
Scheduling Parallel Jobs with Linear Speedup

Alexander Grigoriev and Marc Uetz

Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands.
Email: {a.grigoriev, m.uetz}@ke.unimaas.nl

Abstract We consider a scheduling problem where a set of jobs is distributed over parallel ma-
chines. The processing time of any job is dependent on the usage of a scarce renewable resource,
e.g. personnel. An amount of k units of that resource can be allocated to the jobs at any time, and
the more of that resource is allocated to a job, the smaller its processing time. The dependence
of processing times on the amount of resources is linear for any job. The objective is to find a
resource allocation and a schedule that minimizes the makespan. Utilizing an integer quadratic pro-
gramming relaxation, we show how to obtain a (3 + ε)-approximation algorithm for that problem,
for any ε > 0. This generalizes and improves previous results, respectively. Our approach relies
on a fully polynomial time approximation scheme to solve the quadratic programming relaxation.
This result is interesting in itself, because the underlying quadratic program is NP-hard to solve in
general. We also briefly discuss variants of the problem and derive lower bounds.

1 Introduction and related work

Consider a scheduling problem where n jobs j ∈ V , with processing times pj are distributed
over a set of m parallel, identical machines. There is a renewable resource, e.g. personnel, that
can be allocated to jobs in order to reduce their processing requirements. We assume that the
tradeoff between usage of the resource and the resulting processing requirement of a job can be
described succinctly by a corresponding linear compression rate bj ≥ 0. In other words, each job
has a default processing time of p̄j , and when s resources are assigned to job j, its processing
requirement becomes pjs = p̄j − bj s. At any point in time, only k units of that resource are
available. Once resources have been assigned to the jobs, a schedule is called feasible if it does
not consume more than the available k units of the resource, at any time. The goal is to find
a resource allocation and a corresponding feasible schedule that minimizes the makespan, the
completion time of the job that finishes latest. This problem describes a typical situation in
production logistics, where additional resources, such as personnel, can be utilized in order to
reduce the production cycle time.

As a matter of fact, scheduling problems with a nonrenewable resource, such as a total budget
constraint, have received quite some attention in the literature as time-cost-tradeoff problems,
e.g., [2,10,17,18]. Surprisingly, the corresponding problems with a renewable resource, such as
a personnel constraint, have received much less attention, although they are not less appealing
from a practical viewpoint. We will refer to them as time-resource-tradeoff problems, in analogy
to the former.

Related work. In a previous paper [8], we have considered the more general problem of
unrelated machine scheduling with resource dependent processing times. There, jobs can be
processed on any of the machines, and if a job is scheduled on machine i, using s of the k available
units of the resource, the processing time is pijs. Assuming that processing times are monotone in
the resources (and not necessarily linear), the existence of a (4+2

√
2)–approximation algorithm

is proved in [8]. The same paper contains a (3 + 2
√

2)–approximation algorithm for the special
case where the jobs are distributed over the machines beforehand. The approach presented in [8]
is based upon a linear programming relaxation that essentially uses nk variables. The problem

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6942080?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 A. Grigoriev and M. Uetz

with linear resource-time tradeoff functions, however, can be encoded more succinctly by O(n)
numbers only; for each job, we need to specify its machine i, the maximum processing time
p̄j , and the compression rate bj , respectively. Therefore, the approach of [8] leads to a pseudo
polynomial time (3 +

√
2)–approximation algorithm for the problem at hand.

In a manuscript by Grigoriev et al. [7], a restricted version of the problem at hand is ad-
dressed. Their model is restricted to a binary resource, thus the availability of the additional
resource is k = 1. Any job may be processed either with or without using that resource, with
a reduced processing time if the resource is used. Finally, the number of machines m in their
paper is considered fixed, and not part of the input. For that problem, they derive a (3 + ε)–
approximation, and for the problem with m = 2 machines, they derive (weak) NP-hardness and
a fully polynomial time approximation scheme [7].

