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Abstract Gibbard’s (1973) and Satterthwaite’s (1975) result implies that
anonymous surjective social choice functions on more than two alternatives
are manipulable. Placing some mild constraints on the number of agents
compared to the number of alternatives, we show what the minimal number
of manipulable profiles of such social choice functions is. Moreover, all such
social choice functions attaining the lower bound are characterized. They
show a trade off between minimizing manipulability and treating alternatives
neutrally.

1 Introduction

A well-known result of Gibbard (1973) and Satterthwaite (1975) states that
any strategy-proof surjective social choice function on more than two alter-
natives is dictatorial. This implies that anonymity and surjectivity are not
compatible with strategy-proofness. Here we investigate how incompatible
these are, i..e. how much manipulability we have to allow at anonymous and
surjective social choice functions.

There are a few studies on the degree of vulnerability for strategic be-
haviour of classical social choice functions, such as Borda, Plurality, etc..
For example, Aleskerov (1999) contains simulation and enumeration results
on 26 different social choice functions for different indices of manipulability.
Slinko (2002) counts the number of instabile profiles of classical social choice
functions, which is an upper bound for the number of manipulable profiles
of these social choice functions. On the other hand, little is known about the
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extent of manipulability that social choice functions satisfying certain prop-
erties must admit. Results on this may provide lower bounds to which then
all social choice functions satisfying these properties can be compared. An
investigation was pioneered by Kelly (1988), who gave the minimal number
of manipulable profiles for nondictatorial surjective social choice functions
with three alternatives and two agents and formulated several conjectures.
This line of research was continued by Fristrup and Keiding (1998), who
gave the minimal number of manipulable profiles for two agents and any
number of alternatives. Maus et al. (2004) consider the three alternative
case and show that for any number of agents larger than two there are six
minimally manipulable nondictatorial surjective social choice functions, and
these are even anonymous. However, they also consider minimally manipu-
lable unanimous and nondictatorial social choice functions. These turn out
to be nondictatorial only in a minimal sense, namely at only one profile.

Here we will exclude such social choice functions by demanding that
agents are treated anonymously and we replace unanimity by surjectivity. In
particular, anonymous social choice functions are nondictatorial. So, we are
interested in the minimal number of manipulable profiles that an anonymous
surjective social choice function has to admit. It is well known that in case of
two alternatives any monotonic social choice function is strategy-proof. As
monotonicity and anonymity are compatible (see e.g. May (1952)) in case of
two alternatives this minimal number is zero. In case of three alternatives the
minimal number is equal to the number of agents. This follows from Maus et
al. (2004). Actually, if there are more than two agents the only social choice
functions reaching this minimal number are anonymous. To the best of our
knowledge only so far the problem to find the minimal number of manipu-
lable profiles of anonymous surjective social choice functions is completely
solved. Although here for four or more alternatives this minimal number is
determined for many cases, there are still some cases which are completely
open. Due to the combinatorics used in the proofs only the following cases
are solved: The four alternatives and at least five agents case and the five or
more alternatives and at least two more agents than alternatives case. So,
roughly speaking, the problem is not solved if there are at least as many
alternatives as agents. Up till now we could neither solve the problem for
any of these cases by a different proof nor could we find counterexamples.
Therefore the problem is completely open for these cases.

The characterization we provide is unified for all numbers of alternatives.
Interpreting the definition with two alternatives boils down to a strategy-
proof social choice function for two alternatives called status-quo voting.
In the three alternatives case it defines the minimally manipulable nondi-
catorial surjective social choice functions, as found in Maus et al. (2004).



In general the characterized social choice functions show how one can (but
probably would not want to) minimize manipulability while treating agents
anonymously. They minimize also surjectivity, meaning that except for two
alternatives, say b and c, for all other alternatives there is precisely one pro-
file at which they are chosen. At the remaining profiles the choice between b
and c is on a unanimity basis: ¢ is chosen unless b is unanimously preferred
to b. So, alternatives are treated in a nonneutral way, which will usually be
just as undesirable as treating agents unequal. Nevertheless the result shows
what is possible if we want to minimize manipulability.

It should be noted that the way in which we measure manipulability,
namely by counting manipulable profiles, is not the only possible one. In fact
there are a lot of variations of this, where for example profiles are counted
by the number of agents that can manipulate them, or the severity of the
manipulation measured by the distance between what the agent achieves with
and without manipulation is taken into account. Aleskerov (1999) contains
an overview of such variations and numerical results on the manipulability
of 26 social choice functions according to these measurements.

Within the restrictions pointed out we show as a main step of our proof
of the main result that strategy-proof and anonymous surjective social choice
between more than two alternatives is not possible on subsets of the whole
domain satisfying a certain diversity condition, namely on subsets where
agents hold at least £ € N different preferences. We point this out here
since this is an impossibility result on a restricted domain that is of interest
on its own. It says, that the impossibility result of Gibbard-Satterthwaite
cannot be resolved by demanding diversity of preferences. The reader who is
familiar with a proof of Arrow’s theorem (Arrow 1963) and a proof Gibbard-
Satterthwaite’s theorem building on Arrow’s theorem will recognize a lot of
similarities. The basic idea is to show that the steps taken there can be
adopted to go through also on the restricted domains considered here. To
ensure that these steps can be adopted we need the restrictions that then
cause the restrictions on the main result.

