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ABSTRACT 
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1. Introduction 
 

Governments are under pressure to manage the threat of livestock diseases 

because of public health concerns and the negative impacts on livestock producers.  

Traditional policies for addressing livestock diseases include testing and monitoring 

activities, conducted by the government, and regulations imposed on livestock producers 

and processors.  Such policies might have limited success, however, if producers do not 

cooperate with the government.  Payments for reporting sick animals, indemnity 

payments for livestock destroyed for disease control, and other incentive-based policies 

could encourage producers to aid in disease detection.  By creating a suboptimal mix of 

incentives, however, regulators could fail to reduce, and even exacerbate disease 

outbreaks.  If indemnities are too high, producers could find it beneficial to submit low-

grade (cheap) cattle for testing or increase the probability of disease outbreaks.  With 

insufficient indemnity payments, producers may slaughter too many animals to avoid 

future losses; similarly, regulatory policies that ban the use of sick animals may promote 

early slaughter to avoid detection. 

Designing policies to address animal diseases requires understanding the 

incentives faced by livestock owners.  In this paper, we develop a model to examine 

livestock disease management when both the government and producers can affect 

disease risks.   Economic studies of livestock diseases have focused on the effects of 

health concerns on prices (Piggott and Marsh 2004; Lloyd et al. 2001) and on estimating 

potential economic impacts (Matthews and Buzby 2001; Matthews and Perry 2003).  

Studies of livestock owner behavior and livestock populations focus chiefly on 

explaining cyclical patterns in cattle stocks (e.g. Aadland 2004).  Bicknell, Wilen, and 

Howitt (1999) examined cattle owners’ incentives to control bovine tuberculosis.   In 

their model, producers select marketing levels, private testing, and eradication of wild 

animal vectors based upon prices, biological parameters, indemnity payments, the cost 

and efficacy of testing, and government monitoring of slaughterhouse activity.  When 

government monitoring is 100% effective and producers have no private information 

about disease infection, they show that government policies reduce aggregated disease 

outbreaks, as well as private incentives to control disease. 
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One particular livestock disease that needs immediate public involvement at 

various levels is the Bovine Spongiform Encephalopathy (BSE) commonly known as the 

mad cow disease.  Recent outbreak in the US has caused widespread concerns about the 

impact on the beef industry from international trade restrictions.  Besides, there are 

significant risks to the disease passing on to the humans in the form of BSE-CJD.  There 

is limited scientific evidence currently available over the real cause of disease eruption.   

The disease is caused by a malformation in the healthy proteins, prions, in cows.  

Conflicting opinion exists as to the real cause of this malformation.   Recent experiments 

have claimed the cause of this malformation in prions to be spontaneous and infectious 

(Legname et al. 2004).  Consequently, it is not possible to incorporate the 

epidemiological aspect of such a cattle disease in detail at this stage.  However, it is still 

possible to look at the producer behavior when the risks of such disease spread are 

unknown or partially known.   

Using a stochastic dynamic model, we examine the incentives of livestock 

producers to take private actions that can increase or decrease the potential for disease 

detection.  We incorporate the asymmetry of information between producers and 

government regulators.   Producers maximize expected economic benefits from livestock 

sales and government incentive payments in pre and post disease-detection scenarios.  

Livestock producers make decisions over harvest, reporting, and other activities that aid 

government monitoring efforts.  They consider expected prices before and after disease 

detection, government incentive payments, and subjective probabilities of disease 

detection that can be influenced by federal monitoring and by producers themselves via 

reporting and other activities such disposal methods of sick animals.  We use this model 

to examine producers’ responses to a range of policy options including indemnity 

payments for destroyed livestock, subsidies to voluntarily aid in disease detection, 

government monitoring, and regulations that raise the cost of maintaining livestock.   We 

also consider measures that reduce demand losses upon disease detection, such as 

improving animal tracking and identification systems. 

The analysis characterizes the complex incentives produced by multiple related 

policies.  Increased monitoring by the government, regulations to reduce disease 

transmission, payments to producers for reporting sick animals, indemnity payments for 

 3



destroyed livestock, and policies to identify diseased animals may all potentially increase 

the stock of disease.  However, perverse incentives may be mitigated in some cases 

through changes in payments for reporting, but whether payments should be raised or 

lowered may vary depending on the level of monitoring and other variables.  We 

highlight the significance of designing the right combination of regulatory and incentive-

based policies. 

 

2. Model of Producer Behavior with Endogenous Risk of Detection 

The livestock producer maximizes the expected economic benefits from livestock 

sales and from government payments before and after the disease is detected by the 

government.  Upon detection, the presence of the disease becomes public knowledge, and 

prices fall due to lowered demand domestically and/or internationally.  The model 

includes three state variables and two control variables.  The first state variable is ct, the 

stock of livestock at time t.   

 

The second state variable is qt, the stock of the disease in the population.  We 

model the stock of disease directly rather than the stock of infected animals, as in 

Bicknell, Wilen and Howitt (1999).   This formulation is general enough to include 

diseases that continue to spread infection after the death of the host animal. 

The probability that the presence of the disease in the population is detected by 

the government is treated in the form of a third state variable, allowing us to endogenize 

the risk faced by producers.  We model this endogenous risk using a survivor function, 

following previous work that examines behavior given risks from an environmental 

catastrophe (e.g. Clark and Reed 1994; Gjerde, Grepperud and Kverndokk 1999).    

