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Abstract

In this paper we analyze equilibria in competitive environments under

constraints across players’ strategies. This means that the action taken

by one player limits the possible choices of the other players. In this

context the classical approach, Kakutani’s Fixed Point theorem, does not

work. In particular, best replies against a given strategy profile may not

be feasible. We extend Kakutani’s Fixed Point theorem to deal with the

feasibility issue.

Our main motivation to study this problem of co-dependency comes

from the field of supply chain planning. A set of buyers is faced with ex-

ternal demand over a planning horizon, and to satisfy this demand they

request inputs from a set of suppliers. Both suppliers and buyers face

production capacities and the planning is made in a decentralized man-

ner. A well-known coordination scheme for this setting is the upstream

approach where the planning of the buyers is used to decide the request

to the suppliers. We show the existence of equilibria for two versions of

this coordination model. However, we illustrate with an example that

the centralized solution is not, in general, an equilibrium, suggesting that

regulation may be needed.

We also apply our Fixed Point theorem to a production economy,

where both supply and demand are upper bounded.
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1. Introduction

In a non-cooperative game we are given a set of players and their corresponding

strategy sets. Players simultaneously choose their strategies, and the payoff of

each player depends on the strategies chosen. Because of this structure of the

payoffs, most of the literature devoted to non-cooperative games assumes that

the feasible strategies of each player are independent of the strategies chosen by

the rest of the players.

However, there are many relevant situations were constraints exist across the

strategies of the players. For example, Caron and Laye (2003) consider a

Cournot oligopoly model where market demand puts constraints on the total

quantity produced by all firms. Also, in the context of strategic voting, Sapor-

iti and Tohmé (2003) consider a voting model where the assumption of single

crossing imposes restrictions across individual preferences.

A third example, and our initial motivation to study constrained competitive

environments, comes from decentralized decision making in supply chain plan-

ning, see e.g. Cachon and Netessine (2004) for non-cooperative games in supply

chain analysis. We consider a two-level supply chain composed by suppliers at

the first level and buyers at the second level. The buyers are faced with deter-

ministic external demand over a planning horizon, and to satisfy this demand

they request inputs from the suppliers. Both suppliers and buyers face linear

production and inventory holding costs as well as production capacities. This

supply chain functions in a decentralized manner where information such as unit

costs and capacities are only locally known. A distribution center manages the

inventory of the inputs, and the only information offered by the suppliers and

the buyers are upper/lower bounds on production levels. It is obvious that the

production planning of the buyers (suppliers) will be, in general, constrained by

the amount of inputs offered (requested) by the suppliers (buyers).

Cachon and Netissine argue that the game theoretic analysis of such models is

problematic. In this paper we show that nevertheless equilibria in competitive
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environments under constraints across players’ strategies do exist. However,

Kakutani’s Fixed Point theorem, cannot be applied directly in this context. In

particular, best replies against a given strategy profile may not be feasible. We

extend Kakutani’s Fixed Point theorem to deal with the feasibility issue. Under

the usual conditions, upper semicontinuity and convex-valuedness of the best

response correspondence, we show the existence of Nash equilibrium.

We apply our existence result to two different settings. The first setting is a

generalization of the Cournot oligopoly model that is studied in Caron and Laye

(2003). We show that also in the generalization of the model of Caron and Laye

a Cournot-Nash equilibrium always exists.

The second application is in the context of decentralized decision making in a

supply chain, the motivating example for this paper. We show that, for up-

stream planning mechanisms in the two-level supply chain, a Nash equilibrium

exists, as long as best responses against the planning schedules of the competi-

tors in the chain form a convex set. We prove that for two special cases of

the upstream planning mechanism, namely hedging against late deliveries and

minimizing inventory levels, this convexity requirement is indeed fulfilled and

hence the existence of Nash equilibrium is guaranteed. The objective in the first

variant is to satisfy the requests of the buyers as soon as possible, while in the

second one the requests are produced as late as possible.

This paper is organized as follows. In Section 2 we introduce a game played

in a constrained environment. Under the assumption of convex-valuedness and

upper semicontinuity of the best response correspondence, we show the existence

of a Nash equilibrium. In Section 3 we apply this result to a generalization of

the capacity constrained Cournot model that is analyzed in Caron and Laye

(2003). In Section 4, we present the decentralized supply chain setting that

motivated this work. We propose the upstream coordination mechanism, and

show that for two variants of this constrained environment Nash equilibrium

exists. Moreover, we prove that centralized planning is not, in general, a Nash

equilibrium. Section 5 concludes and addresses issues for further research.
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2. Existence of equilibrium in constrained environments

In theorem 1 of this section we state and prove a generalization of the theorem of

Nash (1950, 1951). The original theorem of Nash says that every n-person game

in normal form has at least one equilibrium. In the normal form setting each

player is supposed to make a choice from a set of mixed strategies. This choice

can and has to be made independently of the other players. In our generalization

we explicitly allow for constraints across the strategy spaces of the players of

the game. This means that feasibility of a player’s choice of strategy, in contrast

with the normal form setting, may depend on the choices made by other players.

As we already argued, such restrictions across strategies arise naturally in many

situations.

The proof of theorem 1 is based on the fixed point theorem of Kakutani (1941).

In fact theorem 1 can also be shown to be a special case of the main theorem

of Debreu (1952) showing the existence of a social equilibrium in generalized

games. However, since in our particular setting we developed a novel technique

to derive theorem 1 relatively easily from the more generally known result of

Kakutani, we decided to present the line of proof that uses Kakutani’s result.

We will first formally define our model. Let N = {1, . . . , n} be a finite set of

players. Each player i has a finite set Ai of one-dimensional decision variables

at his disposal. A strategy of player i is a vector

xi = (xia)a∈Ai

in R
Ai . However, because we want to have feasibility restrictions explicitly

available in our model, not all combinations x = (xi)i∈N of strategy choices can

be realized. Thus, let

D ⊂
∏

i∈N

R
Ai

be the collection of feasible strategy combinations. We assume that D is compact

and convex. A compact and convex set D of feasible strategy combinations is

called a constrained environment.
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BEST RESPONSES Consider player j. Given a strategy combination x =

(xi)i∈N the set of feasible responses of player j is

Dj(x) := {y ∈ D | yi = xi for all i 6= j}.

Suppose a best response correspondence BRj :D→→D is given for player j such

that

(i) the graph of BRj is a closed subset of D ×D

(ii) for each x ∈ D, BRj(x) is a non-empty subset of Dj(x), and

(iii) for each x ∈ D, BRj(x) is convex.

Notice that we slightly deviate from the usual terminology. Normally the best

response set BRj(x) for player j is defined as a subset of R
Ai with additional

feasibility restrictions. Then the best response set is defined as

BR(x) =
∏

i∈N

BRi(x).

However, in our scenario this product set is not necessarily a subset of D. Thus,

the usual tools like the Fixed Point theorem of Kakutani cannot be applied di-

rectly. Nevertheless, the setting of constrained environments we just introduced

still enables us to prove the existence of Nash equilibria.

Definition 1. The object G = 〈D, (BRi)i∈N 〉 is called a game played in a

constrained environment.

Playing the game comes down to choosing a strategy combination x in D. Player

i is said to behave optimally when x is an element of BRi(x). This justifies the

following definition.

Definition 2. A strategy profile x ∈ D is called a Nash equilibrium of the

game in a constrained environment G = 〈D, (BRi)i∈N 〉 if for all players i we

have that x is an element of BRi(x).

Let Dn be the n-fold product of the set D. An element (xi)i∈N of Dn is called

symmetric if xi = xj for all players i and j. Furthermore, let σ be the cyclic
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permutation of the player set N defined by

σ(i) :=

{

i + 1 if i 6= n

1 if i = n.

Define the map φ:Dn→→Dn by

φ((xi)i∈N ) :=
∏

σ(i)

BRi(x
i).

