
Revision of conjectures about the opponent’s

utilities in signaling games

Tim Schulteis∗ Andres Perea∗ Hans Peters∗

Dries Vermeulen∗

March 2004 (this version)

Abstract

In this paper we apply the concept of preference conjecture equilibrium
introduced in Perea (2003) to signaling games and show its relation
to sequential equilibrium. Furthermore, we introduce the concept of
minimum revision equilibrium and show how this can be interpreted
as a refinement of sequential equilibrium. We also present a method
to compute preference conjecture equilibria.

1 Introduction

In this paper we deal with the question what player 2 in a signaling game
should believe if he observes a message which he did not expect. Usually,
the following assumptions are made:

(i) each player has a utility function that is known to all players through-
out the game;

(ii) all players are rational utility maximizers.
In the concept of Nash equilibrium (see Nash, 1950) it is required that

each player plays optimally given the strategy of his opponent. In the con-
cept of sequential equilibrium (Kreps and Wilson, 1982) it is additionally
required that player 2 has beliefs on information sets that are not reached in
equilibrium and decides optimally given these beliefs. However, in signaling
games sequential equilibrium does not put any further restrictions on these
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beliefs. In order to make the concept more powerful, several refinements were
introduced in literature, such as perfect sequential equilibrium (Grossman
and Perry, 1986), the intuitive criterion (Cho and Kreps, 1987) and divine
equilibrium (Banks and Sobel, 1987). These refinements put restrictions on
player 2’s beliefs on information sets that are not reached in equilibrium. In
all these refinements, the idea is that player 2, upon observing an unexpected
message, makes a distinction between “less plausible” and “more plausible”
types, and attaches positive probability only to the more plausible types.
Throughout this reasoning process the utility functions are assumed to be
fixed, which implies that player 2, upon observing an unexpected message,
cannot revise his beliefs about player 1’s utility function.

We will follow an alternative path, namely to insist on a player’s belief
of having a rational opponent and to assume that player 2 has a conjecture
about his opponent’s utility function, which he may revise after observing
player 1’s message. This revision should be such that the given message
becomes optimal for player 1. This leads to the concept of preference con-
jecture equilibrium, first formalized in Perea (2003).

It is important at this stage to compare preference conjecture equilibrium
to rationality concepts that have been defined for situations where beliefs
about the opponent’s utility functions cannot be revised. As a benchmark
for the latter, consider the concept of sequential equilibrium. In the concept
of sequential equilibrium applied to signaling games, player 2 has beliefs
about player 1’s types. In contrast, in the concept of preference conjecture
equilibrium player 2 holds, at the beginning of the game and after observing
player 1’s message, a belief about his opponent’s utility function as well as
a belief about the opponent’s strategy choice. Furthermore, we demand
that player 1’s expectation about player 2’s strategy choice coincides with
player 2’s strategy choice. When player 2 observes a message sent by his
opponent that would have been suboptimal for player 1 given player 2’s
expectations at the beginning of the game, player 2 revises his belief about
player 1’s utility function. These changes are inevitable once we insist on
the assumption that the players are rational and expect their opponent to
be rational too. The profile of beliefs that emerges from this procedure, for
every player on every information set, is called a conjecture profile.

We show that for signaling games the concepts of preference conjecture
equilibrium and sequential equilibrium are in some sense equivalent. As an
illustration, consider the game in Figure 1. This is the well known beer and
quiche game introduced by Cho and Kreps (1987). At the beginning of the
game nature decides between weak (w) and strong (s) as types for player 1
with probabilities 0.1 and 0.9 respectively. Then player 1 chooses between
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Figure 1: The beer and quiche game

the messages beer and quiche. Player 2 observes this chosen message but
not player 1’s type. Based on his observation he subsequently decides to
either challenge player 1 for a duel or not. This game possesses two kinds
of sequential equilibria, namely one in which every type of player 1 chooses
beer and one in which player 1 always chooses quiche. The intuitive criterion
(Cho and Kreps, 1987) excludes equilibria of the second kind by the following
argument. If player 2 expects both types to choose quiche, then he chooses
not to duel after quiche. But what if player 2 observes beer? He concludes
that it is the strong type that deviated, since the weak type can get at
most 2 by deviating, which is less than 3, which he gets by choosing quiche;
and the strong type could get 3 by deviating, which is more than the 2
he gets by choosing quiche. Hence, player 2 will choose to avoid the duel
after observing beer. Then however, the strong type will deviate from the
equilibrium by choosing beer. Hence, the intuitive criterion excludes the
second type of equilibrium, because it is supported by the belief that player
1 is weak if he drinks beer, in spite of the fact that the weak type always
obtains less than its equilibrium payoff 3 by deviating. To illustrate the
concept of preference conjecture equilibrium, we now consider the depicted
utilities as the players’ conjectures about their opponent’s utility function
at the beginning of the game. Furthermore we let the conjectures about
the opponent’s strategy choice be such that player 2 initially believes that
both types of player 1 will choose quiche and player 1 expects that player
2 will duel after observing beer and not duel after observing quiche. So the
question is: what should player 2 decide if he observes beer? By deviating
from player 2’s expectation, the weak type now has a utility of 0, compared
to 3 if he would have chosen quiche. In order to rationalize this, we might
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assume that player 2 thinks the weak type’s payoff will be 4 after deviating.
Thus player 2 will think the weak type’s preference relation is such that
the weak type prefers beer over quiche, in contrast to what he believed at
the beginning of the game. Of course, player 2 may also believe that only
the strong type has chosen beer after observing the message beer and may
thus choose not to duel. But in that case the strong type would improve his
utility by deviating from the initial conjecture and we will show that these
conjectures cannot be extended to a preference conjecture equilibrium. To
illustrate the relationship with sequential equilibrium, we see that both types
taking quiche can only lead to an equilibrium if player 2, after observing beer,
believes it was the weak type that deviated with a probability of at least
0.5. Thus player 2 might also believe that both types had some incentive to
deviate, since he also underestimated the strong type’s payoff after duelling
and getting his favorite breakfast. Because of the same argument, he will
have to choose to duel, so his conjecture about player 1’s utility function
after beer and duel might be 4 for the weak type and 5 for the strong type. It
is, however, very intuitive to impose the condition that the revisions should
be as limited as possible, which means that the revised conjectures should
be as close as possible to the initial conjecture. The question arises how
to measure the revisions and what the requirement of minimality of these
revisions implies.

In this paper we introduce the concept of minimum revision equilibrium,
a refinement of preference conjecture equilibrium that imposes further re-
strictions on the belief revisions based on the revision index. Consider again
the game in Figure 1. In games with only two messages we consider the
number of types for which player 2 changes his belief about their prefer-
ence relation over messages. In the preference conjecture equilibrium where
after observing beer, player 2 believes that only the weak type has chosen
beer, player 2 has to change his belief about only the weak type’s preference
relation over beer and quiche. In the second preference conjecture equilib-
rium, where we assumed that after observing beer, player 2 believes that
both types have chosen beer, player 2 has to change his belief over both
types’ preference relations over beer and quiche. We thus say that the re-
vision indices are 1 and 2 respectively. In order to determine the minimum
revision equilibrium, we compute this index for all preference conjecture
equilibria and choose a preference conjecture equilibrium with the minimal
index. Since preference conjecture equilibrium will be shown to coincide
with sequential equilibrium for signaling games, this implies that minimum
revision equilibrium can be interpreted as a refinement of sequential equi-
librium. We find in the example above that there are two minimum revision
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equilibria, both with a revision index of one. The first one corresponds to
the sequential equilibrium in which both types choose quiche and player 2,
when observing beer, attaches probability one to the fact that the weak type
deviated. The second minimum revision equilibrium corresponds to the se-
quential equilibrium in which both types choose beer and, after observing
quiche, player 2 attaches probability one to the fact that the weak type de-
viated. We see that one of these minimum revision equilibria coincides with
the equilibrium that is selected by the intuitive criterion, but the other one
does not.