In each time period, the livestock producer faces a certain instantaneous 

probability of disease detection denoted as ( )tλ
•

.   For tractability, we specify a Poisson 

distribution, so the probability of detection in any interval dt 

is where .  A Poisson distribution is often used to represent counts of 

events across time and involves the assumptions that the probability of observing an 

event is approximately proportional to the size of a time interval; that there is virtually no 

( )t dtλ
•

0

( ) ( )
t

t tλ λ
•

= ∫ ds
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probability of two events occurring within the same interval; that the process that 

determines the probability does not change over time; and that the probabilities are 

independent across intervals.  While these assumptions will affect the exact results, the 

model is simply intended to illustrate potential producer behavior given endogenous risks 

of detection. 

If T is a stochastic variable that represents the time of disease detection in the 

entire population of infected animals, the cumulative probability density function 

associated with detection is ( ) Pr( )F t T t= <  and  given the Poisson 

specification.  The survivor function represents the probability of the livestock producers 

continuing to market cattle without disease detection up to each time period t and is given 

by .  Under the Poisson specification, and the 

probability of detection in a particular period t is . This equals the probability of 

detection at time t given survival up to time t without detection. 

( )( ) 1 tF t e λ−= −

( ) Pr( ) 1- ( )S t T t F t= > = ( )( ) tS t e λ−=

( )( ) tt e λλ
•

−

In our model, the livestock producer affects ct as well as the stock disease and the 

risk of detection by choosing two variables at each point in time: ht, the level of livestock 

harvested (and marketed), and dt, the level of reporting.  This reporting embodies the idea 

that livestock owners have certain private information regarding the likelihood that their 

animals are infected, which is not available to the government regulator.  Thus, producers 

have the choice of reporting such information to the government or taking private actions 

that increase the chances that the disease is detected (if it is actually present in the 

population).  For example, there might be reporting activities that entail some private 

costs and which will thus perhaps not be undertaken unless the producer receives an 

incentive. 

 Given this framework, the producer’s problem is to maximize the present 

discounted value of an infinite stream of livestock harvests, net of carrying costs, plus 

government payments.  In our base model, we consider only government payments 

associated with reporting activities.   The producer’s problem is thus to choose levels of 

ht and dt in each period to maximize: 

 { } ( )
0

0

( ) ( ) t rtJ h c t f zd v t e eλπ λ
∞ •

− −= − + +∫ t∂  (1) 
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where 0π is the price per unit of livestock prior to disease detection; h is the amount of 

livestock harvested (and sold); f is the cost of carrying (feeding) a unit of livestock; z is 

the reward (penalty) faced by a producer for each unit d of reporting activity; denotes 

the value function in the post-detection scenario as of time t; and r is the instantaneous 

discount rate.  The producer’s choice in (1) is subject to the state equations for livestock, 

disease, and risk evolution, (2), (3), and (4) below.  

( )v t

Dropping the time notation for simplicity, livestock increase simply as a function 

of the existing stock, c, times a fixed growth rate, ρ , and decline with the level of 

harvest, h, and with the stock of disease, q, where u denotes the extent to which the stock 

of disease contributes to livestock mortality: 

 c c h uρ
•

q= − −  (2) 

 The contagious disease stock, q, increases with c and an exogenous componentθ :  

 q cq θ
•

= −  (3) 

Disease evolves in proportion to its existing level times the size of the livestock 

population net of spontaneous introduction or remission of the disease.  Negative 

(positive) θ  implies an increase (decay) over time due to exogenous effects.  The 

multiplicative term captures the element of contagion so that the greater the stock of 

disease and the greater the size of the population, the greater the amount of infection over 

each time period.  This reflects the case of a contagious disease which is directly 

transmitted across living animals.  The formulation also applies to cases where 

transmission occurs through other pathways, such as feed contaminated with tissues from 

infected animals.    

 The change in the probability (risk) of disease detection is modeled as an additive 

function of the stock of disease, the amount of reporting, and a function that depends on 

the level of government monitoring activity m: 

 0 1
ma q a d eλ

•
−= + −  (4) 

The probability of disease detection depends positively on the disease stock, which will 

affect the probability of detection given some base level of surveillance activity.1  Higher 

levels of government monitoring m also increase the chances of detection.  However, 
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monitoring and base-level surveillance alone may not be effective in detecting the 

disease.  Producers can also directly affect the degree of detection through reporting 

actions d, which include measures that a producer can take to affect the detection 

probability given private information or behavior that is not observable by the monitoring 

agency.  This formulation for the probability of detection highlights the importance of 

private participation in disease control.  For simplicity, the marginal impacts of d or m on 

the detection probability are assumed independent of q.  This may be realistic if 

producers or the monitoring agency can target testing or reporting in a manner that does 

not depend on the disease stock. 

For the base case, we specify a simple post-detection scenario, in which the price 

of livestock declines but the government is able to eradicate the disease completely and 

prevent its future introduction.2  Thus in the post-detection scenario the stock of livestock 

grows as: 

 c cρ
•

h= −  (5) 

so livestock growth depends only on the growth rate and level of harvest, with no death 

from disease. A more realistic representation would be a scenario where the exogenous 

risks of disease evolution remains positive and the price of beef recovers over time. 

