
The Component Retrieval Problem in Printed Circuit

Board Assembly

Yves Crama 1

Olaf E. Flippo 2

Joris van de Klundert 2

Frits C.R. Spieksma 3

October 16, 1995

1Ecole d'Administration des A�aires, Universit�e de Li�ege, 4000 Li�ege, Belgium
2Department of Quantitative Economics, Faculty of Economics, University of Limburg, 6200 MDMaastricht,

The Netherlands
3Department of Mathematics, University of Limburg, 6200 MD Maastricht, The Netherlands

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6942047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The minimization of the makespan of a printed circuit board assembly process is a complex problem.

Decisions involved in this problem concern the speci�cation of the order in which components are to

be placed on the board, and the assignment of component types to the feeder slots of the placement

machine. If some component types are assigned to multiple feeder slots, then the additional prob-

lem emerges of selecting, for each placement on the board, the feeder slot from which the related

component type is to be retrieved. In this paper, we consider this Component Retrieval Problem

for placement machines that operate in a similar way as the Fuji CP II. We explain why a simple

forward dynamic programming scheme cannot provide an e�cient solution to this problem, thereby

invalidating the correctness of an earlier published approach. We then present a polynomial algorithm

that solves the problem to optimality.

The analysis of the Component Retrieval Problem is greatly facilitated by its reformulation as a

longest path problem in a PERT/CPM network with design aspects; �nding the minimal makespan

of the assembly process thus amounts to identifying a design for which the longest path in the

induced network is shortest. As an alternative interpretation, the Component Retrieval Problem

can be viewed as a shortest path problem with side-constraints. The complexity of these network

problems is analysed, and it is proven that the polynomial solvability of the Component Retrieval

Problem is caused by the speci�c structure it inicts on the arc lengths in the network. In the absence

of this structure, the network problems are shown to be NP -hard in general.

1 Introduction

The problem of determining optimal production plans for the automated assembly of printed circuit

boards (PCBs) has been investigated by numerous researchers; see e.g. Ahmadi (1993) and Crama,

Oerlemans and Spieksma (1994). A precise de�nition of this problem is highly dependent on the

speci�c features of the assembly machines and, more generally, of the technological environment.

As a rule, however, the problem is a very complex one and, for this reason, many authors have

proposed to solve it by decomposing it into subproblems; see e.g. Ahmadi (1993), Ball and Magazine

(1988), Bard, Clayton and Feo (1994), Crama, Flippo, van de Klundert and Spieksma (1995), Crama,

Oerlemans and Spieksma (1994) and van Laarhoven and Zijm (1993). Here again, the subproblems

emerging from the decomposition vary according to the context, as do their computational complexity.

In this paper, we concentrate on one such subproblem, namely the Component Retrieval Problem

(CRP) that arises when the placement machine operates like a machine of the Fuji CP family. Briey

stated, CRP is de�ned to be the following problem: for a given placement sequence of components

on the board, and for a given assignment of component types to (possibly multiple) feeder slots of

the placement machine, decide from which feeder slot each component should be retrieved.

In the next section, we describe the assembly process associated with a Fuji CP II placement machine,

and the role of the Component Retrieval Problem in this process. We refer to Bard, Clayton and

Feo (1994) and Crama et al. (1995) for a more complete description of this process as well as for

related references. In Section 3, we present a formulation of CRP in terms of a PERT/CPM network

problem with design aspects; �nding the minimal makespan of the assembly process thus amounts to

identifying a design for which the longest path in the induced network is shortest. Alternatively, the

Component Retrieval Problem may also be viewed as a shortest path problem with (path induced)

side-constraints. In Section 4 an example is discussed which reveals that straightforward forward

dynamic programming does not necessarily yield optimal solutions. In fact, the example suggests that

no dynamic programming approach with a linearly sized state-space in the number of components

involved, is capable of retaining su�cient information to identify optimal solutions in all cases. These

negative observations, which also invalidate the forward dynamic programming approach by Bard,

Clayton and Feo (1994), may serve as a justi�cation for the relatively complex solution algorithm

that is proposed in Section 5. This algorithm is based on the network formulation of Section 3, and

can be viewed as a \two-phase" dynamic programming approach with pairs of grip activities as the

state-space. If the number of components involved is denoted by n, then the size of the state-space

is thus quadratic in n, implying an overall time complexity of O(n3) for the entire algorithm.