In the next section the relevant definitions are given, and the relation to
Gibbard (1973), Satterthwaite (1975) and Maus et al. (2004) is made more
precise. Sections 4 and 5 link strategy-proofness to monotonicity, Pareto
optimality and decisiveness on sets of profiles where agents hold at least k
different preferences. Then, Section 6 combines this to show that there are
no strategy-proof and anonymous surjective social choice functions selecting
among more than two alternatives on these restricted domains. After that,
Section 7 characterizes the minimally manipulable anonymous surjective so-
cial choice functions selecting from more than three alternatives. Finally,
Section 8 concludes.



2 Preliminaries

We denote the cardinality of a set S by |S|.

Let A be a finite set of alternatives, m := |A| > 3, and N a finite set of
agents, n := |N| > 2.

Let ¢t € A x A. We call t complete if for all z,y € A (z,y) € t or
(y,z) € t. Note that completeness of ¢ implies (x,x) € t for all z € A. We
call t transitive if for all z,y, 2 € A (z,y) € tand (y, z) € t implies (z, 2) € A.
We call t antisymmetric if for all x,y € A (x,y) € t and (y,z) € t implies
that z = y.

A preference t C A x A is a linear ordering (complete, transitive, an-
tisymmetric) on A. Let P denote the set of all preferences. Suppose that
A ={xy,29,...2,}. By completeness, transitivity and antisymmetry we can
write conveniently

t=x1T9...Tm

for the preference ¢ such that (z;,z;) € ¢ if and only if i > j, i,j €
{1,2,...,m}, and
t=...2...9...

if we want to express only that z is strictly preferred to y.

A profile p is a map from N to P. Let P denote the set of all these maps.
Thus, a profile assigns to every agent i a preference p(i) over the alternatives.
For a nonempty subset S of N we denote by p|s the restriction of the map
p to the domain S. We denote a profile such that all agents have the same
preference t € P by tV.

A social choice function is a function f : PY — A. Hence, a social choice
function selects a unique alternative f(p) at every profile p.

A social choice function is called surjective if any alternative in A is
chosen at least once, i.e. if f(PY) = A. In the literature this is also known
as citizen-sovereignity. Throughout this paper we assume that any social
choice function is surjective, and do not mention this anymore explicitly.

For a permutation o of N and a profile p € PY let p o ¢ be the profile
given by (poo)(i) := p(o(i)) for all i € N. A social choice function is called
anonymous if f(p) = f(poo) for all permutations o of N. Thus, anonymous
social choice functions are symmetric in the arguments. In a sense they treat
agents equally.

In contrast to anonymity, the following dictatorial social choice functions
dicty respect only the preference of one single agent d € N, the dictator. For
any profile p dicty is defined by

dicty(p) :== x



where z is such that p(d) = z.... So, dicty(p) is the most preferred alterna-
tive of agent d in p(d). A social choice function f is called nondictatorial if
there is no agent d such that f = dicty.

3 Manipulation of social choice functions

We are interested in strategic behaviour of individuals when facing cooper-
ative decision-making as captured by social choice functions. This is for-
malized by the following definitions. Let f : PY — A be a social choice
function. Let p € P be a profile. Then each profile ¢ such that, for some
i € N, q|n_iy = pln—gsy and q(i) # p(i), is called an i-devation from p.
Letting t := ¢(i) we use the notation ¢ = (p_;,t). If it is not important
which agent deviates from p to ¢ we call ¢ a deviation from p. A profile p is
called manipulable (under f) if there is an agent that is better off by being
dishonest about his preference, i.e. if there is an ¢ € IV, and an i-deviation ¢

such that
(f(p), f(q) ¢ p(i).

In this case we say that p is manipulable towards q (under f). Let B C P¥
and

M¢(B) : = {p € B | p is manipulable towards
some ¢ € B under f}.

A social choice function is called strategy-proof on B if My(B) = (), otherwise
it is said to be manipulable on B. When B = PY we omit B and write
Mf = Mf (PN) .

The prominence of the dictatorial rules arises from the following impos-
sibility result due to Gibbard (1973) and Satterthwaite (1975).

Theorem 1 Let A be a finite set of alternatives, |A| > 3. Let f : PN — A
be a nondictatorial social choice function. Then

| M| > 1.

However, this theorem makes no statement about the number of manip-
ulable profiles such social choice functions admit. This question has been
solved by Kelly (1988) for two agents and three alternatives, and by Fristrup
and Keiding (1998) for two agents, and any number of alternatives larger
than three. In Maus et al. (2004) it is shown that for m = 3 and any number
of agents larger than two, the following social choice functions are exactly the
minimally manipulable ones among the nondictorial social choice functions.
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Definition 2 Choose b,c € A,b# ¢, and let A = {ay,...amn_2,b,c}. Choose
m — 2 different preferences t; € P,j € {1,2,...,m — 2}, such that t; =
caj..booc.. forallj €{1,2,...,m—2}. Let m : PN — A be the social
choice function given by

a; ifp:tévforsomej6{1,2,...,m—2}
m(p) =< b if (b,c) € p(i) foralli € N andp & {tI¥,...tN ,}
¢ if there is an i € N such that (c,b) € p(i).

Note that the social choice functions given by Definition 2 are not only
nondictatorial but even anonymous. So, they are the minimally manipulable
anonymous social choice functions for three alternatives. Hence, we do not
have to treat the three alternative case here. We will show that also for
m > 4 the social choice functions given by definition 2 are the minimally
manipulable anonymous social choice functions. One might hope that as
in the case m = 3 the minimally manipulable nondictatorial social choice
functions coincide with the anonymous ones. We will see that this is not so.