However, the results from the above formulation can be generalized in a straightforward 

fashion to incorporate this and the implications of more complex and realistic scenarios 

are discussed in section 3.3.  In the base-case post-detection scenario, the livestock owner 

realizes returns from livestock sales at the reduced price of 1 0π π< .   The producer’s 

objective is then simply to choose harvest levels to maximize the infinite stream of net 

returns from livestock sales starting at detection time T: 

 1( ) ( ( ) ) rt

h
T

v T Max h c t f e tπ
∞

−= −∫ ∂  (6) 

subject to (5).   

Restricting attention to the steady-state level of livestock ( ), producers 

receive an infinite stream of net benefits equal to 

0c
•

=

( )1( )c t fπ ρ − and the value function 

can be rewritten as: 
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 1( ) ( ) rtfv T c t e
r

π ρ −−
=  (7) 

As discussed below, we focus on behavior in the steady state even though there is no 

guarantee that this equilibrium exists or will actually be reached.  As discussed by Clark 

and Reed (1994), we assume that the steady state solution provides a useful guide for the 

direction in which the system is headed.  This will be true if the system converges rapidly 

towards the steady state behavior, even if the equilibrium is never actually attained. 

Substituting equation (6) into equation (1) and using the result in (7), the 

producer’s optimization problem can be solved using Pontryagin’s maximum principle.  

The current value Hamiltonian is written as: 

 ( )
0 ( ) ( ) ( ) ( ) tH h t c t f zd t v t e l c l q lλ

1 2 3π λ λ
• • •

−⎡ ⎤= − + + + + +⎢ ⎥⎣ ⎦

•

 (8) 

where l1, l2, l3 are, respectively, the shadow prices with respect to livestock c, disease q 

and the hazard rate λ .  Substituting (2), (3), and (4), the first order necessary condition 

for an optimum with respect to the harvest level h is: 

 ( )
0 1 0tH e l

h
λπ −∂

= − =
∂

 (9) 

The first order condition with respect to reporting is: 

 ( ) ( )
1 3( ) 0t tH ze a v t e l a

d
λ λ− −∂

= + +
∂ 1 =  (10) 

Further, the rate of evolution of shadow prices is given by: 

 ( ) ( )1 1
1 1 1( )t rt tH l fl rl fe e e l l q

c t r
λ λπ ρλ ρ

• •
− − −∂ ∂ −⎧ ⎫= − + = = − − + + + +⎨ ⎬∂ ∂ ⎩ ⎭

2 1rl  (11) 

 { }( )2
2 2 0 1 2 3( ) ( )tH ll rl v t a e l u l c t l a

q t
λ

•
−∂ ∂

= − + = = − − + + +
∂ ∂ 0 2rl  (12) 

 { } ( )3
3 3 0 ( ) ( ) ( ) ( ) tlHl rl h t fc t d t v t e rl

t
λπ λ

λ

• •
−∂∂

= − + = = − + + +
∂ ∂ 3  (13) 

These necessary conditions will also be sufficient conditions for maximization of the 

Hamiltonian if it is jointly concave in both the state and control variables (Mangasarian’s 
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theorem).3  In this paper, we assume that the conditions for sufficiency are satisfied (see 

Kamien and Schwartz, 1981 for further details). 

The steady state requires 1 0l
•

= , 2 0l
•

= , 3 0l
•

= . Transforming leλ into present 

value shadow pricesµ , we obtain: 

 1
1 2 1( ) rtff e q r

r
p rl mr m

·
--- - - + = 0m

0

      (14) 

 )( 203210 =+−−+− µµµµ racuatv  (15) 

 { }0 ( ) ( ) ( ) ( ) 0h t fc t zd t v t rπ λ
•

3µ− + + + =  (16) 

Further, 0c
t
∂

=
∂

, 0q
t

∂
=

∂
, and 0

t
λ∂
=

∂
imply: 

 h c uqρ= −  (17) 

 q
c
θ

=  (18) 

In the steady state, harvest equals the growth in the stock of livestock net of death from 

disease.  In the steady-state, disease growth from contagion equals which is perfectly 

offset by exogenous decay

cq

θ .4  The risk of disease detection represented by the hazard 

function,λ , remains constant as the impact of reporting behavior, monitoring, and 

disease levels are balanced as follows: 

 0

1 1

m aed
a a

−

= − q  (19) 

Equations (14)-(19) and first order conditions given by (9) and (10) comprise eight 

equations in eight unknowns, namely: 1 2 3, , , , , , ,c q d h µ µ µ andλ . 

