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Abstract

This paper provides omnibus tests for multivariate normality of
both observations and residuals. They are derived by considering
as the alternatives to the multivariate normal a class of maximum-
entropy distributions studied elsewhere by the author. The tests,
being Lagrange multiplier statistics, have optimum local asymptotic
power among those alternatives. Furthermore, they coincide in the
univariate case with the popular Jarque-Bera test for normality. They
also include as special cases several multivariate tests available in the
literature. Finally, the paper also suggests simple adjustments that
can significantly improve the power of the tests in the case of small
and medium size samples, even for the univariate case.

KEY WORDS: Tests for Multivariate Normality, Maximum En-
tropy

1 Introduction

Since the pioneering work earlier this century by, among others, K. Pear-
son, R. Fisher and J. Wishart, the assumption of multivariate normality has
played a key role in many methods of multivariate analysis. Handy as that
assumption is, however, the consequences of departure from multivariate nor-
mality are documented to be quite serious for several methods (e.g., linear
discriminant analysis). Judgment is still pending on other methods, but, in
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principle, the consequences may also be serious as well. This can be sur-
mised in cases such as simultaneous equation models, where the violation of
the multivariate normality assumption may lead to inefficient estimators and
invalid inferences.

Given the obvious importance of the multivariate normality assumption,
it is thus somewhat surprising that for many years most researchers either
ignored it, or were content with the evaluation of marginal normality (which,
of course, does not necessarily imply joint normality). Only when Mardia
(1970) introduced a simple test based on multivariate measures of skewness
and kurtosis, did the issue of testing for multivariate normality gain some
favor among researchers. That this favor has grown since then is attested by
the burgeoning literature on the subject (see, e.g., the surveys by Mardia,
1987, and Small, 1985).

The purpose of this paper is to provide readily computable tests for multi-
variate normality of both observations and residuals of multivariate equation
models. They are derived by considering as alternatives to the multivariate
normal a class of “likely”, maximum entropy, multivariate distributions in-
troduced in Urzúa (1988).

The tests, being derived by the Lagrange multiplier procedure, have op-
timum locally asymptotic power among those alternatives. Thus, they dis-
tinguish themselves from other ad-hoc tests in the literature that are simply
patterned as extensions of tests for univariate normality. This is not meant
to deny the practical advantage of having multivariate tests with such a
property, for in fact some of the tests proposed here are the multivariate
counterparts to the popular Jarque-Bera test for univariate normality (Jar-
que and Bera, 1980 and 1987). This paper also presents simple adjustments
to the LM tests that can significantly improve its performance in the case of
small and medium size samples, even for the univariate case.

This paper is organized as follows: Section 2 reviews several of the prop-
erties that characterize the ”likely” multivariate distributions, and presents
some basic results for use in later sections. Section 3 derives the Lagrange
multiplier test for multivariate normality under the premise that the alterna-
tives to the normal are other maximum entropy distributions. It also corrects
the test to improve its performance in the case of non-large samples. Finally,
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Section 4 presents test statistics for multivariate normality of residuals of
simultaneous equation models, and of vector autoregression models for time
series.

2 Likely alternatives to the multivariate nor-

mal

In his authoritative paper on significance tests written in the seventies, D.
R. Cox complained about the non-existence of “a simple and general family
of distributions to serve as alternatives [to the multivariate normal]” (1977,
p. 56). This section reviews a class of distributions, an exponential family
studied in Urzúa (1988), which could play that role.

2.1 Some definitions

The distributions to be considered in this paper are multivariate generaliza-
tions of the, as yet, relatively unknown distributions introduced by R. A.
Fisher (1922). Defined over the real line, Fisher’s univariate densities are of
the form

f(x) = τ (α)exp(−Q(x)), Q(x) = α1x + α2x
2 + ... + αkx

k (1)

where k is an even number, αk > 0, and τ (α) is the constant of normalization
given the vector of parameters α. Aside of course from the normal (obtained
when k = 2), the densities in (1) were considered to be of little interest for
many years. More recently, however, there has been an increasing interest on
them since they play a key role in stochastic catastrophe theory (see Urzúa,
1990, and references therein).

Furthermore, as Zellner and Highfield (1988) have strikingly illustrated
in the case of the quartic exponential (obtained setting k = 4 in equation (1)
above), Fisher’s distributions are flexible enough, and simple enough, to act
as bona fide approximations to other univariate distributions.
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We now turn to their multivariate counterparts. Let x denote the real
column vector (x1, ..., xp)

′. If Q(x) is a polynomial of degree k in the p vari-
ables, then it can always be written, ignoring the constant term, as

Q(x) =
k∑

q=1

Q(q)(x), (2)

where Q(q)(x) is a homogeneous polynomial (a form) of degree q. Namely,

Q(q)(x) =
∑

α
(q)
j1....jp

p∏
i=1

xji
i , (3)

with the summation taken over all nonnegative integer p-tuples (ji, ..., jp)
such that j1 + ... + jp = q. The polynomial Q will be assumed to be such
that g(x) = exp(−Q(x)) is integrable on the entire Euclidean space Rp (a
necessary condition for this to happen is that the degree of Q(x) relative to
each xi is an even integer).