4 Monotonicity and Pareto optimality on B*

Let k£ € N and let
B¥:={pe PV ||p ' (N)| >k}

be the set of all profiles that contain at least k different preferences. We
want to show an impossibility result for strategy-proof and anonymous social
choice functions on B* for certain k. This section contains two ingredients
for that impossibility result, a monotonicity lemma and a Pareto optimality
lemma. N

Let p,q € P]i, a € AC A We say that a weakly improved from p to q
with respect to A, if for all alternatives x € A, we have for all agents i € N

(a,z) € p(i) implies (a,x) € q(i).

Let f: PN — A be a social choice function and let B C PY. We say that f
is monotone on B, if for all p,q € B such that f(p) weakly improved from p
to ¢ with respect to f(B), we have

This monotonicity condition corresponds to the one used in Dasgupta et al.
(1979) for social choice rules, and is also known as Maskin-monotonicity. The
following lemma links strategy-proofness to monotonicity.



Lemma 3 Let f : PN — A be anonymous and strategy-proof on B¥ k € N.
Then f is monotone on B*.

Proof. Let p,q € B* be such that f(p) weakly improves from p to ¢
with respect to f(B¥). We have to show that f(p) = f(q). Let the profiles
rte PN, t€{0,...,n}, be given by

q(i) i<t

(i) = { p(i) i>t

for all i € N. Then 7 = p and 7" = ¢. For the moment assume that r’ € B*
for all t € {0,...,n}. As f is strategy-proof on B* we have (f(r'), f(r°)) €
ri(1) = q(1) and (f(r°), f(r)) € p(1). As f(r°) = f(p) and f(p) weakly
improved from p to ¢ with respect to f(B¥), (f(r°), f(r')) € p(1) implies
(f(r%), f(r')) € q(1). So,

and

(f(r%), F(r1)) € a(1).
This implies that f(p) = f(r°) = f(r!), since preferences are antisymmetric.
Repeating this argument yields

flo)=f(rh)=f0*)=...= f(") = f(q).
It remains to be shown that r* € B* for all t € {0,...,n}. Let
v:=[p(N)], w:=|g(N)] and u := |g(N) N p(N)].

By anonymity, the order of the agents is not essential. We assume that the
preferences in p and ¢ are held by the agents in such a way that [p({1,...,v})| =
v, l¢({1,...,w})| = w and p(i) = ¢(i) for all i € {1,2,...,u}. Now, if
1 €{0,1,...,u}, then 7' = p € B* and if [ > min{v, w} then ' €¢ Bmin{vw},
where min{v,w} > k, so r' € B¥. In the remaining cases, i.e. if u < [ <
min{v,w}, we have [r'(N)| > |r'=Y(N)| as r*(l) = q(I) ¢ ¢({1,...,1 —1}) =
rt({1,...,1 —1}) and 7'(l) = q(I) ¢ {p({l +1,...,n}) by the way the pref-
erences in p and ¢ were arranged among the agents. Hence, ' € B¥ by a
simple inductive reasoning based on r* € B*. m

As a corollary of Lemma 3 we can state the following.

Corollary 4 Let f : PN — A be anonymous and strategqy-proof on B* k €
N. Let a € f(B*) and p € B* be such that (x,a) ¢ p(i) for alli € N and all

x € f(B¥) —{a}. Then f(p) = a.



Let z,y € A, x # y. We say that z Pareto dominates y at the profile p, if
(z,y) € p(i) for all i € N. A social choice function is called Pareto optimal on
B C PY, if it does not choose alternatives Pareto dominated by an element
of f(B), i.e. there is no x € f(B) — {f(p)} such that x Pareto dominates
f(p) at p.

The second lemma shows that if f is anonymous and strategy-proof on
B*. then f is Pareto optimal on B*. We have to make restrictions on k
in order to make sure that there are sufficiently many different preferences
having the same alternative at the first and second places.

Lemma 5 Form =4 let k < m+1 and for m > 5 let k < m + 2. Let
f: PN — A be strategy-proof and anonymous on B*. Then f is Pareto
optimal on B*.

Proof. Let p € B*, x € f(B*)and y € A be such that x Pareto dominates
y at p. Suppose that f(p) = y. It is sufficient to deduce a contradiction.
By Lemma 3 f is monotone on B*. As p € B* and f is anonymous we
can without loss of generality suppose that [p({1,...,k})| = k. Let [ :=
max{k — (m—2)!,0}, then by monotonicity we can assume that for I <i < k
we have p(i) = zy.... In view of Corollary 4, I > 1. For i € {1,...,l}
let Z; == {a € A | (a,y) € p(i)} be the upper contour of y at p(i). There
are precisely (m — 2)! preferences where x is best and y is second best and
[ > 1, hence k > (m — 2)! and {z,y} C Z; for all i € {1,...,l}. Consider
(i) obtained from p(i) by shifting alternative x to the top leaving all other
alternatives unchanged:

r(i) = ({2} x AU (p(i) N (A~ {=})*).

For | < i < k we have r(i) = p(i). If we show that 7 € B* then by mono-
tonicity f(r) =y, as y = f(p) improves from p to r.

Case 1: {Zy,..., 2} =L

As{z,y} C Z;and |{Zy,..., Z)}| =1, [r({1,...,k})| = k. Hence, r € B*.
By Corollary 4 f(r) = x, contradicting f(r) = y.

Case 2: {Zy,...,Z)}| < L.

