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Abstract

We show the existence of an upper bound for the number of blocks

required to get from one imputation to another provided that accessibility

holds. The bound depends only on the number of players in the TU game

considered. For the class of games with non-empty cores this means that

the core can be reached via a bounded sequence of blocks.

JEL Classification Numbers: C71, C73, C61.

1 Introduction

An international agreement will only be signed if no country or group of coun-

tries can do better without it. However, the mere potential for such an agree-

ment does not make it signed. If an initial proposal is more favourable to some,

then those countries will not “give in” even if this leads to no agreement; in

an election having played hard can easily compensate for an unsigned agree-

ment where blaming other negotiating partners is certainly an easy and hardly

refutable explanation. International organisations, such as the UN can be a

catalyst by facilitating negotiations. Such an organisation is seen as a player

that gets a positive payoff only if an agreement is signed. While it cannot make
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countries accept less than what they hope to get (under the status quo), it can

facilitate the formation of a coalition that blocks the current proposal and makes

another one, (temporarily) weakening the bargaining position of the problem-

atic countries thereby making them more inclined to sign an agreement. This

way a series of blocks to various proposals can eventually lead to the desired

agreement.

Given the existence of a signable agreement, is it possible to manipulate

negotiations so that it is actually signed? If yes, can we set deadlines to the

negotiations? The first question has already been answered affirmatively [10, 5].

The present paper answers the second: we show that one can set deadlines and

thereby estimate the expected costs of the process already before the negotia-

tions begin.

The core collects agreements that, once proposed, are never abandoned.

The question is whether such agreements will ever be proposed. Based on a

similar programme by Stearns [12] and Billera [1] for the bargaining set and

the kernel, Green [4] and Wu [14] present transfer schemes that converge to the

core. Perry and Reny [6] and Serrano and Vohra [11] defines noncooperative

bargaining games that implement core imputations as noncooperative strategy-

proof subgame-perfect equilibria. Glycopantis, Muir and Yannelis [2, 3] study

extensive form implementations of the private core and other solution concepts.

Here we take a cooperative approach and use the very same idea that is used to

define the core: blocking. Suppose an initial non-core imputation is proposed.

Then there exists a sequence of proposals and counter-proposals that eventually

leads to the core [10]. Sengupta & Sengupta [10], however, do not discuss the

number of steps required.

Let us illustrate the issue in question by the following 3-player coalitional

game where the grand coalition obtains 3, pairs get 2, singletons get 0. The core

of this game consists of a single payoff-vector (1, 1, 1). Now let ak =
(

1
k , 2− 1

k , 1
)

and bk =
(

1
k , 1, 2− 1

k

)
, consider an arbitrary positive m ∈ N, and the following

–unnecessarily lengthy– process:

am → bm−1 → am−2 → bm−3 → · · · → b1 = a1 = (1, 1, 1).

This process terminates in the core in exactly m−1 steps. As m is arbitrary the

number of steps to reach the core via such a path has no upper bound. The aim
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Figure 1: A finite, but unbounded sequence of dominance

of this paper is to show that the core can be reached in a bounded number of

steps, moreover, our proof points out where do such inefficient processes make

unnecessary detours.

Our result is not specific to the core. We show that if an imputation b can be

reached from another imputation a via a path of imputations, then the length of

the shortest of such paths is bounded. Since a player would never cooperate to

get less than he could by himself, it is realistic to allow only paths via efficient

and individually rational allocations, that is, via imputations. Without these

restrictions, as in [9] the proof is subject to simplifications.

The structure of the paper is as follows: First we introduce our notation and

some terminology. In Section 3 we state our results. The proofs are presented

in the Appendices.

2 Preliminaries

Let (N, v) be a TU-game with player set N , and characteristic function v.

Subsets of N are coalitions and v(S) is the payoff for coalition S ⊆ N . For any
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pair of vectors x, y ∈ RN and set S ⊆ N let x(S) =
∑

i∈S xi. The restriction of

x to S is denoted by xS ; we write xS ≥ yS if xi ≥ yi for each i ∈ S, we write

xS > yS if xS ≥ yS , but xS 6= yS . We denote the vector of stand alone values

by v∗, thus v∗(S) =
∑

i∈S v({i}). For each coalition S let S̄ = N \ S denote its

complementary coalition. Moreover, for the coalition Q let v̄(Q) = v(N)− v(Q̄)

denote its complementary value, that is, the total payoff left over for the players

outside Q̄. Note that the complementary value of coalition S is not the value

of the complementary coalition S̄.1

A payoff-vector x in RN is an imputation if x ≥ v∗ and x(N) = v(N): if it

is individually rational and efficient. Let A(N, v) denote the set of imputations.

Imputation y directly dominates x via coalition S, written y ÂS
D x if yS >

xS and y(S) = v(S). Then we refer to S as the blocking coalition, and the

entire action of obtaining y from x is a block.2 The core collects undominated

imputations.

Alternative notions of dominance permit y(S) < v(S). Clearly our results

will hold if we make dominance a denser relation. Our choice is, however due

to our interpretation of dominance. The alternative definition merely compares

imputations and is satisfied with the preference for y against x, but it does not

investigate whether such a transition would actually take place. Our definition

is driven by blocks: If a coalition is wants to and can get a higher payoff, it will

–myopically– collect the maximum it can get.