Following Urzúa (1988), the continuous random vector X = (X1, ..., Xp)
is said to have a p-variate Q-exponential distribution with support Rp if its
density is given by

f(x) = τ (α)exp(−Q(x)),−∞ < xi < ∞, i = 1, ..., p, (4)

where τ (α) is the constant of normalization.

For simplicity, it will be implicitly assumed below that the polynomial Q
is of degree k relative to all of its components. In such a case, several impor-
tant distributions emerge: If k = 2, then the p-variate normal is obtained;
while when k = 4 and k = 6 the p-variate quartic and sextic exponentials are
obtained.

Note also that as k is increased the number of coefficients required by the
corresponding Q-exponential increases at an increasing rate. In fact, as can
be readily shown (see Urzúa, 1988), if K(p, k) denotes the maximum possible
number of parameters of a p-variate Q-exponential, then
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K(p, k) = C(p + k, k) − 1, (5)

where C(p+k, k) is the binomial coefficient (p+k)!/(p!k!). In particular,
the number of possible coefficients in the homogeneous polynomial of degree
q given in (3) is C(p + q − 1, q).

2.2 Some characterizations

It is now time to introduce a key characteristic of the Q-exponential dis-
tributions. Consider all densities f relative to Lebesgue measure that have
support Ω = Rp and have finite population moments of some predetermined
orders. That is, they satisfy constraints of the form

E

{ p∏
i=1

Xj
i

}
= cm, m = 1, ..., r, (6)

where each j is a nonnegative integer, and c1, ..., cr, is a sequence of real
numbers. For each density we define, following Shannon (1948), the entropy
of f as

H(f) = −
∫

f(x)log [f (x)] dx. (7)

It can be shown (see Urzúa, 1988) that, among the densities satisfying 6,
if there is a density that maximizes Shannon’s entropy, it is necessarily a
Q-exponential of the form

f(x) = τ (α)exp(−Q(x)), Q(x) =
r∑

m=1

αm

p∏
i=1

Xjm
i

.
For instance, the p-variate quartic exponential maximizes the entropy

among the distributions with support Rp that are known to have finite mo-
ments up to order four. Likewise, as Shannon (1948) in his influential paper
first proved, the multivariate normal maximizes the entropy among the dis-
tributions that have second order moments.
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Thus, when the only known information about a distribution is the existence
of population moments of some orders, the Q-exponentials can be considered
to be the “most likely to be true”. This according to the maximum entropy
principle, which states that “in making inferences on the basis of partial
information we must use that probability distribution which has maximum
entropy subject to whatever is known” (Jaynes, 1957, p. 623). This principle,
as remarked by Klir and Folger (1988, p. 214), can be rephrased using the
following two sentences of the Chinese philosopher Lao Tsu (who lived in the
sixth century B.C.): “Knowing ignorance is strength. Ignoring knowledge is
sickness.”

There is a second characteristic of the Q-exponentials that is also relevant
for our purposes. It can be shown that, near the multivariate normal, the
quartic exponential is capable of approximating as close as needed the van
Uven-Steyn multivariate Pearson family (see Urzúa, 1988). This is interest-
ing because the latter family, although made of distributions more complex
(and suspect) than the Q-exponentials, could be thought by some to consti-
tute a class of possible alternatives to multivariate normality (in fact, Bera
and John, 1983, have used such a family to derive tests for multivariate nor-
mality).

Before concluding this section, it is worth briefly mentioning other interest-
ing properties exhibited by the Q-exponential distributions that, although
not directly relevant to this paper, help to illustrate the generality of the
distributions (see Urzúa, 1988, for details): First, they can exhibit several
modes, and they do so with a relatively small number of parameters (as
compared to mixtures of multinormals). Second, they are the stationary dis-
tributions of certain multivariate diffusion processes. Third, the maximum
likelihood estimators of their population moments are the sample moments
(as can be directly seen from 9 below). And fourth, using the method of
moments one can easily obtain consistent estimators for the parameters of
the Q-exponential distributions. This last result is particularly useful given
the large number of parameters in the case of high-dimension distributions.
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3 Test for multivariate normality of

observations

Let X be a p × 1 random vector following a Q-exponential distribution.
Consider a set of n observations x1, ..., xn on X. The corresponding log-
likelihood function L(α) can then be easily shown to be

L(α) = −nlog[
∫ ∞

−∞
...

