as Stock’s method, thus confirming the previous

results. It is disappointing that the confidence intervals are not much shrunk by the inversion

of more powerful tests, but this might be due to the fact that we imposed an upper bound

on the half-life. Also, given the non-linearity of the transformation between c and δ, it is

not clear that good confidence intervals for c imply good confidence intervals for δ as well.

6. Conclusions

The objective of this paper was to propose a better approximation to the half-life for

highly persistent processes in the presence of small samples and to use it to build confidence

intervals for half-life deviations from PPP. We first showed that normal sampling methods

for constructing confidence intervals might be unreliable when variables are highly persistent

and the sample size is small. As the empirical evidence suggests that the real exchange rate

is such a variable, we then consider methods that are robust to persistence. These methods
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(Stock, Elliott and Stock, and Hansen) imply confidence intervals that cover half-lives as

low as 5 to 8 quarters for most real exchange rates considered in this paper (although some

countries are outliers).

Overall, the results of this paper suggest that the real exchange rate is a highly persistent

variable and that the confidence intervals for the half-life are extremely wide. On the one

hand, they are compatible with processes that can halve in 4 to 8 quarters, which are

compatible with PPP. On the other hand, they do not rule out the possibility of an infinite

half-life. The empirical results thus show that the data are not informative enough to

support any alternative hypothesis regarding the half-life based on the tests used in this

paper. This is likely due to the limited power of the unit root tests and the short data

we use. The conclusion is similar to that in Murray and Papell (2002) and Kilian and

Zha (2001). In Kilian and Zha (2001), for example, the Bayes factors, which provide useful

results beyond what a confidence or posterior probability interval gives, similarly imply that

the data are not informative enough. More powerful tests might be able to provide more

empirical support for the PPP. For example, Elliott and Pesavento (2001) apply higher

power tests for mean reversion against close alternatives by exploiting information on other

economic variables.

Some researchers have recently addressed the question of size distortions of tests in

the presence of persistent real exchange rates and their implications for the PPP debate

(see Engel, 2000 and Caner and Kilian, 2001). However, Caner and Kilian focus on size

problems of tests of the null hypothesis of stationarity versus the alternative of a unit root.

Engel (2000) discusses both tests on a unit root and tests on stationarity, but he focuses on

simulations (calibrated on real data) to show the existence of possible size distortions in the

former and low power in the latter.

This paper assumes a linear data generating process. Recent research points to non-

linearities as a candidate for explaining the apparent high persistence and excess volatility

of exchange rates (e.g. Taylor (2001)). Also, this paper does not address panel issues, nor

it considers longer datasets that merge floating and fixed exchange rate samples. We would

expect panel tests and tests based on longer data series to have more power to reject a unit

root and, hence, confidence intervals obtained by inverting these tests to strengthen the

empirical evidence in favor of PPP. However, this would require additional assumptions on
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the joint distribution and a careful investigation of cross sectional dependence (O’Connell

(1998a)). Finally, it might be worth investigating potential aggregation biases (as in Imbs,

Mumtaz, Ravn and Rey (2002)) and the reasons why some countries’ half-lives are much

higher than those of other countries. However, all these questions are left for future research.
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Figure 1. Comparison of coverage of various confidence intervals

as a function of the true half-life (nominal coverage=0.95).
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Tables

Table 1(a). Comparison of coverage rates

h c Normal Unit root Stock Elliott-Stock Hansen

2 -30 0.718 0.00 0.90 0.34 0.96

6 -11.5 0.700 0.57 0.93 0.62 0.92

20 -3.5 0.468 0.91 0.94 0.84 0.96

+∞ -.01 0.020 0.95 0.96 0.97 0.95

Note: The table reports, for each true half-life (and its corresponding measure of persistence in

the data, c) the coverage rate of the confidence intervals based on: approximate normal sampling

distribution (“Normal”); unit root test (“Unit root”); Stock (1991) method (“Stock”); Elliott

and Stock (2001) method (“Elliott-Stock”); Hansen (1999) grid-α bootstrap method (“Hansen”).