 

3. Results 

 In this section, we examine how the steady-state levels of the state variables 

change with changes in the model parameters.5 We emphasize the impacts of policy 

parameters on the livestock stock, which is inversely proportional to the stock of disease 

in the steady state as shown in (18).  We first describe comparative static results and then 

illustrate the system’s dynamics using numerical simulations. 
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3.1 Comparative Static Analysis 

 Using (7) and (14)-(19), we derive an implicit function for the steady state level 

of 3µ , the rate of change of the shadow price of detection probabilityλ , in terms of the 

model parameters:  

 2 0
0 1 1 03

1 1

( ( ) ) ( )( ) (rt m zazG c f a f e c r e u
a a

) 0θµ π ρ π ρ π θ
•

− −= = − − − − − − + =  (20) 

This equation is quadratic in the steady state level of the livestock stock.  We 

illustrate the shape of this function given purely hypothetical values for the model 

parameters.  Figure 1 shows an example of how 3µ
•

 varies with the stock of livestock for 

particular values that were selected for producing steady state livestock and disease 

levels, as discussed further in section 3.3 on the numerical simulations.6   Because the 

parameter values are purely hypothetical, the livestock stock numbers are just an 

indicator of the total herd size and do not correspond to any particular physical units, 

such as number of cows.  The U-shape of the function 1 is a function of the parameters 

selected and is simply intended to illustrate some possible results of the model.  In the 

present case, rewards from extra livestock beyond a certain threshold exceed their impact 

on risk from increased growth of disease.  Given other values, for example if the growth 

rate in disease is highly susceptible to livestock stock or if livestock mortality highly 

sensitive to stock of disease, the shadow price of λ  could follow an inverted U-shaped 

curve with respect to livestock levels. 

While the chosen values are hypothetical, the figure illustrates how the function 

depends on the stock level.    The figure indicates that at high levels of livestock, the 

shadow price of increased risk of detection is positive while at lower (positive) levels of 

livestock, it is actually negative, with 3µ
•

=0 at a level of c about equal to 11.  Given our 

specification of the post-detection value function, λ  is a “bad” from a producer’s 

perspective.  However, if rewards in the post-detection scenario exceed the pre-detection 

scenario, λ  would be a “good” and it would pay to increase the probability of disease 
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detection.  Factors that may lead to an increase in the post-detection reward may be 

higher prices of livestock (or greater market share) for some producers or indemnity 

payments from the government.  Given our specification, all else equal, the shadow price 

ofλ should be negative as greater risks of detection imply lower expected profits.  A 

positive shadow price indicates that higher levels of risks enable higher steady state 

levels of livestock sales or of reporting, which increase expected profits.   

To examine possible policy impacts, we conduct a comparative static analysis of 

the steady-state stock of livestock with respect to key exogenous parameters in the model.  

We use the implicit function theorem to obtain partials of the stock of livestock with 

respect to the different parameters, with particular emphasis on those which the 

government can directly influence.  Understanding the impacts of key variable on the 

stock of livestock helps in understanding the impacts on the steady-state level of the stock 

of disease. As indicated in (18), in the steady state, livestock and disease stock are 

inversely related in proportion to the exogenous disease decay parameterθ .  Depending 

on this exogenous rate of disease evolution, livestock and disease must remain in a fixed 

proportion in order to maintain the steady state level of detection risk.  As the steady state 

stock of livestock rises, the steady state stock of disease falls, and vice versa.      

We first consider the change in the steady state livestock with respect to the pre-

detection price ( 0π ): 

 
)(})({2

1
110

2
0

0 mrt er
a
zefafc

cu

c
G

G
c

−− −−−−−

−
=

∂
∂
∂
∂

−=
∂
∂

ρπρπ

ρθπ
π

 (21) 

This equation reflects the tradeoff in terms of balancing risk of detection and increased 

mortality due to disease from a marginal increase in livestock versus the increased 

benefits from that unit of livestock in terms of current and future harvests.   The 

denominator (which is the same in all of the partials of c) equals the change in 3µ
•

 with 

respect to the stock of livestock in the steady state.  As such, it is the partial derivative of 

the instantaneous expected benefits with respect to a marginal change in livestock in the 

steady state.  The sign of this term varies depending on whether the benefits of an 
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additional unit of livestock in the pre-detection world exceed the costs of reducing 

reporting to compensate for the added risk from the additional livestock. 

In the pre-detection scenario, the benefits from an additional unit of livestock are 

its contribution to the profits from harvest and additional stock growth minus the 

additional carrying costs f and the foregone benefits from the post-detection scenario.  

These effects comprise the terms { }0 1 12 ( rtc f a f eπ ρ π ρ −− − − )  in the denominator.  The 

bracketed terms are magnified by the level of livestock.  This dependence on the 

livestock level arises because both livestock growth and disease growth depends upon the 

livestock stock.  Livestock growth (before harvest and mortality) equals the stock times 

the constant growth rate ( cρ ) in (2) and (5). The dependence of disease on the livestock 

stock arises from the biological feature of disease contagion embodied in the term cq in 

equation (3).  This term indicates that the chances of disease spread increase in 

proportion to the size of the population.  Thus, for a given level of disease, contagion is 

greater for a higher animal population.  As a result, when the steady-state livestock level 

is high (and disease levels are thus low), the added risk produced on the margin by an 

extra unit of disease is greater than when the livestock population is lower (and disease 

higher).  As a result, the cost-benefit tradeoff in terms of added risk is relatively more 

favorable to livestock versus reporting when the livestock stock is higher.  This 

relationship provides an essential feature of the comparative static results discussed 

further below. 

An additional unit of livestock raises the growth rate of the disease, which in turn 

increases the risk of detection.  Thus, reporting must be lowered as disease rises to 

maintain a steady state level of risk.  The term
1

( mz r e
a

−− )  captures the cost of marginal 

livestock unit on forgone benefits from reporting.   As the effectiveness (a1) of reporting 

increases, reporting levels need to be reduced by less for the same reduction in risk.  