The paper is organized as follows. In Section 3 we develop the concept
of preference conjecture equilibrium for signaling games. In Section 4 we
investigate the relationship with sequential equilibrium, established by The-
orems 4.1 and 4.3. We show that every preference conjecture equilibrium
induces a sequential equilibrium and that vice versa every sequential equi-
librium corresponds to a preference conjecture equilibrium. In Section 5 we
introduce the minimum revision equilibrium and elaborate on its application
as a refinement of sequential equilibrium in signaling games. In Section 6
we provide some examples and compare the concept of minimum revision
equilibrium to the intuitive criterion. Section 7 elaborates on the structure
of the set of sequential equilibria in signaling games, written as a union of
sets, on which the revision index is constant. These sets can be computed
by solving systems of linear inequalities, which facilitates the computation
of minimum revision equilibria.

2 Preliminaries

In this section we define signaling games, and Nash and sequential equilib-
rium in signaling games. We also introduce an illustrative example that is
used throughout the paper.

Notation. For a finite set Q, ∆(Q) denotes the set of all probability distri-
butions over Q, and ∆0(Q) denotes the set of probability distributions over
Q which assign positive probability to every q ∈ Q.

Definition 2.1 A signaling game is a 6-tuple S = (T,M, A, p, u1, u2) where
T, M and A are finite sets; p ∈ ∆0(T ); and u1 : T × M × A → R and
u2 : T ×M ×A → R are functions.

A signaling game is played as follows:
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Figure 2: Example 2.2

• Nature selects a type t of player 1 from the set T of types. Type t is
selected with probability p(t) > 0.

• Player 1, knowing his type, chooses a message m from the set of mes-
sages M .

• Player 2, not knowing the type of player 1, but knowing the probability
distribution p, observes the message m and subsequently chooses an
action a from the set A.

• The utilities are u1(t,m, a) for player 1 and u2(t, m, a) for player 2.

In the usual extensive form representation of a signaling game, each
decision node of player 1 corresponds to a type t. Each decision node of
player 2 corresponds to a pair (t,m). A terminal node corresponds to a
triple (t,m, a). An information set of player 2 corresponds to a message m.
Henceforth, we use the notation fixed in Definition 2.1 for a signalling game,
unless stated otherwise.

The following example is used for illustrative purposes throughout the
paper.

Example 2.2 In this game (see Figure 2) player 1 can be of two types t1
and t2, each with probability 1

2 . Player 1 chooses between three messages k,
l, and m, and player 2 chooses between the actions a and b. The numbers
at the terminal nodes are the utilities to players 1 and 2, respectively.
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A pure strategy for player 1 in a signaling game is a map s1 : T → M ,
defining a message m for every type t. The set of pure strategies for player
1 is denoted by S1. An element σ1 ∈ ∆(S1) is called a mixed strategy for
player 1. So, σ1(s1) is the probability of the pure strategy s1. Similarly,
a pure strategy for player 2 is a map s2 : M → A, defining an action a for
every message m. The set of pure strategies for player 2 is denoted by S2.
An element σ2 ∈ ∆(S2) is called a mixed strategy for player 2. So, σ2(s2) is
the probability of the pure strategy s2.1

A system of beliefs (for player 2) is a collection β = (β(m))m∈M where
β(m) = (β(t|m))t∈T ∈ ∆(T ) for each m ∈ M . As usual, β(t|m) is the
probability that player 2 attaches to player 1 being of type t if message m
is played. For a mixed strategy σ1 ∈ ∆(S1) let

σ1(m|t) :=
∑

s1∈S1:s1(t)=m

σ1(s1)

be the probability that player 1 plays m if he is of type t. The pair (σ1, β)
is called Bayesian consistent2 if for all types t

β(t|m) =
p(t) · σ1(m|t)∑

t′∈T p(t′) · σ1(m|t′) (1)

for all messages m such that
∑

t′∈T p(t′) · σ1(m|t′) is positive. So Bayesian
consistency puts no restrictions on beliefs on information sets that are
reached with probability zero if σ1 is played.

A triple (σ1, σ2, β) ∈ ∆(S1) ×∆(S2) ×∆(T )M is called an assessment.
For such an assessment

U1(t, s1, σ2) :=
∑

s2∈S2

σ2(s2) · u1(t, s1(t), s2(s1(t)))

is the expected utility for player 1 if his type is t, he plays s1 and player 2
plays σ2, and

U2(m, s2, β) :=
∑

t∈T

β(t|m) · u2(t,m, s2(m))

is the expected utility for player 2 if he observes message m, has belief β
and plays s2. We call s1 ∈ S1 optimal with respect to σ2 if

U1(t, s1, σ2) ≥ U1(t, s′1, σ2)
1For our purposes, it is convenient to work with mixed strategies instead of behavioral

strategies. In Section 6 we also use behavioral strategies.
2In signaling games, Bayesian consistency is equivalent to consistency as defined in

Kreps and Wilson (1982).
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for all s′1 ∈ S1 and all types t. For m ∈ M , we call s2 ∈ S2 optimal with
respect to β on m if

U2(m, s2, β) ≥ U2(m, s′2, β)

for all s′2 ∈ S2. We call s2 ∈ S2 optimal with respect to β if s2 is optimal
with respect to β on every m ∈ M .

We say that σ1 is optimal with respect to σ2 if, for all s1 ∈ S1, σ1(s1) > 0
implies that s1 is optimal with respect to σ2. We call σ2 optimal with
respect to σ1 if, for all s2 ∈ S2 and all m ∈ M with

∑
t′∈T p(t′)σ1(m|t′) > 0,

σ2(s2) > 0 implies that s2 is optimal with respect to β on m, where β satisfies
(1). We call σ2 optimal with respect to β if, for all s2 ∈ S2, σ2(s2) > 0 implies
that s2 is optimal with respect to β.

Definition 2.3 The assessment (σ1, σ2, β) is a (Bayesian) Nash equilibrium
if

(i) (σ1, β) is Bayesian consistent;

(ii) σ1 is optimal with respect to σ2;

(iii) σ2 is optimal with respect to σ1.

If, moreover, σ2 is optimal to β, then (σ1, σ2, β) is a sequential equilib-
rium.3

The difference between (Bayesian) Nash (cf. Nash, 1950, 1951; Harsanyi,
1967, 1968) and sequential (cf. Kreps and Wilson, 1982) equilibrium is that
in the latter player 2 also plays optimally on information sets reached with
zero probability.

3 Preference conjecture equilibrium

The concept of preference conjecture equilibrium was first introduced in
Perea (2003) for general games in extensive form. In the present paper
we study this concept for signaling games.4

In a conjecture profile, each player has a conjecture about the opponent’s
strategy choice and a conjecture about the opponent’s utility function. For

3In the literature this form of optimality is also called sequential rationality, see Kreps
and Wilson (1982).