Ideally, these coverage rates should be close to 0.95. In the case of multiple intersections between

the estimated test statistic and the critical values, we convexified the confidence interval. In the

case of Stock’s method, we simulated the critical values of the ADF test statistic outside the range

considered by Stock (1991). The number of Monte Carlo simulations was 5000 for all methods

except for Hansen, which is computationally intensive, so we chose 100 Monte Carlo replications

only. T=100.
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Table 1(b). Comparison of actual confidence interval type I error

c λ2 λ3 λ4 λ5 h* ha Stock ADF

-5 0.2 — — — 20 18.9 0.11 0.11

-5 0.6 — — — 24.5 23.7 0.12 0.11

-5 0.9 — — — 44.9 65.3 0.13 0.21

-8 0.2 — — — 11.6 10.9 0.10 0.11

-8 0.6 — — — 19.6 20.8 0.13 0.11

-8 0.9 — — — 27.9 40.2 0.14 0.22

-11.5 0.2 — — — 8.5 8 0.10 0.10

-11.5 0.6 — — — 10.8 10.4 0.13 0.12

-11.5 0.9 — — — 22.7 40.9 0.14 0.21

-5 0.6 0.7 — — 53.5 100 0.12 0.24

-8 0.6 0.7 — — 32.9 60 0.14 0.35

-11.5 0.6 0.7 — — 22.3 39 0.15 0.41

-5 0.4 -0.4 — — 15.6 15.2 0.10 0.10

-8 0.4 -0.4 — — 10.3 9.9 0.10 0.10

-11.5 0.4 -0.4 — — 8.46 8 0.10 0.10

-5 -0.68 0.15 0.15 0.09 13.3 13.5 0.09 0.12

-5 0.3 0.3 -0.5 -0.5 10.3 11.6 0.10 0.11

-8 -0.68 0.15 0.15 0.09 7.9 8.2 0.12 0.16

-8 0.3 0.3 -0.5 -0.5 10.3 9.9 0.09 0.12

-11.5 -0.68 0.15 0.15 0.09 1.8 3.7 0.17 0.21

-11.5 0.3 0.3 -0.5 -0.5 5 5.3 0.37 0.43

Note: Monte Carlo simulations (5,000 replications) are based on the AR(p) process (p=2,3,4,5)

described by (8). T=100. The table reports the actual confidence interval type I error based on:

Stock (1991) method for h∗ (labeled “Stock”) and for ha (labeled “ADF”). When λi = 0 ∀i,
coverage is close to nominal for all methods. We also report h∗ and ha. The lag length is treated

as known in all methods. Ideally, these percentages should be close to 0.10.
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Table 2 Confidence intervals based on standard asymptotics and ADF tests

bα (1) ADF ADFGLS bha ³bhla,bhua´ bh∗ bγ
Austria 0.936 -1.8 -1.94 10.4 (0; 22.1) 10.4 - -

Australia 0.962 -1.4 -.264 18 (0; 43) 18 - -

Belgium 0.948 -1.55 -2.1 13 (0; 30) 13.3 .35

Canada 0.99 -.588 -0.37 66.6 (0; 134) 66.6 - -

Denmark 0.942 -1.71 -2.39 11.6 (0; 25.3) 11.5 .4

Finland 0.89 -3 -2.1 5.96 (1.83; 10.1) 5.16 .5

France 0.932 -1.83 -1.97 9.92 (0; 20.9) 9.92 - -

Germany 0.936 -1.81 -1.9 10.6 (0; 26.2) 10.6 - -

Greece 0.919 -2.32 -2.04 8.17 (0.97; 15.4) 8.47 .5

Italy 0.918 -2.18 -2.03 8.1 (0.48; 15.7) 8.54 .17

Japan 0.93 -2.48 -1.2 9.56 (1.72; 17.4) 9.96 .4

Netherl. 0.922 -2.03 -1.68 8.55 (0; 17.1) 8.9 .1

Norway 0.931 -1.99 -2.12 9.72 (0; 19.6) 9.72 - -

Spain 0.956 -1.51 -1.64 15.3 (0; 35.6) 15.3 - -

Sweden 0.945 -1.99 -1.24 12.2 (1.14; 17.1) 12.5 .7

Switzerl. 0.905 -2.48 -1.87 6.97 (0.28; 15.6) 7.13 .06

U.K. 0.897 -2.72 -1.65 6.39 (1.53; 11.2) 6.73 .16

Note: For each bilateral real exchange rate we report: the estimated test statistic of the de-

meaned Augmented Dickey-Fuller regression (ADF ), the estimated coefficient of the lagged regres-

sor (bα (1) as defined in (16)) and the DF-GLS test proposed by Elliott, Rothemberg and Stock,
1996 (ADFGLS). The lag lengths are selected by the MAIC criterion based, respectively, on the