So, 1 >2.Butl=k—(m—-2)! < (m+2)—(m—-2)! <1 form >5.
So, m = 4 and | € {2,3}. Without loss of generality Z7; = Z, and let
A =A{z,y,a,b}. As {z,y} C Z; for all i € {1,...,1}, there are alternatives
2 € Zy—{z,y}tand, if Il =3, 23 € Z3 —{z,y}. fl =3 and Z3 = Z, = Z,
we must have |Z;| = 4 as |Z;| = 3 implies that without loss of generality
p({1,2,3}) C {axyb, vayb}, contradicting |p({1,...,k})| = k. So, if | = 3,
we can choose a z3 € Z; — {x,y, 21 }. Without loss of generality suppose that



z1 = a and, if [ = 3, z3 = b. Consider the profile 7 defined by

aryb if i =1,
) mayb ifi=2,
(1) = xbya ifi=1=3,

r(i) ifi > L.

Then 7 € B* and y improves from p to 7. Hence, f(F) = y. Let 7 :=
(r_1,zaby). By Lemma 4, f(7) = z. So, 7' is a 1-deviation from 7 such that
(f(7), f(7)) ¢ 7(1). But then ¥ € B* is manipulable and this contradiction
ends the proof. m

5 Decisiveness on Bfa a

Let X C A and B% be the set of all profiles in B* where all alternatives in
X are strictly preferred to alternatives in A — X,

BY :={pe B¥|forallie€ Nandz € X,y € A— X we have (z,y) € p(i)}.

Let p € Bfa’b}, a # b. We say that S C N decides over (a,b) at p, if f(p) =a
and S = {i € N | (a,b) € p(i)}. We say that S decides over (a,b), if
S decides over (a,b) at all profiles p € Bfa’b} that satisfy S = {i € N |
(a,b) € p(i)}. We denote the set of all S that are decisive over (a,b) by
W*(a,b). The following is an immediate consequence of the definitions of
weak improvement and monotonicity.

Remark 6 For social choice functions f which are monotone on B*, S de-
cides over (a,b) at a profile p € Bfa,b} if and only if S € W¥(a,b).

The next lemma shows some decisiveness properties of f on B* over triples
of alternatives, when f is strategy-proof on B*.

Lemma 7 Let Kk < m ifm = 4 and k < m+2 if m > 5. Let f be
anonymous and strategy-proof on B*, f(B*) D {a,b,c} for different a, b and
c. Let S € W¥(a,b). Then

1. S € W¥(c,b) and S € W¥(a,c),
2. S € Wk(b,a) and

3. 19| > in.



Proof. (1): By Lemma 3 f is monotone on B*. By the restrictions on &

Bfa’b} is nonempty. Let p € Bfa’b} be such that S is decisive over (a,b) at p.
For a permutation 7 on A and a preference t € P let

" ={(r(x),7(v)) | (z,y) € t}.

For x,y € A let (z y) denote the permutation that maps z on ¥y, y on z and
all other elements of A on themselves.

Let p' be such that p'|s = p|s and p'(i) = (p(i))@® for all i € N — S.
Then p! € B*. By monotonicity f(p') # b, as b weakly improves from p' to
pand f(p) = a # b. As b Pareto dominates all x € A — {a, b} at p* we also
have by Lemma 5 that f(p') ¢ A — {a,b}, so f(p') = a.

Let p? be such that p?|y_s = p'|y_s and p?(i) = (p' (i) for all i € S.
Then p? € B*. By monotonicity f(p?) = a, as a weakly improves from p' to
p* and f(p') = a.

Let p® be such that p*|y_g = p?|y_g and p?(i) = (p?(i))@ for all i € S.
Then p* € B*. As ¢ € f(B*) Pareto dominates all alternatives x € A— {b, ¢}
it follows by Lemma 5 that f(p®) € {b,c}. By monotonicity f(p®) # b, as b
weakly improves from p? to p? and f(p?) = a # b. So, f(p*) =c.

Finally, let p* be such that p*|y_s = p’|n_s and p*(i) = (p*(1))@? for
all i € S. Then p? € be’c} and by monotonicity f(p*) = ¢. So, S decides
over (c,b) at p* and by Remark 6

S € Wk(e,b).

In order to see that S decides over (a,c) let p° be such that p°|s = p?|s
and p°(i) = (p?(i))® for alli € N — S. Then p® € B* and as f(p?) = a we
have by monotonicity that f(p®) = a.

Let p® be such that p%|s = p°|s and p°(i) = (p°(i))@® for alli € N — S.
Then p°® € By, , and by monotonicity f(p°) = a. So, S decides over (a,c) at
p® and by Remark 6

S € Wk(a, c).

(2): By (1) we have S € W¥(a,c). Thus, applying (1) to S € W¥(a,c)
yields S € W¥(b, ¢) and then applying the second part of (1) to S € W¥(b, ¢)
yields S € Wk(b, a).