4In Perea (2003) the variant of preference conjecture equilibrium that we discuss here
is called weak ‘preference conjecture equilibrium’.
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player 1, these conjectures are made at the beginning of the game: since
player 1 moves first and only once, it makes no sense to consider revisions
of player 1’s conjectures. For player 2 the situation is different. Player 2
holds conjectures at the beginning of the game but may revise these after
observing player 1’s move. A conjecture profile entails induced conjectured
preferences of the players. In a preference conjecture equilibrium the players
believe each other to play rationally—that is, to maximize their conjectured
preferences—implying that player 2 may have to revise his conjectures about
player 1. Furthermore, revisions of conjectures about player 1’s strategies
will be restricted by imposing Bayesian updating.

Formally, starting with player 1, let µ12 ∈ ∆(S2) be his conjecture (at
the beginning of the game) about player 2’s strategy choice. Thus, µ12(s2)
is the probability player 1 assigns to player 2 playing strategy s2. Similarly,
let u12 : T ×M × A → R be player 1’s conjecture about player 2’s utility
function. Denote c12 = (µ12, u12).

As explained above, for player 2 the situation is different. He holds
conjectures both at the beginning of the game and at every information
set m ∈ M : depending on the observed message, player 2 may revise the
conjecture held at the beginning. To denote conjectures of player 2 at the
beginning of the game it is convenient to introduce the symbol h0. Thus,
for the beginning of the game we denote S1(h0) := S1 and for m ∈ M we
denote S1(m) := {s1 ∈ S1 | there exists t ∈ T with s1(t) = m}. Let M∗ :=
M ∪ {h0}. For all m ∈ M∗, let µ21(m) ∈ ∆(S1(m)) be player 2’s conjecture
at m about player 1’s strategy choice. For s1 ∈ S1(m), µ21(m)(s1) is the
probability player 2 assigns at m to player 1 playing s1. Similarly, for all m ∈
M∗ let u21(m) : T ×M ×A → R be player 2’s conjecture at m about player
1’s utility function. For all m ∈ M∗ denote c21(m) = (µ21(m), u21(m)).

Definition 3.1 A combination c := (c12, (c21(m))m∈M∗) is called a conjec-
ture profile.

In a preference conjecture equilibrium a conjecture profile plays a role
similar to that of an assessment in a sequential equilibrium. Also for a
conjecture profile we introduce optimality conditions. We start, however,
with a condition implying that player 2 revises his conjecture about player
1’s strategy according to Bayes’ rule, whenever possible.

Definition 3.2 A conjecture profile satisfies Bayesian updating if

µ21(m)(s1) =
µ21(h0)(s1)∑

s′1∈S1(m) µ21(h0)(s′1)

9



for all s1 ∈ S1(m) and all m ∈ M such that
∑

s′1∈S1(m) µ21(h0)(s′1) > 0.

The next task is to define optimality on the parts of both players in a
conjecture profile. For this we use that, given their conjectures, players can
compute their opponent’s expected utility.

Let m ∈ M∗. Player 2 can compute his conjecture at m about player 1’s
expected utility if player 1 has type t, conjecture µ ∈ ∆(S2) about player
2’s strategy choice, utility function u21(m), and plays s1, as

U21(t, s1, u21(m), µ) :=
∑

s2∈S2

µ(s2) · u21(m)(t, s1(t), s2(s1(t))).

In order to justify the next step in our argument we make the assumption
that conjectures are common belief among the players. This means that
a player’s (informal) conjecture about an opponent’s conjecture coincides
with this opponent’s conjecture. In particular, this implies that player 2’s
conjecture about player 1’s conjecture about player 2’s strategy choice coin-
cides with player 1’s conjecture about player 2’s strategy choice. Therefore
it makes sense to evaluate the above conjecture of player 2 at m about player
1’s expected utility at µ = µ12. Thus we write

U21(t, s1, u21(m), µ12) =
∑

s2∈S2

µ12(s2) · u21(m)(t, s1(t), s2(s1(t))).

A strategy s1 is optimal for player 1 with respect to µ12 and u21(m) if

U21(t, s1, u21(m), µ12) ≥ U21(t, s′1, u21(m), µ12)

for all s′1 ∈ S1 and all t ∈ T .
Similarly, consider a pure strategy s2 of player 2, a utility function u12

as well as a probability distribution µ′ ∈ ∆(S1(m)), where now m ∈ M (so
m 6= h0: see Remark 3.4 below). Then player 1 holds a conjecture about
player 2’s expected utility at m given by

U12(m, s2, u12, µ
′) :=

∑

t∈T

p(t)
∑

s1:s1(t)=m

µ′(s1) · u12(t,m, s2(m)).

Again because of the assumption of common belief of conjectures it makes
sense to evaluate this at µ′ = µ21(m) :

U12(m, s2, u12, µ21(m)) =
∑

t∈T

p(t)
∑

s1:s1(t)=m

µ21(m)(s1) · u12(t,m, s2(m)).

10



The strategy s2 is optimal for player 2 with respect to µ21(m) and u12 if

U12(m, s2, u12, µ21(m)) ≥ U12(m, s′2, u12, µ21(m))

for all s′2 ∈ S2.

Definition 3.3 A conjecture profile c satisfies optimality if:

1. for all m ∈ M∗ and for all s1 ∈ S1, if µ21(m)(s1) > 0, then s1 is
optimal for player 1 with respect to µ12 and u21(m);

2. for all m ∈ M and for all s2 ∈ S2, if µ12(s2) > 0, then s2 is optimal
for player 2 with respect to µ21(m) and u12.

Remark 3.4 Observe that, in this definition, optimality on the part of
player 2 is not required on h0, that is, at the beginning of the game: it
is not hard to verify that this is taken care of by the second part of the
definition combined with Bayesian updating.

Now, we are sufficiently equipped to define the main concept of this
paper.

Definition 3.5 A conjecture profile c is a preference conjecture equilibrium
if it satisfies optimality and Bayesian updating.

Example 3.6 As an illustration, consider Example 2.2. Consider the con-
jecture profile c, where µ12 attaches probability 1 to strategy (a, a, a) and u12

coincides with player 2’s utilities in Figure 2. Let µ21(h0), µ21(l) and µ21(m)
attach probability 1 to strategy (l,m), and let µ21(k) attach probability 1
to strategy (k, m). Let u21(h0), u21(l) and u21(m) coincide with player 1’s
utilities in Figure 2, and let u21(k)(t1, k, a) = 5 and u21(k)(t′,m′, a′) =
u21(h0)(t′,m′, a′) for all (t′,m′, a′) 6= (t1,m, a). This conjecture profile is ac-
tually a preference conjecture equilibrium and can be interpreted as follows.
Given his conjecture µ21(h0), player 2 initially expects message k not to be
chosen. However, if he observes message k, he revises his conjecture about
player 1’s strategy choice and utility function in such a way that the choice k
becomes optimal for at least one of the types of player 1. In this conjecture
profile c, player 2 does so by raising the utility for type t1 after message
k and action a, while keeping all other utilities unchanged. Thus player 2,
after observing message k, believes that it was type t1 and not t2 who sent
this message. Hence player 2, after observing k, assigns probability 1 to the
strategy in which type t1 chooses message k and type t2 still sends message
m.
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4 Relation with sequential equilibrium

In this section we investigate the relation between preference conjecture
equilibria and sequential equilibria in a signaling game.

Consider a conjecture profile

c = (c12, (c21(m))m∈M∗) = (µ12, u12, (µ21(m), u21(m))m∈M∗).