OLS and on the GLS detrending methods proposed by Ng and Perron (2001). bha, bh∗ are the esti-
mates of the half-life from (17) and (14); (bhla,bhua) is based on (21). The 5% critical value of both

the ADF and ADFGLS test statistics is -2.89. bγ is the absolute value of the estimated second
largest root (significantly less than one for all countries).
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Table 3 Confidence intervals based on Stock (1991)

lags (bcl,bcu) bc.05l bha.05 bhamedian bb (1) bh∗.05 bh∗median
Austria 1 (-12.5; 3.67) -10.93 6.34 29.96 1.00 6.34 29.96

Australia 1 (-8.87; 4.13) -7.53 10.67 +∞ 1.00 10.67 +∞
Belgium 3 (-9.91; 3.99) -8.53 8.59 +∞ 0.95 8.77 +∞
Canada 1 (-3.06; 4.74) -1.75 45.97 +∞ 1.00 45.97 +∞
Denmark 3 (-11.4; 3.79) -9.98 7.91 64.31 1.02 7.84 63.74

Finland 5 (-27.9; 0.799) -25.71 8.00 13.80 0.34 6.93 11.95

France 1 (-12.8; 3.62) -11.23 6.17 26.48 1.00 6.17 26.48

Germany 1 (-12.5; 3.66) -10.97 6.32 29.50 1.00 6.32 29.50

Greece 5 (-18.4; 2.7) -16.67 7.14 15.80 0.58 7.40 16.39

Italy 2 (-16.7; 2.95) -14.97 5.64 13.84 0.82 5.95 14.60

Japan 5 (-20.4; 2.32) -18.60 7.22 14.73 0.60 7.52 15.35

Netherl. 2 (-15; 3.22) -13.35 5.88 16.72 0.88 6.12 17.41

Norway 1 (-14.6; 3.3) -12.93 6.22 18.66 1.00 6.22 18.66

Spain 1 (-9.52; 4.05) -8.15 8.50 +∞ 1.00 8.50 +∞
Sweden 5 (-14.5; 3.3) -12.89 11.31 34.10 0.55 11.59 34.95

Switzerl. 2 (-20.4; 2.32) -18.59 4.59 9.36 0.94 4.69 9.57

U.K. 2 (-23.8; 1.65) -21.86 4.44 8.27 0.83 4.68 8.71

Note. For each bilateral real exchange rate we run a demeaned ADF regression. The median-

unbiased two-sided and one-sided confidence intervals for c, denoted respectively by (bcl,bcu) andbc.05l , are obtained directly by inverting Stock’s table A1 (with a linear interpolation from its grid

values). We report one-sided lower bounds for the median unbiased confidence intervals for the

half-life (h) with coverage 0.95, denoted by subscript .05. Superscripts ∗ and a denote measures of
the half-life obtained by multiplying (13) and (18) (based on bc.05l ), by T respectively, where T is

the sample size. Upper bounds were +∞ for all currencies so they were not reported. hmedian is

the median unbiased estimate of the half-life (based on the median unbiased estimate of c).
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Table 4 Confidence intervals based on Elliott and Stock (2001) and Hansen (1999)