We say that y indirectly dominates x and we write y ÂI x if there exists a

finite sequence of imputations
{
x0, . . . , xT

}
and a finite collection of coalitions

{
S1, . . . , ST

}
, such that x = x0, y = xT , and xt ÂSt

D xt−1 for all 0 < t ≤ T . We

call the sequence π = {(xt, St)}T
t=1 a (dominance) path, and T its length. The

index t is interpreted as time. For convenience we will index paths from 0, and

assume that S0 = N .

In this paper we study such dominance paths and interpret them as pro-
1For instance, in cohesive games we have v(S̄) ≤ v̄(S).
2The existence of imputation x and coalition S such that v(S) > x(S) do not not generally

imply the existence of an imputation y such that y ÂS
D x. If v(S) + v∗(S̄) > v(N) such a y

would not be both individually rational and efficient for S. Since cohesiveness, or even super-

additivity are standard assumptions for pure cooperative games, moreover, for our Theorem

we consider games with nonempty cores, such a problem cannot arise.
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cesses. The path starts with an initial imputation x0. If there exists a coalition

S1, such that v(S1) > x0(S1) then the coalition S1 makes a threat of leaving the

grand coalition N , thereby collecting v(S1). Due to cohesiveness the remaining

players (weakly) prefer to renegotiate and accept a new imputation x1, where

the demand of coalition S1 is satisfied and therefore x1(S1) = v(S1), moreover

x1 directly dominates x0 via S1. Now x1 becomes the status quo, and so on,

as long as there exists a coalition who can do better apart than in the current

proposal. If no coalition can do better alone, then the imputation belongs to

the core.

The existence of a bound is linked to the existence of primitive recursive

algorithms: A primitive recursive algorithm is one that can be programmed

with “for” loops only [13] and the running time of such a program can be set in

advance. See [8] and [7] for more on primitive recursive algorithms.

3 Results

Lemma 3.1. For any given game (N, v) there exists an upper bound M , such

that for all a, b pairs in A(N, v) with b ÂI a there exist a dominance path π from

a to b with length smaller than M .

The proof of Lemma 3.1 is presented in Appendix 4.

Lemma 3.2 (Theorem in [10]). Let (N, v) be a game with a non-empty core

C(N, v). Let a be an imputation outside C(N, v). Then there exists an imputa-

tion c ∈ C(N, v) such that c ÂI a.

Theorem 3.3. Let (N, v) be a game with a non-empty core C(N, v). Then

there exists an integer M such that for all imputations a ∈ A(N, v) there exists

an imputation c ∈ C(N, v) and a path π from a to c with length smaller than

M .

Proof. For imputations a in C(N, v) the path π is trivial. Otherwise the com-

bination of Lemmata 3.1 and 3.2 gives the desired result.

Lemma 3.4. Let a and b be imputations in A(N, v) with b ÂI a. Then there

exists a primitive recursive algorithm that defines a path π = {(xt, St)}T
t=1 such

that x1 ÂS1

D a, for 1 < t ≤ T we have xt ÂSt

D xt−1, and xT = b.
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Finally we have the following theorem:

Theorem 3.5. Let (N, v) be a game with a non-empty core C(N, v). Let a be

an imputation in A(N, v). Then we show that there exists a primitive recursive

algorithm that defines a path π = {(xt, St)}T
t=1 such that x1 ÂS1

D a, for 1 < t ≤ T

we have xt ÂSt

D xt−1, and xT ∈ C(N, v).

The proofs of Lemma 3.4 and Theorem 3.5 are presented in the Appendices B

and C.

4 Discussion

The present paper continues the programme initiated by Green [4] and Wu [14]

by establishing a bound on the number of steps needed to reach the core. There

are, however some questions that are left open. In this paper our emphasis was

on the simplicity of the results rather than on the efficiency of the algorithms.

The existence of a bound is encouraging, but it is very likely that the bound

can be lowered. While boundedness allows us to define primitive recursive al-

gorithms for the intermediator to design the negotiation process, much lower

bounds are required to make the algorithms practical.
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[5] László Á. Kóczy and Luc Lauwers. The coalition structure core is accessible.

Games and Economic Behavior, 48:86–93, 2004.

[6] Motty Perry and Philip J. Reny. A noncooperative view of coalition for-

mation and the core. Econometrica, 62(4):795–817, July 1994.
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Appendix A Proof of Lemma 3.1

A.1 Outline

The proof is by contradiction. We assume that for any number M0 there exist

imputations a and b such that b ÂI a, but the shortest dominance path from

a to b is π = {(xt, St)}T
t=0 and T > M0. We show that if M0 ≥ M there exist

imputations xT1 and xT2 along the path π that are so similar that the subpath

from xT1 to xT2 is essentially a loop that can be removed.