∫ ∞

−∞
exp(−Q(x))dx]−

n∑
r=1

Q(xr). (8)

Furthermore, the components of the gradient (score) of L(α) are of the form

∂L

∂α
(q)
j1...jp

= nE

{ p∏
i=1

Xji
i

}
−

n∑
r=1

p∏
i=1

Xji
ir (9)

while the elements of the Hessian of L(α) are of the form

∂2L

∂α
(q)
j1...jp

∂α
(r)
k1...kp

= −nE

{ p∏
i=1

Xji+ki
i

}
+ nE

{ p∏
i=1

Xji
i

}
E

{ p∏
i=1

Xki
i

}
(10)

Consequently, Fisher’s information matrix is simply made of the covariances
of products of the random components multiplied by n.

It will prove useful to transform the random vector X to a vector Y having
zero mean and the identity matrix as the covariance. Let µ and Σ be the
mean vector and the covariance matrix of X. Let Γ denote the orthogonal
matrix whose columns are the standardized eigenvectors of Σ, and Λ denote
the diagonal matrix of the eigenvalues of Σ. Define Σ−1/2 as the inverse of
the square root decomposition of Σ; that is, Σ−1/2 = ΓΛ−1/2Γ′. Then the
random vector

Y = Σ−1/2(X − µ) (11)

follows a p-variate Q-exponential, with Q(y) as in (2) and Q(q)(y) as in
(3). It has a zero mean vector, and an identity matrix as its covariance ma-
trix.

Let the K(p, k) × 1 vector of parameters of Q(y) be denoted as α where
K(p, k) is given in (5) above. Suppose now that α is partitioned as α =
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(θ′1, θ
′
2)

′, where θ1 is the C(p + 1, 2) × 1 vector of parameters of the homo-
geneous polynomial Q(2)(y). The hypothesis of multinormality can be then
assessed by testing the null hypothesis H0 : θ2 = 0. There are several asymp-
totic tests available for that purpose (see, e.g., the survey by Engle, 1984).
Given the complexity of the alternatives considered here, the Lagrange mul-
tiplier (LM) test of Rao (1948), and Aitchison and Silvey (1958) will be used
below, for it only requires the estimation of the restricted model under the
null hypothesis.

3.1 The Lagrange multiplier test

In order to give an expression for the LM statistic, it is necessary to introduce
some notation. Let s(α) be the gradient (score) of the log-likelihood function,
and let I be the information matrix. Given the partition of α as α = (θ′1, θ

′
2)

′

the score can be written as s(α) = (s′1, s
′
2)

′, with sj = ∂L(α)/∂θj, j = 1, 2;
while the information matrix can be partitioned into four submatrices of the
form Iij = E[−∂2L(α)/∂θi∂θ′j], i, j = 1, 2.

Let (θ̃1, 0) denote the restricted maximum likelihood estimator for α =
(θ′1, θ

′
2)

′; that is, θ̃1 is the maximum likelihood estimator for θ1 after imposing
the constraint θ2 = 0. Let also s̃ = s(θ̃1, 0) and Ĩ = I(θ̃1, 0). Then the LM
statistic is defined as LM = s̃Ĩ−1s̃/n, or, taking advantage of the fact that
s̃1 = 0,

LM = s̃′2
(
Ĩ22 − Ĩ21Ĩ

−1
11 Ĩ−1

12

)
s̃2/n (12)

LM is under H0 asymptotically distributed as a χ2
ν, a Chi-square with degrees

of freedom ν equal to the dimension of the vector θ2.

3.2 A test for multivariate normality of observations

Given the complexity of the alternatives to the multivariate normal to be
considered here, the computation of the LM statistic would appear to be a
daunting task. Fortunately, as will soon be seen, such will not be the case.
In what follows we will assume that the quartic exponential is the alternative
distribution to the multivariate normal. This is enough since, as noted ear-
lier, (i) it is the most likely distribution when moments up to the fourth order

8



are assumed to exist, and (ii) near the multivariate normal, it can approxi-
mate the multivariate Pearson family as close as needed. Furthermore, the
results given below can be trivially extended to all possible Q-exponentials.1

Before finding the LM test statistic, it is convenient to introduce further
notation. Let us first transform the original observations on X: Let x̄ and S
be the sample mean vector and the sample variance-covariance matrix found
using the set of observations x1, ..., xn. Let G denote the orthogonal matrix
whose columns are the standardized eigenvectors of S, and D denote the
diagonal matrix of the eigenvalues. Using S−1/2 = GD−1/2G′, transform the
observations as follows:

yt = S−1/2 (xt − x̄) , t = 1, ..., n. (13)

After defining

Qijk =
n∑

t=1

ytiytjytk

n
, Rijkq =

n∑
t=1

ytiytjytkytq

n
, (14)

the main result of the paper can be now stated as follows:

Proposition 1 .
Under the above conditions, the Lagrange multiplier test statistic for mul-

tivariate normality of observations is given by:

LMp =
p∑

i=1

nQ2
iii

6
+

p∑
i,j=1,i�=j

nQ2
iij

2
+

p∑
i,j,k=1,i<j<k

nQ2
ijk +

p∑
i=i

n (Riii − 3)2

24
+

p∑
i,j=i,i<j

n (Riijj − 1)2

4
+

p∑
i,j=i,i�=j

nR2
iiij

6
+

p∑
i,j,k=i,i�=j,i�=k,j<k

nR2
iijk

2
+

p∑
i,j,k,q=i,i<j<k<q

nR2
ijkq ,

where the statistic LMp is asymptotically distributed as a χ2
ν, with ν =

p(p + 1)(p + 2)(p + 7)/24.