(3): To the contrary suppose that [S| < in. By anonymity we have
T € W¥(a,b) for all T such that |T'| = |S|. By (2) also T' € W*(b,a) for all
such T. By monotonicity then T € W¥(b,a) for all T such that |T| > |S].
So, N — S € W¥(b,a) and this contradicts S € W¥(a,b). m

In the case m =4 and k = m+ 1 = 5, Bfa’b} is empty, but an almost
similar result can be achieved using the following terminology. Let A =
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{a,b,c,d}. Let Bf(;db} be the set of all profiles p in B*¥ where all except one

agent ¢ € N prefer all alternatives in {a, b} to all alternatives in {c, d}, and
p(i) € {adbc, bdac}. Let p € Bf’d a # b. We say that S C N d-decides over

a,b}?
(a,b) at p,if f(p) =a and S = {}’L € N | (a,b) € p(i)},adbe ¢ p(S). We say
that S d-decides over (a,b), if S d-decides over (a, b) at all profiles p € B?&‘fb}
that satisfy S = {i € N | (a,b) € p(i)}, adbc ¢ p(S). We denote the set of
all S that are d-decisive over (a,b) by Wk (a,b).

As before we make the following observation.

Remark 8 For social choice functions f, which are monotone on B*, S d-
decides over (a,b) at a profile p € Bfédb} if and only if S € W¥(a,b).

Now we can show a lemma like Lemma 7 for d-decisiveness.

Lemma 9 Let A = {a,b,c,d} and k =5. Let f be anonymous and strategy-
proof on B¥, f(B¥) D {a,b,c} for pairwise different a, b and c. Let S €
W¥(a,b). Then

1. S € Wk(c,b) and S € W¥(a,c)
2. S € Wk©b,a)
3. 18] > 3n.

Proof. By Lemma 3 f is monotone on B*. Let S € W}(a,b). Then
Ip(S)| = 2 by definition, and thus 2 < |S| < n — (k — |[p(S)]) = n — 3.
Without loss of generality S = {1,...,|S|}. Consider the following profiles.

p | p | P | | P

{1} abed | abed | acbd | cabd | cbad | acbd | acbd

S —{1} abdc | abdc | acdb | cadb | cbda | acdb | acdb

N —{n—1,n} | bacd | bead | bead | bead | bead | cbad | cabd
n—1 badc | beda | beda | beda | beda | cbda | cadb

n bdac | bdca | bdca | bdca | bdca | cdba | cdab

As in the proof of Lemma 7 by these profiles it follows that S € W¥(c, b)
and S € W¥(a,c). Then (2) follows by applying (1) twice as in the proof
of Lemma 7. Furthermore, if T C N such that || > S and |T| < n — 3,
then by anonymity and monotonicity T € W¥(b,a). Suppose S € Wk(a,b)
and |S| < gn. Then [N — (SU{n})| = [N| = [S| -1 > in—1> |S]. So,
N —(SuU{n}) € Wk(b,a). Consider the profile ¢ = (p_,, adbc). By strategy-
proofness f(q) = a. But {i € N | (b,a) € q(i)} = N — (SU{n}) € Wk(b,a),
so f(q) = b, a contradiction. m
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6 Gibbard-Satterthwaite on B*

We combine the results of the previous sections to show an impossibility result
for strategy-proof anonymous social choice functions among more than two
alternatives on the restricted domain B*, i.e. when agents preferences have
to satisfy a minimal diversity.

Theorem 10 I[fm=4letk<m+1<nandifm>5letk <m+2<n.
Let f be strategy-proof on B¥ and anonymous. Then |f(B*)| < 2.

Proof. To the contrary suppose that there are pairwise different a, b, c €
f(B*). Note that by the constraints n > 5. By Lemma 3 f is monotone on
BF. Let {S,T,U} be a partition of N, such that for X,Y € {S,T,U} we
have 0 < | X| < |Y|+ 1. Consider profiles p such that

p(S) C {teP|t=ab...},
{te P|t="bc...} and

C
C {teP|t=ca...}.

There are (m — 2)! different choices for any p(i), hence we may assume that
p € B*. Without loss of generality f(p) = a. For some S such that |S| < mn
we will prove that S € W*(a,c) if (m,k) # (4,5) and S € W¥k(a, c) if
(m, k) = (4,5). As |S] < sn, we have a contradiction with Lemma 7, or
Lemma 9 respectively, and are done.

Case 1: (m, k) # (4,5)

Let {S,T, U} be a partition of N such that S €S, 7 DT, U 2 U and
for X,Y € {S,T,U} we have 0 < |X| < min{|Y| + 1, |S|}. Consider ¢ such
that

q(S) C {teP|t=ac...},
oT) € {teP|t=ca.. }and
qU) C {teP|t=ca..}.

A preference ¢(i) in S or TUU can be extended in (m — 2)! ways. We prove
that there are such g € B{a - So, we have to show that

k < min{|S|, (m — 2)!1} + min{|T| + |U], (m — 2)!} =: a.

There are four cases. If o = |S| + |T| 4 |U| = [N| then a = n > k. If
a =S|+ (m — 2)!, then, as |S| > 2,

a>24+m-=-2)!>m+2>k

12



if m > 5, and
a>2+(m-=2)=m>k

if m = 4, since (m, k) # (4,5). If @ = 2(m — 2)!, then a > 2+ (m — 2)! and
we can argue as in the previous case. Asn > m+1and m > 4, n > 5. So,
|S| < |T|+ |U|. Therefore the case o = (m —2)!+T|+ |U| cannot occur. So,
we may assume that g € Bfa’c}.

From p to q a weakly improves, so by monotonicity f(q) = a, and therefore
S € Wk(a,c). By the way S was chosen we have |S| < sn, contradicting
part 3 of Lemma 7.

Case 2: (m, k) = (4,5)

Subcase 24 : |S| =1

Then n = 5, and by anonymity we may assume that

p = (ac...,becad, beda, cabd, cadb).

Let
q = (acdb, acbd, cdab, cabd, cadb).