Jobs with resource dependent processing are also known as malleable or parallelizable tasks,
e.g. in [14,19]. In these models, jobs can be processed on one or more parallel processors, and
they have non-increasing processing times pjs in the number s of processors used. Any processor
can only handle one job at a time, and the goal is to minimize the schedule makespan. Turek
et al. [19] derive a 2–approximation algorithm for this problem. In fact, the model considered in
[19] closely relates to, but also differs from the problem considered in this paper. Interpreting
the parallel processors of [19] as a generic ‘resource’ that must be allocated to jobs, the problem
of [19], when restricted to linear resource-time tradeoff functions pjs, is a special case of the
problem considered in this paper: It corresponds to the case where n jobs are processed on
m = n machines, instead of m < n machines. Mounie et al. [14] consider yet another restriction
of the problem of [19], in that the processor allocations must be contiguous and the ‘total work
functions’ spjs are non-decreasing in s. For that problem, a

√
3–approximation is derived [14].

When we restrict even further, and assume that the decision on the allocation of resources
to jobs is fixed beforehand, we are back at (machine) scheduling under resource constraints as
introduced by Blazewicz et al. [1]. More recently, such problems with the assumption that jobs are
distributed over the machines beforehand have been discussed by Kellerer and Strusevich [11,12].
They use the term dedicated machine scheduling. We refer to these papers for various complexity
results, and note that NP-hardness of dedicated machine scheduling and a binary resource was
established in [11]. More precisely, they show weak NP-hardness for the case where the number
of machines is fixed, and strong NP-hardness for an arbitrary number of machines [11].

Results and methodology. We derive a (3 + ε)-approximation algorithm for scheduling
parallel jobs with linear speedup. Our result holds for an arbitrary number m of machines and
an arbitrary number k of available resources. In that sense, our result generalizes the previous
(3 + ε)-approximation of [7] to an arbitrary number of machines, and arbitrary, linear resource
dependent processing times (recall that they consider the special case k = 1, which may be
interpreted as linear resource-time functions, too). Although we obtain the same performance
bound, we stress that our result relies on a completely different approach. Moreover, restricted to
linear resource-time functions, our result considerably improves upon the (3+

√
2)–approximation

from [8]. In addition, our algorithm is indeed a strongly polynomial time algorithm, while the
result of [8] only yields a pseudo polynomial time algorithm.

We obtain this result by using a constrained quadratic programming formulation that con-
stitutes a relaxation of the problem. More precisely, the mathematical program is an integer,
concave minimization problem with linear constraints. Although such problems are NP-hard
to solve in general [15,9], even without integrality constraints, we can show how to solve this
quadratic programming relaxation with arbitrary precision in polynomial time; a result of inter-
est in its own. Based on the solution of this mathematical program, we assign resources to the
jobs. Finally, the jobs are scheduled using Graham’s greedy scheduling algorithm. Making use of

Scheduling with Linear Speedup 3

the lower bound provided by the quadratic programming relaxation, we derive the performance
guarantee of (3 + ε).

Finally, we provide a parametric example to show that our analysis cannot be improved
further that a factor of 2, by showing that the allocation of resources that is computed with
the quadratic program can indeed provide the ‘wrong’ answer, such that the greedy scheduling
algorithm can provide a solution a factor 2 − ε away from the optimum, for any ε > 0. The
same example even shows that any scheduling algorithm, based on the resource allocation as
suggested by the quadratic program, will be a factor 1.46 away from the optimum.

2 Problem definition

Let V = {1, . . . , n} be a set of jobs. Jobs must be processed non-preemptively on a set of m
parallel machines, and the objective is to find a schedule that minimizes the makespan Cmax,
that is, the time of the last job completion. Each job j is assigned to a given machine i, and
Vi denotes the set of jobs assigned to machine i, such that V = ∪iVi forms a partition of the
jobs. During its processing, a job j may be assigned an amount s ∈ {0, 1, . . . , k} of an additional
resource, for instance personnel, that may speed up its processing. If s resources are allocated
to a job j, the processing time of that job is pjs, s = 0, . . . , k. The restriction is that in a feasible
schedule, at any time not more that k resources may be used.