Is there an intuitive way to associate with c an assessment (σ1, σ2, β)? Note
that, for example, µ21(h0) is player 2’s conjecture at the beginning of the
game about player 1’s strategy choice. Since we assumed common belief of
conjectures among players, we know that player 1’s (informal) conjecture
about µ21(h0) coincides with µ21(h0). Hence, for equilibrium analysis it
seems intuitive to put σ1 equal to µ21(h0). In other words, if we interpret
σ1 as the strategy that player 1 actually plays, then this is equal to what
player 1 thinks that player 2 thinks that player 1 plays. By a similar line of
reasoning it seems intuitive to put σ2 equal to µ12. Thus,

σ1 := µ21(h0), σ2 := µ12. (2)

Also, for the beliefs β held by player 2, it is natural to let

β(t|m) :=

∑
s1:s1(t)=m

p(t) · µ21(m)(s1)

∑
t′∈T

∑
s1:s1(t′)=m

p(t′) · µ21(m)(s1)
for all t ∈ T and m ∈ M (3)

(note that the denominator is always positive). We now say that the assess-
ment (σ1, σ2, β), defined by (2) and (3), is induced by the conjecture profile
c. One may note that, informally speaking, the assumption of common
belief in the conjecture profile c justifies the usual assumption of common
knowledge for the induced assessment (σ1, σ2, β).

Theorem 4.1 Let S = (T, M, A, p, u1, u2) be a signaling game and let c be
a preference conjecture equilibrium in S with u21(h0) = u1 and u12 = u2.
Then the assessment induced by c is a sequential equilibrium in S.

Proof. We first show that σ1 is optimal with respect to σ2. Let s1 ∈ S1

with σ1(s1) > 0, hence µ21(h0)(s1) > 0 by (2). Optimality of c implies

U21(t, s1, u21(h0), µ12) ≥ U21(t, s′1, u21(h0), µ12)
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for all s′1 ∈ S1 and t ∈ T . With u21(h0) = u1 and σ2 = µ12 this implies
∑

s2∈S2

σ2(s2) · u1(t, s1(t), s2(s1(t))) ≥
∑

s2∈S2

σ2(s2) · u1(t, s′1(t), s2(s′1(t)))

for all s′1 ∈ S1 and t ∈ T . Hence

U1(t, s1, σ2) ≥ U1(t, s′1, σ2)

for all s′1 ∈ S1 and t ∈ T . So σ1 is optimal with respect to σ2.
Next, we show that σ2 is optimal with respect to β. Let s2 ∈ S2 with

σ2(s2) > 0, hence µ12(s2) > 0 by (2). Optimality of c implies

U12(m, s2, u12, µ21(m)) ≥ U12(m, s′2, u12, µ21(m)) (4)

for all s′2 ∈ S2 and m ∈ M . Since, by (3), for all m ∈ M and s′2 ∈ S2,

U12(m, s′2, u12, µ21(m))

=
∑

t∈T


 ∑

s1:s1(t)=m

p(t) · µ21(m)(s1)


 · u12(t,m, s′2(m))

=
∑

t∈T

β(t|m)


∑

t′∈T

∑

s1:s1(t′)=m

p(t′) · µ21(m)(s1)


 · u2(t, m, s′2(m))

=


∑

t′∈T

∑

s1:s1(t′)=m

p(t′) · µ21(m)(s1)


 · U2(m, s′2, β)

and the last term in brackets is always positive, (4) implies

U2(m, s2, β) ≥ U2(m, s′2, β)

for all m ∈ M and all s′2 ∈ S2. Therefore, σ2 is optimal with respect to β.
Finally, we show Bayesian consistency of (σ1, β). Let m ∈ M such that∑

t′∈T p(t′)σ1(m|t′) > 0. Then there exists a t′ with σ1(m|t′) > 0, hence
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∑
s′1∈S1(m) µ21(h0)(s′1) =

∑
s′1∈S1(m) σ1(s′1) > 0. Thus, for every t ∈ T ,

β(t|m) =

∑
s1:s1(t)=m p(t) · µ21(m)(s1)∑

t′∈T

∑
s1:s1(t′)=m p(t′) · µ21(m)(s1)

=

∑
s1:s1(t)=m p(t) · µ21(h0)(s1)∑

t′∈T

∑
s1:s1(t)=m p(t′) · µ21(h0)(s1)

=

∑
s1:s1(t)=m p(t) · σ1(s1)∑

t′∈T

∑
s1:s1(t)=m p(t′) · σ1(s1)

=
p(t) · σ1(m|t)∑

t′∈T p(t′) · σ1(m|t′) ,

where the first equality follows from (3) and the second equality from Bayesian
updating of c. Hence, (σ1, β) is Bayesian consistent. ¤

Example 4.2 To illustrate this, consider again the game in Figure 2 and the
preference conjecture equilibrium c discussed in Example 3.6. The sequential
equilibrium (σ1, σ2, β) induced by this preference conjecture equilibrium has
σ1 = (l, m), σ2 = (a, a, a), β(k) = (1, 0), β(l) = (1, 0) and β(m) = (0, 1).

The next theorem shows that, in turn, every sequential equilibrium cor-
responds to a preference conjecture equilibrium.

Theorem 4.3 Let S = (T, M, A, p, u1, u2) be a signaling game and let the
assessment (σ1, σ2, β) be a sequential equilibrium. Then there exists a pref-
erence conjecture equilibrium c with u21(h0) = u1 and u12 = u2 that induces
(σ1, σ2, β).

Proof. We start with constructing a conjecture profile c. Define µ21(h0) :=
σ1 and µ12 := σ2. Let m ∈ M . For the definition of µ21(m) we distinguish
two cases:

Case 1 : there exists an s′1 ∈ S1(m) such that σ1(s′1) > 0. Then we define

µ21(m)(s1) :=
µ21(h0)(s1)∑

s′1∈S1(m) µ21(h0)(s′1)
for all s1 ∈ S1(m).

Case 2 : σ1(s′1) = 0 for all s′1 ∈ S1(m). Choose for every t ∈ T a strategy
st,m
1 ∈ S1(m) such that st,m

1 (t) = m and st,m
1 (t′) 6= m for all t′ 6= t and define

µ̃21(m)(st,m
1 ) :=

β(t|m)
p(t)

14



for all t ∈ T and
µ̃21(m)(s1) = 0

for all s1 ∈ S1(m) with s1 6= st,m
1 for all t ∈ T . Next normalize for all

s1 ∈ S1(m) :

µ21(m)(s1) =
µ̃21(m)(s1)∑

s′1∈S1(m) µ̃21(m)(s′1)
,

which is well-defined since there exist s′1 ∈ S1(m) such that µ̃21(m)(s′1) 6= 0,
namely those strategies st,m

1 with β(t|m) > 0.