Since the network optimization problems of Section 3 are of interest beyond the special case of CRP,

their time complexity is studied in Section 6. It is proven that the polynomial solvability of the

Component Retrieval Problem is caused by the speci�c structure it inicts on the arc lengths in the

PERT/CPM network; in the absence of this structure, the network problem is shown to be NP -hard

in general. The paper is concluded with a brief summary.

1

2 The Fuji CP II Placement Machine

Assembling a printed circuit board consists of placing a number of electronic components, each

of prespeci�ed type, at prespeci�ed locations on a bare board. The placement machine that is

considered in this paper is a Fuji CP II, yet our analysis may apply to other machines having similar

characteristics as well (such as other members of the Fuji family, or the Panasonic Mk1 considered

by Horak and Francis (1995)). The Fuji CP II is equipped with a magazine rack that contains a

number of slots to which feeder tapes can be assigned. Each tape bears components of a unique

component type, and feeder tapes with the same component type may be assigned to multiple slots.1

Components are gripped from a slot of the magazine rack and mounted on the PCB by a placement

head. Coordination between grip and place activities is done by a carousel, which performs many

other functions as well. The carousel contains 12 heads, and it can simultaneously hold up to six

components; see Figure 1.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

..

..

.

..

..

..

.

..

..

.

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..
...
..
..
...
..
...
..
...
..
...
...
...
...
...
...
...
....
...
....
....
....
.....
.....
......
.......

.........
.................

...
........
.......
.....
.....
.....
....
....
...
...
....
...
...
...
...
...
...
...
..
...
...
...
..
...
...
..
...
..
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
...
...
..
...
...
...
..
...
...
...
...
...
...
...
....
...
...
....
....
.....
.....
.....
.......
........
...................

..
..........
........
......
......
.....
....
....
....
....
...
....
...
...
...
...
...
..
...
...
..
...
..
...
..
..
...
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
..
.

j
12

6

grip station

j
1

j
2
��
�* image process station

j
3

- component eject

j
4HHHj nozzle turnj

5j
6

?
place station

j
7

j
8

j
9

j
10

j
11

PCB table �-6
?

rack -�

carousel

$
?

Figure 1: The Fuji CP II.

Suppose the machine is just about to place the i-th component on the board. To this end, the board

location where the component is to be placed, is positioned at the so-called \placement spot", and

the carousel head containing the component (the current place station) is right above this spot. The

carousel head then proceeds with the actual placement of the component on the board. After the

placement has been completed, the worktable holding the PCB starts moving, until the board location

where the next component is to be placed comes to rest at the placement spot. Diametrically opposed

to the aforementioned carousel head is another head (the current grip station), which is positioned

right above the so-called \gripping spot". The grip station is ready to grip the (i+ 6)-th component

from the magazine rack as soon as the appropriate slot has been positioned at the gripping spot.

1In fact, it will become clear shortly that a non-trivial instance of the Component Retrieval Problem only emerges

if at least one component type is assigned to at least two di�erent feeder slots.

2

Once this is done, the head proceeds with actually gripping the (i+6)-th component from this feeder

slot. After the gripping activity has been completed, the magazine rack starts to shift in order to

position the slot from which the next component is to be retrieved, at the gripping spot. Only after

the i-th component has been placed and the (i+ 6)-th component has been gripped, the carousel is

ready to rotate 30� clockwise, to prepare for the placement and gripping of components (i+ 1) and

(i+ 7) respectively.

Thus, between two consecutive place activities, the PCB table has to move until the board location

where the second component is to be placed lies at the placement spot, and the carousel has to

rotate 30� so as to position the next head right above the placement spot. Similarly, between two

consecutive grip activities, the rack has to shift until the appropriate slot is at the gripping spot, and

the carousel has to rotate so as to position the next head right above this spot. It is hereby important

to observe that placement operation i and gripping operation (i + 6) do not have to be performed

simultaneously, but are necessarily carried out between the same two carousel rotations. Also, table,

rack and carousel movements may take place concurrently.

Clearly, the duration of rack movements depends on the distance between slots from which consecutive

gripping operations are done. Therefore, even when the component placement sequence on the board

and the magazine rack assignment of component tapes are given, minimizing the assembly makespan

still involves decisions concerning the feeder slots from which each component should be retrieved.

