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Abstract

This paper presents a new extension of the Rubinstein-St̊ahl bargaining model to
the case with n players, called sequential share bargaining. The bargaining protocol is
natural and has as its main feature that the players’ shares in the cake are determined
sequentially. The bargaining protocol requires unanimous agreement for proposals to
be implemented. Unlike all existing bargaining protocols with unanimous agreement,
the resulting game has unique subgame perfect equilibrium utilities for any value of
the discount factor. In equilibrium, agreement is reached immediately. The results
are therefore qualitatively the same as in the two player case. The result builds on
an analysis of so-called one-dimensional bargaining problems. We show that also
one-dimensional bargaining problems have unique subgame perfect equilibrium utili-
ties for any value of the discount factor, and that also in one-dimensional bargaining
problems agreement is reached immediately.

Keywords: Noncooperative bargaining, dynamic games, subgame perfect equilib-
rium, unanimous agreement.

JEL code: C78.

∗The authors would like to thank the Netherlands Organisation for Scientific Research (NWO) for
financial support.

†P.J.J. Herings, Department of Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht,
The Netherlands, e-mail: P.Herings@algec.unimaas.nl.

‡A. Predtetchinski, Department of Economics, Maastricht University, P.O. Box 616, 6200 MD Maas-
tricht, The Netherlands, e-mail: A.Predtetchinski@algec.unimaas.nl.



1 Introduction

In many socioeconomic problems, parties can create a surplus by collaborating. Bargaining

problems study the distribution of the surplus over the parties involved. In the strategic

theory of bargaining, a detailed process of negotations concerning the surplus is described,

which is then analyzed by the tools of game theory. A commonly studied negotiation

process is the one of alternating offers bargaining, first studied by St̊ahl (1972) under the

assumption of an exogenous deadline, next extended by Rubinstein (1982) to the case of

an infinite horizon.

In the Rubinstein-St̊ahl bargaining model, two players have to reach an agreement on

the partition of a cake of a given size. Players make in turn a proposal as to how to divide

the cake. After an offer by a player, the other player decides whether to accept it, or to

reject it and continue the bargaining process by making an offer himself. After acceptance,

a proposal is implemented. The game has a unique subgame perfect equilibrium under

weak assumptions. In the unique subgame perfect equilibrium, the proposal of the first

proposer is immediately accepted by his opponent.

This analysis does not carry over to bargaining problems with n players. As reported in

Osborne and Rubinstein (1990), a first extension to the n-person case is due to Shaked and

consists of an example involving three players. In this example, player 1 starts by making

a public proposal about splitting the cake to the other two players. A proposal consists of

specifying a share in the cake for each of the players. The other players must accept or reject

this proposal sequentially. If all agree, the proposal is implemented, otherwise it is rejected,

one period of time elapses, and the next player makes a new proposal. Bargaining continues

in this way. Herrero (1985) and Haller (1986) show that there is no unique subgame perfect

equilibrium for the n-person case if the discount factor is sufficiently high. In particular,

any feasible agreement is supported by a subgame perfect equilibrium, and equilibria with

arbitrarily long delay exist.

Alternative extensions of the Rubinstein-St̊ahl bargaining model are given by Jun

(1987), Chae and Yang (1988), Yang (1992), Chae and Yang (1994), Krishna and Ser-

rano (1996), Huang (2002), and Suh and Wen (2006). These authors consider games with

partial agreement, also referred to as exit games. In an exit game, players need not agree

unanimously to a proposal. In case of partial agreement, those players who have accepted

the proposal may exit the game with the shares awarded by the proposer. These papers

reproduce the basic results of the 2-player case for the n-player case. Under weak assump-

tions, a unique subgame perfect equilibrium exists, and in this equilibrium agreement is

reached without delay.

This paper studies n-person bargaining problems where unanimous agreement of all

players is needed before an agreement can be implemented. This feature is common to many
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real-life bargaining situations, where it is not allowed for players to leave the bargaining

table with only partial agreements of others.

Our bargaining protocol is as follows. An agenda specifies the order in which players’

shares must be determined. The share of the player who is on top of the agenda, say

player 1, is being negotiated first. Once all players agree on the share of player 1, this

player exits the game and the remaining players proceed to negotiate over the share of the

player who is next on the agenda, say player 2. Once all players agree on player 2’s share,

the remaining players negotiate over the share of the next player on the agenda, and so

on, and so forth. We refer to this bargaining procedure as sequential share bargaining.

Suppose player i’s share is being negotiated in period t. The players whose share has

not been determined yet are called the active players. Nature selects one of the active

players to make a proposal. This player proposes the share of the cake to be allocated

to player i. The remaining players react, sequentially, to the proposal. If the proposal is

unanimously agreed upon, player i obtains his share and exits the game. The remaining

players then proceed to negotiate over the share of the next player on the agenda. Without

unanimous agreement, period t ends and time moves to period t+1. The utility of a player

who obtains a share x of the cake in period t is δtx, where δ is the common discount factor.

In determining the share of player i, it is natural to think about player i as being involved

in a bargaining situation between two coalitions. One coalition consists of player i himself,

the other coalition of all opponents of player i. All players in the latter coalition share a

preference for making the share awarded to player i as small as possible.

To solve the game resulting from the sequential share bargaining procedure, we first

study so-called one-dimensional bargaining problems. A one-dimensional bargaining prob-

lem consists of two rival coalitions that bargain over the choice of x in an interval [0, X],

where X > 0 is the surplus that the rival coalitions have to share. The utility functions of

players in S are identical and monotonically increasing in x. The utility functions of play-

ers in T are identical too, but monotonically decreasing in x. One-dimensional bargaining

problems are also studied in Banks and Duggan (2000) and Cho and Duggan (2003).