In case xT1 = xT2 we are done, but in general we have to find a path from xT1

to b. Note that two imputations are not necessarily connected by a dominance

path, but the similarity of xT1 and xT2 and the existence of a dominance path

from xT2 to b makes it possible to adapt it. Let π′3 = {(yt, Qt)}T ′

t=0 denote

the adapted path. We choose Qt = ST2+t and so T ′ = T − T2. Given the

blocking coalitions we must define yt such that (i) they are imputations, that

is, individually rational and efficient, (ii) the resulting path is a dominance path,

(iii) π′3 indeed ends at b. In the following we give an intuition of how we define

the imputations yt. A formal presentation will follow in Section A.5.2.

Knowing that coalition Q blocks x still leaves us some freedom in choosing

the resulting imputation y. We only have the following restrictions:

• Players must have at least their stand-alone value, y ≥ v∗.

• Blocking players must get at least as much as before, yQ > xQ.

• The total payoff must be efficient y(N) = v(N).

• The payoff for the blocking coalition Q must be efficient, y(Q) = v(Q).

The first two conditions define what we call the subsistence payoff : the bare

minimum that has to be distributed. Typically the last two conditions mean

that there is more to be distributed. Part of this is distributed within the

blocking coalition, and some among the remaining players, that is, the comple-

mentary coalition. In distributing this extra we consider future blocks: we give

no or minimal extra payoff to those in the the next blocking coalition to fur-

ther motivate their block. Since the payoff of the players in the complementary

coalition Q̄ is independent of their previous payoff, they, in essence, lose all they
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had, including any potential extra payment they had received. Thus, by giving

the extra payments to those who do not block in the next round we can waste

some payoff that could be inhibitive in later rounds. The problematic cases oc-

cur when the entire blocking or complementary coalition blocks, and becomes a

faction or cofaction (see Definitions A.1 and A.2) of the next blocking coalition.

Then there is no way to get rid of the extra payments. Such cases require special

attention. It is comforting though that the (total) payoffs for (co)factions are

the same in the adapted as in the original path. It is also true that as soon as

such a faction (or at least part of it) is not blocking, the extra payoff can be

wasted. Still, most of the definition of similarity is about ensuring that blocks

are preserved even if such factions form.

A.2 Example

We illustrate our proof by a simple example with players and a symmetric char-

acteristic function where the payoff of a singleton, a pair, a triple and the grand

coalition is 0, 0.4, 0.7 and 1, respectively. The core of this game is non-empty.

We consider the randomly generated path in Table 1 that starts from imputa-

tion (0.925, 0.025, 0.025, 0.025) and leads to imputation (0.142, 0.3, 0.274, 0.284)

that belongs to the core.

After this introduction we can move on to the formal definitions.

A.3 Definitions

The proof requires a number of additional definitions. Let a and b be imputa-

tions such that there exists a path π = {(xt, St)}T
t=0 leading from a to b. As

before, xt are the imputations, St are the blocking coalitions. S0 plays no role,

but for completeness we let S0 = N . The length T is finite; we associate t with

time.

Definition A.1 (Faction). If a non-trivial blocking coalition becomes a lasting

blocking alliance we refer to it as a faction. Formally, for a given path π we say

that F is a faction at time τ if F = Sτ0 for some 0 < τ0 < τ and F ⊆ St for

all τ0 < t ≤ τ , or briefly

F =
τ⋂

t=τ0

St = Sτ0 . (A.1)
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t xt St Gt

0 (0.925, 0.025, 0.025, 0.025) ∅

1 (0.032, 0.374, 0.026, 0.568) {2, 3} ∅

2 (0.08, 0.3, 0.03, 0.59) {1, 3, 4} ∅

3 (0.28, 0.582, 0.12, 0.018) {1, 3} ∅

4 (0.111, 0.489, 0.341, 0.059) {3, 4} ∅

5 (0.265, 0.373, 0.227, 0.135) {1, 4} ∅

6 (0.141, 0.459, 0.262, 0.138) {3, 4} ∅

7 (0.212, 0.3, 0.316, 0.172) {1, 3, 4} ∅

8 (0.213, 0.184, 0.416, 0.187) {1, 4} ∅

9 (0.215, 0.185, 0.423, 0.177) {1, 2} ∅

10 (0.329, 0.194, 0.3, 0.177) {1, 2, 4} ∅

11 (0.535, 0.218, 0.065, 0.182) {2, 4} ∅

12 (0.3, 0.342, 0.092, 0.266) {2, 3, 4} ∅

13 (0.304, 0.347, 0.096, 0.253) {1, 2} ∅

14 (0.3, 0.348, 0.097, 0.255) {2, 3, 4} ∅

15 (0.303, 0.214, 0.097, 0.386) {1, 3} ∅

16 (0.3, 0.216, 0.097, 0.387) {2, 3, 4} ∅

17 (0.379, 0.224, 0.097, 0.3) {1, 2, 3} ∅

18 (0.04, 0.56, 0.099, 0.301) {3, 4} ∅

19 (0.13, 0.557, 0.27, 0.043) {1, 3} ∅

20 (0.156, 0.444, 0.319, 0.081) {3, 4} ∅

21 (0.171, 0.447, 0.3, 0.082) {1, 2, 4} ∅

22 (0.085, 0.515, 0.303, 0.097) {3, 4} ∅

23 (0.095, 0.282, 0.305, 0.318) {1, 3} ∅

24 (0.098, 0.283, 0.3, 0.319) {1, 3} {1}
25 (0.104, 0.296, 0.392, 0.208) {1, 2, 4} {1, 4}
26 (0.121, 0.357, 0.243, 0.279) {1, 2} {1, 3, 4}
27 (0.142, 0.3, 0.274, 0.284) {1, 3, 4} {1, 2, 3, 4}

Table 1: Example: payoffs, blocking coalitions and gaining players along a path.
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If a faction contains smaller factions, we consider the largest one.