Thus, as a1 increases, fewer benefits from reporting need to be foregone for each 

additional unit of livestock.  Also, the level of monitoring augments the effect of the 

discount rate r as the term  decreases with m.   The effect of the monitoring level is to 

increase the importance of reporting benefits.  When monitoring is lowered, the term 

me−
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( mr e−− ) may actually turn negative, reversing the impact on livestock stock of the 

exogenous variable, if the denominator was negative.  This dependence on the monitoring 

level is discussed further below. 

The net effect on the sign of the partial in (21) depends on the sum of the two 

denominator terms, as well as the sign of the numerator.  As long as the benefit of an 

added unit of livestock exceeds the opportunity cost in terms of foregone reporting, the 

denominator will be positive.  For a given value of all exogenous variables, there will be 

a threshold level of livestock above which the sign of the partial will change.  The switch 

in the signs of equation (21) depending on the livestock level is depicted in figure 2.  For 

values that produce a negative numerator, there is a level of stock above which the partial 

is negative and, below which, it is positive.   This change in sign depending on the 

livestock level is a feature of all the partials for the livestock stock in the steady state.  

The denominator captures the benefits of livestock versus reporting.  The 

numerator reflects the tradeoff between added livestock and a higher level of risk in the 

steady state.    While higher levels of prices in the pre-detection period increase current 

benefits from livestock, higher levels of livestock add to risk by producing disease and 

higher risk levels increase the chances of detection and of transition into the post-

detection scenario where producers will face a new level of prices.  This tradeoff is 

captured in the numerator as the numerator is the marginal change in 3µ
•

, the shadow 

price ofλ , resulting from the marginal change in the exogenous variable, the pre-

detection price.   The numerator is also the partial derivative of the instantaneous 

expected benefits resulting from the change in risk with respect to a marginal change in 

the exogenous variable. 

The numerator of (21) shows that the cost of the increased risk resulting from the 

higher stock of livestock after an increase in prices is mitigated by the death rate of 

livestock from the disease and the exogenous rate of disease decay, given uθ , the first 

term in the numerator.  The increment in risk is augmented by the growth rate of 

livestock as given in 2c ρ , the second term in the numerator.  If the parameters and steady 

state levels are such that this second numerator term outweighs the first, then marginal 
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livestock adds so much risk that the optimal response is actually to reduce livestock as 

prices rise to maintain current livestock benefits in the pre-detection state. 

 We now consider the impacts on the steady-state livestock stock of livestock 

carrying costs f.  These costs will potentially be affected by government policies such as 

regulations banning certain types of feed, which presumably increase the costs of 

maintaining a unit of livestock.  The change in steady state livestock with respect to f is: 

 
{ }

2
1

0 1 1
1

(1 )

2 ( ) (

rt

rt m

c c a e
zf c f a f e r e
a

π ρ π ρ

−

− −

∂ −
=

∂ − − − − − )
 (22) 

This partial is illustrated in figure 3.   This shows the change in sign depending on the 

level of stock, but in the opposite direction than (21), with a positive partial at high 

livestock levels and a negative partial at low livestock levels.  The reverse direction 

makes sense because the impact of f is to decrease the value of livestock stock while 

higher prices serve to increase the value of this stock in terms of potential harvests.  The 

instantaneous benefits from a change in risk resulting from higher f decrease in  and 

the discount rate.  This is because the value of pre-detection livestock (which is now 

costlier to maintain) increases in these variables relative to the alternatives of reporting 

and post-detection profits.   As a result, as  and r increase, the costs of decreasing 

livestock stock (and increasing reporting) in response to greater f are greater. 

1a

1a

 The partial with respect to the post-detection price-level is: 

 
{ }

2
1

1
0 1 1

1

2 ( ) (

rt

rt m

c c a e
zc f a f e r e
a

ρ
π π ρ π ρ

−

− −

∂
=

∂ − − − − − )
 (23) 

As long as the value of additional livestock sales exceeds the foregone benefits from 

reporting (the denominator is positive), an increase in post-detection prices will increase 

livestock.  This is because now there are greater benefits from adding risk through 

increased livestock given that post-detection profits are greater.  The benefit of adding 

risk through more livestock will be higher for higher levels of  because this decreases 

the foregone benefits from reporting from higher livestock.  Post-detection profits 

generate greater instantaneous benefits from a change in risk when the growth rate is 

1a
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higher and the discount rate is lower, as these raise the post-detection livestock and the 

value of future livestock harvests, respectively. 

We now consider the effect of maintaining the livestock stock with respect to 

reporting subsidies (z):   
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1 1
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1

( )

2 ( ) (

m

rt m

ac r e
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zz c f a f e r e
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∂

=
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 (24) 

Figure 4 shows the shift in this partial as stock of livestock increases.   For the particular 

values of the exogenous variables, higher rewards for reporting imply the denominator is 

negative at low levels of livestock.  Thus, when the stock of livestock is low (and rewards 

for reporting are sufficiently high), the denominator is negative and an increase in 

rewards would further reduce the relative benefits of livestock versus reporting, further 

lowering the steady-state level livestock.  On the other hand beyond a threshold level of 

livestock (about c=5 in the example), the partial becomes positive and rewards would 

have a positive impact on livestock.   