Then a has improved from p to ¢, so f(g) = a by monotonicity. But then
{i € N | (a,¢) € q(i)} =S = {1,2} € W¥(a,c), contradicting part 3 of
Lemma 9.

Subcase 28 : |S| > 2

Let p' be such that p'|y_s = p|n_s and p' (i) = (p(i))*® for all i € S.
Then p' € B*. By monotonicity f(p!) = a, as a weakly improves from p to
p'. Without loss of generality 1 € T. Let p? be equal to p! if there is an
agent 7 € T with p'(i) = beda. So, f(p?) = a. Otherwise p!(T) = {bcad}and
we let p? := (p 5, beda) for some i € T. Obviously p*> € B5. Now ¢ Pareto
dominates d at p?, so d # f(p?) by Lemma 5. As f is strategy-proof on
B’ and f(p?) ¢ {b,c} we obtain f(p?) = a in the case p'(T) = {bcad}
as well. Now consider p* such that p*|y_7 = p*|n_71, P*(1) = cdab and
p*(T—{1}) = {cabd}. Then a weakly improves from p? to p?, and p* € B*, so
by monotonicity f(p?) = a. But then {i € N | (a,c) € p*(i)} = S € Wk(a, c),
contradicting part 3 of Lemma 9. m

The theorem says that within the restrictions the impossibility result
of Gibbard Satterthwaite holds already on the smaller domain of profiles
that satisfy a certain diversity. This may not surprise the reader because
practically situations with a lot of diversity can be expected to be suspect to
manipulation. At least it confirms this expectation. We did not think much
about the situation when k exceeds the bounds given. This is beyond the
scope of this paper since the result is only a by-product on the way to the
main result contained in the next section.
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7 Minimal manipulability of anonymous so-
cial choice functions
Before proving the main result we show some helpful inequalities.
Lemma 11 Let k. l,m,n € N. Then
1K < (k+1—1)

2. If2<k<m+1<n andm > 4, then

(5o (3 )

Proof. (1):

k+1

k!l!g(k+l—1)!<:>k+l§< .

><:>k,l21

@ Note that
(5 k) ooy > (5 - 1) (m-2)

m! n—1)! m!
= (?—k)<m>—?>—l
m! (n—1)! (n—1)!
— 3 (((nfk)!(mf2)) - 1) >k ((nfk)!(m72)) -1
Let o := % Then we have to show that Z(a — 1) > ka — 1.

Now, for m > 5 we have m! > 3(m + 1)?, so it is sufficient to prove that
(m+1)%(a — 1) > ka. In view of k < m + 1 it is then enough to show that
(m+ 1)a—1> a <= ma > 1 which is satisfied, as clearly o > ﬁ It
m = 4 then we have to show that 8(a — 1) > ka — 1 <= (8 — k)a > T.

If £ = 2 then this becomes 6@ > 7, which is satisfied as n > 5. If

2 < k <5 then also (8 — k)a > 3% > 7, as n > 5. This proves (2). m

Now we can prove the main result. It characterizes the minimally manip-
ulable anonymous social choice functions for more than three alternatives.

Theorem 12 Let f : PY — A,m > 4, be an anonymous social choice
function. Suppose that n > m + 1 if m = 4 and that n > m + 2 if m > 5.
Then

| M| 2n<m?!—1> (m —2).

Furthermore, equality holds if and only if f can be described as in definition
2.

14



Proof. Let P = {t;,...,t,u} and 0! = 1. Let p € PY and let ¢(p,i) :=
Ip~ ()], ¢ € {1,...,m!}. Then there are

n!
H?i!l c(p, i)'

profiles ¢ € PV that satisfy c¢(q,i) = ¢(p,i) for all i € {1,...,m!}. Under
anonymity f(p) = f(q), p € M; <= q € M; and p € B¥ < ¢ € B* for all

such profiles ¢. Let
o dm +1 ifm=4
Tl m+2 ifm> 5.

Suppose that the assumptions of the theorem are satisfied, and that

| M| Sn(%!—1> (m —2).

Step 1: B'N M; = 0.
Suppose to the contrary that there is a p € B' N M. Asp e B!, at least
[ of the ¢(p,i),7 € {1,...,m!}, satisfy ¢(p,i) > 1. Hence, by Lemma 11

Hcp, N < ( Z (p,i) = D) = (n=1)\.

So,
n! n!
|My| > >

H c(p,1)! (n—1)!

= na(l),

where «(l) := ((Z:}))!!.

Now, if m = 4, then as n > m + 1,

-1

all) = Hn—j 2Hm+1—]
j=1

j=1
m! m! m!
= 3—>2(——-1) = —2)(— -1
and, if m > 5, then, as n > m + 2,
-1 m+1
all) = [[n=4)=[](m+2-j)=(m+1)
7=1 7j=1



This contradicts
m! ]

My < nlm - 2)(5— 1),

so step 1 is proven.
Step 2: There are b,c € A, b # ¢, such that f(B?) C {b,c}.
By step 1 f is strategy-proof on B'. So, by Theorem 10, |f(B")| < 2. Let

b,c € A, b # ¢, be such that f(B') C {b,c}. Let k be the smallest number
such that

f(BY) € {b,c}.
Then k > 2 by surjectivity of f, and k < [ since f(B') C {b,c}. We show
that k = 2. As f(B*') ¢ {b,c}, there is a p € B*~' — B* such that
f(p) = a € A— {b,c}. Furthermore, as k < n, and p € B¥! — B* there
must be agents i,j € N,i # j, such that p(i) = p(j), which implies that
p(N) =p(N — {i}). Let t be such that

{(a,¢),(b,c)} Ctandt ¢ p(N).