The corresponding optimization problem is known as the Component Retrieval Problem (CRP). Of

course, as mentioned before, a non-trivial decision problem only arises if at least one component type

is assigned to at least two di�erent feeder slots. This type of feeder duplication is also discussed in

e.g. Ahmadi, Grotzinger and Johnson (1988), Bard, Clayton and Feo (1994) and Tang and Denardo

(1988).

3 The Component Retrieval Problem as a PERT/CPM Network

Model with Design Aspects

In order to facilitate our discussion, we present a PERT/CPM-like model of CRP. To achieve this,

we �rst need to introduce several assumptions and develop some notation. First, let 1; : : : ; n denote

the components that are to be mounted on the PCB, with the numbering reecting their placement

sequence on the board. With respect to the starting conditions of the assembly process, we assume

that the feeder slot from which the �rst component will be retrieved, is initially positioned below

the grip station (currently occupied by carousel head 12), and that the PCB location where the �rst

place activity will occur, is initially positioned below the place station (currently occupied by carousel

head 6). Furthermore, components 1{6 have been added as �ctitious components, initially held by

carousel heads 6{1 respectively; they are to be mounted at the same board location as component

7, which operation can be performed in zero time. If we similarly assume that 6 �ctitious and

instantaneous grip activities are carried out at the end of the mounting process, then a situation has

been constructed where exactly n grip activities and n place activities are required to assemble the

board, with the i-th grip and i-th place activity occurring between the (i � 1)-st and i-th carousel

rotation.

As a �rst step towards modeling CRP, let us briey explain how, for a given solution S of CRP, the

3

gi = start of the i-th grip activity (i = 1; : : : ; n)

pi = start of the i-th place activity (i = 1; : : : ; n)

�gi = duration of the i-th grip activity (i = 1; : : : ; n)

�pi = duration of the i-th place activity (i = 1; : : : ; n)

�mi = duration of the i-th rack movement (i = 1; : : : ; n� 1)

�ti = duration of the i-th table movement (i = 1; : : : ; n� 1)

�ci = duration of the i-th carousel rotation (i = 1; : : : ; n� 1)

Table 1: Events and activities of the PERT/CPM graph D(S)

assembly makespan can be computed by classical PERT/CPM techniques. To this end, the events

(i.e. moments in time) and activities (i.e. time durations) of Table 1 are introduced. Events, activities

and precedence relations between activities can be represented by a PERT/CPM graph D(S) (recall

that S is the given solution to CRP), where nodes and arcs correspond to events and activities

respectively, and arc lengths denote activity durations; see Figure 2. We will refer to the nodes as

grip or place nodes, depending on the nature of the associated event. The resulting graph consists of

n layers, where each layer i contains exactly one grip node gi and one place node pi (i = 1; : : : ; n).

To model the start and the end of the assembly process, it is convenient to add a source, indi�erently

denoted by p0 and g0, and a sink, indi�erently denoted by pn+1 and gn+1. As is well-known, the

makespan of the assembly process is equal to the length of a longest path in D(S) from p0 to pn+1.

Computing a longest path in such an acyclic and layered network can be done by forward dynamic

programming in O(n) time (see e.g. Ahuja, Magnanti and Orlin (1993)).

t t t t t t t t t t

t t t t t t t t

J
J
J
J
J
J
J

J
J
J
J
J
J
J

J
J
J
J
J
J
J

J
J
J
J
J
J
J

J
J
J
J
J
J
J

J
J
J
J
J
J
J

J
J
J
J
J
J
J

J
J
J
J
J
J
J

p p p p p

p p p p p

p p p p p

p0 p1 p2 p3 p4 p5 p6 pn�1 pn pn+1

g1 g2 g3 g4 g5 gn�2 gn�1 gn

Figure 2: The PERT/CPM graph D(S)

In order to specify the arc lengths of D(S), recall from Section 2 that between the start of two

consecutive grip activities gi and gi+1 (i = 1; : : : ; n�1), the following operations have to be performed:

the i-th grip activity, the i-th carousel rotation and the i-th rack movement. Since the former precedes

the latter two, and the latter two may be carried out concurrently, it follows that the length of arc

(gi; gi+1) equals �gi+maxf�ci;�mig. On the other hand, the (i+ 1)-st grip activity can only start

when both the i-th place activity and the i-th carousel rotation are completed. Since these activities

are carried out consecutively, it follows that the length of arc (pi; gi+1) equals �pi + �ci. Other arc

lengths in D(S) are de�ned in a similar fashion; see Table 2.