Definition A.2 (Cofaction). Similarly, if the entire complementary coalition

blocks we call it a cofaction. Formally, for a given path π we say that C is

a cofaction at time τ if C = S̄τ0 for some 0 < τ0 < τ and C ⊆ St for all

τ0 < t ≤ τ .

There exists at most one faction, while there may be several cofactions. A

blocking or complementary coalition becomes a (co)faction if the coalition is a

subset of the next and possibly of subsequent blocking coalitions. Instead of a

one-time alliance these players stick together for a longer period and participate

in a row of blocks together. Right before becoming a (co)faction C had a

total payoff of v(C) (or v̄(C) for cofactions) and in the subsequent blocks this

total payoff may increase, but cannot decrease. Therefore a (co)faction C must

have a total payoff of at least v(C) (or v̄(C) respectively) making a separate

treatment necessary. Note that a faction and/or possible cofactions are defined

with reference to a period τ and typically a set of players will not constitute a

(co)faction at τ ′ > τ .

Our example illustrates both very well: At τ = 7, F = {3, 4} is a faction: it

is a blocking coalition at τ = 6 and has been a subset of the blocking coalition

“ever since”. A more complex example were necessary to show how factions

can build up and dissolve. Step τ = 2 illustrates a cofaction. Since S1 = {2, 3}
and its complement blocks in period 2, that is, S2 ⊇ C = S̄1 = {1, 4}, the

coalition C is a cofaction. Note that both the faction and the cofaction preserve

the payoffs players have even if it is more than necessary, for the faction this

is simply the coalitional payoff, for the cofaction it is the complementary value

v̄(C) = 1− 0.4 = 0.6.

Definition A.3 (Weakest players). Those players in S ⊆ N are the weakest,

denoted by W t(S), who are the first not to block, while others in S block. For-

mally: If there exists a finite τ > t such that S * Sτ then let τ∗ be the minimal

such τ and W t(S) = S \ Sτ∗ , otherwise (they are always blocking) W t(S) = S.

If S is the blocking coalition, the weakest players are the “weakest link” in

it: in the example at t = 9 and for S = {1, 2} the weakest link is {1} as 1 will

block only until t = 10, while 2 blocks until t = 14.
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If S is a complementary coalition the weakest players are those that do not

block in the next step. If such players do not exist, a cofaction is formed, and

the weakest players are those dropping out first. We see this at t = 1 with

S = {1, 4} or at t = 20 with S = {1, 2}. While W 1({1, 4}) = {4}, we have

W 20({1, 2}) = {1, 2}, that is, players in S may be equally weak.

Definition A.4 (Subsistence level). Given a dominance path π = {(xt, St)}T
t=0

we define the subsistence level st ∈ RN for all t > 0 as the vector of minimal

payoffs that allows xt to be individually rational and that makes the block St

profitable. Therefore:

st
i =





xt−1
i if i ∈ St

v({i}) otherwise.

Definition A.5 (Surplus vector). For given z ∈ R, S ⊆ N and time t let

Dt(S, z) ⊆ RN denote the set of vectors d > 0 with d(N) = d(W t(S)) = z, that

is, vectors d that share z among the weakest players. Surplus vectors are then

the elements of D̃t(S, z) = arg mind∈Dt(S,z) maxi {bi − (st
i + di)} . Let d̃t(S, z) ∈

D̃t(S, z).

The set D̃t(S, z) is well defined, in fact d̃t(S, z) is unique.3 The surplus

vector reduces the “distance” from the final imputation b while making sure

that gaining players (see Definition A.8) never exceed their final payoff. It will

be used to allocate extra gains beyond the subsistence level and hence the name.

Definition A.6 (Concatenation). If π1 = {(xt
1, S

t
1)}T1

t=0 and π2 = {(xt
2, S

t
2)}T2

t=0

are paths such that x0
2 = xT1

1 , we can define their concatenation as

π1 ∧ π2 =
{

(x0
1, S

0
1), (x1

1, S
1
1), . . . , (xT1

1 , ST1
1 ), (x1

2, S
1
2), . . . , (xT2

2 , ST2
2 )

}
.

A.4 Defining the bound M

We define a classification of imputations. The number of classes is M , that is

to be the upper bound in Lemma 3.1.