Now we can prove

Lemma 1. Any fixed point of φ is symmetric.

Proof. Suppose that (xi)i∈N is a fixed point of φ. Because σ is cyclic, it is

sufficient to show that xi
j = x

σ(i)
j for all i and j. Since (xi)i∈N is a fixed point

of φ, we know from the definition of φ that

xσ(i) ∈ BRi(x
i) for all i.

Therefore, since BRi(x
i) is a subset of Di(x

i), we know that x
σ(i)
j = xi

j whenever

j 6= i. Thus we can derive the desired equality for all i and j with j 6= i.

However, for j = i we get from the equalities we already deduced that

x
σ(i)
i = x

σ2(i)
i = · · · = x

σn(i)
i = xi

i. ⊳

Using the lemma above we can easily prove existence of Nash equilibrium for

games that are played in constrained environments.

Theorem 1. The game G has at least one Nash equilibrium.

Proof. Apply the Fixed Point theorem of Kakutani to φ. This yields a point

(xi)i∈N with xσ(i) ∈ BRi(x
i) for all i. However, by the previous lemma, we

know that there is a strategy combination x ∈ D such that xi = x for all i.

Hence, x ∈ BRi(x) for all i, and x is a Nash equilibrium of the game G. ⊳

3. The constrained Cournot-Nash equilibrium

In this section we present the first application of theorem 1, which is a gener-

alization of the capacity constrained Cournot model that is analyzed in Caron
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and Laye (2003). In this model a set of producers simultaneously provides a

good on several markets. Restrictions on minimum consumption levels as well

as saturation in these markets give rise to constraints across strategies of pro-

ducers.

Consider a model in which a set N of producers provides goods to a set M

of markets. Each producer i in N decides which quantity qij ≥ 0 to produce

for each market j in M . We write qj = (qij)i∈N and q = (qij)i∈N,j∈M . The

marginal production costs for producer i are equal to ci ≥ 0.

Producer i has a capacity of Ki, and market j has a minimum demand Rj as well

as a saturation level of Sj , for all i and j. A production plan q = (qij)i∈N,j∈M

is feasible if
∑

j∈M

qij ≤ Ki for all i ∈ N

and

Rj ≤
∑

i∈N

qij ≤ Sj for all j ∈ M.

The set of feasible production plans is denoted by D. Both Ki and Sj can be

set to infinity, in which case the corresponding constraints are trivially fulfilled.

Given a feasible production plan q, the price of one unit of good i on market j

is equal to Pij(qj) ≥ 0.

Remark 1. Notice that we allow for price differentiation within one market.

Therefore, we do not assume homogeneity of the goods produced. Our frame-

work also allows for both heterogeneity of goods and partial substitutability of

goods within one market. The setting of Caron and Laye (2003) is obtained as

a special case of our model by imposing Sj = ∞ and choosing

Pij(qj) = aj − bj

∑

i∈N

qij .

In particular, their model only accounts for homogeneous goods –and therefore

full substitutability– and linear pricing. ⊳

We assume that Pij is continuous in qj . Furthermore, with respect to the

variable qij the function Pij is assumed to be decreasing and concave. The

7



setting of Caron and Laye (2003) satisfies these conditions. Given the feasible

production plan q = (qij)i∈N,j∈M , the profit of producer i is given by

Πi(q) =
∑

j∈M

(Pij(qj) − ci) qij .

The optimization problem of producer i now looks as follows. Given a produc-

tion plan q the set of feasible responses of producer i is

Di(q) := {q′ ∈ D | q′kj = qkj for all k 6= i}.

The set of best responses is

BRi(q) := {q′ ∈ Di(q) | Πi(q
′) ≥ Πi(q

′′) for all q′′ ∈ Di(q)}.

We will show now that this particular generalization of the capacity constrained

Cournot model presented in Caron and Laye fits the framework described in

section 1. In particular we will argue that 〈D, (BRi)i∈N 〉 is indeed a game that

is played in a constrained environment in the sense of section 1. In order to do

this, first notice that the set D of feasible production plans is indeed compact and

convex. So, we only need to verify that each BRi satisfies the three conditions

stated in section 1. This will be done by means of the next two lemmas.

Lemma 2. The graph of the correspondence BRi is closed.

Proof. Suppose that for every k we have a

q′k ∈ BRi(q
k)

and that (q′k, qk) → (q′, q) as k → ∞. We will show that q′ is an element of

BRi(q). Take a point q′′ in Di(q). Notice that the set D of feasible production

plans is polyhedral. Thus we know, see e.g. Cook et al. (1986), that there exist

points q′′k in Di(q
k) that converge to q′′ as k → ∞. However, since q′k is an

element of BRi(q
k), we know for all k that

Πi(q
′k) ≥ Πi(q

′′k).

Hence, by the continuity of Πi, we also get that Πi(q
′) ≥ Πi(q

′′), and the desired

result holds. ⊳
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Lemma 3. The set BRi(q) is not empty and convex.

Proof. Non-emptiness easily follows from the observation that BRi(q) is ob-

tained by maximization of the continuous function Πi over the compact set

Di(q). In order to prove convexity of BRi(q), take two points q′ and q′′ in

BRi(q) and let λ ∈ [0, 1]. We will show that λq′ + (1 − λ)q′′ is also an element

of BRi(q).

First notice that the set D of feasible production plans is compact and convex.

Therefore the set Di(q) of feasible responses is also a compact and convex set,

and λq′ + (1 − λ)q′′ is an element of Di(q). It is sufficient to show that Πi is

concave in the variables (qij)j∈M that are governed by producer i.

To show that Πi is concave in (qij)j∈M , it suffices to prove that

qij 7→ (Pij(qj) − ci)qij .

is concave in the variable qij . We will now more generally show that a function

x 7→ xf(x) for all x ≥ 0

is concave whenever f is non-increasing and concave. Take 0 ≤ x ≤ y. So,

f(x) ≥ f(y). Hence,

(λx + (1 − λ)y)f(λx + (1 − λ)y)

≥ (λx + (1 − λ)y)(λf(x) + (1 − λ)f(y))

= λxf(x) + λ(1 − λ)(y − x)f(x) + (1 − λ)(λx + (1 − λ)y)f(y)

≥ λxf(x) + λ(1 − λ)(y − x)f(y) + (1 − λ)(λx + (1 − λ)y)f(y)

= λxf(x) + (1 − λ)yf(y).

The first inequality follows from the concavity of f and the assumption that x

and y are both non-negative. The second inequality follows from the assumption

that y ≥ x and the fact that f(x) ≥ f(y). This shows that the profit function

Πi is indeed concave. ⊳
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Thus we have shown that 〈D, (BRi)i∈N 〉 is a game that is played in a con-

strained environment. From this observation we immediately get the following

consequence of theorem 1.

Theorem 2. The generalization of the capacity constrained Cournot model

always has a Cournot-Nash equilibrium.

4. The supply chain planning framework

In this section we present the application that motivated this work. We deal

with a decentralized supply chain where its members keep most of their param-

eters, such as unit costs and capacities, locally and only exchange upper/lower

bounds on production levels. We coordinate this supply chain by means of

a distribution center that is in charge of making a production planning while

taking into account the information provided by each of the members. The

goal is to define the way the production planning is constructed, such that the

corresponding game is played in a constrained environment. We propose two

appealing alternatives, based on lead-times and inventory holding costs, that

indeed can be modeled as games played in a constrained environment. Hence,

we derive the existence of Nash equilibria for these alternatives.

Our supply chain is composed of a set S of suppliers and a set B of buyers that

have to satisfy a demand pattern over a discrete planning horizon of T periods.

At each period t = 1, . . . , T each buyer b ∈ B faces a demand of d(b, t) ≥ 0 units

for the so-called end product.

In order to produce one unit of the end product each buyer b ∈ B needs one

unit of a so-called input product, which he can subsequently transform into the

end product at a cost of c(b, t) when production takes place at period t.