4

arc for length

(gi,gi+1) i = 1; : : : ; n� 1 �gi +maxf�ci;�mig

(pi,pi+1) i = 0; : : : ; n �pi +maxf�ci;�tig

(gi,pi+1) i = 1; : : : ; n �gi + �ci
(pi,gi+1) i = 0; : : : ; n� 1 �pi + �ci

Table 2: Arc lengths of D(S) with �ci = �ti = 0 for i = 0; n and �p0 = 0

In view of the above discussion, the Component Retrieval Problem can now be modelled as follows.

Consider the graph of Figure 2. For each i = 1; : : : ; n, we introduce a set of grip nodes Gi instead of

only one grip node gi, where each node of Gi refers to one of the slots containing the component type

required for the i-th grip activity. Figure 3 shows an example where the �rst two components (which

may or may not be of the same type) can both be retrieved from two alternative feeder slots, and all

other components can only be retrieved from one such slot. Then specifying a component retrieval

plan, i.e. a feasible solution S of CRP, amounts to selecting exactly one grip node from each set Gi,

in such a way that the longest path in the subgraph induced by the selected nodes be as short as

possible. We thus arrive at the following formalization of CRP graphs and problems.

De�nition 1 (CRP graph) A CRP graph D = (V;A) is a layered directed graph on the node set

V = [n+1i=0 Li, with the layers Li being mutually disjoint sets. Moreover, Li = fpig [Gi, where Gi

is a non-empty set not containing pi (i = 1; : : : ; n) and G0 = Gn+1 = ;. The set fp0; : : : ; pn+1g is

referred to as the set of place nodes; all other nodes are called grip nodes. The arc set A is given by

A = f(u; v)ju 2 Li; v 2 Li+1 for some i = 0; : : : ; ng, with the length of arc (u; v) being denoted by

d(u; v). The length function d(�) satis�es

d(gi; pi+1) + d(pi; gi+1) � d(gi; gi+1) + d(pi; pi+1): (1)

for all gi 2 Gi, gi+1 2 Gi+1 and i = 1; : : : ; n� 1.

Note that the arc lengths displayed in Table 2 satisfy inequality (1). In the sequel (with the exception

of Theorem 1), we will not make any explicit use of the speci�c lengths displayed in Table 2, but we

will rely on their property (1) instead. We will see in Sections 5 and 6 that this property guarantees

the e�cient solvability of CRP. It may also be interesting to remark that the inequalities (1) are

somewhat reminiscent of a matrix property studied in the literature under the name `Monge property'

(see e.g. Burkard, Klinz and Rudolf (1995)).

De�nition 2 (Selection) A selection S in a CRP graph D is a set of grip nodes containing exactly

one grip node from each layer, i.e. jS \Gij = 1 for i = 1; : : : ; n.

De�nition 3 (Selection induced subgraph) For any selection S in a CRP graph D, the selection

induced subgraph D(S) = (V (S); A(S)) is the subgraph of D that is induced by S [fp0; : : : ; pn+1g.

The length of a longest path in D(S) is denoted by L(D(S)).

5

Since the length of a longest path in the subgraph induced by selection S is equal to the makespan of

the PCB assembly process using the retrieval plan de�ned by S, we arrive at the following network

version of the Component Retrieval Problem.

De�nition 4 (CRP Problem) Given a CRP graph D, the Component Retrieval Problem is to

determine a selection S which minimizes L(D(S)), i.e. the length of a longest path in D(S).

As mentioned before, the analysis and results in this paper will all apply to this network version of

the Component Retrieval Problem, and not only to the special instances arising from the original

application where arc lengths are de�ned as in Table 2.