Since the proof of the Proposition 1, although conceptually simple, is al-
gebraically involved, it is relegated to the Appendix. Yet, the interpretation
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of the test is quite straightforward: It is an omnibus test involving all possible
third and fourth moments (pure and mixed). Furthermore, it is constructed
in the obvious way: Summing the squares of standardized normals (under
the null), after using in each standardization the corresponding asymptotic
mean and variance (the asymptotic covariance between any two terms in the
expression is zero). For instance, each element in the first summation has
zero mean and an asymptotic variance of 6/n (see subsection 3.3 below for
more examples).

It should also be noted that another justification of Proposition 1 may be
given indirectly through an elegant result derived by Gart and Tarone (1983)
for all exponential families. For any family of that type, the correspond-
ing likelihood has to be of the form τ (β, α)exp(β ′u + α′v)h(u, v), where
u = (u1, ..., ur)’ and v = (v1, ..., vs)

′ are sufficient statistics, and β and α
are the parameters of the distribution. Then, following those authors, it can
be shown that the Lagrange multiplier (score) test for the null hypothesis
H0 : β = β0 is simply given by the statistic

LM = (u − E {u | v})′ V ar {u | v}−1 ((u − E {u | v})) (15)

where E {u | v} and V ar {u | v} are the asymptotic conditional mean and
variance matrix of u given v, under the null.

In our case the vector of sufficient statistics v is given by all possible second
order moments, while u is made of all possible third and fourth moments
(and first moments, but their contribution vanishes as shown in the first step
of the proof in the Appendix). Thus, using (15), Proposition 1 is justified.2

3.3 Some special cases of the LMp Test

The LM statistic derived above includes as special cases several tests for
multivariate normality that have been proposed in the literature.

To start with, in the univariate case the LM1 statistic can be expressed
in terms of the standardized third and fourth moments of the original obser-
vations. Defining

√
b1 = m3/m

3/2
2 and b2 = m4/m

2
2, where the i -th central

moment mi equals
∑

(xj − x̄)i/n, then the test becomes:
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LM1 = n

⎡
⎢⎣

(√
b1

)2

6
+

(b2 − 3)
2

24

⎤
⎥⎦ ∼A χ2

2 (16)

This statistic has been proposed by Bowman and Shenton (1975), and by
Jarque and Bera (1980 and 1987). The former authors suggested the use of
this statistic as the simplest possible omnibus test for normality since, under
the null, the asymptotic means of

√
b1 and b2 are respectively 0 and 3, their

asymptotic variances are 6/n and 24/n, and their asymptotic covariance is
zero. While the latter authors found (16) to be the LM test statistic ob-
tained when the alternatives to normality are in the Pearson family.

In the more general multivariate case, the omnibus LMp statistic contains as
special cases several tests already available in the literature. Independently,
Bera and John (1983) and Lütkepohl and Theilen (1991) have considered the
possibility of using as tests for multivariate normality the sum of squares of
the standardized pure third and fourth moments, i.e., the terms in the first
and fourth summation signs appearing in the expression for LMp in Propo-
sition 1. Bera and John have also considered the possibility of using the
mixed fourth moments that are obtained multiplying the squares of any pair
of components (i.e., the elements in the fifth summation sign appearing in
LMp).

It is also interesting to note that the omnibus LMp test (or some of its
components) somewhat resembles the omnibus tests proposed by Jarque and
McKenzie (1983) and Mardia and Kent (1991) using Mardia’s measures of
multivariate skewness and kurtosis. Note, however, that Mardia’s statistics
are not derived after orthogonalizing the observations, but rather after using
quadratic forms of the type (xt − x̄)S−1(xr − x̄).

3.4 Adjusted Lagrange multiplier tests

Given the very large number of degrees of freedom of the LMp statistic in
Proposition 1, it should not be a surprise to learn that the author has found,
after a few Monte Carlo exercises, that it does not behave well for small and
medium size samples (with the problem getting worse as p is increased)3 Al-
though for large samples, of course, the hypothesis of p-variate normality of
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observations can be safely rejected at some significant level (usually taken to
be 10%) if the value of LMp exceeds the corresponding critical value of the χ2

ν.

To solve that shortcoming, this subsection presents simpler test statistics
made of some of the elements of LMp; most of those test statistics, by the
way, will continue to be LM tests, since they would arise after choosing
some particular quartic exponentials. Furthermore, and more interestingly,
this subsection will also show how to adjust those LM tests to substantially
improve their asymptotic convergence.