Before completing the construction of c we show that the ingredients
defined thus far induce (σ1, σ2, β). For this we still have to prove (3). Let
t ∈ T and m ∈ M . If case 1 above applies, then

β(t|m) =
p(t) · σ1(m|t)∑

t′∈T p(t′) · σ1(m|t′)

=
p(t) ·∑s1:s1(t)=m σ1(s1)∑

t′∈T p(t′) ·∑s1:s1(t′)=m σ1(s1)

=
p(t) ·∑s1:s1(t)=m µ21(h0)(s1)∑

t′∈T p(t′) ·∑s1:s1(t′)=m µ21(h0)(s1)

=

∑
s1:s1(t)=m p(t) · µ21(m)(s1)∑

t′∈T

∑
s1:s1(t′)=m p(t′)µ21(m)(s1)

,

so (3) holds. If case 2 above applies, then
∑

s1:s1(t)=m

p(t) · µ21(m)(s1)

∑
t′∈T

∑
s1:s1(t′)=m

p(t′) · µ21(m)(s1)
=

∑
s1:s1(t)=m

p(t) · µ̃21(m)(s1)

∑
t′∈T

∑
s1:s1(t′)=m

p(t′) · µ̃21(m)(s1)

=
β(t|m)∑

t′∈T

β(t′|m)

= β(t|m),

so also in this case (3) holds. Hence, c induces (σ1, σ2, β).

We now complete the construction of c. Let u12 := u2, u21(h0) := u1,
and for all t ∈ T , m,m′ ∈ M , and a ∈ A let

u21(m)(t,m′, a) := 0.

15



In order to show that c is a preference conjecture equilibrium first note that
it satisfies Bayesian updating: for m ∈ M such that

∑
s′1∈S1(m) µ21(h0)(s′1) >

0, case 1 above applies, so Bayesian updating follows immediately.
Finally, we show optimality of c. Let s1 ∈ S1. If µ21(h0)(s1) > 0 then

σ1(s1) > 0, so optimality of σ1 with respect to σ2 yields that s1 is optimal
with respect to σ2 in S. Hence s1 is optimal with respect to µ12 and u21(h0).
Further, for every m ∈ M , s1 is optimal with respect to µ12 and u21(m) since
player 1 is indifferent between all messages m by definition of u21(m). This
shows part 1 of Definition 3.3, i.e., optimality on the part of player 1.

Let s2 ∈ S2 such that µ12(s2) > 0. Then σ2(s2) > 0 and optimality of
σ2 with respect to β implies that s2 is optimal with respect to β on any
m ∈ M , that is

U2(m, s2, β) ≥ U2(m, s′2, β) (5)

for all s′2 ∈ S2 and all m ∈ M . Since

U2(m, s2, β) =
∑

t∈T

β(t|m) · u2(t,m, s2(m))

(5) implies, together with (3) and u12 = u2

U12(m, s2, u12, µ21(m)) =
∑

t∈T

p(t)
∑

s1:s1(t)=m

µ21(m)(s1) · u12(t,m, s2(m))

≥
∑

t∈T

p(t)
∑

s1:s1(t)=m

µ21(m)(s1) · u12(t,m, s′2(m))

= U12(m, s′2, u12, µ21(m))

for all s′2 ∈ S2 and m ∈ M . Hence, s2 is optimal for player 2 with respect
to µ21(m) and u12. This completes the proof. ¤

Theorem 4.3 implies in particular that a preference conjecture equilibrium
always exists.

5 Minimum revision

In a preference conjecture equilibrium player 2 can revise his conjecture
about the utilities and strategies of player 1. Intuitively, one would like to
keep these revisions as limited as possible. In this section we propose a way
to measure this, and we study the resulting refinement of preference conjec-
ture equilibrium and the associated refinement of sequential equilibrium.
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The measure which we are going to use is based on the number of ‘utility
changes’ player 2 has to make in order to rationalize player 1’s move. Before
elaborating on this we need some notations and definitions.

A (weak) ordering on a finite set E is a complete and transitive binary
relation on E. Generically, for an ordering R we denote by P and I its
asymmetric and symmetric parts, respectively. For x, y ∈ E, the expressions
xRy, xPy, and xIy, are interpreted as ‘x is weakly preferred to y’, ‘x is
strictly preferred to y’, and ‘x is indifferent to y’. Let R and R′ be two
orderings. We define

d({x, y}) :=





1 if [xPy and not xP ′y]
or [xIy and not xI ′y]
or [yPx and not yP ′x]

0 otherwise,

and we define the distance between R and R′ as

d(R, R′) :=
1
2

∑

x,y∈E

d({x, y}).

Thus, the distance between two orderings is defined as the number of pairs
of elements that are ranked differently in the two orderings.

5.1 Minimum revision equilibrium

Consider a conjecture profile c = (µ12, u12, (µ21(m), u21(m))m∈M∗). Player 2
may revise his conjecture about player 1’s utility function and thus, for each
type t, his conjecture about t’s ordering of all messages m ∈ M in terms of
expected utility. For t ∈ T , m ∈ M , and m′ ∈ M∗ it will be convenient to
use the notation

U21(t,m, u21(m′), µ12) :=
∑

s2∈S2

µ12(s2) · u21(m′)(t, m, s2(m))

for player 2’s conjecture of the expected utility for type t of player 1 of
playing m at the beginning of the game (m′ = h0) or after observing m′ ∈ M .
By Rt

m′ (m′ ∈ M∗) we denote the (preference) ordering on M for type t
induced by these conjectured expected utilities, i.e.,

for all m, l ∈ M : mRt
m′ l ⇔ U21(t,m, u21(m′), µ12) ≥ U21(t, l, u21(m′), µ12).

The distance between two orderings Rt
m and Rt

h0
is indicative of the number

of ‘utility changes’ player 2 makes for type t of player 1 if he observes message
m. This leads to the following definition.
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Definition 5.1 The revision index of the conjecture profile c is the number

d(c) :=
∑

m∈M

∑

t∈T

d(Rt
h0

, Rt
m).

Example 5.2 Consider again the signaling game of Example 2.2, see Figure
2. Let c be the conjecture profile such that µ12 = (a, b, b) and u12 is equal
to the depicted utility function. Furthermore, µ21(h0) = µ21(k) = µ21(m) =
(k, m) and µ21(l) = (k, l). Finally, u21(h0), u21(k) and u21(m) are equal
to the depicted utility function, u21(l)(t2, l, b) = 4, u21(l)(t2, k, a) = 3 and
u21(l)(t,m′, a′) = u21(h0)(t,m′, a′) otherwise. Then, Rt2

h0
orders m strictly

above l and l strictly above k; and Rt2
l orders l strictly above k and k strictly

above m. Hence, d(Rt2
h0

, Rt2
l ) = 2.

By requiring that the revision index be as small as possible, we obtain
the announced refinement of preference conjecture equilibrium.

Definition 5.3 Let c be a preference conjecture equilibrium with u12 = u2

and u21(h0) = u1. Then c is a minimum revision equilibrium if

d(c) ≤ d(c′)

for all preference conjecture equilibria c′ with u′12 = u2 and u′21(h0) = u1.

Since—as a consequence of Theorem 4.3—a preference conjecture equi-
librium always exists, it follows that a minimum revision equilibrium always
exists.

5.2 Relation with sequential equilibrium

A minimum revision equilibrium induces a sequential equilibrium (Theorem
4.1). Since for every sequential equilibrium there is a prefence conjecture
equilibrium with u1 = u21(h0) and u2 = u12 that induces it (Theorem 4.3),
the concept of minimum revision equilibrium can be used to obtain a refine-
ment of sequential equilibrium. In this subsection we explore the relationship
between minimum revision equilibrium and sequential equilibrium.

We will use the notation

U1(t,m, σ2) :=
∑

s2∈S2

σ2(s2) · u1(t,m, s2(m))

for the expected utility for player 1 if his type is t ∈ T , he chooses message
m ∈ M , and player 2 plays σ2 ∈ ∆(S2). For a finite set E, |E| denotes the
number of elements of E.
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Definition 5.4 Let (σ1, σ2, β) be a sequential equilibrium of S. Denote

R(σ1, σ2, β) := {(t, m,m′) ∈ T ×M ×M | β(t|m) > 0
and U1(t, m, σ2) < U1(t,m′, σ2)}.