The above de�nitions reveal that CRP is basically a PERT/CPM network problem with design

aspects. Obviously, designs are restricted to selections in this case, i.e. they must contain exactly

one grip node per layer. As an alternative interpretation, the minimization of the makespan seems

to indicate that all grip activities should be completed as early as possible. This, in its turn, seems

to suggest that a minimal makespan can be obtained by computing a shortest path from p0 to pn+1
in the subgraph that is induced by these two place nodes and all grip nodes (the so-called \grip

graph"). Unfortunately, the precedence relations that are induced by the place activities would be

completely ignored in such an approach; a shortest path through the grip graph would only specify

an optimal selection if, between each pair of grip nodes, the makespan (longest path length) that

results from the interfering place activities (nodes) was taken into consideration as a lower bounding

side-constraint. Therefore, CRP can also be viewed as a shortest path problem with side-constraints.

Obviously, the side-constraints are of a very speci�c nature here, viz. they result from longest path

lengths induced by a single (place) path that is added to the (grip) graph under consideration. The

aforementioned two interpretations of CRP are interesting in their own right. In Section 6 it will be

shown that although CRP can be solved in polynomial time, more general versions of the problem

probably cannot, since the absence of the arc length structure (1) makes them NP -hard in general.

4 CRP and forward dynamic programming

As briey mentioned in the introduction, the Component Retrieval Problem has been previously

investigated by Bard, Clayton and Feo (1994), who proposed a forward dynamic programming scheme

for its solution. Before we present our algorithm for CRP, we deem it necessary to explain why the

approach proposed by Bard, Clayton and Feo cannot possibly lead to a correct algorithm for CRP.

Consider the CRP graph of Figure 3. Let the arc lengths of (g11; g
2
2) and (g21; g

1
2) be \large" (say,

larger than 10), and let all arcs (pi�1; gi) and (gi; pi+1) (i = 1; : : : ; n) have length zero. The other

arc lengths are as indicated in Figure 3. Note that (gn�1; gn) has length 4 + x. In the upcoming

discussion, we will consider two possible values for x, viz. x = 0 and x = 5 respectively.

Since d(g11; g
2
2) and d(g21; g

1
2) are \large", the only candidate optimal selections are S1 =

fg11; g
1
2; g3; : : : ; gng and S2 = fg21; g

2
2; g3; : : : ; gng. Table 3 displays the longest path (length) in the

corresponding selection induced subgraphs, for x = 0 and x = 5 respectively. Observe that S1 is

optimal when x = 0, whereas S2 is optimal when x = 5.

6

t t t t t t t t t t

t t t t t t

t t

t t
H
H
H
HH

�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
��

�
�
�
��

A
A
A
A
A
A
A
A
AA

A
A
A
A
A
A
A
A
AA

@
@

@
@@

@
@

@
@@

J
J
J
J
J
J
J

J
J
J
J
J
J
J

J
J
J
J
J
J
J

J
J
J
J
J
J
J

J
J
J
J
J
J
J

J
J
J
J
J
J
J

�
�
�
��@

@
@
@@

p p p p p

p p p p p

p p p p p

p0 p1 p2 p3 p4 p5 p6 pn�1 pn pn+1

g3 g4 g5 gn�2 gn�1 gn

g
1
1 g

1
2

g
2
1 g

2
2

0 2 2 4 4 4 4 4

2

8

8

1

4 4 4 4 + x

Figure 3: A counterexample for straightforward dynamic programming

Longest Paths S1 S2

x = 0 fp0; g
1
1; g

1
2; g3; : : : ; gn; pn+1g fp0; g

2
1; g

2
2; p3; : : : ; pn; pn+1g

length: 10 + 4(n� 3) length: 12 + 4(n� 3)

x = 5 fp0; g
1
1; g

1
2; g3; : : : ; gn; pn+1g fp0; g

2
1; g

2
2; g3; : : : ; gn; pn+1g

length: 15 + 4(n� 3) length: 14 + 4(n� 3)

Table 3: Longest path (length) under di�erent scenarios

A simple forward dynamic programming scheme for CRP, with the set of grip nodes as state space,

would be based on the following de�nition:

�(gi) = minimum length of a longest path from p0 to gi:

Note that �(gi) = 9+4(i�3) for 3 � i � n�1, with the optimal predecessor of gi being g
2
2. However,

when x = 0, then the unique optimal selection, i.e. S1, does not contain g22. Similarly, if the place

nodes form the state space, that is

 (pi) = minimum length of a longest path from p0 to pi;

then (pi) = 6 + 4(i � 3) for 4 � i � n, with the optimal predecessor of pi being g
1
2. Yet again,

when x = 5, then g12 is not part of the optimal selection S2. These observations clearly show that

the Principle of Optimality does not hold in either case: in order to identify an optimal selection for

the entire problem, it may be necessary to keep track of partial selections that are non-optimal up

to certain layers.