We assume that the resource dependent processing time pjs of any job can be encoded
succinctly by the default processing time, p̄j , together with the linear compression rate bj , such
that the actual processing time becomes

pjs = p̄j − bj s ,

given that s ∈ {0, . . . , k} resources are assigned to job j, j ∈ V . Hence, the encoding of the
problem just contains the O(n) numbers p̄j and bj , as well as the given assignment of the n
jobs to the m machines.

3 Quadratic programming relaxation

The approach of [8] could be used to obtain a (3 + 2
√

2)–approximation algorithm for the
problem at hand. The approach, however, is explicitly based upon an integer linear programming
formulation that would require Θ(nk) variables to represent all the different processing times of
jobs pjs. Obviously, this would only lead to a pseudo polynomial time algorithm for the problem
at hand.

For the linear case considered in this paper, however, we can set up a polynomial size,
quadratic formulation, using O(n) variables sj ∈ {0, . . . , k} that denote the number of resources
allocated to job j. Then pjs = p̄j − bjsj is the processing time of a job j. We also assume that
bj is integral for all jobs j, and since any job is required to use an integral amount of resources,
pjs is integral, too. To exclude trivial solutions, we assume that p̄j > bjk.

4 A. Grigoriev and M. Uetz

The following integer quadratic program has a solution if there is a feasible schedule with
makespan C.

∑

j∈Vi

p̄j − bjsj ≤ C , ∀ i = 1, . . . , m , (1)

∑

j∈V

p̄jsj − bjs
2
j ≤ k C , (2)

0 ≤ sj ≤ k, ∀j ∈ V , (3)

sj ∈ Z
+, ∀j ∈ V . (4)

The logic behind this program is the following; (1) states that the total processing on each
machine is a lower bound for the makespan, and (2) states that the total resource consumption
of the schedule cannot exceed the maximum value of k C. Our goal is to compute an integer
feasible solution (C∗, s∗) for program (1)–(4), such that C∗ is a lower bound for the makespan
COPT of an optimal schedule. A candidate for C∗ is the smallest integer value, say CQP, for
which this program is feasible. But since we do not know how to compute CQP exactly, we will
compute an approximation C∗ ≤ CQP.

In order to decide on feasibility for program (1)–(4), notice that we may as well solve the
following constrained integer quadratic minimization problem.

min.
∑

j∈V

p̄jsj − bjs
2
j , (5)

s. t.
∑

j∈Vi

p̄j − bjsj ≤ C , ∀ i = 1, . . . , m , (6)

0 ≤ sj ≤ k , ∀j ∈ V (7)

sj ∈ Z
+, ∀j ∈ V . (8)

Obviously, (1)–(4) is feasible if and only if the constrained quadratic minimization problem
(5)–(8) has a solution at most k C. It is well known that constrained quadratic programming
is NP-hard in general [15], even without integrality constraints. More specifically, we have a
constrained concave minimization problem, which is generally known to be NP-hard as well [9].
However, we next show that the integer quadratic program (5)–(8) can be solved with arbitrary
precision in polynomial time.

Lemma 1. For any 0 < δ < 1, we can find a solution for the constrained quadratic minimization
problem (5)–(8) that is not more than a factor (1 + δ) away from the optimal solution, in time
polynomial in the input size and 1/δ.

In other words, (5)–(8) admits an FPTAS, a fully polynomial time approximation scheme. The
proof of this lemma is of interest in its own. We first show how to reduce the constrained
quadratic program to a certain single machine scheduling problem, and then show that this
scheduling problem admits an FPTAS, using the framework of Pruhs and Woeginger [16].