The buyers should satisfy the demand exactly in time. Therefore, when needed

buyers will keep the end product in stock, where the unit inventory holding

costs for buyer b at period t are equal to h(b, t).

Upstream in the supply chain each supplier s ∈ S can produce the input product.
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The unit production costs faced by supplier s at period t are equal to c(s, t).

The capacity of supplier s at period t is equal to m(s, t).

Finally, the input product can only be held in stock at the distribution center,

where the unit inventory holding at period t are equal to g(t). These costs are

shared equally by the buyers and the suppliers.

We will assume that the unit production costs as well as the unit inventory

holding costs are strictly positive.

In order to acquire the input product buyer b in B places an order r(b, t) ≥ 0

at the distribution center for each period t. This order represents his minimum

requirements at each period. Independently, supplier s in S reports quanti-

ties q(s, t) to the distribution center representing the maximal amount of input

product he is willing to produce at period t. All orders and reports by buyers

and suppliers respectively are placed at the beginning of the planning horizon.

Feasibility of ask/bid profiles

Given the specification of each requirement r(b, t) by the buyers and each ca-

pacity q(s, t) by the suppliers, the distribution center first checks feasibility of

the ask/bid profile as follows. Write

D(b, t) := d(b, 1) + · · · + d(b, t),

the total demand for buyer b up to and including period t. Similarly we write

R(b, t) := r(b, 1) + · · · + r(b, t),

the total requirement of buyer b up to and including period t, and

Q(s, t) := q(s, 1) + · · · + q(s, t),

the total reported capacity of supplier s up to and including period t. The

feasibility restrictions we impose can now be written as follows.

For each buyer b ∈ B, for each supplier s ∈ S, and for all t = 1, . . . , T

R(b, t) ≥ D(b, t) and m(s, t) ≥ q(s, t).
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These conditions reflect demand satisfaction for the end product and the pro-

duction restrictions on the supply side, respectively. Moreover we require that

∑

s∈S

Q(s, t) ≥
∑

b∈B

R(b, t)

for all t = 1, . . . , T . These conditions ensure demand satisfaction for the input

product. The set of feasible ask/bid profiles (q, r) is denoted by D.

Feasibility of coordination mechanisms

For each feasible ask/bid profile (q, r) in D the distribution center announces a

binding coordination arrangement. For each buyer b, supplier s, and period t it

specifies

xs(q, r, t) and yb(q, r, t).

Supplier s is now bound to produce xs(q, r, t) units in period t and buyer b is

bound to pick up the amount yb(q, r, t) during period t and to transform this

amount into end product.

Thus, a coordination arrangement, or mechanism, is a collection

(x, y) = ((xs)s∈S , (yb)b∈B)

of continuous functions xs:D × T → R, the delivery schedules for the suppliers

to the distribution center, and yb:D × T → R, the pick-up schedules for the

buyers from the distribution center. A coordination arrangement must satisfy

the following conditions. Write

Xs(q, r, t) = xs(q, r, 1) + · · · + xs(q, r, t)

X(q, r, t) =
∑

s∈S Xs(q, r, t)

x(q, r, t) =
∑

s∈S xs(q, r, t).

Similarly we define Yb(q, r, t), Y (q, r, t) and y(q, r, t). We require the following

three set of conditions. For each supplier s ∈ S,

xs(q, r, t) ≤ q(s, t)
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for all t = 1, . . . , T . For each buyer b ∈ B,

yb(q, r, t) ≥ r(b, t)

for all t = 1, . . . , T . And finally, the condition that the total stock in the

distribution center should always be non-negative. So, for all t = 1, . . . , T ,

X(q, r, t) ≥ Y (q, r, t).

Total production and inventory costs

As said before inventory costs at the distribution center are supposed to be

shared equally by all buyers and suppliers alike. So, if we write

G(q, r, t) := X(q, r, t) − Y (q, r, t)

for the total stock available at the distribution center at period t, the costs

associated with the binding coordination arrangement (xs(q, r, t))
T
t=1 for supplier

s are

Vs(q, r) :=

T
∑

t=1

c(s, t)xs(q, r, t) +
1

|B| + |S|

T
∑

t=1

g(t)G(q, r, t).

The first term is equal to the total production costs given the binding coordi-

nation arrangement imposed by the distribution center. The second term is the

part of the inventory costs associated with the input product that supplier s is

supposed to pay.

Similarly, given the binding coordination schedule (yb(q, r, t))
T
t=1 for buyer b, his

costs are equal to

Vb(q, r) :=

T
∑

t=1

c(b, t)yb(q, r, t) +
1

|B| + |S|

T
∑

t=1

g(t)G(q, r, t)

+

T
∑

t=1

h(b, t)(Yb(q, r, t) − D(b, t)).

So far we have only addressed the decisions of the distribution center given

an ask/bid profile (q, r). However, the buyers and suppliers are thus confronted

with an entire range of opportunities when they change their stated requirements
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or capacities. The set of feasible responses of supplier s given the ask/bid profile

(q, r) is the set

Ds(q, r) := {(q′, r) ∈ D | q′s′ = qs′ for all s′ 6= s}.

The set of best responses of supplier s given the ask/bid profile (q, r) is the set

BRs(q, r) := {(q′, r) ∈ Ds(q, r) | Vs(q
′, r) ≤ Vs(q

′′, r) for all (q′′, r) ∈ Ds(q, r)}.

In the same way we can define the sets Db(q, r) and BRb(q, r) for each buyer b

in B.

Of course we would like to show now that G = 〈D, (BRb)b∈B , (BRs)s∈S〉 is a

game played in a constrained environment, because this will guarantee us the

existence of Nash equilibrium. We can indeed show most of the requirements

needed to make G a game played in a constrained environment, except one,

namely convex-valuedness of the best response correspondences. But we will

first discuss the properties we can prove. At least D is clearly compact and

convex, because suppliers have a maximum capacity and all restrictions are

linear. Furthermore, we have the following result.

Lemma 4. The graphs of the correspondences BRs and BRb are closed.

Moreover, both correspondences are non-empty valued.

Proof. The proof that the graphs of both BRb and BRs are closed is identical

to the proof of lemma 2, taking into account that we are dealing here with cost

minimization instead of profit maximization. The non-emptiness of the values

of both BRb and BRs easily follows from the observation that these values are

given by the minimization of a continuous function over a compact set. ⊳

G is a game played in a constrained environment as soon as we can show that

the values of both BRb and BRs are convex. This however is not true in general.

In the remaining sections we will present a counterexample for the convexity of

the values of BRs, and show that in two special cases we can prove the desired

convexity by adding a constraint to the set of best responses for the suppliers.
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Upstream planning mechanisms

In an upstream planning mechanism the distribution simply implements the

requirements reported by the buyers, i.e., given the feasible ask/bid profile (q, r),

the distribution center sets yb(q, r, t) = r(b, t) for each b and t. The advantage

of this is that, as the next lemma shows, at least on the buyer side we do not

run into any additional difficulties when we want to apply theorem 1.

Lemma 5. The correspondence BRb only has non-empty and convex values.

Proof. Take a buyer b in B. His best response set BRb(q, r) given a feasible

ask/bid profile (q, r) is given as the set of reports (r(b, t))T
t=1 that maximize the

function

Vb(q, r) :=

T
∑

t=1

c(b, t)yb(q, r, t) +
1

|B| + |S|

T
∑

t=1

g(t)G(q, r, t)

+

T
∑

t=1

h(b, t)(Yb(q, r, t) − D(b, t)).

over the set

Db(q, r) := {(q, r′) ∈ D | r′b′ = rb′ for all b′ 6= b}.