In addition, the information that is required to track the �rst part of an optimal selection for the

entire problem may be contained in arbitrarily remote parts of the graph, even as remote as the

very last grip arc. The conclusion is that simple forward dynamic programming does not necessarily

identify optimal selections, not even if the recursion is equipped with a \look-k-layers-ahead-or-back"

capability for constant k. To guarantee optimality, a more elaborate analysis and approach therefore

seems to be required.

7

Let us stress that these negative conclusions directly a�ect the validity of the forward dynamic

programming algorithm proposed by Bard, Clayton and Feo (1994). Indeed, the recursive formulation

considered by these authors reads:

fi+1(k) = minj2Yiftjk(i; i+ 1) + fi(j)g k 2 Yi+1; i = 0; 1; : : : ; n� 1 (2)

where

fi(k) = minimum time required to grip the �rst i components given that

the i-th component is retrieved from magazine slot k;

Yi = set of magazine slots containing the component type required for

the i-th gripping activity;

tjk(i; i+ 1) = elapsed time between completion of the i-th gripping activity from

slot j and the (i+ 1)-st gripping activity from slot k.

Note that the interpretation of fi(k) coincides with that of �(gk) (see above), if gk is the node

associated with feeder slot k in layer Li of the CRP graph. What the example of this section shows

(and what seems to have been overlooked in Bard, Clayton and Feo (1994)) is that, in an optimal

retrieval plan where the i-th component is retrieved from slot k, the time required to grip the �rst

i components may strictly exceed fi(k) for some i and k. An alternative way of understanding this

conclusion is to realize that the time interval tjk(i; i+ 1) is not univoquely determined by j; k and i

(contrary to what its notation suggests), but actually depends on the sequence of grip activities prior

to the i-th one. This explains why the recursion (2) does not lead to an easy algorithm for CRP.

For the sake of completeness, let us add some more comments on a variant of CRP which we encoun-

tered in a practical setting, and which can be solved e�ciently by forward dynamic programming. In

Crama et al. (1995), we describe an industrial case study in which the operating mode of the place-

ment machine has been restricted as follows: for each i = 1; : : : ; n, the start of the i-th placement

operation is required to coincide with the start of the (i+ 6)-th gripping operation (in contrast with

the description given in Section 2). It is easy to see that recursion (2) is valid under this restriction.

Indeed, the value of tjk(i; i+ 1) can now be simply expressed as

tjk(i; i+ 1) = maxf�gi +�ci;�gi +�mjk;�pi +�ci;�pi +�tig (3)

(where �mjk is the duration of the rack movement from slot j to slot k, and the other notations

have been previously de�ned). In particular, since the expression (3) only depends on j; k and i, the

assembly makespan can be computed in O(n) time by solving recursion (2) (see Crama et al. (1995)).

In view of the relative simplicity of this procedure (as compared to the algorithm described in the

next section), one may rightfully wonder to what extent the makespan of the selection that it delivers

di�ers from the optimal makespan computed for the unrestricted machine.

More formally, for an arbitrary PCB, let S denote an optimal solution (viz., selection, or retrieval

plan) of CRP, and let U = L(D(S)) denote the optimal assembly makespan of this PCB on a

8

placement machine operating in unrestricted mode. Similarly, let Sres denote an optimal retrieval

plan for the same PCB when the machine operates in restricted mode (viz., Sres is the solution of

(2) when tjk(i; i+ 1) is de�ned by (3)), denote by R the makespan of Sres on the restricted machine

and denote by H = L(D(Sres)) the makespan of Sres on the unrestricted machine. Thus, R is the

optimal assembly makespan for the restricted machine, whereas H (which stands for `heuristic') is

the makespan obtained on the unrestricted machine when we use the retrieval plan Sres rather than

the optimal plan S. We are interested in the maximal value that can be achieved by each of the

ratios R=U and H=U (notice that R=U measures the productivity loss that results from using the

machine in restricted mode, whereas H=U measures the loss that results from using the suboptimal

plan Sres rather than S). Under the (realistic) assumption that all data �gi;�pi;�ci;�ti and �mjk

are nonnegative, there holds:

Theorem 1 For every PCB, H=U � R=U � 2. Moreover, H=U and R=U can be made arbitrarily

close to 2 for some PCBs.