Although we need the one-dimensional bargaining problem as a building block to obtain

results for sequential share bargaining, one-dimensional bargaining problems are worth

studying in their own right. Many real-life bargaining situations can be approximated

by the case where the bargaining space is one-dimensional, the players involved can be

partitioned in two groups, with preferences within the group identical, and between groups

diametrically opposed. Examples include the division of a fixed budget over two possible

goals, the location of a public facility on a line, and negotiations between two firms (where

a firm is viewed upon as a collection of agents with identical preferences) or between a firm

and an individual about the price of a product or service.
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We show that one-dimensional bargaining leads to unique subgame perfect equilib-

rium utilities. A subgame perfect equilibrium is characterized by the absence of delay. We

provide a linear system of characteristic equations that makes the computation of the equi-

librium strategy profile an easy task. Cho and Duggan (2003) consider a one-dimensional

bargaining model with quadratic utilities and decision making by a coalition in a set of deci-

sive coalitions. For the Cho and Duggan specification of the model, the concept of subgame

perfect equilibrium in stationary strategies is needed to obtain uniqueness of equilibrium.

Surprisingly, in our model subgame perfection suffices to obtain unique predictions.

From our results on one-dimensional bargaining problems, we derive by means of the

following induction argument that the subgame perfect equilibrium utilities in sequential

share bargaining are uniquely determined. Clearly, 1-person sequential share bargaining

problems have unique subgame perfect equilibrium utilities. The unique equilibrium utili-

ties of an n-person sequential share bargaining situation can be substituted in all subgames

of an (n+1)-person sequential share bargaining problem where the share of the first person

on the agenda has been decided upon. The resulting reduced sequential share bargaining

game belongs to the class of one-dimensional bargaining problems, having unique subgame

perfect equilibrium utilities. Moreover, the equilibria in sequential share bargaining games

are characterized by absence of delay.

Section 2 introduces the one-dimensional bargaining problem and Section 3 its charac-

teristic equations. In Section 4 it is shown that the one-dimensional bargaining problem

leads to unique subgame perfect equilibrium utilities. Section 5 defines the game under-

lying the sequential share bargaining procedure. Building on the result of Section 4, it

is shown in Section 6 that sequential share bargaining leads to unique subgame perfect

equilibrium utilities. Section 7 concludes.

2 One-dimensional Bargaining

This section studies one-dimensional bargaining with unanimous agreement. In a one-

dimensional bargaining game Γ̂, a finite set of players N has to agree on the choice of x

in a non-degenerate interval [0, X]. The n players in N are partitioned in the non-empty

coalitions S and T. All players in S have identical preferences that are monotonically

increasing in x. All players in T have identical preferences that are monotonically decreasing

in x.

The game Γ̂ is a dynamic game of perfect information in discrete time. At each time

period t = 0, 1, . . . nature selects a proposer from the set N . The chosen player makes a

proposal, i.e. a choice for x in the interval [0, X]. We denote a proposal by player i ∈ N by

xi. The remaining players respond, sequentially, to the proposal. We assume that first all
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players belonging to the proposer’s coalition respond, followed by all players in the other

coalition. Either a proposal is unanimously accepted, it is implemented, and the game

ends. Or some player rejects the proposal, period t + 1 begins, and nature selects a new

proposer. An outcome of the game is either a perpetual disagreement or a pair (t, x), i.e.

x is agreed upon in period t.

To select a proposer, nature chooses according to a Markov process with state space

N . The transition probabilities of the process are given by the transition matrix π. Thus

πij is the probability of a transition from state i to state j, i.e. if the last proposer has

been player i, then with probability πij the next proposer is player j. The first proposer is

chosen according to a probability distribution π0 on N.

The players in coalition S have identical preferences over outcomes. The utility of

a player i ∈ S who receives outcome x in period t is ui(t, x) = δtx, with the utility of

perpetual disagreement being 0. Similarly, the players in T have identical preferences. The

utility of a player i ∈ T who receives outcome x in period t is ui(t, x) = δt(X−x), with the

utility of perpetual disagreement being 0. Here, δ ∈ (0, 1) is the common discount factor.

A one-dimension bargaining game is Γ̂ = {S, T, X, δ, (ui)i∈S∪T , π0, π}.
When S and T are both singletons, the game Γ̂ is a two-player game and contains

Rubinstein (1982) as a special case. Merlo and Wilson (1995) have generalized the Rubin-

stein set-up substantially and allow for a proposer selected by a Markov process. But since

they consider bargaining problems where the dimension of the bargaining space equals the

number of players minus one, one-dimensional bargaining with more than two players is

not covered by their analysis.

Since members of a given coalition have identical preferences, it is tempting to assume

that they should adopt the same strategy. Then each coalition can be seen a single player

and the game Γ̂ is in essence a two-player game. This reasoning is not correct, even if

one restricts attention to stationary strategies. The reason is that though preferences are

identical within a coalition, the transition probabilities π depend on the identity of the

proposer, implying that different players of the same coalition have different positions in

the bargaining game. As a consequence, different members of a given coalition may find it

optimal to make different proposals.

3 The Characteristic Equations for One-dimensional

Bargaining

In this section we derive a subgame perfect equilibrium of the game Γ̂ from the solution to

a linear system of characteristic equations.