However, since the distribution center uses an upstream planning mechanism,

buyer b knows that yb(q, r, t) = r(b, t) for all t. Moreover G(q, r, t) and Yb(q, r, t)

are linear functions in the variables yb(q, r, t), which implies that the set BRb(q, r)

is given as the set of reports of buyer b that maximize the linear function Vb(q, r)

over the compact and convex set Db(q, r). Hence, BRb(q, r) is non-empty and

convex. ⊳

In the next sections we will discuss two upstream planning mechanisms in more

detail. First we will however show that, no matter how we define the delivery

schedules xs for the suppliers, the centralized solution –the planning that min-

imizes the total cost faced by both suppliers and buyers– will in general not

be a Nash equilibrium. This is by the way not a feature that is restricted to

upstream planning mechanisms. For virtually all mechanisms the centralized

solution will often not be a Nash equilibrium.
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Example 1. Consider a planning horizon consisting of six time periods, i.e.

T = 6, one single supplier and one single buyer. The data are as follows. For

the buyer we have

t = 1 2 3 4 5 6

d(b, t) = 2 4 8 10 8 4
c(b, t) = 5 20 5 20 5 5
h(b, t) = 3 3 3 3 3 3

and for the supplier we have

t = 1 2 3 4 5 6

c(s, t) = 10 10 20 20 20 13

The unit inventory holding costs for the input product faced by the distribution

center are equal to 1, equally paid by the supplier and the buyer (1
2 per period

each).

The centralized solution (x∗(s, t), y∗(b, t)) (the feasible plan that minimizes total

cost, given that the demand is satisfied) is given by

t = 1 2 3 4 5 6

x∗(s, t) = 6 26 4
y∗(b, t) = 6 18 8 4

G(t) = 26 8 8
O(t) = 4 10

where G(t) is the amount of the input product stored at the distribution center

at period t, O(t) is the amount of end product stored at period t, x∗(s, t) is the

amount of input product the distribution center requires the supplier to deliver

at period t and y∗(b, t) is the amount of input product the distribution center

requires the buyer to collect (and subsequently transform into end product).

The total cost of this production schedule equals 636, of which

6 × 10 + 26 × 10 + 4 × 13 +
1

2
(26 + 8 + 8) = 393

is paid by the supplier and

6 × 5 + 18 × 5 + 8 × 5 + 4 × 5 +
1

2
(26 + 8 + 8) + 3(4 + 10) = 243
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is paid by the buyer.

This production schedule (x∗(s, t), y∗(b, t)) can never be an equilibrium outcome

of the upstream planning mechanism for the following reason. Let (q, r) be a

feasible ask/bid profile that has the centralized solution as an outcome of the

upstream planning mechanism, i.e. xs(q, r, t) = x∗(s, t) and yb(q, r, t) = y∗(b, t).

Since the distribution center simply copies the requirements of the buyer, we

know that r(b, t) = yb(q, r, t) = y∗(b, t). However, given these requirements

reported by the buyer, the supplier has a feasible bid for his capacities that

results in lower costs than in the centralized solution. If the supplier reports

t = 1 2 3 4 5 6

q′(s, t) = 6 30 0 0 0 0

the resulting production schedule from the upstream planning mechanism is

t = 1 2 3 4 5 6

xs(q
′, r, t) = 6 30

yb(q
′, r, t) = 6 18 8 4
G(t) = 30 12 12 4
O(t) = 4 10

with a total cost of 640, of which

6 × 10 + 30 × 10 +
1

2
(30 + 12 + 12 + 4) = 389

is paid by the supplier and

6 × 5 + 18 × 5 + 8 × 5 + 4 × 5 +
1

2
(30 + 12 + 12 + 4) + 3(4 + 10) = 251

is paid by the buyer. Thus, the centralized production schedule can never be the

outcome of a decentralized optimal choice for the supplier under any upstream

planning mechanism. ⊳

Minimal best responses for suppliers

Our aim is to prove the existence of Nash equilibria in upstream planning mecha-

nisms by means of theorem 1. In the following we will illustrate with an example

why we cannot directly use the best reply correspondences BRs.
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Example 2. Consider a single supplier and a single buyer. The supplier has

three days to produce one unit of input product for the buyer. Each day his

capacity is equal to 2. A reported capacity (q1, q2, q3) for the supplier is feasible

if each qi is between 0 and 2, and moreover q1 + q2 + q3 ≥ 1. Graphically this

can be represented by the cube [0, 2]3 with one corner chopped off.

Now, given a feasible reported capacity (q1, q2, q3), consider the upstream plan-

ning mechanism returning the schedule

(x1, x2, x3) =















(1, 0, 0) if q1 ≥ 1

(q1, 1 − q1, 0) if q1 < 1 and q1 + q2 ≥ 1

(q1, q2, 1 − q1 − q2) else,

where the demand is produced as soon as possible.

Moreover, suppose that the production and inventory costs are such that pro-

ducing in periods 1 and 3 is equally expensive, while production in period 2 is

very costly. Then the set of best replies is S ∪ T where

S = {(q1, 0, q3) | q1 + q3 ≥ 1, 0 ≤ q1 ≤ 1, 0 ≤ q3 ≤ 2}

and

T = {(q1, q2, q3) | 1 ≤ q1 ≤ 2, 0 ≤ q2 ≤ 2, 0 ≤ q3 ≤ 2}.
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Graphically this is the shaded area S together with the box T depicted in the

front of the picture below.

However, this is clearly not a convex set and hence 〈D, (BRb)b∈B , (BRs)s∈S〉 is

not a game played in a constrained environment. ⊳

In the following we construct a subcorrespondence of BRs(q, r). First, observe

that given a feasible ask/bid profile in the above example, say (q, r) ∈ D, supplier

s gets the same planning back from the distribution center when reporting q′

or xs(q
′, r, ·). Therefore, if (q′, r) ∈ BRs(q, r), then (xs(q

′, r, ·), r) ∈ BRs(q, r).

In the above example it can easily be seen that convexity is not a problem

when we only consider best responses of the latter type. This observation is the

motivation for the following definitions.

Definition 3. Let (q, r) be an element of D and let s be a supplier in S.

An element (q′, r) of BRs(q, r) is called a minimal best response of supplier s

if supplier s has reported such that xs(q
′, r, t) = q′(s, t), for all t. The set of

minimal best responses of supplier s given (q, r) is denoted by MBRs(q, r). ⊳

Definition 4. An upstream planning mechanism is called monotonic if for all

(q′, r) ∈ BRs(q, r) and all (q′′, r) ∈ Ds(q, r) with xs(q
′, r, t) ≤ q′′(s, t) ≤ q′(s, t)
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it holds that

xℓ(q
′, r, t) = xℓ(q

′′, r, t),

for all suppliers ℓ ∈ S. ⊳

Not all upstream mechanisms are monotonic. For example proportional alloca-

tion mechanisms are not. For monotonic mechanisms we can show the following

result.

Theorem 3. Suppose that the upstream planning mechanism under consider-

ation is monotonic. If the values of the correspondence MBRs are convex, then

G = 〈D, (BRb)b∈B , (MBRs)s∈S〉 is a game played in a constrained environment.

Proof. It remains to be shown that the graph of MBRs is closed and that its

values are nonempty.

First we will show that the graph of MBRs is closed. To see this, notice that,

by the definition of a minimal best response, the graph of MBRs is equal to the

intersection of the graphs of BRs and the correspondence ϕs defined by

ϕs(q, r) = {(q′, r) ∈ Ds(q, r) | xs(q
′, r, t) = q′(s, t), for all t}.

The graph of BRs is closed according to lemma 4, while the closedness of the

graph of ϕs follows immediately from the fact that Ds is a continuous correspon-

dence, the continuity of xs and the maximum theorem (see e.g. Berge (1966)).

Hence, the graph of MBRs is also closed.