Elliott & Stock Hansenbha.05 bh∗.05 bha.05 bh∗.05
Austria 5.87 5.87 6.07 6.79

Australia 61.28 61.28 9.88 11.54

Belgium 4.13 4.22 7.59 8.55

Canada 60.63 55.59 17.60 23.25

Denmark 3.21 3.18 6.72 7.62

Finland 10.23 8.86 3.53 3.80

France 5.10 5.10 5.83 6.61

Germany 4.50 4.64 6.48 7.41

Greece 6.88 7.13 5.13 5.74

Italy 5.61 5.92 5.30 6.11

Japan 21.93 22.85 6.27 6.84

Netherl. 7.40 7.70 5.34 6.15

Norway 4.48 4.48 5.93 6.60

Spain 7.54 7.54 8.42 9.98

Sweden 26.83 11.02 5.97 6.41

Switzerl. 4.04 4.53 4.89 5.48

U.K. 8.09 8.52 4.40 4.81

Note. For each bilateral real exchange rate we run a demeaned ADF regression, where the lag

length is chosen according to MAIC. We report the 1-sided confidence intervals for the half-life (h)

with coverage 0.95, denoted by subscript .05. Superscripts ∗ and a denote measures of the half-life
in equations (14) and (17) respectively. Upper bounds were infinity for all currencies so they were

not reported.
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Notes

1The bilateral nominal exchange rate is defined here as the price of the foreign country’s

currency in terms of the home country’s currency.

2We generalized the process to be an AR(p) in the empirical estimation and in the

discussion in the text. However, for simplicity, we introduce the concept here by using an

AR(1).

3These point estimates are introduced to motivate the paper but no longer represent the

current status of our knowledge. For example, Murray and Papell (2002) note that, after

accounting for serial correlation and small sample bias, these point estimates become very

difficult to believe.

4We do not allow the presence of a deterministic time trend in the theoretical DGP, nor

in the empirical estimation. The reason is that if a deterministic time trend is present, PPP

in levels won’t hold. If a deterministic trend is present, so that dt = µ0 + µ1t, then the

calculations that follow continue to hold provided that we define a time-varying long-run

equilibrium, i.e. such that the long-run equilibrium at time τ is defined as yτ = µ0 + µ1τ .

This is the equilibrium path that would have prevailed in the absence of the shock. The

empirical results for detrended real exchange rates are similar to those reported in this paper

and are available upon request.

5We will provide detailed empirical evidence on the degree of persistence in the bilateral

exchange rates considered in this paper in the empirical section.

6We follow Hamilton (1994) in referring to the inverse of the roots of the polynomial

b (L) (1− ρL) as the eigenvalues (or the roots) of the DGP .

7Recall that, in this paper, yt is the logarithm of the real exchange rate, so yt+h − µ0
measures a percentage deviation.

8Note that this approximation assumes that there is only one root close to unity. It is

possible to extend (12) to processes integrated of order higher than one. In that case, the
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second component in (11) becomes asymptotically relevant as well. However, the empirical

evidence (see table 2) suggests that there is only one root close to unity in real exchange

rates so we specialize the result to this case. In the Monte Carlo section we provide some

sensitivity results to processes with a high second largest root.

9In fact, when c ≥ 0, the process is (mildly) explosive so the half-life will be infinite

with our long-horizon approximation. On the other hand, when c < 0,
ln( 12 b(1))

c might be

negative when mean reversion is considerably fast. In this case, we let δ∗ = 0. In this case,

our method, which relies on (6), may not provide a good approximation.

10Note that, even if the true DGP is an AR(p), the estimated coefficient in the AR(1) re-

gression will be a consistent estimate of the largest root because T (bρ− ρ) =
¡
1
T 2Σ

T
t=1y

2
t−1
¢−1¡

1
T Σ

T
t=1yt−1ut

¢
= Op (1).

11More details are available in Rossi (2001).

12Hansen (1999) also suggested a grid−t bootstrap method. However, the half-life is a
non-linear transformation of the parameter α (1). In practice, the grid-t method requires an

estimate of the variance which, if obtained by the delta-method approximation, makes the

coverage quite poor (results of a Monte Carlo experiment are available upon request). Also,

constructing confidence intervals by minimizing their length gave similar empirical results.

13In practice, the infinite half-life is 6900, corresponding to a value of c = −0.01.

14To save space, confidence intervals for h∗ are not reported. They generally comprise

higher values for the half-life. We chose to report confidence intervals based on ha in order

for the results to be comparable with those existing in the literature.