For a player i in N and a coalition C, i.e. a member of {S, T}, the variable zi
C denotes
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the continuation utility of a member of coalition C after the rejection of a proposal made

by player i. All members of a given coalition have the same preferences, so receive the same

utility in any outcome of the game. The characteristic equations of Γ̂ describe a particular

subgame perfect equilibrium in terms of the variables zi
C . The characteristic equations are

as follows:

zi
T = πiT X + δ

∑
j∈S

πijz
j
T − δ

∑
j∈T

πijz
j
S, i ∈ N, (1)

zi
S = πiSX − δ

∑
j∈S

πijz
j
T + δ

∑
j∈T

πijz
j
S, i ∈ N, (2)

where πiC =
∑

j∈C πij. This is a system of 2n equations and 2n unknowns.

The idea behind system (1)–(2) is that a proposal of any member of coalition C leaves

any member of the rival coalition N \ C indifferent between accepting and rejecting the

proposal. Thus, a player j ∈ S makes a proposal X − δzj
T . Such a proposal makes all

members of coalition T indifferent between acceptance and rejection, since either action

results in utility δzj
T . Similarly, a player j ∈ T makes a proposal δzj

S. Such a proposal

makes each member of S indifferent between acceptance and rejection, since either action

results in utility δzj
S.

Now suppose that a proposal of player i has been rejected. Then the continuation

utility of any member of coalition S is∑
j∈S

πij(X − δzj
T ) +

∑
j∈T

πijδz
j
S.

Setting this expression equal to zi
S gives equation (2). In a similar way, we find that the

continuation utility of any member of T equals∑
j∈S

πijδz
j
T +

∑
j∈T

πij(X − δzj
S).

Setting this expression equal to zi
T gives equation (1).

Theorem 3.1 The system of characteristic equations (1)–(2) has a unique solution.

Proof. Adding up equations (1) and (2) for fixed i we obtain the equation zi
T + zi

S = X.

We can therefore express each zj
T as X − zj

S and substitute this into equations (2). This

yields

zi
S = (1 − δ)πiSX + δ

∑
j∈N

πijz
j
S. (3)

It is sufficient to show that system (3) has a unique solution. System (3) is a system of n

equations and n unknowns that can be rewritten in vector-matrix notation as zS = y+δπzS.
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Because π is a row-stochastic matrix, the spectral radius of π is at most 1. It follows that

the matrix I − δπ is invertible, where I is the identity matrix. The result follows.

We define a profile of strategies σ̂ = (σ̂i)i∈N that will be verified to constitute a subgame

perfect equilibrium of Γ̂. Let the 2n-dimensional vector z be a solution to the system of

characteristic equations (1)–(2). The behavioral strategy of a player i ∈ S is defined as

follows. Whenever player i is selected to make a proposal, he proposes xi = X − δzi
T , and

whenever player i is selected to respond to a proposal xj of player j ∈ N, he accepts if and

only if xj ≥ δzj
S. The behavioral strategy of a player i ∈ T is defined as follows. Whenever

player i is selected to make a proposal, he proposes xi = δzi
S, and whenever player i is

selected to respond to a proposal xj of player j ∈ N, he accepts if and only if xj ≤ X−δzj
T .

When players play according to strategy profile σ̂, bargaining proceeds as follows. If

player i ∈ S is selected to make a proposal, he proposes xi = X − δzi
T . Next the players

in S respond. They accept if and only if xi ≥ δzi
S. This inequality holds strictly, since

zi
S + zi

T = X and δ < 1, so as a consequence all players i ∈ S accept. Next the players in T

respond. They accept if and only if xi ≤ X − δzi
T , an inequality that holds with equality,

so all players in T accept.

If a player i ∈ T is selected to make a proposal, bargaining proceeds in basically the

same way. His proposal xi equals δzi
S, which is first accepted by all responders in T and

next accepted by all responders in S.

Theorem 3.2 The strategy profile σ̂ is a subgame perfect equilibrium of the game Γ̂.

Proof. Consider a subgame Γ̂(h) of Γ̂ that starts at node h of Γ̂. Suppose a player i ∈ N

has a profitable deviation, which increases the subgame utility by ε > 0. Since the utility

player i can get from a node that is t periods later than the initial node of the subgame is

bounded by δt, player i has a profitable deviation σ̄i that deviates from σ̂i only at nodes

corresponding to the first T periods, where T equals ln(ε)/ ln(δ).

Consider a node h′ where player i, when playing according to σ̄i, deviates from σ̂i, and

which is not succeeded by another node where i deviates from σ̂i. Consider the subsubgame

Γ̂(h′) starting at this node. Then either σ̄i induces a profitable deviation in the subsubgame,

or the strategy σ̃i that is equal to σ̄i, except at h′, where σ̃i(h′) = σ̂i(h′), is a profitable

deviation from σ̂i in subgame Γ(h). Iterating this argument, we can show that there is

a subgame Γ̂(h0) of Γ̂ such that player i acts at node h0 and player i has a profitable

deviation which only deviates from σ̂ at h0.

Consider the subgame Γ̂(h0). We complete the proof by showing that a one-shot devia-

tion from σ̂i cannot by profitable. To simplify the notation, we divide utility by δt, where

t is the period corresponding to the subgame’s first node h0.
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Suppose player i ∈ S is a proposer in the first node of Γ̂(h0). The use of strategy σ̂i

leads to a proposal xi = X − δzi
T , which is unanimously accepted by all responders, and

leads to utility X − δzi
T for player i.

Proposing x > xi leads to rejection by a player in T. Whenever players j ∈ S are next

selected as a proposer, they propose X − δzj
T , and players j ∈ T propose δzj

S. The utility

of player i is therefore equal to

δ

(∑
j∈S

πij(X − δzj
T ) +

∑
j∈T

πijδz
j
S

)
.