Next, take an ask/bid profile (q, r) in D. By lemma 4 we know that BRs(q, r)

is not empty, so we can take a (q′, r) ∈ BRs(q, r). Define q′′ by, for t ∈ T ,

q′′(ℓ, t) = q(ℓ, t) for all ℓ 6= s, and q′′(s, t) = xs(q
′, r, t). We will show that

(q′′, r) is an element of MBRs(q, r).

It is straightforward to check that (q′′, r) is an element of Ds(q, r). Furthermore,

since xs(q
′, r, t) ≤ q′′(s, t) ≤ q′(s, t) clearly holds, monotonicity of the mecha-

nism implies that xℓ(q
′, r, t) = xℓ(q

′′, r, t) for all ℓ ∈ S. From this we get that

Vs(q
′, r) = Vs(q

′′, r) and (q′′, r) is an element of BRs(q, r). ⊳
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In the following we will discuss two variants of the upstream planning mechanism

for which we can use theorem 3 to show the existence of a Nash equilibrium.

This is in some sense bad news since the system may be trapped in a suboptimal

planning schedule in which no one has an inclination to change his behavior. To

define the coordination mechanism completely, it remains to describe the way

the distribution center constructs a planning for the suppliers. In the first one,

the objective is to satisfy the requests of the buyers as soon as possible, and

thus hedging against delayed deliveries when exceptions happen in the supply

chain, while in the second variant the requests are produced as late as possible,

and thus keeping the inventory levels as low as possible.

In the remaining sections we will assume that the suppliers are put in a queue.

This queue is modeled by the sequence s(1), s(2), . . . , s(n), where s(1) is the

supplier in the front of the queue, s(2) is the second supplier in the queue, et

cetera. The specific order is not crucial in what follows. The queue is mainly

used as a tie breaking tool so that we can make unambiguous assignments of

quantities to players within a period. Thus we will without loss of generality

assume that s(i) = i for all i.

Hedging against late deliveries

Recall that, due to the market clearing condition, by the end of period T the

suppliers need to have produced the amount

Y (q, r) = Y (q, r, 1) + · · · + Y (q, r, T ).

Definition 5. The critical report is the unique pair (i∗, t∗) such that

∑

t<t∗

∑

s∈S

q(s, t) +
∑

i<i∗

q(i, t∗) < Y (q, r) ≤
∑

t<t∗

∑

s∈S

q(s, t) +
∑

i≤i∗

q(i, t∗).

In fact (i∗, t∗) is chosen such that the total demand Y (q, r) is fulfilled as soon as

possible, i.e., letting all suppliers produce to full capacity until period t∗ where

Y (q, r) is fulfilled. Now write

L(q, r) := Y (q, r) −
∑

t<t∗

∑

s∈S

q(s, t) +
∑

i<i∗

q(i, t∗)
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and choose

xi(q, r, t) =















q(i, t) if t < t∗ or if t = t∗ and i < i∗

L(q, r) if t = t∗ and i = i∗

0 else.

The mechanism thus defined is called hedging against late deliveries. Notice that

this is in fact the mechanism used in example 2. In the remainder of this section

we will show that 〈D, (BRb)b∈B , (MBRs)s∈S〉 is a game played in a constrained

environment by using theorem 3.

In order to use theorem 3, first observe that hedging against late deliveries is

indeed a monotonic mechanism, so we can use theorem 3. Next, in order to

prove convexity of the values of MBRs, we need to establish two technical facts.

Consider a feasible ask/bid profile, say (q, r) ∈ D. With this profile we can

associate the non-negative real number Ms(q, r) defined as

Ms(q, r) := min

{

T
∑

t=1

q′(s, t) | (q′, r) ∈ Ds(q, r)

}

.

We have the following two observations.

Lemma 6. Given an element (q′, r) in MBRs(q, r), it holds

T
∑

t=1

q′(s, t) = Ms(q, r).

Proof. Let us define

∆s(q, r, t) = min







0,

t
∑

τ=1

r(b, τ) −

t
∑

τ=1

∑

ℓ 6=s

q(ℓ, τ) −

t−1
∑

τ=1

∆s(q, r, τ)







.

For each t, the value
∑t

τ=1 ∆s(q, r, τ) is the minimum production required from

supplier s up to and including period t to ensure feasibility given the ask/bid

profile (q, r). Therefore, we have that
∑t

τ=1 xs(q
′, r, τ) ≥

∑t
τ=1 ∆s(q, r, τ) for

all t. Notice that it is sufficient to prove that

T
∑

τ=1

xs(q
′, r, τ) =

T
∑

τ=1

∆s(q, r, τ)
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since xs(q
′, r, t) = q′(s, t) for all t and ∆s is independent of q′. Suppose that

T
∑

τ=1

xs(q
′, r, τ) >

T
∑

τ=1

∆s(q, r, τ). (1)

Going backwards in the planning horizon, we take the first period, say tl, where

q′(s, t) > 0 (and hence also xs(q
′, r, t) > 0). We will show that we can decrease

q′(s, tl), and therefore also xs(q
′, r, tl), by

ε = min

{

T
∑

τ=1

q′(s, τ) −
T

∑

τ=1

∆s(q, r, τ), q′(s, tl)

}

.

To see this, recall that (q′, r) is an element of MBRs(q, r). From (1) and the

definition of ∆s, we know that ε can be produced by the rest of the suppliers,

during the same period tl and if necessary in future periods. Therefore, we

can reduce the capacity that supplier s reports during period tl to q′(s, tl) − ε.

Let us denote this reduced capacity bid by q′′. It is easy to show that again

xs(q
′′, r, t) = q′′(s, t), for all t, since this was already true for q′ and we have

only reduced the capacity of supplier s in period t1.

For supplier s, the new bid of capacities is better than the previous one, because

his production during period tl decreases, being produced by others in the same

period or maybe in later periods. Thus, this contradicts the fact that (q′, r) is

an element of BRs(q, r). ⊳

Lemma 7. Given (q′, r) and (q′′, r) in MBRs(q, r), it holds

xℓ(q
′, r, t) = xℓ(q

′′, r, t), ℓ 6= s, t = 1, . . . , T.

Proof. Let tl be the last period where

t
∑

τ=1

r(b, τ) >

t
∑

τ=1

∑

ℓ 6=s

q(ℓ, τ).

From the proof in lemma 6, we know that xℓ(q
′, r, t) = xℓ(q

′′, r, t) = q(ℓ, t) for

ℓ 6= s and t ≤ tl and xs(q
′, r, t) = xs(q

′′, r, t) = 0 for t > tl. These two together

with lemma 6 imply the desired result. ⊳
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Now we are able to prove that 〈D, (BRb)b∈B , (MBRs)s∈S〉 is indeed a game

played in a constrained environment, and therefore has a Nash equilibrium.

From theorem 3, we know that it is enough to show the following result.

Theorem 4. The values of the correspondence MBRs are convex.

Proof. Take two elements (q′, r) and (q′′, r) in MBR(q, r). Write

q(λ) := λq′ + (1 − λ)q′′

for 0 ≤ λ ≤ 1. We have to prove that (q(λ), r) is an element of MBR(q, r). We

will check (i) feasibility, (ii) best response and (iii) xs(q(λ), r, t) = q(λ)(s, t).

(i) To see that (q(λ), r) is an element of Ds(q, r), simply observe that this is

a convex set.

In order to prove (ii) and (iii) we first need to show the following claim

xℓ(q
′, r, t) = xℓ(q

′′, r, t) = xℓ(q(λ), r, t) (2)

for all ℓ and t. Notice that

xℓ(q
′, r, t) = xℓ(q

′′, r, t) = xℓ(q(λ), r, t)

immediately follows for all ℓ 6= s and t from lemma 7. So, we only need to prove

(2) for ℓ = s and all t. For this, notice that

T
∑

t=1

xs(q(λ), r, t) ≤

T
∑

t=1

q(λ)(s, t)

=
T

∑

t=1

[λq′(s, t) + (1 − λ)q′′(s, t)]

= λ

T
∑

t=1

xs(q
′, r, t) + (1 − λ)

T
∑

t=1

xs(q
′′, r, t)

= M(q, r).