As |p(N)| = k — 1, there are at least 2 — (k — 1) such preferences . Then
t ¢ p(N) implies that ¢ = (p_;,t) € B*. So f(q) € {b,c}, f(p) = a and
(f(q), f(p)) ¢ t. Hence, any such ¢ is manipulable. So, by anonymity

m)! n!

iz (5 =00 oy

But, by Lemma 11 the term on the right hand side is greater than n(m —

2)(2 — 1) if k — 1 > 2, contradicting [My| < n(m — 2)(2 — 1). Therefore,

k = 2. This proves step 2.

Let a € A be an alternative different from b and ¢ as in step 2. We define
patbet .— ft € P | {(a,b), (a,c)} C t}.
Let A= {ay,as,...,am 2,b,c}. As f(B?) C {b,c}, we have
f(PY — B?) D {ay,ag,...,am 2}

by surjectivity. Hence, for any a;,j € {1,2,...,m — 2}, there is a t; € P
such that f(t)) = a;. Let p/ := t},j € {1,2,...,m — 2}. Then for any
te putbet — 1A ke N, f(p',,t) € {b,c} and f(p’) = a;, 50 ¢ = (P’ ,, 1) is
manipulable for all £ € N. There are

n| Pt — {t;}]
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such ¢, as n > 3 these manipulable profiles ¢ are different for all j &
{1,2,...,m — 2}. So,

m—2
m!
_ - _ a;,{b,c} _ .
n(m=2)(5 —1) 2 [M] 2 n; | P {ti}- (1)
Now, [Pa-{be} — {t;}] > ™ — 1, and equality holds if and only if t; € P},
So, by inequality (1), t; € P% ) ,J€41,2,. — 2},

m
| My| = n(m = 2)(=—1)
and
My ={( ,t) | ke N,je{1,2,....m—2},t € Pu{bet _ {11

Step 3: Let b, ¢ be as in step 2. Then

FPY = {0 ") = {b,c}

Let p € PN — {p',p? ...,p™ %}. Suppose that f(p) € {ai,as,...,am 2}
Then p € PY — B? and for all t € P/®hibel — 15(1)} we have f(p_y,t) €
f(B?*) C {b,c}. So (p_i1,t) € M;, implying that p € {p',p? ..., p™ %}, as
n > 3. With surjectivity this proves step 3.

Step 4: Let p ¢ {p',p* ...,p™ ?} and suppose that (b,c) € t; for some
j€{1,2,...,m—2}. Then,

f(p) = b if and only if (b, c) € p(i) for all i € N.

Let t,t € P be such that ¢t = ...b...q;... ,t=...c.o.ai.bo .
Let k € N. As t,t ¢ P%{bed f s strategy pro of at (p]_k,t) € B? and
(p7_k, ) € B% This implies that f(p_k, t) = b and f(p7_,,C 1) =c

Suppose that there is a i € N such that (¢,b) € p(i), without loss of
generality : = n. Let

ro(l) ;:{ ( ) ifl<u

pl, () ifl > u,
we{0,...,n}. Then ° = (p’ ,,7), " = p and as { ¢ P%{0<}
r ¢ M;U{p',p*....p" *},ue{0,...,n—1}.
Suppose that f(r*) =¢, v € {0,...,n — 2}, then by r* ¢ M,
(f(r), f(r ) € r(u+1) = ¢;.
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As (b,¢) € tj, f(r*™) € {b,c} and f(r") = c it follows that f(r*“*!) = c.
As f(r%) = f(p',,T) = ¢ we obtain f(r" Y = f(p) = ¢ by induction. By
strategy-proofness at p =" = (", p(n)), (¢, b) € p(n), and f(p) € {b,c} it
follows that f(r™) = c. This shows that

f(p) =bonly if (b,c) € p(i) for all i € N.

Suppose that (b, ¢) € p(i) for all i € N, so in particular (b,c) € p(1). Let

wn @00 ifl<u
r(l)'_{pp(z) if 1> u,

u € {0,...,n}. Then r* = p,r" = (pil,t), and as t ¢ P%{bel,

rt ¢ Myu{p',p*....,p" *hue{l,...,n}.

Asrm = (p' 1), f(r") =b. Let u € {1,2,.. .,n} and suppose that f(r*) =b
Then by r* & My (J‘Igr“) freh) e ri(u) = (plq, t) (u) € {t,t}. As (b,c)f
t) =

t, (bye) € t;, f(r* ') € {b,c} and f(r*) = b it follows that f(r* ') = b.
So, f(r™) = f(p_1,t) = b implies by induction that f(r°) = f(p) = b. This
shows that

f(p) =bif (b,c) € p(i) for all i € N,
and we have proven step 4.