Let us start first with the univariate case. As noted earlier, LM1 is none
other than the popular Bowman-Shenton-Jarque-Bera omnibus test given in
(16) above. It is important to realize, however, that even for such a simple
functional form the speed of convergence to the χ2

v is quite slow (something
that is often ignored when the test is used in applied econometrics).

Luckily enough, there is a very simple adjustment that can be used to im-
prove its convergence. First note that, based on a straightforward extension
of a result in Fisher (1930), it is possible to derive exactly the means and
variances of

√
b1 and b2 under normality (the null). As in the asymptotic

case, E
{√

b1

}
= 0, but for the other mean and for the two variances it can

be easily shown (see Urzúa 1996) that the exact values are:

E {b2} = 3(n − 1)/(n + 1), (17)

V ar
{√

b1

}
= 6(n − 2)/(n + 1)(n + 3), (18)

V ar {b2} = 24n(n − 2)(n − 3)/(n + 1)2(n + 3)(n + 5). (19)

Thus, as it was first suggested in Urzúa (1996), we can now substitute
the asymptotic values for the exact values to obtain a new adjusted LM1

statistic, with the hope of speeding up the convergence of the omnibus test:

ALM1 =

(√
b1

)2

V ar
{√

b1

} +
(b2 − E {b2})2

V ar {b2} ∼A χ2
2 (20)

It is shown in Urzúa (1996) that this new adjusted LM test indeed behaves
better in the case of small and medium size samples. Furthermore, it is also
shown there that the power of the new test is even slightly greater than the
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power of the Bowman-Shenton-Jarque-Bera test statistics.

Given those encouraging results, it is natural to consider also in this pa-
per the individual counterparts to the omnibus univariate test ALM1. That
is, using the same adjustments as before, let us now introduce an adjusted
skewness measure test defined as

ALM1,1 =

(√
b1

)2

V ar
{√

b1

} ∼A χ2
1 (21)

and, likewise, an adjusted kurtosis measure test defined as

ALM2,1 =
(b2 − E {b2})2

V ar {b2} ∼A χ2
1 (22)

Note that (22) could be truly derived as a Lagrange multiplier test in the
case of a quartic exponential without a cubic term, while (21) could not be
(since the corresponding cubic exponential would not exist). But for pur-
poses of consistency of notation, all the tests in this paper are called LM
tests.

We now turn to the multivariate case. In order to reduce the number of
degrees of freedom present in the general LMp test given in Proposition 1, it
is natural to focus only on the pure third and fourth moments. Although, of
course, there is no reason a priori to prefer pure moments over some mixed
moments, and future work will try to explore other combinations.

Hence, using (14) and (17), an adjusted LM omnibus test for multivariate
normality of observations will be defined as:

ALMp =
p∑

i=1

Q2
iii

V ar
{√

b1

} +
p∑

i=1

(Riiii − E {b2})2

V ar {b2} ∼A χ2
2p (23)

Also, generalizing the univariate case, we can define the adjusted skewness
measure test as

ALM1,p =
p∑

i=1

Q2
iii

V ar
{√

b1

} ∼A χ2
p (24)
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and the adjusted kurtosis measure test as

ALM2,p =
p∑

i=1

(Riiii − E {b2})2

V ar {b2} ∼A χ2
p (25)

In the case of each of these three statistics, Table 1 reports significance points
for the typical confidence levels used to test for multivariate normality of ob-
servations. Each cell in the table was generated through 10000 replications
from a multivariate standard normal.

The results, as evident from the table, are quite encouraging. It is note-
worthy, for instance, how near to the corresponding asymptotic value are the
generated critical values for the skewness-based test ALM1,p when α = 10%,
even for rather small sample sizes. As will be noted in the next section, this
fact should encourage the use of this test in the case of residuals of statistical
models.

Comparatively, the kurtosis-based test ALM2,p, converges more slowly, but
its behavior is still quite remarkable given the well known bad convergence
properties of the typical, unadjusted, statistics based on fourth moments.

Finally, the omnibus test ALMp, the one that in principle should have the
best power (although this issue will have to be answered in future work), also
behaves quite well (compare, for instance, the critical values for p = 1 with
the corresponding values for the Jarque-Bera test for univariate normality
(Jarque and Bera, 1987, Table 2).

4 Tests for multivariate normality of residu-

als

The tests for multivariate normality of observations introduced in the last
section can be easily extended, as we will do next, to the case of residuals
of the typical linear structural models used in Economics. What cannot be
borrowed from the last section, however, are the significance points in Table
1. This is so because the sample properties of the tests will depend in gen-
eral on the particular design matrices of each structural model. It is for this
same reason that in what follows we restrict our attention to the adjusted
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TABLE 1