Scheduling with Linear Speedup 5

Proof (of Lemma 1). First observe that (5)–(8) decomposes into m independent, constrained
quadratic programs, one for each machine i:

min.
∑

j∈Vi

p̄jsj − bjs
2
j , (9)

s. t.
∑

j∈Vi

p̄j − bjsj ≤ C , (10)

0 ≤ sj ≤ k , ∀j ∈ Vi , (11)

sj ∈ Z
+, ∀j ∈ Vi . (12)

We now consider an even more restrictive problem, where instead of constraints (11)-(12),
we restrict the resource consumptions sj , j ∈ Vi, to rounded powers of (1 + ε1). More precisely,
we set

E = {0, k} ∪ {⌈(1 + ε1)
ℓ⌉ : 0 ≤ (1 + ε1)

ℓ ≤ k, ℓ ∈ Z
+} ,

where 0 < ε1 < 1 is to be defined later. We claim that if in program (9)-(12) there exists a
solution s of value X, then in this even more restricted program there exists a solution s′ of
value X ′ such that X ′ ≤ (1+3ε1)X and s′j ∈ E for all j ∈ Vi. To see this, we consider a solution s
with objective value X. We define a new solution s′ by simply rounding up the values sj , j ∈ Vi,
to the nearest integer number in E . This way all resource consumptions are rounded up, and
we have that sj ≤ s′j for all j ∈ Vi, thus constraint (10) is satisfied by s′, too. Therefore, the
obtained solution s′ is an integer feasible solution for program (9)-(12) with s′j ∈ E for all j ∈ Vi.

Now consider an arbitrary j ∈ Vi and the corresponding ℓ ∈ Z
+ such that (1+ ε1)

ℓ−1 ≤ sj <
(1 + ε1)

ℓ. Since sj is integer, we have that ⌈(1 + ε1)
ℓ−1⌉ ≤ sj < ⌈(1 + ε1)

ℓ⌉ = s′j < (1 + ε1)
ℓ + 1.

Now, if (1 + ε1)
ℓ + 1 ≤ (1 + ε1)

ℓ+1 we immediately derive that s′j < (1 + ε1)
2sj < (1 + 3ε1)sj .

If (1 + ε1)
ℓ + 1 > (1 + ε1)

ℓ+1, this implies that (1 + ε1)
ℓ−1 + 1 > (1 + ε1)

ℓ, and thus sj = s′j =

⌈(1 + ε1)
ℓ−1⌉. Therefore, s′j ≤ (1 + 3ε1)sj , for all j ∈ Vi. Consequently, for the objective X ′ we

have

X ′ =
∑

j∈Vi

s′j(p̄j − bjs
′

j) ≤
∑

j∈Vi

(1 + 3ε1)sj(p̄j − bjsj) = (1 + 3ε1)X ,

as claimed before.

We next claim that the problem (9)-(12) restricted to sj ∈ E , j ∈ Vi, admits an FPTAS. To
this end, observe that this problem is in fact a single machine scheduling problem where each
job has at most h ∈ O(log1+ε1

k) possible different processing times p̄j − bjsj with associated
costs p̄jsj −bjs

2
j , where sj ∈ E . Problem (9)-(12) thus asks for a schedule with makespan at most

C and minimal total cost. The proof that this problem admits an FPTAS, in terms of its input
size, is presented below in Lemma 2. This input size consists of not more than O(log1+ε1

k)
possible processing times and costs, hence it is polynomially bounded in terms of 1/ε1 and the
original problem size. As a consequence, we have that for any 0 < ε1 < 1 and for any ε2 > 0 we
can compute in time polynomial in the original input size, 1/ε1, and 1/ε2, a solution that is no
more than a factor of (1 + 3ε1)(1 + ε2) away from the optimal solution. Letting ε1 = δ/6 and
ε2 = δ/3, we derive (1 + 3ε1)(1 + ε2) ≤ (1 + δ), finishing the proof. ⊓⊔

Lemma 2. Consider a single machine scheduling problem where we have a due date C, and
n jobs, each having h possible modes s at which its processing time is pjs and its cost is wjs,
s = 1, . . . , h. The problem is to find a mode s for each job with

∑
j pjs ≤ C, such that the total

cost
∑

j wjs is minimized. This problem admits an FPTAS.

6 A. Grigoriev and M. Uetz

Proof. Utilizing the framework of Pruhs and Woeginger [16], it suffices to show that the problem
admits an algorithm that solves the problem to optimality, with a computation time that is
polynomially bounded in terms of nh, W =

∑
j,s wjs, and the input size of the problem. Then

Theorem 1 of [16] yields that the problem admits an FPTAS.