 The numerator indicates that the instantaneous benefits from a change in risk in 

response to z increases in , as reporting rewards can be obtained for less added risk, and 

increases in c,  and 

1a

0a θ  as less livestock stock needs to be foregone to offset the added 

risk from reporting.   The level of monitoring enters in both the numerator and 

denominator to adjust the discount rate for the change in the risk of detection.  Both the 

magnitude and direction of the impact of rewards on livestock could depend critically on 

the monitoring level as this can potentially switch the sign of both the numerator and the 

denominator if .  In order for this to happen, monitoring must fall below some 

critical level m*.  Consider the implications of a monitoring level below m* combined 

with a high level of reporting rewards.  Earlier we saw that the response to increasing 

reporting payments was to lower livestock at high levels of reward.  However, the 

incentives are reversed for monitoring below m*.  This highlights the role of designing 

the optimal mix of public policies in order to reach the desired objectives.  

me− > r

 Equation (25) indicates the relationship between livestock stock and monitoring: 
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An interesting feature of this equation is that the impact of monitoring will vary based on 

its level.  Under high monitoring, chances of detection are higher, thus making increases 

in livestock more costly in terms of foregone current reporting benefits.  This implies that 

higher monitoring will lower the livestock stock.  This incentive is augmented at high 

levels of reporting rewards, adjusted for the contribution of reporting to risk in the 

term
1

z
a

.  These reporting rewards will also be less important at higher levels of livestock 

because, simplifying further, c drops out except for the last term in the denominator 

which becomes
1

( )mz r e
ca

−− . 

Under low monitoring, the sign of the denominator could switch from negative to 

positive.  Thus, when the benefits from reporting are relatively high, greater monitoring 

can switch the tradeoff towards increasing livestock and away from reporting.  At low 

enough levels of monitoring risk, producers are willing to raise livestock despite high 

reporting rewards.  The monitoring level in this equation serves to augment the market 

rate of discount by increasing the risks of detection.   

The comparative static relationships described above illustrate the risk 

management tradeoffs that govern producer’s responses to different possible policies.  

The results suggest potentially perverse policy outcomes given the public health 

implications of livestock diseases.   Policies that increase benefits from livestock (such as 

subsidies to beef or dairy industries or other livestock producers), that increase costs of 

carrying livestock (such as regulations on feed), that reduce post-detection livestock 

losses (through improved tracking and surveillance), that pay producers for reporting, or 

that increase monitoring can each lead to either increases or decreases in the livestock 

stock with opposite implications for the level of the disease.  Both the magnitude and 

direction on the steady-state disease stock will depend on the value of all of the 

exogenous parameters, as well as the steady-state level of the livestock stock itself.  For 

example, equation (21) shows that for the case of mr e−>  policies that increase livestock 
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prices will increase stock and reduce steady-state level of disease only when the livestock 

level (and growth rate) is relatively low compared to the degree of lethality and decay of 

the disease.   This effect could be reversed at low levels of stock.  

The comparative static results underscore the importance of selecting an efficient 

mix of incentive-based policies and monitoring.  The importance of sufficient monitoring 

is evident from the incentives induced by a scheme in which payments are increased but 

monitoring is low.  These will be the reverse of the incentives induced by higher 

payments and high monitoring.  Policies that lead producers to increase disease stock 

might increase the livestock sector’s profits, but may not necessarily increase the overall 

public good.   Understanding the risk calculus of producers is thus essential for making 

policy adjustments and developing an efficient portfolio of government interventions. 

 

3.2 Alternative Scenarios for Post-Detection Values 

 Our analysis illustrates certain elements of optimizing behavior under simple 

assumptions about the nature of disease spread and livestock dynamics.  Several 

additional complexities are worth considering.  One case is that of high sensitivity of 

import demand to an outbreak of the disease.  In this case, the fall in world prices after 

detection may be related to the extent of the disease in the environment.  This is reflected 

in the following post-detection value function: 

 1( , , , , ( )) ( (1 ) ( ) ) rt

t

v T q c r q lq h c t f e tπ π
∞

−= − − ∂∫   (26) 

where l  is the parameter measuring the impact of the disease stock on prices upon 

detection.   In this case, producers will have additional incentives to reduce the disease.  

Similarly, if indemnities i are provided in case of disease detection and indemnities are 

based upon the level of q, then the post-detection value function becomes: 

 ( , , , , , )v T q c r π ρ = 1( ( ) ) ( )rt rt

t

h c t f e t i q eπ
∞

− −− ∂ +∫  (27) 

Given (27), producers would face greater incentives to report but also would potentially 

face perverse incentives to raise the level of q in order to increase detection risk and thus 

obtain indemnities.  Both the cases represented in (26) and (27) could be present, with the 
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effect of indemnities and of price losses correspondingly decreasing and increasing the 

costs (incentives to avoid) disease detection.  