Then
r(σ1, σ2, β) := |R(σ, β)|

is the revision index of (σ1, σ2, β).

If a triple (t,m, m′) is in R(σ1, σ2, β), then player 2 believes that type
t has positive probability although the observed message m is not optimal
for this type. If player 2 believes that player 1 is rational, then he should
make some ‘revision’ in order to rationalize this. This explains the term
‘revision index’ in Definition 5.4. The following theorem justifies the use of
this particular expression.

Theorem 5.5 Let (σ1, σ2, β) be a sequential equilibrium in the signaling
game S = (T,M,A, p, u1, u2). Then:

(a) if c is a preference conjecture equilibrium with u12 = u2 and u21(h0) =
u1 which induces (σ1, σ2, β), then

d(c) ≥ r(σ1, σ2, β).

(b) there exists a preference conjecture equilibrium c with u12 = u2 and
u21(h0) = u1 which induces (σ1, σ2, β), such that

d(c) = r(σ1, σ2, β).

Proof. (a) Let c be a preference conjecture equilibrium with u12 = u2

and u21(h0) = u1 which induces (σ1, σ2, β). Let t ∈ T and m ∈ M . If, for an
m′ ∈ M , (t,m, m′) ∈ R(σ, β), then β(t|m) > 0. Hence, by (3), there exists
an s1 ∈ S1 such that s1(t) = m and µ21(m)(s1) > 0. Optimality of c implies

U21(t,m, u21(m), µ12) ≥ U21(t,m′, u21(m), µ12).

Thus, Rt
m orders m weakly above m′. On the other hand,

U1(t,m, σ2) < U1(t,m′, σ2)

since (t, m,m′) ∈ R(σ, β). This is equivalent to

U21(t,m, u21(h0), µ12) < U21(t,m′, u21(h0), µ12).
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Hence Rt
h0

orders m strictly below m′. Thus we have

d(Rt
h0

, Rt
m) ≥ ∣∣{m′ ∈ M | and U1(t,m, σ2) < U1(t,m′, σ2)

}∣∣ ,

which, after summation over t ∈ T and m ∈ M , yields

d(c) =
∑

m∈M

∑

t∈T

d(Rt
h0

, Rt
m)

≥
∑

(t,m):β(t|m)>0

∣∣{m′ ∈ M | U1(t,m, σ2) < U1(t,m′, σ2)}
∣∣

= r(σ1, σ2, β).

(b) In order to construct a c with the desired properties, start with
u21(h0) := u1, u12 := u2, µ21(h0) := σ1 and µ12 := σ2. Let t ∈ T and
m ∈ M . If there exists an m′ ∈ M with (t,m, m′) ∈ R(σ1, σ2, β), we define

u21(m)(t,m, a) := max
m′′

u21(h0)(t, m′′, a) + 1

and
u21(m)(t, m̃, a) := u21(h0)(t, m̃, a)

for all m̃ 6= m and a ∈ A. If there exists no m′ with (t,m, m′) ∈ R(σ1, σ2, β),
we define

u21(m)(t, m̃, a) = u21(h0)(t, m̃, a)

for all m̃ ∈ M and all a ∈ A.
The ingredients of c defined thus far are sufficient to compute d(c). Let

t ∈ T and m ∈ M . If there is no m′ with (t,m,m′) ∈ R(σ1, σ2, β), then
u21(m) = u21(h0) and therefore

d(Rt
h0

, Rt
m) = 0.

Now suppose there are m′ ∈ M with (t,m,m′) ∈ R(σ1, σ2, β). This means
that β(t|m) > 0, and that U1(t,m, σ2) < U1(t,m′, σ2), hence

∑

s2∈S2

µ12(s2)u21(h0)(t,m, s2(m)) <
∑

s2∈S2

µ12(s2)u21(h0)(t,m′, s2(m′))

for all such m′ ∈ M . So Rt
h0

orders m strictly below all such m′, whereas,
by definition of u21(m), Rt

m orders m above all these m′. Since the ordering
between any two messages unequal to m does not change between Rt

h0
and

Rt
m (due to the definition of u21(m)), we obtain:

d(Rt
h0

, Rt
m) =

∣∣{m′ ∈ M | U1(t,m, σ2) < U1(t,m′, σ2)
}∣∣ .
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Summation over all messages m and all types t yields

r(σ1, σ2, β) =
∑

(t,m):β(t|m)>0

∣∣{m′ ∈ M | U1(t,m, σ2) < U1(t, m′, σ2)}
∣∣

=
∑

(t,m):β(t|m)>0

d(Rt
h0

, Rt
m)

=
∑

(t,m):β(t|m)>0

d(Rt
h0

, Rt
m) +

∑

(t,m):β(t|m)=00

d(Rt
h0

, Rt
m)

= d(c).

We are left to show that c can be extended to a preference conjecture
equilibrium. Let m ∈ M : we still have to define µ21(m). We distinguish the
same two cases as in the proof of Theorem 4.3.

Case 1 : there exists an s′1 ∈ S1(m) such that σ1(s′1) > 0. Then we define

µ21(m)(s1) =
µ21(h0)(s1)∑

s′1∈S1(m)

µ21(h0)(s′1)
for all s1 ∈ S1(m).

Case 2 : σ1(s′1) = 0 for all s′1 ∈ S1(m). Choose for every t ∈ T a strategy
st,m
1 ∈ S1 such that (i) st,m

1 (t) = m and (ii) for all t′ 6= t, st,m
1 (t′) 6= m

and st,m
1 (t′) is optimal for t′ with respect to µ12 and u21(h0). The latter is

always possible since σ1 is optimal with respect to σ2 and σ1(s1) = 0 for all
s1 ∈ S1(m). Now define

µ̃21(m)(st,m
1 ) :=

β(t|m)
p(t)

for all t ∈ T and
µ̃21(m)(s1) = 0

for all s1 ∈ S1(m) with s1 6= st,m
1 and for all t ∈ T . Next normalize for all

s1 ∈ S1(m) :

µ21(m)(s1) =
µ̃21(m)(s1)∑

s′1∈S1(m)

µ̃21(m)(s′1)
.

This completes the definition of c. In the proof of Theorem 4.3 we already
showed that this c induces (σ1, σ2, β); that it satisfies Bayesian updating;
that c is optimal on the part of player 2, that is, part 2 of Definition 3.3;
and that c is optimal on the part of player 1 on h0. Since the definition of
u21(m) (m ∈ M) is different from the one in the proof of Theorem 4.3, we
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still have to show that, for all m ∈ M and s1 ∈ S1(m), if µ21(m)(s1) > 0,
then s1 is optimal for player 1 with respect to µ12 and u21(m).

Let m ∈ M . First suppose that there is an s′1 ∈ S1(m) for which
σ1(s′1) > 0, so that case 1 applies. Let s1 ∈ S1(m) with µ21(m)(s1) > 0.
Then µ21(h0)(s1) > 0. Since σ1 is optimal with respect to σ2 and m is
played with positive probability, the set

{
(t,m′) ∈ T ×M | β(t|m) > 0 and U1(t,m, σ2) < U1(t,m′, σ2)

}

is empty. Thus there exists no m′ such that (t,m, m′) ∈ R(σ1, σ2, β), which
implies that u21(m) = u21(h0). In the proof of Theorem 4.3 we already
showed that µ21(h0)(s1) > 0 implies optimality of s1 for player 1 with respect
to µ12 and u21(h0) and thus, µ21(m)(s1) > 0 implies optimality of s1 for
player 1 with respect to µ12 and u21(m).