The following dynamic program does the job. For q = 1, . . . , n and z = 0 . . . , W , denote by
P [q, z] the smallest total processing time of q jobs such that their total weight equals z. More
precisely, P [q, z] is the smallest number such that there exists a subset Q of q jobs with processing
times pjs and costs wjs, such that

∑
j∈Q pjs = P [q, z] and

∑
j∈Q wjs = z. The initialization of

P [1, z] is trivial for any value z = 0 . . . , W , and

P [q + 1, z] = min{P [q; z − w] + p | (p, w) = (pjs, wjs) for some j and s} .

Once we completed this dynamic programming table, we find the optimum value as

max{z | P [n, z] ≤ C} .

The total time required to run this dynamic program is polynomially bounded in nh, W =∑
j,s wjs, and the input size of the problem. ⊓⊔

Now, coming back to the original problem, we can use the FPTAS of Lemma 1 in order
to obtain an approximation of the smallest integer value CQP for which (1)–(4) has a feasible
solution. This is achieved as follows. For fixed δ > 0, we find by binary search the smallest
integer value C for which the FPTAS of Lemma 1 yields a solution for (5)–(8) with value

zC > (1 + δ) kC . (13)

Then we know by Lemma 1 that the optimal solution for (5)–(8) is larger than kC, and hence
(1)–(4) is infeasible for C. Since C is chosen as the smallest value with the property (13), on
input C∗ = C+1, the FPTAS yields a solution for (5)–(8) with value zC∗ ≤ (1+δ) kC∗. Now, we
have that C∗ ≤ CQP, since (1)–(4) is infeasible for C∗ − 1, and CQP was defined as the smallest
integer value for which (1)–(4) has a feasible solution. Hence, C∗ is a lower bound on COPT, the
makespan of an optimal solution. Moreover, using the FPTAS of Lemma 1, we have an integral
solution (s∗1, . . . , s

∗

n) that is feasible for (1)–(4) with constraint (2) relaxed to

∑

j∈V

p̄jsj − bjs
2
j ≤ (1 + δ) k C∗ . (14)

Therefore, we conclude that we can derive an approximate solution for (1)-(4) in the following
sense.

Lemma 3. For any δ > 0, we can find in polynomial time an integer value C∗ such that
C∗ ≤ COPT, and an integer solution s∗ = (s∗1, . . . , s

∗

n) for the resource consumptions of jobs
such that

∑

j∈Vi

p̄j − bjs
∗

j ≤ C∗ , i = 1, . . . , m , (15)

∑

j∈V

p̄js
∗

j − bj(s
∗

j)
2 ≤ (1 + δ) kC∗ . (16)

Scheduling with Linear Speedup 7

4 QP based greedy algorithm

Our approach to obtain a constant factor approximation for the scheduling problem is now the
following. We first use the solution for the quadratic programming relaxation from the previous
section in order to decide on the amount of resources allocated to every individual job j. More
precisely, job j must be processed using s∗j additional resources. Then the jobs are scheduled
according to the greedy list scheduling algorithm of Graham [4], in arbitrary order.

Algorithm QP-Greedy: With the resource allocations as determined by the solution
to the quadratic program QP, do until all jobs are scheduled: Starting at time 0, iterate
over completion times of jobs, and schedule as many jobs as allowed, obeying the given
machine assignments and the resource constraint.

Now that we have allocated resources to jobs according to the above obtained solution to
the quadratic program, we claim the following.

Theorem 1. For any ε > 0, there exists an algorithm QP-Greedy that is a (3+ε)–approximation
algorithm for scheduling parallel jobs with linear speedup. The computation time of the algorithm
is polynomial in the input size and the precision 1/ε.

Note that the result of Theorem 1 improves considerably on the performance bound of (3+2
√

2)
from [8] for the more general case of nonlinear resource-time tradeoff functions. Moreover, also
recall that the approach of [8] only yields a pseudo polynomial time algorithm for the linear
problem at hand.