Since z is a solution to the characteristic equations, this expression equals δzi
S. From

δzi
S + δzi

T = δX, it follows that δzi
S < X − δzi

T , and player i looses utility by proposing

x > xi.

Now consider a proposal x by i satisfying x < xi. If this proposal is accepted, it leads

to utility for i less than X − δzi
T . If it is rejected, then by the same argument as before, it

will lead to utility δzi
S, which is less than X − δzi

T .

Suppose player i ∈ T is a proposer in the first node of Γ̂(h0). Then a fully analogous

argument shows that he does not have a profitable one-shot deviation.

Suppose player i ∈ S is a responder in the first node of Γ̂(h0) and responds to a proposal

x ∈ [0, X] by a player j. If i is asked to respond to this proposal, then according to σ̂i

acceptance takes place if x ≥ δzj
S, and results in utility equal to x if all players responding

after player i accept x or to δzj
S otherwise. A deviation to rejection leads to utility δzj

S,

and is therefore not profitable. If x < δzj
S, then player i rejects the proposal when playing

according to σ̂i, and obtains utility δzj
S. A deviation from rejection to acceptance results

in utility equal to x if all players responding after player i accept x or to δzj
S otherwise,

and is therefore not profitable.

Suppose player i ∈ T is a responder in the first node of the subgame and responds to

a proposal x ∈ [0, X] by a player j. Then a fully analogous argument shows that he does

not have a profitable one-shot deviation.

Example 3.1. Suppose the coalition S is a singleton consisting of player i1, T = {i2, . . . , in},
and the identity of the proposer cycles within the player set: i1, i2, i3, . . . , in, i1. The system

of characteristic equations (1)–(2) yields

zi1
T = X − δzi2

S ,

z
ij
S = δz

ij+1

S , j = 2, . . . , n − 1,

zin
S = X − δzi1

T .
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Solving it, we find

zi1
T =

1 − δn−1

1 − δn
X,

so the equilibrium proposal of player i1 equals

xi1 = X − δzi1
T =

1 − δ

1 − δn
X.

This proposal will be accepted by all players in equilibrium. The equilibrium utility of

player i1 is

1 − δ

1 − δn
X

and the equilibrium utility of players in T is

δ − δn

1 − δn
X.

Since 1 − δ does not necessarily exceed δ − δn, the equilibrium utility of the first mover,

player i1, may be lower than that of the players in T.

In subgames (that will not be reached in equilibrium) where a player ik, k = 2, . . . , n,

has to make a proposal, it is equal to

xik = δn−k+1 1 − δ

1 − δn
X,

which equals δn−k+1 times the proposal of player i1.

In a subgame where player i2 makes a proposal, he may propose a low value of x, since

a long time will elapse before a player belonging to the opposing coalition can make a

proposal. In a subgame where player in makes a proposal, he knows that player i1 will be

the next proposer, so he proposes a relatively high value of x. Observe that we obtain the

Rubinstein (1982) result for the case where n = 2.

If, for fixed δ, the number of players n goes to infinity, then the equilibrium proposal of

player i1 converges to (1 − δ)X, the proposal of player i2 to 0, and the proposal of player

in to δ(1 − δ)X. If, for a fixed number of players, δ converges to 1, then the equilibrium

proposals of all players converge to X/n.

Example 3.2. Suppose the coalition S consists of the first k agents, coalition T equals

N \ {1, . . . , k}, and players are selected randomly to be the proposer, π0
i = 1/n for all

i ∈ N, and πij = 1/n for all i, j ∈ N . For i ∈ N, the system of characteristic equations

(1)–(2) is then equal to

zi
T =

n − k

n
X + δ

∑
j∈S

1

n
zj

T − δ
∑
j∈T

1

n
zj

S,

zi
S =

k

n
X − δ

∑
j∈S

1

n
zj

T + δ
∑
j∈T

1

n
zj

S.

8



Solving it, we find

zi
S =

k

n
X,

zi
T =

n − k

n
X.

The equilibrium proposal of a player i = 1, . . . , k equals

xi = X − δzi
T =

δk + (1 − δ)n

n
X = δ

k

n
X + (1 − δ)X.

This proposal will be accepted by all players in equilibrium. The equilibrium proposal of

a player i = k + 1, . . . , n is given by

xi = δ
k

n
X.

The larger the ratio k/n, the higher the fraction of players belonging to coalition S, and

the higher the proposed value of x.

The expected utility of a player i ∈ S is given by

k

n
(δ

k

n
X + (1 − δ)X) +

n − k

n
δ
k

n
X =

k

n
X.

Also the expected proposal is equal to (k/n)X. The expected utility of a player i ∈ T

equals ((n−k)/n)X. In this example, expected utilities are equal to expected continuation

utilities.

If, for fixed δ and a fixed size of coalition S, the number of players in T goes to infinity,

then the equilibrium proposal of players in S converges to (1 − δ)X, and the proposal of

players in T converges to 0. If, for fixed δ and a fixed size of coalition T , the number of

players in S goes to infinity, then the equilibrium proposal of players in S converges to

X, and the proposal of players in T converges to δX. If, for a fixed number of players, δ

converges to 1, then the equilibrium proposals of all players converge to (k/n)X.

4 Uniqueness of Equilibrium in One-dimensional Bar-

gaining Games

In this section we show that subgame perfect equilibrium utilities are unique, and therefore

correspond to the ones following from σ̂.

For i ∈ N, let Γ̂i denote the class of subgames of the game Γ̂ starting with player i

in the role of proposer. Since all subgames in Γ̂i are strategically equivalent, the set of

subgame perfect equilibrium strategies of Γ̂i is well-defined. The utilities of two games
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in the class Γ̂i differ from each other only by a power of δ. The set of subgame perfect

equilibrium utilities in a game in Γ̂i discounted by 1/δt, where t denotes the starting period

of the game, is the same for all games in Γ̂i.