3We can construct d̃t(S, z) as follows: Per definition d̃t(S, z)i = 0 if i is not among the

weakest players in S. So we focus on the weakest players in S. Distribute z gradually,

always increasing d̃t(S, z)i, where i maximises bi− (st
i + d̃t(S, z)i). Clearly, this decreases the

maximum and bring us closer to the minimum. When z is consumed we are done.
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Definition A.7 (Similar imputations). Imputations x and y are similar if for

all quadruples of mutually disjoint coalitions QF , QC , QS and QI with QF ∪
QC ∪QS ∪QI = Q ( N and QI 6= ∅, and all partitions QC of QC we have

v(QF ) +
∑

C∈QC

v̄(C) + v∗(QS) + x(QI) ≥ v(Q) if and only if

v(QF ) +
∑

C∈QC

v̄(C) + v∗(QS) + y(QI) ≥ v(Q). (A.2)

Similar imputations are safe against the same blocks (that is QF = QC =

QS = ∅), even after certain modifications, where the initial differences are

limited to a subset of the players. While the particular construction will be

understood in Proposition A.10 the motivation is clear: if coalition QF has

its coalitional payoff, all coalitions C ∈ QC have their complementary value,

players in QS their individually rational value instead of the original payoff,

then imputations x and y must still neither or both be dominated via coalition

Q.

In our example x3 and x19 are similar. In order to establish similarity one

has to check all, in this case a total of 47 different conditions. For instance,

consider Q = {1, 2}, such that 1 ∈ QC and 2 ∈ QI . Then the condition becomes

v̄({1}) + x2 ≥ v({1, 2}) if and only if v̄({1}) + y2 ≥ v({1, 2}). This condition

states that if there is a path from x, such that at period τ the coalition {1, 2}
blocks, moreover, player 1 constitutes a cofaction and player 2 has a history of

continuous blocking from the start, then there is a path from y, where coalition

{1, 2} also blocks, and vice versa.

Now consider a path π = {(xt, St)}T
t=0. Let Gt =

⋃T
τ=t+1 Sτ denote the

set of gaining players: players who are sure not to lose, but only to gain in

the remaining τ > t part of the path. Such players require special attention

as along the modified path their payoff can only be increased, but not lowered.

Observe that the set of gaining players monotonically increases, and within one

path there are n + 1 possible different sets, with Gt = N only possible when

t = T .

Definition A.8. Imputations that are similar and have the same set of gaining

players belong to the same class.

Note that having the a certain set of gaining players is a path dependent
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property, however the number of pigeon-holes needed is the same for all paths.

Since Equation A.2 really creates partitions of N we have a finite number of

classes. Let M denote this number. If the number of imputations in π exceeds

M we are guaranteed to find T1 < T2 such that the imputations xT1 and xT2

are similar.

In practice even relatively short paths, such as our example will already have

similar imputations. As we have already mentioned, in our example x3 and x19

are similar, moreover they have the same (empty) set of gaining players and

therefore they belong to the same class.

A.5 Creating a shorter path

Let a, b ∈ A(N, v) be such that b ÂD a and π = {(xt, St)}T
t=0 be a shortest path

from a to b. Assume that π has a length exceeding M . We construct a shorter

path by modifying it: we seek two similar imputations xT1 and xT2 , remove the

subpath π2 connecting them, modify the tail π3 to get π′3 and reattach it to the

head π1. The resulting path π′ = π1 ∧ π′3 is shorter than π, giving the desired

contradiction.

s
x0

-
S1

s
x1

-
S2

s
x2

s
xT1

︸ ︷︷ ︸
π1

s
xT2

︸ ︷︷ ︸
π2

s
xT−1

-
ST

s
xT

︸ ︷︷ ︸
π3

W ²

s
x0

-
S1

s
x1

-
S2

s
x2

s
xT1 = (xT2)′︸ ︷︷ ︸

π1

s
(xT−1)′

-
ST

s
xT

︸ ︷︷ ︸
π′3︸ ︷︷ ︸

π′=π1∧π′3

Figure 2: Schematic picture of the proof.

A.5.1 Trisection of path π

As a first step in defining the new path we look for similar imputations along π.

By the assumption that T > M such imputations exist. Let us denote them by

xT1 and xT2 . The imputations xT1 and xT2 cut π into 3 subpaths π1, π2, and

π3 so that π = π1 ∧ π2 ∧ π3.
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A.5.2 A similar path: π′3

Our aim is to find the path π′3 from xT1 to b. While two imputations need not

be connected by a dominance path in general, the existence of a dominance path

from xT2 to b and the similarity of xT1 and xT2 makes the definition possible in

this case. We make use of a particular construction that uses the same sequence

of blocks.

In order to avoid cumbersome notation we write Qt instead of (ST2+t)′ =

ST2+t and yt instead of
(
xT2+t

)′ for all 0 ≤ t ≤ T −T2. Therefore the new path

is π′3 = {(yt, Qt)}T ′

t=0, where T ′ = T − T2.

Then we define path π′3 = {(yt, Qt)}T ′

t=0 by

Qt = ST2+t and yt =





xT1 if t = 0 and

st + δt + εt for 0 < t ≤ T ′,
(A.3)

where st is the subsistence payoff and δt and εt are the surplus vectors

δt = d̃t(St, v(St)− st(St)) and (A.4)

εt = d̃t(S̄t, v̄(S̄t)− st(S̄t)). (A.5)

What remains is to show that π′3 is a dominance path from xT1 to xT .

A.6 An example

Let us first apply our method to our example.