On the other hand, from the definition of M(q, r) we know that

T
∑

t=1

xs(q(λ), r, t) ≥ M(q, r).
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Hence, xs(q(λ), r, t) = q(λ)(s, t) for all t, and therefore

xs(q(λ), r, t) = λxs(q
′, r, t) + (1 − λ)xs(q

′′, r, t).

(ii) We have that

Vs(q(λ), r) :=

T
∑

t=1

c(s, t)xs(q(λ), r, t) +
1

|B| + |S|

T
∑

t=1

g(t)G(q(λ), r, t)

=

[

λ

T
∑

t=1

c(s, t)xs(q
′, r, t) +

1

|B| + |S|

T
∑

t=1

g(t)G(q′, r, t)

]

+ (1 − λ)

[

T
∑

t=1

c(s, t)xs(q
′′, r, t) +

1

|B| + |S|

T
∑

t=1

g(t)G(q′′, r, t)

]

= λVs(q
′, r) + (1 − λ)Vs(q

′′, r).

Hence, since (q′, r) and (q′′, r) are elements of BRs(q, r), and (q(λ), r) has the

same cost for supplier s, we see that (q(λ), r) is indeed an element of BRs(q, r).

(iii) In order to prove that xs(q(λ), r, t) = q(λ)(s, t) for all t, notice that from

(2), only using ℓ = s, immediately implies that

xs(q(λ), r, t) = λxs(q
′, r, t) + (1 − λ)xs(q

′′, r, t)

= λq′(s, t) + (1 − λ)q′′(s, t)

= q(λ)(s, t)

which finishes our proof. ⊳

Minimizing inventory levels

In the following, we propose another variation of the upstream mechanism where

the requirements are produced by the suppliers as late as possible. Thus, given

a feasible ask/bid profile (q, r) in this variation, the distribution center sets

xs(q, r, T ) =







































q(s, T ) if s < sT

∑

b∈B

r(b, T ) −
s−1
∑

ℓ=1

q(ℓ, T ) if s = sT

0 if s > sT
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where sT is defined as the first index s such that

∑

b∈B

r(b, T ) <

s
∑

ℓ=1

q(ℓ, T ),

or ∞ when such an index does not exists. Further, for any t = T − 1, . . . , 1 the

distribution center sets

xs(q, r, t) =











































q(s, t) if s < st

∑

b∈B

T
∑

τ=t

r(b, τ) −
∑

ℓ∈S

T
∑

τ=t+1
xℓ(q, r, τ) −

s−1
∑

ℓ=1

q(ℓ, t) if s = st

0 if s > st,

where st is defined as the first index s such that

∑

b∈B

T
∑

τ=t

r(b, τ) <
∑

ℓ∈S

T
∑

τ=t+1

xℓ(q, r, τ) +

s
∑

ℓ=1

q(ℓ, t),

or ∞ when such an index does not exists. If st < ∞, we say that t is a critical

period and that st is its critical supplier.

Similarly to the ‘hedging against late deliveries’ variant, we cannot use directly

the best reply correspondences to show the existence of Nash equilibria by means

of theorem 1.

Example 3. Consider the problem instance given in example 2. Given a

feasible reported capacity (q1, q2, q3), the mechanism returns the schedule

(x1, x2, x3) =















(0, 0, 1) if q3 ≥ 1

(0, 1 − q3, q3) if q3 < 1 and q2 + q3 ≥ 1

(1 − q2 − q3, q2, q3) else.

Then the set of best replies is S ∪ T where

S = {(q1, 0, q3) | q1 + q3 ≥ 1, 0 ≤ q1 ≤ 1, 0 ≤ q3 ≤ 1}

and

T = {(q1, q2, q3) | 0 ≤ q1 ≤ 2, 0 ≤ q2 ≤ 2, 1 ≤ q3 ≤ 2},
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which is clearly not a convex set. ⊳

Nevertheless, notice that also ‘minimizing inventory levels’ is a monotonic mech-

anism, so we can again try to use theorem 3. However, in contrast to the ‘hedg-

ing against late deliveries’ variant,
∑T

t=1 xs(·, r, t) is not constant in the set of

minimal best responses MBRs(q, r). Thus, lemma 6 no longer holds in this

setting.

Example 4. Consider a planning horizon consisting of four time periods, i.e.

T = 4, two suppliers and one single buyer. The requirements of the buyer are

equal to (3, 6, 6, 8). For the suppliers we have

t = 1 2 3 4

c(1, t) = 10 1
3

2
3 1

m(1, t) = 5 5 5 5

c(2, t) = 15 15 15 15
m(2, t) = 5 5 5 5.

The unit inventory holding costs for the input product faced by the distribution

center are equal to 1, equally paid by the suppliers and the buyer (1
3 per period

each).

Suppose that the second supplier bids his actual capacities, i.e., (5, 5, 5, 5), then

the following ask/bids are best responses

(0, 2, 0, 3), (0, 0, 4, 0) and (0, 0, 0, 3).

Therefore, the total production is not constant. This example also illustrates

that, given the bid (5, 5, 5, 5) of supplier 2, supplier 1 may produce more than

enough to satisfy the requirements, i.e., more than three units. ⊳

Given an ask/bid vector (q, r), the planning horizon decomposes into blocks by

using the critical periods. A block is defined as a collection of consecutive periods

such that the first period is the only period where the (backward) cumulative

requirements are at most the (backward) cumulative capacities. To be precise,

27



[t1, t2] is a block if and only if

∑

b∈B

t2
∑

τ=t

r(b, τ) >
∑

ℓ∈S

t2
∑

τ=t

q(ℓ, τ)

for each t = t1 + 1, . . . , t2, and

∑

b∈B

t2
∑

τ=t1

r(b, τ) ≤
∑

ℓ∈S

t2
∑

τ=t1

q(ℓ, τ).

It is easy to see that the critical periods decompose the planning horizon into

blocks. In example 3, the best responses (0, 2, 0, 3), (0, 0, 4, 0), (0, 0, 0, 3) yield

three different decompositions of the planning horizon into blocks, namely

{[1, 1], [2, 3], [4]}, {[1, 2], [3, 4]}, {[1, 3], [4]}.

We will now show that in MBRs(q, r), the set of production plans the distri-

bution center returns to supplier s is convex, and thus the desired result that

〈D, (BRb)b∈B , (MBRs)s∈S〉 has a Nash equilibrium follows. We first need a cou-

ple of technical results.

Remark 2. Let (q′, r) be an element of MBRs(q, r) and let [t1, t2] be one of

the blocks of the decomposition of (q, r). If supplier s bids some capacity in the

first period of the block q′(s, t1) > 0, then xℓ(q
′, r, t1) = q′(ℓ, t1) for all ℓ 6= s.

Otherwise, part of this production could have been done by some of the other

suppliers involving less production costs for supplier s and the same inventory

holding costs.

Lemma 8. Let (q′, r) and (q′′, r) be elements of MBRs(q, r), and (q(λ), r)

where q(λ) := λq′ + (1− λ)q′′ for 0 ≤ λ ≤ 1. Then, any common critical period

for both (q′, r) and (q′′, r) is also critical for (q(λ), r).

Proof. It is enough to show that

∑

ℓ∈S

T
∑

τ=t

xℓ(q(λ), r, τ) ≥ λ
∑

ℓ∈S

T
∑

τ=t

xℓ(q
′, r, τ) + (1 − λ)

∑

ℓ∈S

T
∑

τ=t

xℓ(q
′′, r, τ) (3)

for all t. Suppose that these inequalities are true. Take a common critical point

for both (q′, r) and (q′′, r), say t, then we know that there exists a supplier st
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such that
∑

ℓ∈S

T
∑

τ=t+1

xℓ(q
′, r, τ) +

st

∑

ℓ=1

q′(ℓ, t) >
∑

b∈B

T
∑

τ=t

r(b, τ)

and
∑

ℓ∈S

T
∑

τ=t+1

xℓ(q
′′, r, τ) +

st

∑

ℓ=1

q′′(ℓ, t) >
∑

b∈B

T
∑

τ=t

r(b, τ).