For i ∈ N, and C ∈ {S, T}, let ui
C (ui

C) be the infimum (supremum) of the discounted

utilities to coalition C over all subgame perfect equilibria of Γ̂i. Let zi
C (zi

C) be the infinum

(supremum) of the continuation utilities to coalition C following the rejection of a proposal

by player i over all subgame perfect equilibria of the game Γ̂i.

The following result asserts that, for i ∈ N, for C ∈ {S, T}, ui
C = ūi

C , and zi
C = z̄i

C .

This result implies that subgame perfect equilibrium utilities are unique.

Theorem 4.1 For any Γ̂, for i ∈ N and C ∈ {S, T}, ui
C = ūi

C and zi
C = z̄i

C . In any

subgame perfect equilibrium, agreement is reached without delay.

Proof. Since rejection of a proposal by player i leads to a subgame in Γ̂j with probability

πij, it holds that zi
C ≥

∑
j∈N πiju

j
C . Similarly, it can be derived that zi

C ≤
∑

j∈N πiju
j
C . Let

∆ be the maximum of the differences ui
C − ui

C over all i and C. Then zi
C − zi

C ≤ ∆ for all

i and C. We show that ∆ = 0.

First we establish the following inequalities. For C ∈ {S, T}, for all i ∈ C,

δzi
N\C ≤ ui

N\C ≤ ui
N\C ≤ δzi

N\C ,

X − δzi
N\C ≤ ui

C ≤ ui
C ≤ X − δzi

N\C .

We start with C = T. The inequality δzi
S ≤ ui

S follows from the fact that when a player of

coalition S rejects a proposal of player i ∈ T, he obtains a utility of at least zi
S in the next

period. His subgame perfect equilibrium utility can therefore not be less than δzi
S.

Let (vi
S, vi

T ) be subgame perfect equilibrium utilities. Then vi
T ≤ X − vi

S, where the

inequality comes from the fact that there might be delay before an agreement is reached,

so utilities may sum to less than X. As a consequence, ui
T ≤ X − ui

S, which yields the

inequality ui
T ≤ X − δzi

S.

Now suppose player i ∈ T makes a proposal x > δzi
S. We will argue that in a subgame

perfect equilibrium this leads to utilities of at least X − x to i, and therefore to players

in T. First the players in T respond in the order i1, . . . , i`, next the players in S in the

sequence j1, . . . , jk. If player jk is given the option to respond, it means that all other

players have accepted the proposal. If player jk accepts, his utility is x, otherwise it is at

most δzi
S. Player jk will accept therefore. By a backwards induction argument it follows

that all players j1, . . . , jk will accept the proposal. Consider next player i`. Acceptance by

player i` leads to utilities X − x, rejection will therefore only occur if it leads to utilities

at least equal to X − x, meaning that the utility to any player in T is at least X − x. By

a backwards induction argument it follows that player i1, the first to respond, can ensure
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a utility of at least X − x by accepting x. Thus, player i can guarantee himself a utility

of at least X − x for any x > δzi
S by proposing x. This shows that X − δzi

S ≤ ui
T . The

inequality ui
S ≤ δzi

S follows. The case C = S is similar.

The above inequalities imply that for all C ∈ {S, T}, for i ∈ C,

ui
N\C − ui

N\C ≤ δ(zi
N\C − zi

N\C) and ui
C − ui

C ≤ δ(zi
N\C − zi

N\C).

Since ∆ is defined as the maximum of the differences ui
C − ui

C over i and C, we can derive

the inequality ∆ ≤ δ∆. Thus ∆ = 0, as desired.

We have thus proved that for all i ∈ N, for all C ∈ {S, T}, ui
C = ūi

C , and zi
C = z̄i

C .

Theorem 3.2 pins down the equilibrium utility levels. Since delay of agreements would

lead to different utility levels, equilibrium agreement is reached without delay in any sub-

game perfect equilibrium.

In general, Γ̂ may have more than one subgame perfect equilibrium, but the multiplicity

is inessential in the following sense. Assume for instance that coalition S consists of two

players, i1 and i2, and suppose that the players respond to proposals in this order. If a

player j in T makes a proposal smaller than δzj
S, the players in S will reject this proposal

in any subgame perfect equilibrium. It is completely irrelevant, however, whether this

proposal will be rejected by i1, or whether i1 accepts this proposal and has it rejected by

i2. In fact, even a member of T different from j may reject the, from his perspective, very

favorable proposal, anticipating that some player in S will reject it anyway. What matters

is not the responses by individual players, but how the coalition S ∪ T \ {j} reacts to

proposals.

Let H be the set of all decision nodes of the extensive form game Γ̂. We denote the

decision nodes where some player has to make a proposal by Hp, and the decision nodes

immediately following nodes in Hp, so nodes where the first player responds, by Hr. Given

a strategy profile σ, for h ∈ Hp, σp(h) denotes the proposal made at decision node h, and

for h ∈ Hr, σr(h) = 1 if the proposal is accepted by all players, and σr(h) = 0, otherwise.

Let σ be a subgame perfect equilibrium strategy profile. It is not hard to show that

σ is essentially equivalent to σ̂ in the following sense. For any h ∈ Hp, σp(h) = σ̂p(h).