15The most notable exception is the Canadian real exchange rate. However, the data

clearly show that there is a time trend in that case. Other countries for which the lower

bound of the half-life is quite high are Australia and Sweden. But for most countries, the

lower bound is less than 8 quarters anyway.
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Appendix

Comparison of exact and approximate half-lives with an
application to an AR(2) process

Let us compare three candidate measures of the long-run (l.r.) effects of a unitary shock:

(i) the effect that depends only on the largest unit root of the process and not on short-run

dynamics, equal to hAR(1) = ρh; (ii) α (1)h; (iii) the effect proposed in this paper: ρhb (1)−1.

To highlight the relationship between the approximate and the exact l.r. effects, we

rearrange the ADF regression as:

eyt = kX
j=1

α∗j−1∆eyt−j + α (1) eyt−1 + ²t (22)

where eyt ≡ yt − dt = ut measures deviations of yt from its long-run equilibrium value. We

can rewrite (22) as a VAR(1):

Yt = AYt−1 + et (23)

A ≡



α (1) α∗0 α∗1 ... α∗k−1

α (1)− 1 α∗0 α∗1 ... α∗k−1

0 1 0 ... 0

... ... ... ... ...

0 ... 0 1 0


=

 A11 A12

A21 A22

 (24)

(where A11 = α (1) = 1 + c
T b (1) is a scalar and the rest of the matrix A is partitioned

accordingly), Yt ≡ [eyt,∆eyt,∆eyt−1, ...∆eyt−k+1]0 is a (k + 1)×1 vector, ∆eyt−j ≡ eyt−j−eyt−j−1,
et = [²t, ²t,01×(k−1)]0 is a (k + 1)× 1 vector and 01×(k−1) is a 1× (k − 1) vector of zeros.
An alternative approach is to follow Stock (1991) and Phillips (1998) in rewriting the

ADF regression in terms of the canonical regressors, let’s call it the ADF canonical regres-

sion:16

eyt = ρeyt−1 − kX
j=1

bj e∆eyt−j + ²t (25)

which can be rewritten in a VAR(1) format:

eYt = EeYt−1 + et (26)
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E ≡



ρ −b1 −b2 ... −bk
ρ− 1 −b1 −b2 ... −bk
0 1 0 ... 0

... ... ... ... ...

0 ... 0 1 0


=

 E11 E12

E21 E22

 (27)

(where E11 = ρ and the rest of the matrixE is partitioned accordingly), eYt ≡ [eyt, e∆eyt, e∆eyt−1,
...e∆eyt−k+1]0 is a (k + 1)× 1 vector and e∆eyt−j ≡ eyt−j − ρeyt−j−1. We also find it convenient
to define 1k to be the first column of the (k × 1) identity matrix and Ik to be the identity
matrix with k elements.

Suppose we start at time t-1 in the long run equilibrium yLRt−1 and at time t there is a

shock ²t. The initial deviation from equilibrium is thus:

eyt = 10ket = ²t (28)

By using (26), the effect of the shock in the subsequent periods becomes:

eyt+1 = 10kE[1, 1,01×(k−1)]
0²t (29)

...

eyt+h = 10kE
h[1, 1,01×(k−1)]0²t

Hence, after h periods, the percentage deviation from equilibrium relative to the initial

percentage deviation from equilibrium is:

eyt+heyt = 10kE
h[1, 1,01×(k−1)]0 (30)

This measures the effect of a shock ²t after h periods. The usefulness of the VAR(1) rep-

resentation above is that, since ρ − 1 = c/T, it follows that E21 ' 0k×1, so that E (as

partitioned) is asymptotically an upper diagonal matrix. As a consequence:
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Eh =

 Eh11 Eh−111 E12E
0
22 +E

h−2
11 E12E22 + ...+E

0
11E12E

h−1
22

0k×1 Eh22

 (31)

=

 Eh11 Eh−111 E12

³
Ik +E22/E11 + ...+ (E22/E11)

h−1´
0k×1 Eh22


=

 Eh11 Eh−111 E12 (Ik −E22/E11)−1
³
Ik − (E22/E11)h

´
0k×1 Eh22


As h → ∞, Eh22 → 0k×k (because all of its roots are in absolute value less than one)

and Eh11 = ρh → ecδ (so it is bounded asymptotically), which imply that (E22/E11)
h also

vanishes asymptotically. Hence, the effect of the shock on the first component of Yt after h

periods, Eh[1, 1,01×(k−1)]0, will be equal to:

Eh11 + E
h−1
11 E12 (Ik −E22/E11)−1 (32)

= Eh11

³
1 +E12 (E11Ik −E22)−1 1k

´
' Eh11

³
1 +E12 (Ik − E22)−1 1k

´
= Eh11φb

where in the last line we use the approximation that E11 = ρ = 1 + c
T ' 1. Thus:µ

∂eyt+h
∂²t

¶
canonical

= Eh11φb (33)

where φb is a correction factor:
17

φb ≡ 1 +E12 (Ik −E22)−1 1k (34)

We could repeat the same reasoning for the matrix A. By doing the same calculations,

we find that, for the ADF regression (22), the l.r. effect is:µ
∂eyt+h
∂²t

¶
ADF

= Ah11φα∗ (35)

where the correction factor is:

φα∗ ≡ 1 +A12 (Ik −A22)−1 1k (36)
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To highlight the differences between the two results, we introduce a simple example. We

consider an AR(2) process without deterministic components:

a (L) yt = ²t (37)

where a (L) = (1− ρL) (1− γL). Notice that ρ and γ are the roots and, by assumption,

|γ| << 1 and ρ = 1 + c
T . Note that a (L) = 1 − (γ + ρ)L + ργL2 so the process can be

rewritten in the familiar form:

yt = ρ1yt−1 + ρ2yt−2 + ²t (38)

where:

ρ1 = γ + ρ (39)

ρ2 = −ργ

The canonical ADF representation is:

yt = ρyt−1 + γ (yt−1 − ρyt−2) + ²t (40)

Finally, the ADF representation is:

yt = α (1) yt−1 − ρ2 (yt−1 − yt−2) + ²t (41)

where α (1) = ρ1 + ρ2 = γ + ρ− ργ.

Since b (1) = 1− γ, the l.r. effect of the shock ²t after h periods derived from the DGP

representation in section 2 is:µ
∂yt+h
∂²t

¶∗
= ρh (1− γ)

−1 → ecδ (1− γ)
−1 (42)

From (27) and (31), note that 1 +E12 (Ik −E22)−1 1k = 1 + γ
1−γ = (1− γ)

−1 so:µ
∂eyt+h
∂²t

¶
canonical

= ρh (1− γ)−1 → ecδ (1− γ)−1 (43)

corresponds to the exact long-run effect. Instead, from (24) and (36), φα∗ = (1 + ρ2)
−1 '

(1− γ)−1µ
∂eyt+h
∂²t

¶
ADF

= α (1)h (1− γ)−1 → ecδb(1) (1− γ)−1 (44)
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The reason why the ADF representation and the canonical ADF representation give differ-

ent answers is that in the ADF representation the regressors are not the Sims, Stock and

Watson (1990) canonical regressors; thus the regressors yt − yt−1 will be over-differenced
and, cumulated over time, this will matter asymptotically. In other words, one can rewrite

(25) as:

eyt = ρeyt−1 − kX
j=1

bj∆eyt−j + ξt + ²t, ξt ≡ (ρ− 1)
kX
j=1

bjeyt−j (45)

where ξt can be interpreted as an omitted variable in regression (22), whose effect is non-

negligible asymptotically, when added over time.

Let’s compare the exact long-run effect with the other two measures. The AR(1) long-

run effect is the effect of a one-time unitary shock to vt rather than to ²t. In fact, from the

data generating process yt = ρyt−1 + vt we have that:

∂yt+h
∂vt

= ρh → ecδ (46)

Since vt = b (L)
−1
²t, the long-run effect of a shock to ²t will be ρhb (1)

−1, which is the

measure proposed in this paper. Instead, α (1)h → ecδb(1) so it will be different from the

above unless c = 0 or the true process is an AR(1), for which b (1) = 1. Hence the use of

this approximation is not justified asymptotically (under the assumptions of this paper). It

will also be different from the long-run effect calculated by using the ADF representation,

which will be (see (44)):

α (1)
h → ecδb(1)

b (1)
(47)