Now by taking the corresponding convex combination,

λ
∑

ℓ∈S

T
∑

τ=t+1

xℓ(q
′, r, τ) + (1 − λ)

∑

ℓ∈S

T
∑

τ=t+1

xℓ(q
′′, r, τ) +

st

∑

ℓ=1

q(λ)(ℓ, t)

>
∑

b∈B

T
∑

τ=t

r(b, τ),

and the result follows from (3).

We can show (3) using backwards induction on t. First, we prove that the

result is true for t = T . We have that

∑

ℓ∈S

xℓ(q(λ), r, T )

= min{
∑

ℓ∈S

q(λ)(ℓ, T ),
∑

b∈B

r(b, T )}

= min{λ
∑

ℓ∈S

q′(ℓ, T ) + (1 − λ)
∑

ℓ∈S

q′′(ℓ, T ),
∑

b∈B

r(b, T )}

≥ λmin{
∑

ℓ∈S

q′(ℓ, T ),
∑

b∈B

r(b, T )} + (1 − λ)min{
∑

ℓ∈S

q′′(ℓ, T ),
∑

b∈B

r(b, T )}

= λ
∑

ℓ∈S

xℓ(q
′, r, T ) + (1 − λ)

∑

ℓ∈S

xℓ(q
′′, r, T ).

Now suppose that (3) is true for period t + 1 and we want to prove it for t.

In that case

∑

ℓ∈S

T
∑

τ=t

xℓ(q(λ), r, τ)

= min{
∑

ℓ∈S

T
∑

τ=t+1

xℓ(q(λ), r, τ) +
∑

ℓ∈S

q(λ)(ℓ, t),
∑

b∈B

T
∑

τ=t

r(b, t)}

≥ min{λ(
∑

ℓ∈S

T
∑

τ=t+1

xℓ(q
′, r, τ) +

∑

ℓ∈S

q′(ℓ, t))
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+(1 − λ)(
∑

ℓ∈S

T
∑

τ=t+1

xℓ(q
′′, r, τ) +

∑

ℓ∈S

q′′(ℓ, t)),
∑

b∈B

T
∑

τ=t

r(b, t)}

and the proof continues in a similar fashion as above. ⊳

Lemma 9. Let (q′, r) and (q′′, r) be elements of MBRs(q, r), and (q(λ), r)

where q(λ) := λq′ + (1 − λ)q′′ for 0 ≤ λ ≤ 1. Then, we have

1. xℓ(q
′, r, t) = q′(ℓ, t), xℓ(q

′′, r, t) = q′′(ℓ, t) and xℓ(q(λ), r, t) = q(λ)(ℓ, t),

for each ℓ ∈ S and t = 2, . . . , T ,

2. xs(q(λ), r, 1) = q(λ)(s, 1), and

3.
∑

ℓ 6=s xℓ(q(λ), r, 1) = λ
∑

ℓ 6=s xℓ(q
′, r, 1) + (1 − λ)

∑

ℓ 6=s xℓ(q
′′, r, 1).

Proof. Let {tk}K
k=1 be the joint set of the critical periods of (q′, r) and (q′′, r),

given in decreasing order.

Because of feasibility we know that tK = 1. Without loss of generality, we will

assume that there is only one period being critical for both (q′, r) and (q′′, r),

namely tK = 1. Otherwise, and by using lemma 8, (q(λ), r) will share this

critical point as well and the planning horizon can therefore be split using this

common critical period. The same proof can be applied to each of the two new

planning horizons.

From the definition of a block, Claim 1 follows trivially for (q′, r) for any period

between 2 and the first critical one, and similarly for (q′′, r). For the rest of

periods, it is enough to show that for k = 1, . . . ,K − 1

∑

b∈B

T
∑

τ=tk

r(b, τ) =
∑

ℓ∈S

T
∑

τ=tk

q′(ℓ, τ) (4)

when tk is a critical period for (q′, r), and therefore xℓ(q
′, r, t) = q′(ℓ, t) for all

ℓ ∈ S and t ≥ tk, or

∑

b∈B

T
∑

τ=tk

r(b, τ) =
∑

ℓ∈S

T
∑

τ=tk

q′′(ℓ, τ) (5)
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when tk is a critical period for (q′′, r), and therefore xℓ(q
′′, r, t) = q′′(ℓ, t) for all

ℓ ∈ S and t ≥ tk.

To show (4) and (5) we will use backwards induction. We will first show the

result for k = 1. Suppose that t1 is a critical period of (q′, r) and that (4) does

not hold. Then we have

∑

b∈B

T
∑

τ=t1

r(b, τ) <
∑

ℓ∈S

T
∑

τ=t1

q′(ℓ, τ).

Thus, q′(s, t1) = 0 by remark 2. Moreover, because t1 is not a critical point of

(q′′, r)
∑

ℓ∈S

T
∑

τ=t1

q′′(ℓ, τ) <
∑

b∈B

T
∑

τ=t1

r(b, τ),

from which follows that

T
∑

τ=t1

q′′(s, τ) <

T
∑

τ=t1

q′(s, τ). (6)

We will show that supplier s can reduce the costs associated with (q′′, r), contra-

dicting the fact that (q′′, r) is a best response for supplier s. First observe that

the inventory levels in periods t1 − 1, . . . , T are strictly positive because these

periods belong to the same block. From (6), we know that there exists a period

τ where m(s, τ) ≥ q′(s, τ) > q′′(s, τ). (We may observe that τ > t1 because

q′(s, t1) = 0.) In the following we will show that we can decrease the costs asso-

ciated with (q′′, r) by decreasing the inventories levels in periods t1−1, . . . , τ −1

and producing the corresponding amount in period τ . We notice that the unit

production costs in period τ for supplier s are at most as expensive as the unit

inventory costs incurred from period t1 up to period τ . This is because in (q′, r)

the other suppliers have capacity left during period t1. We can construct (q′′′, r)

such that q′′′(ℓ, t) = q′′(ℓ, t) for all (ℓ, t) 6= (s, τ) and q′′′(s, τ) = q′′(s, τ) + ε. It

is easy to show that (q′′′, r) ∈ Ds(q, r) and the costs supplier s are strictly lower

in (q′′′, r) than in (q′′, r). This yields the desired reduction on costs.

Now suppose that the result is true for k − 1 and we want to prove it for k.

Again and without loss of generality, suppose that tk is a critical point of (q′, r).
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If (4) does not hold for tk, we have

∑

b∈B

T
∑

τ=tk

r(b, τ) <
∑

ℓ∈S

T
∑

τ=tk

q′(ℓ, τ),

where q′(s, tk) = 0 by using remark 2, i.e., the rest of the suppliers have capacity

left during period tk.

Let tlow be the lowest critical period of (q′′, r) in t1, . . . , tk−1, or tlow = T +1

if such a period does not exists. Using (5) for tlow we have that

T
∑

τ=tlow

q′′(s, τ) ≥
T

∑

τ=tlow

q′(s, τ). (7)

Moreover, because tk is not a critical period of (q′′, r),

∑

ℓ∈S

T
∑

τ=tk

q′′(ℓ, τ) <
∑

b∈B

T
∑

τ=tk

r(b, τ)

and thus
T

∑

τ=tk

q′′(s, τ) <

T
∑

τ=tk

q′(s, τ). (8)

Again, we will show that we can reduce the costs associated with (q′′, r). We

have that (i) the inventory levels in periods tk − 1, . . . , tlow − 1 are strictly

positive because these periods belong to the same block, (ii) there exists a

period τ , τ = tk + 1, . . . , tlow − 1 where q′(s, τ) > q′′(s, τ) since (7) and (8)

hold and q′(s, tk) = 0, (iii) the unit production costs in period τ are at most

as expensive as the unit inventory costs incurred from period tk up to period τ

because in (q′, r) the other suppliers have capacity left during period tk. In a

similar fashion as before, we can show that we can reduce the costs associated

with (q′′, r), being in contradiction with the fact that (q′′, r) is a best response.