For any h ∈ Hr where the proposal under discussion is x by player j ∈ S, if x 6= δzj
S,

then σr(h) = σ̂r(h). For any h ∈ Hr where the proposal under discussion is x by player

j ∈ T, if x 6= X − δzj
T , then σr(h) = σ̂r(h). Subgame perfect equilibrium proposals are

therefore unique. Only in subgames where by mistake a player j ∈ S proposes xj = δzj
S,

so leaving players in his own coalition indifferent between accepting and rejecting, or in

subgames where by mistake a player j ∈ T proposes xj = X − δzj
T , so leaving players in

his own coalition indifferent between accepting and rejecting, could there be a difference

in response behavior at the coalition level.
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Let Γ̂(X) be a one-dimensional bargaining game with cake size X. Consider any sub-

game perfect equilibrium of Γ̂(X). The continuation utility of a member of coalition C

after rejecting a proposal by player i is zi
C(X). The variable ui

C(X) denotes the expected

utility of a member of coalition C in a subgame starting with a proposal by player i. The

variable u∗C(X) is the expected utility of a player i ∈ C as evaluated at the beginning of

the game. The next result specifies how these variables can be computed, and claims that

all utilities are linear functions of X. The latter property is crucial to derive our results for

sequential share bargaining games.

Theorem 4.2 Consider any subgame perfect equilibrium of Γ̂(X). Then (zi
S(X), zi

T (X))i∈N

are given by the solution to (1)–(2). Moreover, for C ∈ {S, T}, for i ∈ N \ C,

ui
C(X) = δzi

C(X),

ui
N\C(X) = X − δzi

C(X),

and

u∗C(X) =
∑
j∈N

π0
j u

j
N\C(X).

All the functions above are linear in X.

Proof. The expressions above follow in a straightforward way from Theorems 3.2 and

4.1. It follows from the proof of Theorem 3.1 that the solution to system (3) is given by

zS(X) = (1 − δ)X(I − δπ)−1πS, where πS = ((πiS)i∈N)>. It follows that zi
S(X) is linear

in X. Since zi
T (X) = X − zi

S(X), it holds that zi
T (X) is linear in X. Linearity of ui

S(X),

ui
T (X), u∗S(X), and u∗T (X) is now immediate.

5 Sequential Share Bargaining

In this section we consider the problem of dividing a cake of size X̄ among n̄ players. Our

approach is to chop up the problem into n one-dimensional bargaining procedures that are

implemented sequentially, one after another. First, the players decide upon the share of

the cake to be allocated to the first player on the agenda, say player 1. Once player 1’s

share is unanimously agreed upon by all active players, including player 1, he leaves the

game. The remaining players then decide what share of the cake to allocate to the next

player on the agenda, say player 2. Once this is unanimously agreed upon, player 2 exits,

and the remaining players decide upon the share of player 3, and so on.
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A sequential share bargaining game Γ is specified by a set of players N̄ with cardinality

n̄, a cake size X̄, a discount factor δ, utility functions (ui)i∈N̄ , an agenda ρ, n̄ initial

probability distributions, (π01, . . . , π0n̄), and n̄ Markov transition matrices, (π1, . . . , πn̄).

All players have the same utility function. The utility of player i ∈ N̄ when receiving

the share x in time period t is ui(t, x) = δtx. The utility of perpetual disagreement is 0.

The agenda ρ is a permutation, an injective function mapping {1, . . . , n̄} into the set

of players N̄ . The agenda ρ specifies the sequence in which the players’ shares are decided

upon. The player whose share is decided upon first is ρ(1). If his share is specified, the

remaining players N = N̄ \ {ρ(1)} decide upon player ρ(2)’s share. For k = 1, . . . , n̄,

ρk = {i ∈ N̄ | ρ−1(i) ≥ k} denotes the set of players, whose position on the agenda is k or

higher. After the shares of players ρ(1), . . . , ρ(k − 1) have been decided upon, the players

in ρk discuss the share of player ρ(k).

The way to decide upon the share of a given player is the bargaining procedure as

detailed below. Let N = ρk be the set of players that determines the share of player ρ(k)

in a cake of size X ≤ X̄ in a time period t. Nature chooses a proposer from the set N

according to the probability distribution π0k, where π0k
i is the probability that player i

is selected as a proposer. The chosen player announces a number x ∈ [0, X], the share

of the cake to be allocated to player ρ(k). The remaining players respond sequentially to

the proposal. If ρ(k) is not the proposer himself, he is the last player to respond. If the

proposal is unanimously accepted, then player ρ(k) exits the game with share x. The

players ρk+1 = N \ {ρ(k)} continue bargaining, and determine the share of player ρ(k + 1)

in a cake of size X − x in time period t. If the proposal is rejected, period t + 1 begins and

nature chooses a new proposer in N. The moves of nature that select the proposer follow

a Markov process with N as state space. The matrix of transition probabilities is given by

πk, where πk
ij is the transition probability from state i to state j. The bargaining process

proceeds in this way until the share of all players has been decided upon.

Our procedure differs from the bargaining games with exit as discussed in the intro-

duction in that no player is allowed to take any part of the cake unless all other players

agree. In contrast, in a game with exit, a player can receive a share offered to this player

by a proposer without the consent of other players.

For k = 1, . . . , n̄, and 0 ≤ X ≤ X̄, we denote a subgame of Γ where the set of players

N = ρk determines the share of player ρ(k) and the size of the cake is X by Γ(N, X).
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6 Uniqueness of Equilibrium in Sequential Share Bar-

gaining Games

In this section we prove that sequential share bargaining games have unique subgame

perfect equilibrium utilities. The gist of the argument is as follows. All sequential share

bargaining games Γ(ρn̄, X) = Γ({ρ(n̄)}, X) are trivial, and have trivial subgame perfect

equilibrium utilities. Suppose we have shown, for some k = 2, . . . , n̄, that all sequential

share bargaining games Γ(ρk, X) have unique subgame perfect equilibrium utilities.