Significance Points for the ALM Tests for Multivariate Normality of Observations

          ALM1,p      ALM2,p          ALMp

p n 0.90 0.95 0.975 0.99 0.90 0.95 0.975 0.99 0.90 0.95 0.975 0.99

10 2.70 4.14 5.68 7.59 2.07 4.06 6.91 11.29 4.12 7.79 12.32 18.61

20 2.67 3.96 5.45 7.66 1.90 3.65 6.53 12.03 3.94 6.84 11.25 18.59

1 50 2.67 3.85 5.18 7.10 1.98 3.26 5.51 10.00 3.90 6.42 9.33 15.56

100 2.61 3.89 5.19 7.46 2.12 3.41 5.39 9.02 4.06 6.13 9.02 14.44

200 2.63 3.83 5.07 6.82 2.31 3.50 5.44 8.51 4.21 6.07 8.50 12.55

800 2.67 3.85 4.88 6.35 2.47 3.62 4.97 7.23 4.39 5.90 7.64 10.25

¶ 2.71 3.84 5.02 6.64 2.71 3.84 5.02 6.64 4.61 5.99 7.38 9.21

10 4.77 6.42 8.04 9.94 4.30 7.34 11.11 15.62 8.65 13.36 18.82 24.99

20 4.79 6.34 8.21 10.64 4.22 7.23 11.33 18.61 8.39 12.63 18.66 27.68

2 50 4.64 6.34 7.93 10.41 4.07 6.80 10.82 18.08 7.83 11.57 16.96 26.17

100 4.59 6.15 7.78 10.04 4.19 6.96 10.30 16.13 7.98 11.20 15.96 23.03

200 4.65 6.10 7.77 10.15 4.42 6.40 9.38 14.55 7.88 10.94 14.34 21.42

800 4.63 6.06 7.44 9.21 4.53 6.03 8.02 11.98 7.85 10.00 12.56 16.35

¶ 4.61 5.99 7.38 9.21 4.61 5.99 7.38 9.21 7.78 9.49 11.14 13.28

10 6.57 8.47 10.28 12.69 6.88 10.33 14.28 19.93 12.96 18.39 23.94 32.33

20 6.49 8.46 10.27 13.14 6.24 10.18 14.96 22.28 11.94 17.35 24.03 33.93

3 50 6.38 8.33 10.42 13.23 6.01 9.63 14.20 22.34 11.35 16.62 22.80 33.48

100 6.27 8.01 9.77 12.28 6.07 9.20 13.69 21.59 11.12 15.24 21.47 30.57

200 6.27 7.78 9.50 11.82 6.13 8.53 11.80 17.67 11.01 14.37 18.53 24.14

800 6.14 7.75 9.26 11.11 6.34 8.29 10.55 14.75 10.83 13.24 15.97 20.51

¶ 6.25 7.82 9.35 11.35 6.25 7.82 9.35 11.35 10.65 12.59 14.45 16.81

10 8.17 10.36 12.26 15.09 8.55 12.43 17.06 23.20 16.27 22.32 28.83 37.07

20 8.07 10.38 12.68 15.58 8.67 13.04 19.15 27.77 15.70 22.35 30.18 40.82

4 50 8.04 10.18 12.19 15.28 8.03 12.20 17.29 26.65 14.81 20.43 27.49 39.50

100 7.95 9.86 11.77 14.27 8.09 11.68 15.92 24.45 14.69 19.16 24.63 34.01

200 7.93 9.70 11.42 13.98 7.93 10.93 15.29 21.53 14.00 18.21 23.03 30.97

800 7.81 9.57 11.09 13.37 7.81 9.99 12.46 16.03 13.56 16.30 19.17 23.46

¶ 7.78 9.49 11.14 13.28 7.78 9.49 11.14 13.28 13.36 15.51 17.54 20.09

10 9.83 12.16 14.10 17.42 10.69 15.19 20.00 26.16 19.98 26.99 33.45 42.49

20 9.57 11.90 14.42 17.88 10.16 15.09 21.41 31.82 18.67 25.71 34.01 48.24

5 50 9.45 11.83 14.03 16.99 9.89 14.37 20.12 29.09 18.06 23.95 31.24 44.01

100 9.44 11.48 13.64 16.70 9.77 13.66 18.15 26.33 17.60 22.91 28.68 38.34

200 9.31 11.31 13.18 15.88 9.53 12.97 16.79 22.28 17.00 21.25 26.75 33.21

800 9.27 11.10 12.93 15.50 9.25 11.70 14.25 17.82 16.21 19.29 22.24 26.42

¶ 9.24 11.07 12.83 15.09 9.24 11.07 12.83 15.09 15.99 18.31 20.48 23.21



ALM tests, rather than considering the general omnibus test LMp derived
in Proposition 1.

4.1 Simultaneous equation models

Consider the simultaneous equation model

Byr + Γzr = ur, r = 1, ..., n (26)

where yr is a p × 1 vector of observed endogenous variables, zr is a k × 1
vector of observed predetermined variables, ur is a p×1 vector of unobserved
disturbances, B is a p × p nonsingular matrix of coefficients with ones in its
diagonal, and Γ is a p×k matrix of coefficients. All identities are assumed to
be substituted out, and the system is assumed to be identified through ex-
clusions in B and Γ. Assume furthermore that the alternative to the possible
p-variate normal distribution of ur is, as before, a p-variate quartic exponen-
tial.