Next suppose that σ1(s′1) = 0 for all s′1 ∈ S1(m), so that case 2 applies.
Let s1 ∈ S1(m) with µ21(m)(s1) > 0. This implies that s1 = st,m

1 for a
unique t ∈ T and that β(t|m) > 0 for this t, by definition of µ̃21(m) and
st,m
1 . We distinguish two subcases.

First, suppose that message s1(t) = m is not optimal for t with respect
to µ12 and u21(h0). Then there exists an m′ ∈ M such that U1(t,m, σ2) <
U1(t,m′, σ2), and therefore the set

{
m′ ∈ M | β(t|m) > 0 and U1(t,m, σ2) < U1(t,m′, σ2)

}

is nonempty. But then, by definition,

u21(m)(t,m, a) = max
m′′∈M

u21(h0)(t,m′′, a) + 1

for all a ∈ A, which implies that m ∈ M becomes optimal for type t with
respect to µ12 and u21(m). By definition of st,m

1 , message st,m
1 (t′) is optimal

for all t′ 6= t with respect to µ12 and u21(h0). Since for these t′ we have
u21(m)(t′,m′, a) = u21(h0)(t′,m′, a) for all m′ ∈ M and all a ∈ A, this
implies that st,m

1 (t′) is optimal with respect to µ12 and u21(m). Thus s1 =
st,m
1 is optimal with respect to µ12 and u21(m).

Second, suppose that s1(t) = m is optimal for t with respect to µ12 and
u21(h0). Then there exists no m′ such that (t,m, m′) ∈ R(σ1, σ2, β). Hence,
u21(m)(t,m′, a) = u21(h0)(t, m′, a) for all m′ ∈ M and all a ∈ A, which
implies that s1(t) is optimal with respect to µ12 and u21(m). By the same
argument as in the first subcase, the strategy s1 is optimal for all other t′ 6= t
with respect to µ12 and u21(m), which completes the proof. ¤
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Definition 5.6 A sequential equilibrium (σ1, σ2, β) in a signaling game is
a minimum revision sequential equilibrium if it minimizes the revision index
among all sequential equilibria of the game.

With this definition and Theorem 5.5 we immediately have the following
corollary.

Corollary 5.7 Let S = (T,M,A, p, u1, u2) be a signaling game.

(a) If c is a minimum revision equilibrium in S, then the induced sequential
equilibrium is a minimum revision sequential equilibrium.

(b) If (σ1, σ2, β) is a minimum revision sequential equilibrium, then there
exists a minimum revision equilibrium c with u21(h0) = u1 and u12 =
u2 that induces (σ1, σ2, β).

Corollary 5.7 implies the following result for the special case where every
information set of player 2 is reached with positive probability.

Corollary 5.8 Let S = (T, M, A, p, u1, u2) be a signaling game. If there
exists a sequential equilibrium (σ1, σ2, β) such that for every m ∈ M there
is a type t and a pure strategy s1 with s1(t) = m and σ1(s1) > 0, then every
minimum revision equilibrium with u21(h0) = u1 and u12 = u2 has revision
index 0.

Proof. For a sequential equilibrium (σ1, σ2, β) with these properties, the
corresponding set R(σ1, σ2, β) is empty and hence (σ1, σ2, β) is a minimum
revision sequential equilibrium. Thus every minimum revision equilibrium
has revision index 0. ¤

6 Examples and comparison to the intuitive crite-
rion

A commonly used refinement of sequential equilibrium in signaling games is
the intuitive criterion (Cho and Kreps, 1987). This criterion restricts possi-
ble beliefs on information sets that are not reached with positive probability
in equilibrium, as follows. Suppose a message m is sent that has zero prob-
ability in equilibrium. Then we ask which type could possibly benefit from
sending m, in the sense that there exists an action a ∈ A such that

(i) u1(t, m, a) ≥ ∑
s1∈S1

σ1(s1)
∑

s2∈S2

σ2(s2)u1(t, s1(t), s2(s1(t))), and
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(ii) there is β(·|m) ∈ ∆(T ) such that a ∈ arg max
a′∈A

∑
t′∈T

β(t′|m)u2(t′,m, a′).

Condition (i) says that if m is followed by a, then the utility to type t is
at least as high as the equilibrium utility for this type. Condition (ii) says
that a is a potential optimal action for player 2 after m.

A sequential equilibrium (σ1, σ2, β) is said to survive the intuitive crite-
rion if for every m such that (1) σ1(s1) = 0 for all s1 ∈ S1(m) and (2) there
are types t for which an a ∈ A satisfying (i) and (ii) above exists, we have
β(t|m) > 0 only if t is a type as in (2).

In this section we consider two examples of signaling games. In both
examples we compute all sequential equilibria and thus, basically, all pref-
erence conjecture equilibria with the utility functions of the signaling game
conjectured at the beginning (cf. Theorems 4.1 and 4.3). We also compare
the refinements induced by minimum revision and intuitive criterion. In the
first example there are minimum revision equilibria that survive the intuitive
criterion and others that don’t. The second example shows that the set of
minimum revision equilibria and the set of equilibria surviving the intuitive
criterion can be disjoint.

Example 6.1 See Figure 3 for the extensive form of the game and the
description of all sequential equilibria. For convenience, the equilibria are
described in terms of behavioral strategies. E.g., (b, λa + (1 − λ)b) is the
behavioral strategy where player 2 plays b if player 1 plays A, and a with
probability λ and b with probability 1 − λ if player 1 plays B. Further, α
is the belief of player 2 that player has type t1 if he plays A, and β is the
belief of player 2 that player 1 has type t1 if he plays B. The revision index
is denoted by r.

Example 6.2 This example shows that the set of minimum revision sequen-
tial equilibria and the set of sequential equilibria that survive the intuitive
criterion can be disjoint. Consider the game in Figure 4, a game inspired by
the beer and quiche game of Cho and Kreps (1987). Player 1 has the extra
option of vegetarian quiche, which contains enough spinach for him to be
stronger in case of a duel. Player 1 has two types: weak (w) and strong (s),
with the weak type occurring with probability 1

10 ; and three messages: beer
(b), quiche (q) and vegetarian quiche (v). Player 2 has two actions: duel (d)
and not duel (n).

It can be shown that the only sequential equilibrium in this game that
survives the intuitive criterion is the one where both types of player 1 drink
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Figure 3: Example 6.1
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Figure 4: Example 6.2

beer, and player 2 does not duel if and only if player 1 drinks beer, and
believes that player 1 is weak with probability one if he eats quiche or
vegetarian quiche. So this is similar to the original beer and quiche game.
This equilibrium has revision index equal to 2 and is not a minimal revision
equilibrium: there are sequential equilibria that have (the minimal) revision
index 1, for instance the equilibrium where both types of player 1 eat quiche
(q), player 2 duels if and only if player 1 drinks beer, believes that beer
signals the weak type with probability one and vegetarian quiche signals the
strong type with probability greater than 1/2.

7 Structure and computation

In this section we give a representation of the set of sequential equilibria of a
signaling game as a union of subsets on which the revision index is constant.
Since these subsets are polyhedral, given by systems of linear inequalities,
this representation is convenient for computational purposes.