We have already found that imputations x3 and x19 are similar and there-

fore they can be used to create a shorter path. This shorter path consists of

x0, x1, x2, x3 and a modified versions of x20, . . . , x27 as defined by Equation A.3:

we use the same sequence of blocking coalitions. These determine the weakest

players in each blocking coalition as well as in its complement. Since the fu-

ture of each of the players is typically different, the set of weakest players is

mostly a set containing a single element: the surplus vectors assign the surplus

to this player and then finding the next imputation is straightforward. To this

only mputations y1, y2 and y7 are exceptions. In the first two we see players 1

and 2 forming a cofaction for a single round and then be blocked by 3 and 4.

As a result the distribution of the complementary payoff is actually irrelevant.

Imputation y7 is more interesting: all blocking players age gaining players and
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t yt Qt
F Qt

C Qt
S Qt

I

(0.925, 0.25, 0.25, 0.25)

(0.32, 0.374, 0.26, 0.568)

(0.08, 0.3, 0.030, 0.590)

0 (0.280, 0.582, 0.120, 0.018)

1 (0.221, 0.379, 0.382, 0.018) ∅ ∅ ∅ {3, 4}
2 (0.262, 0.42, 0.3, 0.018) ∅ {1, 2} ∅ {4}
3 (0 , 0.6, 0.3) 0.1) ∅ {3} ∅ {4}
4 (0 , 0 , 0.4, 0.6) ∅ {3} {1} ∅

5 (0 , 0 , 0.3, 0.7) ∅ {2, 4} {1} ∅

6 (0 , 0.4, 0.6, 0.) ∅ ∅ {1, 2} ∅

7 (0.129, 0.6, 0 , 0.271) ∅ ∅ {1, 4} ∅

8 (0.142, 0.3, 0.274, 0.284) {1, 4} ∅ {3} ∅

Table 2: The (shorter) path generated by the algorithm. Boldface indicates

blocking coalitions Qt. The right hand side refers to Proposition A.10 on page

17.

so there will be no further chance to decrease their payoffs. The definition of

surplus vectors, however ensures that no payoff runs over.

Our example also illustrates how easy it actually is to generate a similar

path that ‘works’.

A.6.1 The path π′3 is a dominance path

We show that the path π′3 generated in Subsection A.5.2 is a dominance path

from xT1 to xT . To do so we show that

• All elements of π′3 are imputations (Proposition A.9).

• The path is a dominance path, that is, an imputation is directly dominated

by the next imputation (Propositions A.10, A.11, and A.12).

• Finally we need to check that the path is indeed from xT1 to xT . While

the first holds per definition, the second requires an additional result,

Proposition A.13.

All propositions, except the last one will be shown by induction over t.
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Proposition A.9. If 0 ≤ t ≤ T ′, the vector yt is an imputation.

The second proposition is about the anatomy of a blocking coalition.

Proposition A.10. If 0 ≤ t < T ′ the blocking coalition Qt+1 partitions into:

QF Players belonging to a faction.

QC Players belonging to a cofaction.

QS Players whose fellow members from their last complementary coalition have

some been non-blocking since then.

QI Players who never belonged to the complementary coalition.

Moreover, players i in QS have yt
i = v({i}), players j in QI their original payoff

yt
j = y0

j .

Proposition A.11. If 0 ≤ t ≤ T ′ the block by Qt+1 is profitable: v(Qt+1) >

yt(Qt+1).

Proposition A.12. If 0 < t ≤ T ′ the imputation yt directly dominates yt−1

by coalition Qt, that is yt ÂQt

D yt−1.

Proposition A.13. The imputations yT ′ and xT = b coincide.

The two less intuitive results are Propositions A.10 and A.13. While the

latter is, as we will see, a result of certain properties of the surplus vector we

illustrate the first by our example.

A blocking coalition will contain a faction if it contains the previous blocking

coalition (which, itself, is then a faction), as in y8. It will contain a cofaction if

it contains the entire complementary coalition as in y2, y3 or y5. These can also

survive ‘nested’ in a larger faction: in y4 the blocking coalition contains player

3 that constitutes a cofaction since y2. A player belongs to QS if it comes with

a fraction of the complementary coalition, possibly via a cofaction. An example

of the latter is player 2 in y6: it is a fraction of the complementary coalition

Q̄4. Finally, player 4 belongs to QI for a while as it has a winning streak since

the original payoff. Note that if players 3 and 4 would belong to the blocking

coalition after yt, they would belong to QF as they would have a surplus they
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have to carry. If, after that, only one of them, say 4 would be blocking then 4

would again belong to QI , while 3 would never again.

Now we proceed to the proof itself.

Step 1. Trivial case, t = 0.

Proposition A.9. Since xT1 is an imputation y0 is also an imputation.

Proposition A.10. Trivially all i ∈ Q1 satisfy i ∈ QI .

Proposition A.11. Since y0 = xT1 and xT2 are similar, and v(Q1) > xT2(Q1),

the block by Q1 is profitable, that is, v(Q1) > y0(Q1).

Proposition A.12 is an empty statement here.

Step 2. Inductive assumption.

We assume that for each 0 < τ < t the imputation yτ has already been defined,

and we have shown that Propositions A.9, A.10, A.11 and A.12 hold.

Step 3. Inductive step.

Proposition A.9. By Proposition A.9 for yt−1, by the definition of subsistence

levels and since δt > 0, εt > 0 the vector yt is individually rational. By construc-

tion yt(N) = st(N) + δt(N) + εt(N) = v(N) so efficiency is also satisfied.