Another potentially relevant scenario is one in which the disease cannot be 

eliminated completely and recurs after detection.  For simplicity, consider a case where 

the second detection leads to complete destruction of the cattle stock and thus a total 

shutdown of the industry.   The value function after the second detection is: 

 ( , , , , , )v T q c r π ρ =0 (28) 

For the period between the first and the second detections, the current value Hamiltonian 

is: 

 [ ] • •
1 1( ) ( ) ( ) tH h t c t f zd t e l c l q ll •

2 3p l-= - + + + +  (29) 

The owner’s objective is to maximize the sum of the discounted value of his returns from 

cattle and reporting rewards net of the costs of carrying the stock.   In contrast to equation 

(8), λ  in this equation serves only as an additional discounting term because the 

livestock owner receives no benefits in the post-detection scenario.    Falling prices after 

the first detection lower the optimal steady state level of cattle as shown by equation 

(23).7   Assuming that the amount of cattle stock eradication to reach the steady state is 

trivial, we can derive the steady state level of cattle as a solution to the equation below: 

0
)(1

1

0
1

2 =
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+
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θθπ

rf
a
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rcc      (30) 

Equation (30) is a quadratic form whose roots are given by: 
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The value function after the first detection is now: 

0
1

1 1

{ (
m

rt

t

aev c cf z
a a c

qp r
¥ -

-= - + -ò )}e    (32) 

where the first term in the integral is the steady-state benefits from cattle harvest, and the 

third term is the benefits from steady-state reporting activities.  Using these equations, the 

Hamiltonian is: 
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[ ]0 1( ) ( ) ( ) tH h t c t f zd t v e l c l q ll
2 3p l l- · ·= - + + + + + ·   (33) 

This Hamiltonian differs from (8) in that there is now a constant reward to be had after 

the first detection.   The steady state value of cattle satisfies this implicit function: 

0
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The roots of this equation are: 

0
0

2 1
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f r

p q q

p r

++
= ± +

+ - )
   (35) 

It is interesting to compare the steady state values of cattle before first and second 

detections.  Note that the steady state value of cattle given by equation (31) after the first 

detection would be higher than the steady state value before the first detection (35) as 

long as the effect of lower profits 0π in equation (35) dominates the extra term (V) within 

the roots, which could be negative.    Intuitively, as the number of detections increase and 

the value from cattle falls as additional detections occur, it pays to incorporate the impact 

of current actions on future losses in advance.  This fact is confirmed after solving for the 

steady state levels of cattle using the same set of parameters as before, as the value 

function (V) after the first detection turns out to be negative.  Solving for the steady state 

levels of cattle using the same set of parameters as before, we find that the steady state 

level of cattle equals about 3.2 units after the first detection.  The cattle stock does not 

converge to a steady state for the period before first detection, implying that the risks 

from cattle increase at a much faster rate than could be compensated for by the 

exogenous parameters.  In contrast, the steady state level of cattle in the single detection 

scenario is equal to 13, as presented in figure 1.  This confirms the intuition that multiple 

detection scenarios imply a lower optimal cattle stock.  This suggests that expectations 

about continuing government efforts—and how they will affect future livestock profits—

will be important in shaping livestock owners’ risk mitigation decisions.  

 So far we have focused on comparisons of state variables.  However, it is also 

important to examine the dynamics involved with the non-linear nature of disease 

evolution.  We explore these issues in the next section.   
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3.3 Numerical Analysis of the Dynamics 

 

 Given the non-linear nature of the state equations, examining the time path of the 

key policy variables such as livestock, disease, and reporting may provide some insights 

into potential policy effects.  In this section, we briefly explore the role of some key 

parameters on the system dynamics.  We use numerical simulations to examine the 

impacts of key parameters on the time path of the state variables.  Figure 5 shows the 

time path of the stock of livestock under various situations. The base case reflects a set of 

hypothetical parameter values that were selected for producing steady state livestock and 

disease levels, as shown in figures 5 and 6 respectively.   

 While the stock of livestock falls to a steady state level in the base case, when the 

growth rate of disease--affected by the stocks of both livestock and disease---is lowered 

exogenously, the stock of livestock falls.  This parameter, termed a3, lowers the disease 

transmission mechanism in equation (3) and could reflect regulatory measures, such as 

restrictions on livestock feed, that could reduce disease spread8.   A lower impact of the 

stock of disease and livestock to the growth rate of disease would allow for a larger stock 

of livestock.  The stock of livestock falls initially along an optimal path up to a certain 

point and then increases beyond it.  This ability to raise the stock of livestock at later 

stages is made possible after the exogenous rate of decay of disease has a higher 

(negative) impact on the growth rate of disease as compared to the much lower (but 

positive) impact from the combined effect of increased livestock but decreased disease. 

Stock of livestock is also lower when the disease-induced death of livestock, given by the 

parameter u, is higher.  The state stock of livestock, however, later rises above the base 

case even though the death rate is higher.  This is again made possible by the high 

reduction in the stock of livestock in the beginning stages, which has a significant 

lowering impact on the growth rate of disease in the later stages, thus allowing for a 

higher stock of livestock.  This reveals the complex nature of disease dynamics that can 

arise.   

Finally, we examine the impact of discounting.  Initially, a higher discount rate 

lowers the stock of cow livestock but eventually the steady state level of livestock is 
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higher than the base case.  While this may seem counter-intuitive, a larger stock of 

livestock adds to the death rate and risk of disease detection, as well as providing 

revenues from livestock sales.  The negative impacts are reduced once the stock of 

livestock is significantly lowered in the initial stages.  As a return, later stages allow for a 

higher stock of livestock.  Although the livestock stock is higher in the later periods, the 

disease is growing at a lower rate compared to the base case.  