Without loss of generality (b, ¢) € t'. Then step 4 and the well-definedness
of f imply that (b,c) € ¢; for all j € {1,2,,...,m — 2}. This completes the
proof. m

Almost dictatorial social choice functions have (n—1)(“2* — 1)+ 1 manip-
ulable profiles, see Maus et al. (2004) for a definition of almost dictatorial
social choice functions and a proof of this statement. As, if m > 4,

n(m — 2)(%‘ -1) > n(@ - 1)

2
= -+ ()

m!
the minimally manipulable anonymous social choice functions have strictly
more manipulable profiles than one has to admit when demanding only non-
dictatoriality. This is in contrast to the three alternative case where we have,
for m = 3,

! m!

n(m—2)(@—1):n<2n—1:(n—l)(—

—1)+1
3 5~ D+,
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so the anonymous social choice functions outperform the almost dictatorial
social choice functions in terms of manipulability. We conclude this section
with some proportions of manipulable profiles of social choice functions to
give an impression in relative terms of the manipulability that has to be
admitted. The following table contains the proportion of profiles that are
manipulable for the social choice functions characterized in Theorem 12,
the almost dictatorial social choice functions, Plurality and Borda rule. The
numbers for the last two are taken from Aleskerov (1999), where tie-breaking
according to a fixed order of alternatives is used to decide on ties. We restrict
the tables to three and four alternatives. Loosely speaking, these tables
indicate that there is still a lot to discover in the space between classical
social choice functions and social choice functions obtained by minimizing
manipulability. To avoid wrong impressions we note that Slinko (2002) has
shown that the proportions of manipulable profiles of Plurality and Borda

rule go to zero at a speed of at least O(%\/ﬁ)

(m,n) | Almost dictatorial | Theorem 12 | Plurality | Borda
(3,2) 8,333333% 5,555556% | 11,11% | 38,89%
(3,3) 2,314815% 1,388889% | 16,67% | 23,61%
(3,4) 0,540123% 0,308642% | 18,52% | 31,02%
(3,5) 0,115741% 0,064300% | 23,15% | 28,55%
(3,6) 0,023577% 0,012860% | 23,93% | 27.82%
(3,7) 0,004644% 0,002501% | 25,73% | 27,06%
(3,8) 0,000893% 0,000476% | 27,39% | 25,00%
(3,9) 0,000169% 0,000089% | 27,44% | 24,98%
(3,10) 0,000031% 0,000017% | 28,55% | 24,06%
(m,n) | Almost dictatorial Theorem 12 Plurality | Borda
(4,2) | 0,173611111111% | 4,861111111111% | 20,83% | 60,42%
(4,3) | 0,014467502593% | 0,303819444444% | 20,43% | 51,22%
(4,4) | 0,000904224537% | 0,016878858025% | 32,47% | 50,02%
(4,5) | 0,000050234697% | 0,000879107189% | 37,38% | 50,44%
(4,6) | 0,000002616390% | 0,000043955359% | 38,91% | 47,90%
(4,7) | 0,000000130820% | 0,000002136719% | 40,55% | 46,43%
(4,8) | 0,000000006359% | 0,000000101749% | 41,33% | 44,85%
(4,9) | 0,000000000303% | 0,000000004769% | 41,99% | 43,15%
(4,10) | 0,000000000014% | 0,000000000221% | 41,95% | 41,78%
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8 Conclusion

We show that a Gibbard-Satterthwaite like result holds also on sets of profiles
with a certain diversity. This is used to characterize the minimally manip-
ulable anonymous social choice functions for more than three alternatives.
It turns out that these generalize strategy-proof two alternative imputation
status-quo voting, and the minimally manipulable three alternative nondic-
tatorial social choice functions. However, contrary to the three alternative
case they are not less manipulable than the almost dictatorial social choice
functions. So, they do not constitute the set of minimally manipulable non-
dictatorial social choice functions. Moreover, the way in which they achieve
minimal manipulability is at the expense of treating alternatives unequally.
This suggests that a property ensuring a more equal treatment of alterna-
tives should be added. The natural candidate is neutrality, but unfortunately
anonymity and neutrality exclude each other whenever the number of alter-
natives can be written as a sum of non-trivial divisors of the number of
agents, see Moulin (1983, p. 25). Nevertheless, this will be an issue for fur-
ther research, either demanding weaker axioms than neutrality to ensure a
more equal treatment of alternatives, or weakening anonymity and demand-
ing neutrality. Also other principles of voting could be added as properties,
such as respecting unanimity, Pareto-optimality, absolute plurality, plurality
or Condorcet-winners.

References

[1] Aleskerov F, Kurbanov, E (1999) Degree of manipulability of social
choice procedures. In: Proceedings of the Third International Meet-

ing of the Society for the Advancement of Economic Theory. Springer,
Heidelberg and New York.

[2] Arrow, K (1963) Social choice and individual values. John Wiley, New
York

[3] Dasgupta P, Hammond P, Maskin E (1979) The implementation of social
choice rules: Some general results on incentive compatibility. Review of
Economic Studies 46: 185-216

[4] Fristrup P, Keiding H (1998) Minimal manipulability and interjacency

for two-person social choice functions. Social Choice and Welfare 15:
455-467

20



[5] Gibbard A (1973) Manipulation of voting schemes: a general result.
Econometrica 41: 587-602

[6] Kelly JS (1988) Minimal manipulability and local strategy-proofness.
Social Choice and Welfare 5: 81-85

[7] Moulin, H (1983) The strategy of social choice. Advanced Textbooks in
Economics 18. North-Holland, Amsterdam, New York and Oxford.

[8] Maus, S, Peters, H, Storcken, A (2004) Minimal manipulability: Una-
nimity and Nondictatorship

[9] Satterthwaite M (1975) Strategy-proofness and Arrow’s conditions: ex-
istence and correspondence theorems for voting procedures and social
welfare functions. J Econ Theory 10: 187-217.

[10] Slinko, A (2002) On asymptotic strategy-proofness of classical social
choice rules. Theory and Decision 52: 389-98

21