Proposition A.10. We consider 3 cases4 based on the type of the block Qt+1.

1. Qt ⊆ Qt+1. Then Qt is a faction and hence QF = Qt. Since Qt+1 6= N ,

Q̄t 6⊂ Qt+1. Then for each i ∈ Q̄t ∩ Qt+1 we have st
i = v({i}) and

δt
i = εt

i = 0, since i /∈ Qt, and i /∈ W t(Q̄t). Thus yt
i = v({i}) and

QS = Qt+1 \Qt.

See also t = 7 in the example: there Q8
F = {1, 4} and Q8

S = {3}.

2. Q̄t ⊆ Qt+1. Then Q̄t acts as a cofaction and hence Q̄t ⊆ QC . As Qt+1 6=
N and Qt 6⊂ Qt+1 we cannot have Qt as a faction. For each i ∈ Qt+1 \ Q̄t

by definition we have st
i = yt−1

i , moreover δt
i = εt

i = 0 since i /∈ Q̄t and

i /∈ W t(Qt): thus yt
i = yt−1

i .

We apply the inductive assumption for players in Qt.
4The fourth case, Qt ⊆ Qt+1 and Q̄t ⊆ Qt+1 would imply N ⊆ Qt+1 and hence N = Qt+1,

which does not make sense
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(a) Players in Qt
S∩Qt+1 with their initial or individually rational payoffs

belong to Qt+1
S as well.

(b) With the exception of Q̄t, cofactions in Qt+1
C are part of QC .

(c) If there is a faction that survives it becomes set QF .

(d) The interesting players are those that are members of a faction or

a cofaction that just broke up. In either case, by construction, any

surplus gained was given to the weakest players that are not in Qt+1.

Hence, in the latter case players have their stand alone payoff and

belong to QS . In the former case we get the pre-deviation payoffs

of players participating in an earlier deviation. By the induction hy-

pothesis Proposition A.11 holds for this coalition as well, and we can

repeat our arguments. As a blocking coalition must, by definition,

strictly contain any possible (co)faction, we gradually assign all play-

ers to one of the sets except potentially a set QI of players that are

winning from the start, but, by construction, these have their initial

payoffs.

3. Finally we consider the case when Qt * Qt+1 and Q̄t * Qt+1. First let

i ∈ Q̄t ∩ Qt+1. By the same argument as in Case 1, we have yt
i = v({i})

and (Qt+1 \Qt) ⊆ QS . Now let j ∈ Qt ∩Qt+1. By the same argument as

in Case 2, yt
j = yt−1

j and since j ∈ Qt, Proposition A.10 for yt−1 implies

it for yt.

Proposition A.11. We use the notation of Proposition A.10.

Let us partition players in Qt+1 according to Proposition A.10. We have

yt(Qt+1) = v(QF ) +
∑

C∈QC

v̄(C) + v∗(QS) + y0(QI), (A.6)

where QC is the collection of cofactions in QC . Note that QC and/or QS may

be empty.

Now consider the corresponding payoffs in path π. The players are involved

in blocks by the same coalitions and hence the same partition of Qt+1 forms.

However, in this “organic” path extra payoffs are distributed in an uncontrolled
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way so that the payoffs of not only the weakest players can increase. Therefore

players in the sets QF , QI , QS and QC can collect (but not lose!) additional

payoff in addition to the payoffs characteristic for the group. Since the block by

St+T2 = Qt is profitable

v(Qt+1) > xt+T2(Qt+1) ≥ v(QF ) +
∑

C∈QC

v̄(C) + v∗(QS) + xT2(QI). (A.7)

Since xT2 and y0 = xT1 are similar, Equations A.6 and A.7 imply v(Qt+1) >

yt(Qt+1).

Now assume that Qt+1 does not contain players who have their initial payoffs

at t, but possibly a composite player. This modifies Equation A.6 as follows:

yt(Qt+1) =
∑

C∈RC

v̄(C) + v∗(RS) + v(RO). (A.8)

As before, in the other path blocks can lead to gains, hence:

v(Qt+1) > xt
3(Q

t+1) ≥
∑

C∈RC

v̄(C) + v∗(RS) + v(RO). (A.9)

Combining this equation with Equation A.8 we get v(Qt+1) > yt(Qt+1) as

required.

Proposition A.12. For i ∈ Qt the subsistence level st
i = yt−1

i already guarantees

the level of pre-block payoffs. By the weaker Proposition A.11 for yt−1 blocks

are profitable and so the equaliser function δt shares a strictly positive amount,

δt(Qt) > 0 among the members of Qt and, per construction, δt
i ≥ 0. Since

εt
i = 0, we conclude yt

Qt = st
Qt + δt

Qt + εt
Qt > yt

Qt .

Proposition A.13. What remains to prove is that the newly constructed path

not only starts, but also arrives at the right imputation.

Due to the particular construction of π′3, the payoff for players who are not

dominating is defined without reference to their previous payoffs. Hence a player

may accumulate however high payoff, it will also lose it unless it belongs to the

gaining set.