Suppose first that the system is estimated using full information maximum
likelihood (FIML) under the assumption of multivariate normality. Follow-
ing the reasoning in the last section, one can construct tests for multivariate
normality of the residuals as follows: Let ûr denote the estimated FIML
residuals of the structural equations (one could similarly use the estimated
residuals of the reduced form). Using the transformation er = S−1/2ûr , where
S−1/2 is defined as in (13), define next:

Vijk =
p∑

t=1

etietjetk

n

and

Wijkq =
p∑

t=1

etietjetketq

n

Then the ALM ’s tests for multivariate normality of the residuals can be
defined as:

ALMRp =
p∑

i=1

V 2
iii

V ar
{√

b1

} +
p∑

i=1

(Wiiii − E {b2})2

V ar {b2} ∼A χ2
2p (27)
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ALMR1,p =
p∑

i=1

V 2
iii

V ar
{√

b1

} ∼A χ2
p (28)

ALMR1,p =
p∑

i=1

(Wiiii − E {b2})2

V ar {b2} ∼A χ2
p (29)

But, what if, as is usually the case, the system is not estimated by FIML,
but rather by some other method (e.g., 2SLS)? Provided the method renders
consistent estimators, one can use the corresponding ALMR’s constructed
using the estimated residuals of the structural equations (or, equivalently,
the estimated residuals of the reduced form equations). This is so because,
following White and MacDonald (1980), one can show that the statistics con-
structed using the estimated residuals are consistent estimators of the true
statistics.4

As was stressed earlier, in the case of small samples one cannot use the
empirical significance points given in Table 1. But, as was also noted ear-
lier, the asymptotic critical values can be confidently used in the case of the
ALMR1,p test. Furthermore, it is straightforward to simulate the significance
points corresponding to the ALMR tests, for a given linear structural model.

4.2 Vector autoregressive models

Before closing this section, it is interesting to pose the following question aris-
ing in the case of multivariate time series that follow a vector autoregressive
(VAR) process: In order to test for Gaussianity, should we use the original
observations, or the estimated residuals after fitting the VAR model? Based
on simulation studies, Lütkepohl and Theilen (1991) recommend the second
alternative. Thus, in our context, tests based on the ALMR’s rather than
on the ALM ’s should be preferred.

5 Conclusions and extensions

This paper has provided an omnibus LM test for multivariate normality
which is, in effect, the most comprehensive test that one can ever devise
using third and fourth (pure and mixed) moments. Being derived using the
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Lagrange multiplier procedure, the test has optimum local asymptotic power
among the multivariate quartic exponentials, the maximum-entropy (”most
likely”) multivariate distributions when it is assumed that moments up to
the fourth order exist. This paper has also provided some particular adjusted
LM tests that converge quite rapidly to their asymptotic distribution.

Three extensions to the results presented above are clearly called for. First,
it is worth exploring the possibility of using other elements of LMp, and com-
paring the power of the resulting tests with the ones for the ALM tests given
here. Second, given the dozens of already available tests for multivariate nor-
mality, a complete Monte Carlo study appraising the power of each of them
is much needed. And third, maintaining the hypothesis of Q-exponentials as
the alternative distributions, it would be interesting to derive new tests for
multivariate normality of the residuals of other common multivariate models,
such as simultaneous limited dependent variable models.

A Appendix: Proof of Proposition 1

The proof will be developed in several steps, making continuous use of the
expressions for the first and second partial derivatives of the log-likelihood
given in (9) and (10), and reproduced here (q, r = 1, 2, 3, 4):

∂L

∂α
(q)
j1...jp

= nE

{ p∏
i=1

Y ji
i

}
−

n∑
r=1

p∏
i=1

yji
ir (30)

∂2L

∂α
(q)
j1...jp

∂α
(r)
k1...kp

= −nE

{ p∏
i=1

Y ji+ki
i

}
+ nE

{ p∏
i=1

Y ji
i

}
E

{ p∏
i=1

Y ki
i

}
(31)

Step 1: Note that, under the null, the elements of the score corresponding to
the first order moments are zero:

∂L

∂α
(1)
j1...jp

= nE {Yi} −
n∑

i=1

yir, for all ji = 1. (32)

Hence, the expression for the Lagrange multiplier statistic given in (12)
can be further simplified as:

LM = d′(F − C ′B−1C−1)d/n, (33)
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where, the new symbols, all evaluated under the null, are given by:

d =
{
∂L′/∂α(3), ∂L′/∂α(4)

}′
;

F = −E
{
∂2L/∂α(q)∂α(r)

}
q, r = 3, 4;

B = −E
{
∂2L/∂α(q)∂α(r)

}
q, r = 1, 2;

C = −E
{
∂2L/∂α(q)∂α(r)

}
q = 1, 2; r = 3, 4.