Proof. In order to do the binary search for the integer value C∗ in the quadratic programming
relaxation (1)–(4), we first use the FPTAS of Lemma 1, with δ = ε/2. As described previously,
this yields a lower bound C∗ on the makespan COPT of an optimal schedule, together with an
integer solution s∗ for (1),(3),(4), and (14). We then fix the assignments of resources to the jobs
as suggested by the solution s∗, and apply the greedy algorithm. The analysis of the greedy
algorithm itself is based on the same basic idea as in our previous paper [8]. For convenience,
we present the complete proof here.

Consider some schedule S produced by algorithm QP-Greedy, and denote by CQPG the
corresponding makespan. Denote by COPT the makespan of an optimal solution. For schedule S,
let t(β) be the earliest point in time after which only big jobs are processed, big jobs being defined
as jobs that have a resource consumption larger than k/2. Moreover, let β = CQPG − t(β) be
the length of the period in which only big jobs are processed (possibly β = 0).

Next, we fix a machine, say machine i, on which some job completes at time t(β) which is
not a big job. Due to the definition of t(β), such a machine must exist, because otherwise all
machines were idle right before t(β), contradicting the definition of the greedy algorithm. Note
that, between time 0 and t(β), periods may exist where machine i is idle. Denote by α the total
length of busy periods on machine i between 0 and t(β), and by γ the total length of idle periods
on machine i between 0 and t(β). We then have that

CQPG = α + β + γ . (17)

Due to (15), we get that for machine i

α ≤
∑

j∈Vi

p̄j − bjs
∗

j ≤ C∗ . (18)

8 A. Grigoriev and M. Uetz

The next step is an upper bound on β + γ, the length of the final period where only big jobs
are processed, together with the length of idle periods on machine i. We claim that

β + γ ≤ 2(1 + δ)C∗ . (19)

To see this, observe that the total resource consumption of schedule S is at least β k
2
+γ k

2
. This

because, on the one hand, all jobs after t(β) are big jobs and require at least k/2 resources, by
definition of t(β). On the other hand, during all idle periods on machine i between 0 and t(β), at
least k/2 of the resources must be in use as well. Assuming the contrary, there was an idle period
on machine i with at least k/2 free resources. But after that idle period, due to the selection of
t(β) and machine i, some job is processed on machine i which is not a big job. This job could
have been processed earlier during the idle period, contradicting the definition of the greedy
algorithm. Next, recall that (1+ δ) kC∗ is an upper bound on the total resource consumption of
the jobs, due to (16). Hence, we obtain

(1 + δ)kC∗ ≥ β
k

2
+ γ

k

2
.

Dividing by 2/k yields the claimed bound on β + γ.
Now we are ready to prove the performance bound of Theorem 1. First, use (17) together

with (18) and (19) to obtain

CQPG ≤ C∗ + 2(1 + δ)C∗ = (3 + 2δ)C∗ .

Eventually, because C∗ is a lower bound on COPT, this yields a performance bound for QP-

Greedy of 3 + 2δ = 3 + ε, due to the choice of δ = ε/2.
The claim on the polynomial computation time follows from the fact that we use an FPTAS

in Lemma 1, and since the greedy algorithm obviously runs in polynomial time. ⊓⊔

5 Lower bounds

Concerning lower bounds on approximation, we know that the problem at hand is a general-
ization of the dedicated machine scheduling problem as considered by Kellerer and Strusevich
[11], hence it follows that it is strongly NP-hard. Unlike for the nonlinear problem, where an
inapproximability result of 3/2 is known [8], we did not succeed to derive a stronger negative
result without further generalizing the problem. See Section 6 for a brief discussion of this issue.
We next show, however, that our approach may yield a solution that is a factor 2− ε away from
the optimal solution, for any ε > 0.