 Figure 6 depicts the time path of disease under similar conditions.  In the base 

case, disease increases at the same time as the stock of livestock.  When the growth rate 

of disease (parameter a3) is lower, disease actually falls in the later stages as the 

exogenous impact of the decay parameter takes over.  This fall in the disease is driving 

the counter intuitive results above.  Disease falls under the case of higher disease-induced 

death of livestock as livestock levels are reduced.  Finally, the impact of discounting is to 

stabilize the stock of disease above the base case levels.  

Figure 7 illustrates the impact on reporting behavior under similar scenarios.  

There is no reporting in the base case.  When a3 is lower, stockowners avail of the 

benefits of reporting rewards by considering the costs and benefits of increased detection 

risks.  Higher disease-induced death rate increase also allows for reporting due to a 

reduction in the growth of disease due to the reduction in livestock stock.  All the 

reporting actions take place at a later stage when the discounted value of the costs of 

reporting in terms of livestock sales is lower.  

 This examination of the dynamic aspects of the model reveals that the time path 

of disease may follow highly counter-intuitive patterns.  These responses would be 

difficult to explain without understanding the underlying patterns of private optimizing 

behavior.   

 

4. Conclusion 

 This paper examined the behavioral aspects of livestock disease management 

from the livestock owner’s perspective.  We developed a stochastic, dynamic model of 

livestock levels and disease for a representative producer who can take private actions to 

increase the government’s chances of disease detection.   In this model, the producer 
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maximizes expected revenues from the optimal management of livestock sales and any 

behavior that increases the chances of disease detection. 

Several insights arise from the comparative statics and the numerical dynamic 

analysis.  The comparative statics indicated that it is critical for the regulator to use the 

efficient mix of available options, lest they should lead to perverse incentives.  The 

dynamic analysis further revealed complex interactions of the biological and economic 

processes that may lead to counter-intuitive behavior on the part of the private stock 

owners faced with various sources of risk.  Next steps in this work will focus on 

determining the existence of steady-state equilibria under different modeling 

assumptions.   

Future research would benefit from a better understanding of the biological 

processes and their relationship to the potential economic and policy responses.  

Additional insights could potentially be gained from modeling the variation in individual 

producer behavior and the relationship to the livestock industry at the national level.   

Operations of different sizes and types could also respond differently to prices, costs, 

disease, and government policies.  The level and nature of disease in the national herd or 

in different subpopulations might also affect the risk calculus of individual producers 

given different levels of contagion as well as market segmentation and traceability.  

Realistic estimates for key parameters would also enable comparisons of producer 

responses to different policies in the context of actual economic and biological scenarios. 
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Endnotes 
 
1 Equation (4) only applies to positive and nonzero levels of disease. 
2 For simplicity, we assume that the number of cattle that need to be eradicated for 
disease eradication are minor and do not to affect the livestock owner’s incentives.    
3 This would require that the 5x5 Hessian matrix comprising the second order partial 
derivatives of the three state and two control variables is negative semi-definite.  In order 
to establish negative semi-definiteness, it must be shown that all the principal minors 
have discriminants that alternate in sign, with the first one being negative. 
 
4 In examining the steady state solution, we assume the existence of a steady state in 
which monitoring and an exogenous decay of the disease stock lead to constant λ and .   q

5 Note that for diseases that do not experience any exogenous decay, there may not be a 
steady state.  However, a steady state analysis is only a comparison of relative values and 
it may still be possible to redefine variables in order to study their steady state behavior. 
 
6 The steady-state cattle and disease levels are shown in figures 5 and 6, respectively, for 

 0 1 0 10.2,  0.7,  0.4,  10,  0.5,  10,  0.6,  30,  5,  1,  0.1,  0.3.a a f m r t u z π π ρ θ= = = = = = = = = = = =

7 The owner will raise the cattle stock as compared to the steady state if the post-detection 
prices actually increase or if the indemnities paid by the government ex-post are 
sufficiently high.  To model these cases, the value from cattle after the first detection 
would have to be broken into two parts.  The first part would equal the stream of benefits 
from cattle until the cattle stock reaches its steady state value and the second part would 
equal the stream of benefits at the steady state value. 
8  We redefine equation (3) as 3 ( )q a cq θ

•

= − . 
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Figure 1:  
Rate of Change of Shadow Price of Risk with respect to Steady-State Cattle Stock 
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Figure 2: Change in Steady-State Cattle Stock with Respect to Current Prices (
0
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Parameters: 3.,1.,1,5,30,6.,10,05.,10,4.,7.,2. 1010 ============ θρππzutrmfaa  
Solutions with negative cattle stock are omitted. 
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Figure 3: Change in Steady-State Cattle Stock with Respect to Carrying Costs ( c
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Parameters: 3.,1.,1,5,30,6.,10,05.,10,4.,7.,2. 1010 ============ θρππzutrmfaa  
Solutions with negative cattle stock are omitted. 
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Figure 4: Change in Steady-State Cattle Stock with Respect to Reporting Rewards 
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Parameters: 3.,1.,1,5,30,6.,10,05.,10,4.,7.,2. 1010 ============ θρππzutrmfaa  
Solutions with negative cattle stock are omitted. 
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Figure 5: Evolution of Cattle Stock (c) under Alternative Parameter Values 
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Figure 6: Evolution of Disease Stock (q) under Alternative Parameter Values 
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Figure 7: Evolution of Reporting Actions (d) under Alternative Parameter Values 
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