Now we use the fact that xT1 and xT2 were selected in part because they

have the same gaining sets, GT1 = GT2 of players so that xT1
i ≤ xT2

i for all

i ∈ GT1 . The definition of surplus vectors ensures that they are always the

weakest players who get the profit of the deviation, and these are typically not
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the gaining players. However, if the gaining players are also the weakest (they

are clearly the “strongest”, but the two may coincide) the payoff equalising

vectors ensure that none of the gaining players is assigned a payoff higher than

the respective payoff in b = xT . Since GT ′−1 = N , by efficiency they must also

receive exactly the payoff at b.

Appendix B Proof of Lemma 3.4

Sengupta and Sengupta [10] define a dominance path from any outcome to the

core, but since their algorithm is not primitive recursive their result can be used

here but to the extent of existence. In Section A.5.2 we have constructed a

path of length at most M relying only on the sequence of blocking coalitions.

Since the number of coalitions is finite, so is the number of possible sequences

of length at most M . Then our algorithm can be defined as follows.

1. Generate all coalition sequences {Qt}T
y=1 of length at most M .

2. For all such blocking sequences do the following loop:

(a) Attempt to generate {yt}T
y=1 using Equation A.3.

(b) If generation is successful then per construction it is a bounded se-

quential domination path. Exit loop.

(c) Take the next blocking sequence.

3. Stop.

Since a ÂI b, by Lemma 3.1 there exists a path π′3 =
{

(ỹt, Q̃t)
}T ′

y=1
. The

algorithm goes through all coalition sequences including
{

Q̃t
}T ′

y=1
so it finds it,

unless it finds another suitable sequence and terminates sooner. The algorithm

is primitive recursive by construction.

Appendix C Proof of Theorem 3.5

We begin by the following lemma.
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Lemma C.14. Let a ∈ A(N, v), c ∈ C(N, v) and {Qt}T
t=1 a sequence of coali-

tions. Then there exists a dominance path {(yt, Qt)}T
t=0 from a to c if and only

if

1. for all i ∈ ⋂T
t=1 Qt we have bi ≥ ci,

2. v(QT ) = c(QT ), moreover

3. if ∃ 0 < t < T such that Q̄t ⊆ Qt′ for all t′ > t then c(Qt) = v(Qt).

Proof. The if-part holds by the construction of {yt}T
t=0 as given in Section A.5.2.

For the only-if part we assume that the whole dominance path is generated and

yT = b. For those in the complementary coalition Q̄T the latter is granted per

definition of εT ′ . We focus on the players in the last blocking coalition QT .

Property Bt in the proof of Lemma 3.1 partitioned the members of QT into

four sets.

• If i ∈ QS then yT−1
i = v({i}). Since c is an imputation ci ≥ yT−1

i must

hold.

• QF obtained a payoff of v(QF ) when it was blocking and has since then

only increased its payoff. However c(S) ≥ v(S) holds for all coalitions S.

• For QC we require c(QC) ≥ yT−1(QC) ≥ v̄(Q̄C). On the other hand,

since c is a core imputation c(Q̄C) ≥ v(Q̄C) so c(QC) ≤ v̄(Q̄C). Hence

c(QC) = v̄(Q̄C) or alternatively c(Q̄C) = v(Q̄C). Since QC = Q̄t for some

t such that Q̄t ⊆ Qt′ for all t′ > t, we must have c(Qt) = v(Qt).

• Finally we consider QI that contains players with their initial payoffs y0
i .

Such players have a winning streak from the beginning to the end so their

payoff monotone increases. Hence for all such i the relation ai ≤ ci must

hold.

So we conclude that all conditions of Lemma C.14 are necessary for profitable

blocks along {(yt, Qt)}T
t=0.

Proof of Theorem 3.5. If we knew the core imputation c that is accessible from

a then we could simply use Lemma 3.4 to prove the theorem. But not only that

we do not know such a c, but there are in general a continuum of imputations in
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C(N, v) all of which are potential candidates, so checking all of them one-by-one

is not an option. However given a and a sequence {Qt}T
t=1 of blocking coalitions,

Lemma C.14 enables us to define the –possibly empty– accessible subset of core

Ca

(
N, v, {Qt}T

t=1

)
⊆ C(N, v) satisfying the conditions of Lemma C.14. By this

lemma for any c′ ∈ Ca

(
N, v, {Qt}T

t=1

)
we can generate a sequence {yt}T

t=1 of

the required type. By Theorem 3.3 there exists a
{

Q̃t
}T∗

t=1
, such that the set

Ca

(
N, v,

{
Q̃t

}T∗

t=1

)
is not empty, since there exists c∗ ∈ Ca

(
N, v,

{
Q̃t

}T∗

t=1

)
.

Then our algorithm is as follows:

1. Generate all coalition sequences of length at most M .

2. For all sequences of blocking coalitions {Qt}T
y=1 do the following loop:

(a) Generate the set Ca = Ca

(
N, v, {Qt}T

t=1

)
.

(b) If Ca is not empty exit loop.

(c) Take the next sequence.

3. Generate {yt}T
t=1.

4. Stop.

By Lemmata 3.4 and C.14 the algorithm terminates and produces a path

with the required properties. By construction the algorithm is primitive recur-

sive.
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