Step 2: Since the components of the random vector Y are independent,
and have, under the null, odd-order population moments equal to zero,
it follows that the expression in (31) is equal to zero whenever q is even
and r is odd, or viceversa. Thus, all matrices in (33) are block diagonal:
F = diag(F11, F22), B = diag(B11, B22), and C = diag(C11, C22).

Step 3: In fact, B is a completely diagonal matrix. This is so because all the
elements of B11 are zero except for:

−∂L

∂α
(1)
j1...jp

∂α
(1)
k1...kp

= nE
{
Y 2

i

}
= n, when ji = ki = 1 (34)

where the last equality obtains since, under the null, the second population
moment of each component equals one.

Most elements of B22 are zero as well, except for two possible arrangements
of the subindices. The first case is:

−∂L

∂α
(2)
j1...jp

∂α
(2)
k1...kp

= n
[
E

{
Y 4

i

}
− E

{
Y 2

i

}2
]

= 2n, when ji = ki = 2 (35)

where in the second equality use has been made of the fact that, for a uni-
variate standard normal,

E
{
Y 2t

i

}
= (2t)!E

{
Y 2

i

}t
/2tt! t = 1, 2... (36)

The second case arises when the left-hand side of (35) evaluated under the
null becomes nE {Y 2

i }E {Y 2
s } = n, if ji = ki = 1 and js = ks = 1.
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Step 4: The same procedure is used to find the elements of the matrices
Cii’s and Fii’s, although now there will be more non zero elements. As in
the case of the Bii’s, all elements will be found evaluating, under the null,
expressions of the form (31) for different values of q and r, while also making
frequent use of (36). Also, in what follows one should keep in mind that all
matrices are symmetric, so that it suffices to list the entries on the diagonal
and on either the upper or lower triangular parts.

In the case of C11, obtained when q = 1 and r = 3 (and viceversa) in (31),
the non zero entries are equal to: 3n if ji = 1 and ki = 3; and n if ji = ki = 1
and ks = 2.

In the case of C22, arising when q = 2 and r = 4 (and viceversa) in (31), the
non zero entries are equal to: 12n if ji = 2 and ki = 4; 2n if ji = ki = 2 and
ks = 2; n if ji = ki = 1, js = ks = 1 and kt = 2; and 3n if ji = 1, ki = 3 and
js = ks = 1.

In the case of F11, resulting when q = 3 and r = 3 in (31), the non zero
entries are equal to: 15n if ji = ki = 3; 3n if ji = 1, js = 2 and ki = 3,
or if ji = ki = 2 and js = ks = 1; and n if ji = ki = 1, js = ks = 1 and
jt = kt = 1, or if ji = ki = 1, js = 2 and kt = 2.

Finally, in the case of F22, obtained when q = 4 and r = 4 in (31), the
non zero entries are equal to: 96n if ji = ki = 4; 12n if ji = js = 2 and
ki = 4; 15n if ji = ki = 3 and js = ks = 1; 3n if ji = 1, ki = 3, js = ks = 1
and jt = 2, or if ji = ki = 2, js = ks = 1 and jt = kt = 1; 9n if ji = 3, ki = 1,
js = 1 and ks = 3; 8n if ji = ki = 2 and js = ks = 2; 2n if ji = ki = 2,
js = 2 and kt = 2; and n if ji = ki = 1, js = ks = 1, jt = 2 and ku = 2, or if
ji = ki = 1, js = ks = 1, jt = kt = 1 and ju = ku = 1.

Step 5: The elements of d in (33) are, on the other hand, easily found.
They simply involve population moments that can be evaluated using (36),
and sample moments, which are the ones that will appear at the end in LMp.

Step 6: Using the above results one can now display all the vectors and matri-
ces in (33), and calculate directly LMp (after some algebra). The number of
degrees of freedom of the Chi-square is simply equal to C(p+3, 4)+C(p+2, 3),
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following subsection 2.1.

Acnowledgments

The first version of this paper was presented at the IX Latin American Meet-
ing of the Econometric Society held in Santiago de Chile in 1989, and it was
circulated as a working paper (Urzúa, 1989). I am indebted to Robert F.
Engle, Thomas B. Fomby, Marc Nerlove, and the participants in seminars at
several institutions over the last few years for helpful comments. As usual, I
am the only one responsible for any errors.

Notes

1. As noted in footnote 2.

2. An analogous reasoning would apply if we had chosen to work with
more general Q-exponentials. For instance, if the multivariate sex-
tic exponential were to be considered as the likely alternative to the
multivariate normal (and the quartic exponential), then the omnibus
LM test would be made of quadratic terms involving all possible third,
fourth, fifth and sixth moments (pure and mixed).

3. The Monte Carlo study is available upon request from the author. A
33−line procedure written in GAUSS to compute LMp is also freely
available upon request.

4. Or one can also use a similar result to Proposition 3 in Lütkepohl and
Theilen (1991).
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[22] Urzúa, C. M. (1989) “Tests for Multivariate Normality of Observa-
tions and Residuals.” Working Paper No. III-89, Centro de Estudios
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