Let I ⊆ S1 be a subset of pure strategies for player 1 and J ⊆ S2 a subset
of pure strategies for player 2. Define

U(J) := {σ1 ∈ ∆(S1) |
all σ2 ∈ ∆(J) are optimal with respect to σ1}
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and

U(I) := {σ2 ∈ ∆(S2) |
all σ1 ∈ ∆(I) are optimal with respect to σ2}.

These sets are polytopes since all inequalities defining them are linear. As
is not hard to verify (cf. Borm et al., 2002), the set of Nash equilibria of S
is equal to

NE(S) =
⋃

I⊆S1,J⊆S2

(∆(I) ∩ U(J))× (∆(J) ∩ U(I)). (6)

The difference between sequential equilibrium and Nash equilibrium is that
in a sequential equilibrium player 2 also plays optimally on information sets
reached with zero probability (cf. Definition 2.3). Define

M(I) := {m ∈ M | for all t ∈ T and s1 ∈ I: s1(t) 6= m}

and

B(I, J) := {β ∈ ∆(T )M(I) | every s2 ∈ J

is optimal with respect to β on every m ∈ M(I)}.

Since, in a sequential equilibrium, the beliefs of player 2 on information
sets that are reached with positive probability are completely determined
by Bayesian consistency, in describing such an equilibrium we only have to
consider beliefs on information sets that are reached with zero probability.
With some abuse of notation we therefore present a sequential equilibrium
(σ1, σ2, β) also as (σ1, σ2, (β(m))m∈M(I)) with I = {s1 ∈ S1 | σ1(s1) > 0}.

Lemma 7.1 The set of sequential equilibria of the signaling game S is equal
to

SE(S) =
⋃

I⊆S1, J⊆S2

(∆(I) ∩ U(J))× (∆(J) ∩ U(I))×B(I, J).

Proof. First let (σ1, σ2, β) be an element of
⋃

I⊆S1,J⊆S2

(∆(I) ∩ U(J))× (∆(J) ∩ U(I))×B(I, J).

In view of Definition 2.3 and (6) we still have to show that every s2 ∈ S2

with σ2(s2) > 0 is optimal with respect to β on every m ∈ M(I), but this
follows immediately from s2 ∈ J and the definition of B(I, J).
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Conversely, let (σ1, σ2, β) be a sequential equilibrium (with β only de-
scribed on information sets reached with probability zero). Take I := {s1 ∈
S1 | σ1(s1) > 0} and J := {s2 ∈ S2 | σ2(s2) > 0}. Then, since (σ1, σ2) is a
Nash equilibrium in S, we have

(σ1, σ2) ∈ (∆(I) ∩ U(J))× (∆(J) ∩ U(I)).

Finally, since every s2 ∈ S2 with σ2(s2) > 0 is optimal with respect to β on
every m reached with zero probability, we have β ∈ B(I, J). ¤

We will refine the representation of the set of sequential equilibria in Lemma
7.1 based on the revision index of a sequential equilibrium. Since the revision
index is related to preferences of player 1, this means that the sets I in this
representation have to be refined. For every type t ∈ T , let Rt be a (for
the moment arbitrary) ordering on M , let R = (Rt)t∈T denote a profile of
such orderings, and R the set of all such profiles. For a mixed strategy
σ2 ∈ ∆(S2) and type t ∈ T , define the ordering Rt(σ2) by

mRt(σ2)m′ ⇔
∑

s2∈S2

σ2(s2)u1(t,m, s2(m)) ≥
∑

s2∈S2

σ2(s2)u1(t, m′, s2(m′))

for all m,m′ ∈ M . (Recall that this coincides with the ordering Rt
h0

in
Section 5.) The associated profile is denoted by R(σ2).

For R ∈ R define

I(R) := {s1 ∈ S1 | s1(t)Rtm for all t ∈ T and m ∈ M}
and

U(R) := {σ2 ∈ ∆(σ2) | R(σ2) = R}.
Let a be a correspondence that assigns to every m ∈ M(I(R)) a nonempty
subset of T , and let A(R) denote the set of all such correspondences. For
β ∈ B(I(R), J) let β̄ be the correspondence that assigns to every m ∈
M(I(R)) the support of β(m), i.e., β̄(m) = {t ∈ T | β(t|m) > 0}. Obviously,
β̄ ∈ A(R). Finally, let Ba(I(R), J) := {β ∈ B(I(R), J) | β̄ = a} for every
a ∈ A(R).

The proof of the following lemma is left to the reader.

Lemma 7.2 The set of sequential equilibria in the signaling game S is equal
to

SE(S) =
⋃

R∈R,J⊆S2

⋃

a∈A(R)

(∆(I(R))∩U(J))× (∆(J)∩U(R))×Ba(I(R), J).
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The usefulness of this representation is demonstrated by the following
theorem, which states that the revision index is constant on the sets in this
representation.

Theorem 7.3 In the game S, let R ∈ R, a ∈ A(R), and J ⊆ S2. Let
(σ1, σ2, β) and (σ′1, σ

′
2, β

′) be elements of

(∆(I(R)) ∩ U(J))× (∆(J) ∩ U(R))×Ba(I(R), J).

Then r(σ1, σ2, β) = r(σ′1, σ
′
2, β

′).

Proof. Suppose the two revision indices are different, say r(σ1, σ2, β) <
r(σ′1, σ

′
2, β

′). Since β̄ = β̄′ = a, by definition of the revision index there must
be messages m, m̃ ∈ M(I(R)) and a type t ∈ a(m) such that U1(t, m, σ2) ≥
U1(t, m̃, σ2) and U1(t,m, σ′2) < U1(t, m̃, σ′2). This implies Rt(σ2) 6= Rt(σ′2)
and thus R 6= R(σ2) or R 6= R(σ′2). Thus, either σ2 /∈ U(R) or σ′2 /∈ U(R),
a contradiction. ¤

It follows, in particular, that the set of minimum revision equilibria is the
union of sets (∆(I(R)) ∩ U(J))× (∆(J) ∩ U(I(R)))×Ba(I(R), J) with the
same (minimal) revision index.

We conclude this section with an example.

Example 7.4 Consider Example 6.1. As an illustration of Theorem 7.3,
we compute one set with constant revision index. Assume that both types
strictly prefer A over B, which means that I(R) contains only one ele-
ment, namely (A,A). It is easily seen that this implies U(J) = ∆(I(R)) =
{(A,A)}. Now we must choose J such that all σ2 ∈ ∆(J) are optimal with
respect to (A,A). Therefore we first choose

J = {(b, a), (b, b)} ,

that is we choose a set of strategies that can simultaneously be optimal.
The set U(R) contains all mixed strategies for player 2 that make player
1 willing to play (A,A). Since we have to take the intersection with ∆(J)
afterwards, we only consider that part of U(R) that puts positive weight
only on strategies in J . Since we want both types to strictly prefer A, we
obtain (the behavioral strategies) σ2 = (b, λa + (1 − λ)b) with λ ∈ (1

2 , 1].
Given this I(R), we have M(I(R)) = {B} and we choose a(B) = {t1, t2}.
Computation of the beliefs that make all this possible yields β = 1

3 and we
have the set of sequential equilibria{

(A,A), (b, λa + (1− λ)b);λ ∈ (
1
2
, 1];β =

1
3

}

with revision index r = 2.
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