Consider a game Γ(N, X), where N = ρk−1. For x ∈ [0, X], we replace all subgames

Γ(ρk, X − x) of the game Γ(N, X) by their subgame perfect equilibrium utilities. The

resulting reduced game is denoted Γ̂(N, X). As we show in the proof of Theorem 6.1, the

game thus obtained is a one-dimensional bargaining game with coalitions S = {ρ(k − 1)}
and T = ρk. Subgame perfect equilibrium utilities of Γ(N, X) are therefore unique by The-

orem 4.1, and a subgame perfect equilibrium of Γ(N, X) is found using the characteristic

equations for the one-dimensional bargaining game.

A subgame perfect equilibrium strategy profile σ∗ of Γ(N̄ , X̄) is defined as follows.

Suppose the set of active players is N and the cake size is X, where N = ρk for some

k = 1, . . . , n̄, and 0 ≤ X ≤ X̄. Let S = {ρ(k)} and T = ρk+1. Let zi
C(N, X) for

i ∈ N and C ∈ {S, T} denote the solution to the system (1)–(2) of characteristic equations

with the matrix of transition probabilities equal to πk. Then player ρ(k) makes a proposal

xi = X−δzi
T (N, X) and accepts a proposal xj of player j ∈ T if and only if xj ≥ δzj

S(N, X).

Player i of coalition T makes a proposal xi = δzi
S(N, X) and accepts a proposal xj of

player j ∈ N if and only if xj ≤ X − δzj
T (N, X). In particular, equilibrium proposals are

unanimously accepted.

Theorem 6.1 The strategy profile σ∗ is a subgame perfect equilibrium of the game Γ. The

subgame perfect equilibrium utilities of Γ are unique. In any subgame perfect equilibrium,

agreement is reached without delay.

Proof. We show first that the subgame perfect equilibrium utilities of Γ are uniquely

determined. The proof of Theorem 6.1 is by induction on the number of active players

in the subgames. It is trivially true that for all one–player subgames Γ(ρn̄, X) discounted

equilibrium utilities are unique, and are linear as a function of X. Suppose this statement

is true for all games with set of players ρk, where 2 ≤ k ≤ n̄. Let ui(ρ
k, X) denote the

discounted equilibrium utility of player i ∈ ρk in the game Γ(ρk, X).

Consider the game Γ(ρk−1, X). Suppose that in period t the players in ρk−1 unanimously

agree to allocate the share x of the cake to player ρ(k − 1). In this case player ρ(k − 1)

obtains x and the remaining players enter the game Γ(ρk, X−x) in period t. Replacing the
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subgame Γ(ρk, X − x) of the game Γ(ρk−1, X) by its subgame perfect equilibrium utilities

δtx for player ρ(k − 1) and δtui(ρ
k, X − x) for each i ∈ ρk, yields a reduced game denoted

by Γ̂(ρk−1, X). The game Γ̂(ρk−1, X) is a one-dimensional bargaining game as defined in

Section 2, with coalitions S = {ρ(k− 1)} and T = ρk. Because ui(ρ
k, ·) is linear, the utility

functions δtui(ρ
k, X − x) are for all i ∈ ρk equivalent to the utility function δt(X − x), so

Theorems 4.1 and 4.2 apply. This completes the induction hypothesis and shows that the

game Γ has uniquely determined subgame perfect equilibrium utilities.

A similar induction argument together with Theorem 3.2 can be used to show that σ∗

is a subgame perfect equilibrium of the game Γ. This strategy determines the equilibrium

utility levels. Since delay of agreement would lead to different utility levels, it follows that

in any subgame perfect equilibrium, agreement is reached without delay.

In general, Γ may have more than one subgame perfect equilibrium. Since each subgame

of Γ can be reduced to a one-dimensional bargaining game, the multiplicity is inessential

in exactly the same way as for one-dimensional bargaining games. When the set of active

players is ρk and a proposal is made which is unacceptable to some of the players in ρk, i.e.

a player j ∈ ρk makes a proposal smaller than δzj
{ρ(k)}(ρ

k, X) or a proposal greater than

X − δzj
ρk+1(ρ

k, X), it does not matter which player in ρk rejects the proposal. Aggregate

behavior is uniquely determined, except in subgames with at least three active players,

where by mistake a player j ∈ ρk+1 proposes xj = X − δzj
ρk+1(ρ

k, X), so leaving players

in his own coalition indifferent between accepting and rejecting. The other case where

aggregate behavior was not uniquely determined in one-dimensional bargaining, where by

mistake player ρ(k) proposes xρ(k) = δz
ρ(k)
{ρ(k)}(ρ

k, X), does not occur in sequential share

bargaining, since player ρ(k) does not have any coalition members. Such a proposal would

be accepted in all subgame perfect equilibria by the members of ρk+1.

We make a final remark with regard to the solution zi
C(N, X) to the system (1)–(2) of

characteristic equations. Recall that zi
T (N, X) is the continuation utility of any player j in

T in the game Γ̂(N, X) after a proposal by player i has been rejected, relative to the specific

utility representation δt(X − x) of that player’s preferences. To obtain the continuation

utility in the game Γ(N, X) we must transform zi
T (N, X) using the utility function uj(T, ·),

where uj(T, X) denotes the equilibrium utility of player j ∈ T in the game Γ(T, X). Thus

uj(T, zi
T (N, X)) is the continuation utility of player j ∈ T in the subgame Γ(N, X) after a

proposal by player i has been rejected. For the unique player in S, no transformation is

required: zi
S(N, X) is the continuation utility of player S after a rejection of a proposal by

player i.