In the following we will show Claim 2. We will distinguish three cases.

• Case 1: q′(s, 1) and q′′(s, 1) are strictly positive. From remark 2, we have

that xℓ(q
′, r, 1) = q′(ℓ, 1), xℓ(q

′′, r, 1) = q′′(ℓ, 1), for all ℓ ∈ S and together

with Claim 1

∑

b∈B

T
∑

τ=1

r(b, τ) =
∑

ℓ∈S

T
∑

τ=1

q′(ℓ, τ) =
∑

ℓ∈S

T
∑

τ=1

q′′(ℓ, τ).
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Therefore,
∑

b∈B

T
∑

τ=1

r(b, τ) =
∑

ℓ∈S

T
∑

τ=1

q(λ)(ℓ, τ),

and thus, again using Claim 1, xℓ(q(λ), r, 1) = q(λ)(ℓ, 1), for all ℓ ∈ S.

• Case 2: q′(s, 1) · q′′(s, 1) = 0 and q′(s, 1) + q′′(s, 1) > 0. Without loss of

generality we analyze the case q′(s, 1) = 0 and q′′(s, 1) > 0. From remark

2, we know that the capacity during period 1 in (q′′, r) is fully used. This

together with Claim 1 means that

∑

b∈B

T
∑

τ=1

r(b, τ) =
∑

ℓ∈S

T
∑

τ=1

q′′(ℓ, τ).

We will show that

∑

ℓ∈S

T
∑

τ=1

q′(ℓ, τ) =
∑

ℓ∈S

T
∑

τ=1

q′′(ℓ, τ), (9)

and therefore the capacity in (q′, r) is also fully used. The desired result

follows similarly as in Case 1.

Suppose that (9) is not true, i.e.,
∑

ℓ∈S

∑T
τ=1 q′′(ℓ, τ) <

∑

ℓ∈S

∑T
τ=1 q′(ℓ, τ),

and thus
T

∑

τ=1

q′′(s, τ) <

T
∑

τ=1

q′(s, τ). (10)

In a similar fashion as above, let tlow be the lowest critical period of (q′′, r)

in t1, . . . , tK−1, or tlow = T + 1 if such a period does not exists. We have

that
T

∑

τ=tlow

q′′(s, τ) ≥

T
∑

τ=tlow

q′(s, τ). (11)

We will show that we can reduce the costs for supplier s associated with

(q′′, r), which is a contradiction with the fact that this is a best response.

We have that (i) the inventory levels during periods 1, . . . , tlow − 1 are

strictly positive because these periods belong to the same block, (ii) part of

this inventory is produced by supplier s during period 1 because q′′(s, 1) >

0 and the capacity of (q′′, r) is fully used, (iii) there exists a period τ ,
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τ = 2, . . . , tlow − 1 where q′(s, τ) > q′′(s, τ) since (10) and (11) hold and

q′(s, 1) = 0, (iv) the unit production costs in period τ are at most as

expensive as the unit inventory costs incurred from period 1 up to period

τ because in (q′, r) the other suppliers have capacity left during period

1 and xs(q
′, r, τ) = q′(s, τ) > 0. We can construct (q′′′, r) such that

q′′′(ℓ, t) = q′′(ℓ, t) for all (ℓ, t) 6= (s, τ) and q′′′(s, τ) = q′′(s, τ) + ε. It is

easy to show that (q′′′, r) ∈ Ds(q, r) and the costs supplier s are strictly

lower in (q′′′, r) than in (q′′, r). This yields the desired reduction on costs.

• Case 3: q′(s, 1) = q′′(s, 1) = 0. We have then q(λ)(s, 1) = 0 and the

desired result follows trivially.

It remains to show Claim 3. This easily follows from Claims 1 and 2:

∑

b∈B

T
∑

τ=1

r(b, τ) =
∑

ℓ∈S

T
∑

τ=1

xℓ(q(λ), r, τ)

=
∑

ℓ 6=s

xℓ(q(λ), r, 1) + xs(q(λ), r, 1) +
∑

ℓ∈S

T
∑

τ=2

xℓ(q(λ), r, τ)

=
∑

ℓ 6=s

xℓ(q(λ), r, 1) + λ(xs(q
′, r, 1) +

∑

ℓ∈S

T
∑

τ=2

xℓ(q
′, r, τ))

+(1 − λ)(xs(q
′′, r, 1) +

∑

ℓ∈S

T
∑

τ=2

xℓ(q
′′, r, τ))

=
∑

ℓ 6=s

xℓ(q(λ), r, 1) + λ(
∑

b∈B

T
∑

τ=1

r(b, τ) −
∑

ℓ 6=s

xℓ(q
′, r, 1))

+(1 − λ)(
∑

b∈B

T
∑

τ=1

r(b, τ) −
∑

ℓ 6=s

xℓ(q
′′, r, 1))

and the desired equality follows. ⊳

Theorem 5. The values of the correspondence MBRs are convex.

Proof. Take two elements (q′, r) and (q′′, r) in MBR(q, r). Write

q(λ) := λq′ + (1 − λ)q′′

for 0 ≤ λ ≤ 1. We have to prove that (q(λ), r) is an element of MBR(q, r). We

will check (i) feasibility, (ii) best response and (iii) xs(q(λ), r, t) = q(λ)(s, t).
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Feasibility follows in the same way as in the proof of theorem 4, and (iii) has

been proved in lemma 9. It remains to show that that (q(λ), r) is an element of

BRs(q, r).

Lemma 9 ensures that the inventory levels in (q(λ), r) are a convex combination

of the ones in (q′, r) and (q′′, r), i.e.,

G(q(λ), r, t) = λG(q′, r, t) + (1 − λ)G(q′′, r, t).

Therefore,

Vs(q(λ), r) :=

T
∑

t=1

c(s, t)xs(q(λ), r, t) +
1

|B| + |S|

T
∑

t=1

g(t)G(q(λ), r, t)

=

[

λ

T
∑

t=1

c(s, t)xs(q
′, r, t) +

1

|B| + |S|

T
∑

t=1

g(t)G(q′, r, t)

]

+ (1 − λ)

[

T
∑

t=1

c(s, t)xs(q
′′, r, t) +

1

|B| + |S|

T
∑

t=1

g(t)G(q′′, r, t)

]

= λVs(q
′, r) + (1 − λ)Vs(q

′′, r),

and the desired result follows. ⊳

5. Conclusion and further research

In this paper we showed the existence of Nash equilibrium in game theoretic

models with constraints across players’ strategies. We used this result in three

different applications. The first application is a generalization of the model of

Caron and Laye.

The second and third application are in the context of a two-level supply chain.

We showed that for both the ‘hedging against late deliveries’ mechanism and

the ‘minimizing inventory levels’ mechanism we can apply the existence result

to a subcorrespondence of the best response correspondence. We also showed

that in the two-level supply chain setting the centralized solution is in general

not a Nash equilibrium.

The observation that Nash equilibrium is in general not optimal seems to sug-

gest that, when decision making is decentralized in the supply chain, that the
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chain may get caught in a non-optimal solution. One way to resolve this is by

monetary transfers. Is it possible to improve upon the Nash equilibrium out-

come by means of payment schemes or subsidies? Under what circumstances

is it possible to guarantee full optimality with such payment schemes? One

other direction for further research would be to see whether we can apply the

existence result also in a more general setting, for example allowing for setup

costs in production.
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