Example 1. Consider an instance with m = 3 machines and k = 2 units of the additional
resource. Let an integer ℓ be fixed. The first two machines are assigned two jobs each, sym-
metrically. One of these two jobs has a compression rate of 0, thus a constant processing time
pjs = ℓ − 3, for any s = 0, . . . , 2. The other job has a processing time pjs = 3 + 2ℓ − ℓs if
assigned s units of the resource, thus the only way to get this job reasonably small is to assign
all 2 resources, such that pj2 = 3. On the third machine, we have three jobs. Two identical short
jobs with processing times pjs = 3 − s, and one long job with processing time pjs = ℓ − 3s,
s = 0, . . . , 2. See Figure 1 for an example. ⊓⊔
Proposition 1. There exists an instance where the assignment of resources to the jobs as pro-
posed by the solution to the quadratic programming relaxation is wrong in the sense that any
scheduling algorithm yields a solution that is a factor at least 19/13 ≈ 1.46 away from the op-
timum. Moreover, for any ε > 0, there exist instances where algorithm QP-Greedy yields a
solution that is a factor 2 − ε away from the optimum.

Scheduling with Linear Speedup 9

Proof. Consider the parametric instance defined in Example 1, with parameter ℓ ≥ 13. The
assignment of resources to the jobs on the first two machines is essentially fixed by construction
of the instance, for any reasonable makespan (i.e., less than 2ℓ): the two jobs with the high
compression rate consume 2 units of the resource, yielding a total processing time of ℓ on the first
two machines. In the optimal solution, the makespan is exactly ℓ, by assigning 2 resources to the
long job on the third machine, and no resources to the small jobs. The corresponding schedule is
depicted in Figure 1(a). The smallest value C such that the quadratic programming relaxation
(1)–(4) is feasible is C = ℓ, too. We claim that our solution to the quadratic programming
relaxation would assign one unit of the resource to both, the big and one of the small jobs, and
two units of the resource to the remaining small job. This is due to the fact that, in solving
the QP, we actually minimize the total resource consumption of the schedule, subject to the
constraint that the total processing time on each machine stays below the makespan bound of
C = ℓ. On the third machine, the minimal resource consumption, subject to the condition that
the makespan is at most ℓ is achieved as explained, yielding a total resource consumption of
ℓ + 1. All other assignments of resources to the jobs on the third machine either violate the
makespan bound of ℓ, or require more resources (in fact, at least 2(ℓ − 6) ≥ ℓ + 1). Now, it is
straightforward to verify that any schedule with this resource assignment will provide a solution
that has a makespan of at least 3 + 3 + (ℓ− 3) + 1 + 2 = ℓ + 6, since no two resource consuming
jobs can be processed in parallel. Figure 1(b) depicts such a schedule. Since ℓ would be optimal,

3 ℓ − 3 ℓ

(a) optimal solution

0 0 3 ℓ ℓ + 66

(b) best solution after assigning resources as QP

7 9

0 3 ℓ 2ℓ − 34 6

(c) possible solution QP-Greedy

Figure 1. Instance Example 1. Black jobs consume 2 resources, gray jobs 1, and white jobs 0 resources.

this yields the claimed ratio of 19/13 when utilizing ℓ = 13. On the other hand, if the scheduling
algorithm fails to compute this particular solution, the makespan becomes 2ℓ − 3, as depicted
in Figure 1(c). This yields a ratio of (2ℓ − 3)/ℓ, which is arbitrarily close to 2 for large ℓ. ⊓⊔

6 Conclusions

It remains open whether there exist instances of the problem on which algorithm QP-Greedy

outputs a solution with performance ratio worse than 2. Even more interesting, however, would
be a lower bound on the approximability for the scheduling problem considered in this paper,
since the so far strongest result is NP-hardness [11].

Another interesting generalization of the problem discussed in this paper is obtained when
each job has an individual upper bound on the maximal resource consumption, so pjs = p̄j−bjsj ,
and 0 ≤ sj ≤ kj for each job j. The problem discussed in this paper then corresponds to the

10 A. Grigoriev and M. Uetz

special case where kj = k for all jobs j. As a matter of fact, it is not hard to see that our
approximation result still holds for that generalized version of the problem. Moreover, this
generalized version does not admit an approximation algorithm with a performance ratio better
than 3/2, which follows by a simple adaption of the gap-reduction from Partition in Theorem 3
of [8]: Given n integers aj with

∑n
j=1 aj = 2B, we define for each item aj one job j with linear

function pjs = 2aj + 1 − 2sj , let sj ≤ kj = aj , and k = B. Then there exists a partition if and
only if the optimal solution for the scheduling problem has a makespan of 2.