Example 6.1. Consider a game Γ(N̄ , X̄) where N̄ = {1, . . . , n̄}. Let ρ be the identity,

15



so the sequence in which the players’ shares are determined is 1, . . . , n̄. In each subgame

Γ(N, X) with N = ρk for some k = 1, . . . , n̄, the identity of the proposer cycles clockwise

within the player set: k, k + 1, . . . , n̄, k, . . . Thus, when player k is on top of the agenda,

it is player k who is the first player to make a proposal. We know that all equilibrium

proposals are immediately accepted. This means that the equilibrium proposal xk of player

k, when player k is on top of the agenda, is also player k’s equilibrium utility.

We claim that

xk = δk−1 1 − δ

1 − δn̄
X̄.

The argument is by induction on k. To see that the claim is true for k = 1, observe that

the reduced game Γ̂(N̄ , X̄) is the one–dimensional bargaining game of Example 3.1 with

S = {1}, T = {2, . . . , n̄}, and cake size X̄. The formula for x1 then follows from the result

of Example 3.1. Suppose the claim is true for all i = 1, . . . , k. We prove that it holds for

i = k + 1.

Suppose that the players 1, . . . , k have left the game. The remaining players ρk+1 =

{k + 1, . . . , n̄} are then dividing a cake of size X = X̄ − x1 − · · · − xk. Using the induction

hypothesis, this can be seen to be equal to

X = δk 1 − δn̄−k

1 − δn̄
X̄.

The reduced game Γ̂(N, X) is the one–dimensional bargaining game of Example 3.1 with

S = {k + 1} and T = {k + 2, . . . , n̄}. Player k + 1 then makes a proposal

xk+1 =
1 − δ

1 − δn̄−k
X = δk 1 − δ

1 − δn̄
X̄,

which establishes the claim.

Example 6.2. Consider a game Γ(N̄ , X̄) where N̄ = {1, . . . , n̄}. As in the previous

example, the agenda ρ equals the identity, so the sequence in which the players’ shares

are determined is 1, . . . , n̄. The proposer is chosen randomly from the set of active players

with equal probabilities.

We claim that the expected equilibrium utility of any player is X̄/n̄. First we show

that the expected equilibrium utility of player 1 is X̄/n̄. The reduced game Γ̂(N̄ , X̄) is

the one–dimensional bargaining game of Example 3.2 with S = {1}, T = {2, . . . , n̄}, and

cake size X̄. We know that in the game Γ̂(N̄ , X̄) the equilibrium proposal of player 1 is

[n̄ − δ(n̄ − 1)]X̄/n̄, while the equilibrium proposal of any member of coalition T is δX̄/n̄.

Since the identity of the proposer is uniformly distributed in N̄ , the expected share of

player 1, which is also player 1’s expected utility, is

1

n̄

n̄ − δ(n̄ − 1)

n̄
X̄ +

(n̄ − 1)

n̄

δ

n̄
X̄ =

X̄

n̄
.
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Suppose the claim is true for all i = 1, . . . , k. We prove that it holds for i = k + 1.

Suppose the players 1, . . . , k have left the game with shares x1, . . . , xk. The remaining

players N = {k+1, . . . , n̄} are then dividing a cake of size X = X̄−x1−· · ·−xk. Now the

shares x1, . . . , xk and the leftover X are random functions, as they depend on the moves of

nature (the k choices of proposers prior to the exit of player k). Because by the induction

hypothesis the expected value of xi for each i = 1, . . . , k is X̄/n̄, the expected value of X

is (n̄ − k)X̄/n̄.

Given a specific realization of X, consider a reduced game Γ̂(N, X). This is the one–

dimensional bargaining game of Example 3.2 with S = {k + 1} and T = {k + 2, . . . , n̄}.
Notice that the cardinality of N is n̄ − k. We know that in Γ̂(N, X) the equilibrium

proposal of player k +1 is (n̄− k− δ(n̄− k− 1))X/(n̄− k) and the equilibrium proposal of

each member of coalition T is δX/(n̄− k). Since the identity of the proposer is uniformly

distributed on N , the expected share of player k conditional on X is

1

n̄ − k

n̄ − k − δ(n̄ − k − 1)

n̄ − k
X̄ +

(n̄ − k − 1)

n̄ − k

δ

n̄ − k
X =

X

n̄ − k
.

This expression is linear in X. To compute the unconditional expected share (or utility)

of player k, we substitute the expected value of X for X in the formula above. This yields

X̄/n̄, as desired.

7 Conclusions

The existing results on n-player bargaining problems with unanimous agreement point

towards a large multiplicity of subgame perfect equilibria. This is a very unpleasant result,

since it implies that the predictive power of the model is extremely limited.

There are several ways to extend the Rubinstein-St̊ahl bargaining model for 2 players

to the case with n players. This paper considers the case where the shares of the players

are not determined simultaneously, but sequentially, thereby removing a potential source

of multiplicity of equilibria.

The paper obtains unique subgame perfect equilibrium utilities for this bargaining

procedure. In equilibrium, proposals are accepted without delay. Our results for n players

are qualitatively the same as the results for the two player case. The paper also studies

a related class of bargaining problems, called one-dimensional bargaining problems, and

obtains a uniqueness result there as well.

Our results imply that the choice of the bargaining procedure is important in obtaining

desirable bargaining outcomes. The idea of determining the players’ shares sequentially is

17



natural, and avoids the coordination problem that occurs when all shares are determined

at the same time.
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