Acknowledgements. We thank Gerhard Woeginger for several helpful suggestions. In par-
ticular, he pointed us to the paper [16], and proposed the proof for the FPTAS for the single
machine scheduling problem in Lemma 2.

References

1. J. Blazewicz, J. K. Lenstra and A. H. G. Rinnooy Kan, Scheduling subject to resource constraints:
Classification and complexity, Discrete Applied Mathematics, 5 (1983), pp. 11–24.

2. Z.-L. Chen, Simultaneous Job Scheduling and Resource Allocation on Parallel Machines, Annals of Opera-

tions Research, 129 (2004), pp. 135-153.
3. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completenes,

W. H. Freeman, New York, 1979.
4. R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical Journal, 45 (1966),

pp. 1563–1581. See also [5].
5. R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal on Applied Mathematics, 17

(1969), pp. 416–429.
6. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Optimization and approx-

imation in deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics, 5 (1979),
pp. 287–326.

7. A. Grigoriev, H. Kellerer, and V. A. Strusevich, Scheduling parallel dedicated machines with the
speeding-up resource, manuscript (2003). Extended abstract in: Proceedings of the 6th Workshop on Models

and Algorithms for Planning and Scheduling Problems, Aussois, France, 2003, pp. 131–132.
8. A. Grigoriev, M. Sviridenko, and M. Uetz, Unrelated Parallel Machine Scheduling with Resource De-

pendent Processing Times, Proceedings of the 11th Conference on Integer Programming and Combinatorial

Optimization, Lecture Notes in Computer Science, to appear 2005.
9. R. Horst and P. M. Pardalos, Editors, Handbook of Global Optimization, volume 2 of Nonconvex Opti-

mization and Its Applications, Springer, 1995.
10. J. E. Kelley and M. R. Walker, Critical path planning and scheduling: An introduction, Mauchly Asso-

ciates, Ambler (PA), 1959.
11. H. Kellerer and V. A. Strusevich, Scheduling parallel dedicated machines under a single non-shared

resource, European Journal of Operational Research, 147 (2003), pp. 345–364.
12. H. Kellerer and V. A. Strusevich, Scheduling problems for parallel dedicated machines under multiple

resource constraints, Discrete Applied Mathematics, 133 (2004), pp. 45–68.
13. J. K. Lenstra, D. B. Shmoys and E. Tardos, Approximation algorithms for scheduling unrelated parallel

machines, Mathematical Programming, Series A, 46 (1990), pp. 259–271.
14. G. Mounie, C. Rapine, and D. Trystram, Efficient Approximation Algorithms for Scheduling Malleable

Tasks, Proceedings of the 11th Annual ACM Symposium on Parallel Algorithms and Architectures, 1999,
pp. 23–32.

15. P. M. Pardalos and G. Schnitger, Checking Local Optimality in Constrained Quadratic Programming
is NP-hard, Operations Research Letters, 7 (1988), pp. 33–35.

16. K. Pruhs and G. J. Woeginger, Approximation Schemes for a Class of Subset Selection Problems, Proceed-

ings of the 6th Latin American Symposium on Theoretical Informatics, Lecture Notes in Computer Science
2976, 2004, pp. 203–211.

17. D. B. Shmoys and E. Tardos, An approximation algorithm for the generalized assignment problem, Math-

ematical Programming, Series A, 62 (1993), pp. 461–474.
18. M. Skutella, Approximation algorithms for the discrete time-cost tradeoff problem, Mathematics of Oper-

ations Research, 23 (1998), pp. 909–929.
19. J. Turek, J. L. Wolf, and P. S. Yu, Approximate Algorithms for Scheduling Parallelizable Tasks, Pro-

ceedings of the 4th Annual ACM Symposium on Parallel Algorithms and Architectures, 1992, pp. 323–332.