Proof. Let us show that H=U � R=U � 2 for every PCB. First, notice that H � R, since the

makespans H and R pertain to the same retrieval plan, and since the machine is clearly more e�cient

in unrestricted mode than in restricted mode. Therefore, we only need to prove that R=U � 2.

Given an arbitrary PCB, consider the retrieval plan S that achieves the optimal makespan U on the

unrestricted machine. Assume that S calls for placing components 1; : : : ; n in this order, and for

retrieving component i from slot j(i) (i = 1; : : : ; n and j(i) 2 Y (i)). Denote by M the makespan of

S on the restricted machine. Then, we obtain successively:

R � M (4)

=
nX

i=1

maxf�gi +�ci;�gi +�mj(i)j(i+1);�pi +�ci;�pi +�tig (5)

�
nX

i=1

maxf�gi +�ci;�gi +�mj(i)j(i+1)g+
nX

i=1

maxf�pi + �ci;�pi +�tig (6)

� 2U: (7)

Indeed, inequality (4) holds by optimality of R for the restricted machine, equality (5) follows from

(3), and inequality (6)is trivial. As for inequality (7), observe that each sum in the left-hand side of

(6) represents a lower bound on U , since each of them accounts for a sequence of operations { grip

and place operations respectively { that must necessarily be performed in succession. Thus, we have

established the �rst part of the theorem.

We now provide a small example showing that H=U and R=U can be made arbitrarily close to 2. For

the sake of simplicity, we assume in this example that the carousel of the machine only features two

working heads and that it takes ji� jj time units for the magazine rack to move from slot i to slot j,

for every pair of slots i and j. (It would be an easy matter to extend this example so as to account for

the more complex features of real machines). There are three components, say 1, 2 and 3, to be placed

in this order. Component 1 is contained in slot 2K of the magazine rack, component 2 is in slots

(K + 1) and 3K, and component 3 is in slots 1 and (3K + 1), where K is a given integer. Moreover,

the worktable requires K time units to move from placement location 1 to placement location 2, and

1 time unit to move from location 2 to location 3. Each grip or place activity, and each rotation of

the carousel, requires 1 time unit.

9

With these data, it is easy to check that the optimal retrieval plan S for the machine in unrestricted

mode requires to grip component 2 from slot 3K and component 3 from slot (3K+1). This plan entails

the following sequence of operations (operations listed on a same line are performed concurrently

during the timespan indicated):

1. grip component 1 in slot 2K (1 time unit)

2. rotate the carousel, start moving the rack from slot 2K to slot 3K (for 1 time unit)

3. place component 1, keep moving the rack towards slot 3K (for 1 time unit)

4. move the rack to slot 3K, start moving the table from location 1 to location 2 (for (K�2) time

units)

5. grip component 2 from slot 3K, keep moving the table towards location 2 (for 1 time unit)

6. rotate the carousel, move the rack from slot 3K to slot (3K + 1), move the table to location 2

(1 time unit)

7. grip component 3 from slot (3K + 1), place component 2 (1 time unit)

8. rotate the carousel, move the table from location 2 to location 3 (1 time unit)

9. place component 3 (1 time unit).

This sequence results in a makespan U = (K + 6).

One would similarly verify that, for the machine in restricted mode, the optimal retrieval plan Sres

consists in retrieving component 2 from slot (K+1) and component 3 from slot 1. The corresponding

optimal makespan in restricted mode is equal to R = (2K + 4), and is identical to the makespan of

Sres in unrestricted mode, i.e. H = (2K + 4). Therefore, when K goes to in�nity, both R=U and

H=U approach 2 as required. 2

Interestingly, it is also possible to prove that the makespan of the selection obtained by computing a

shortest path in the grip graph (see end of Section 3) comes within a factor of 2 of the optimal CRP

makespan, and that this bound is tight. We omit the proof of this result.

In conclusion, all the above comments underscore the need for an e�cient and exact algorithm that

takes into account all characteristic features of the Component Retrieval Problem. Such an algorithm

will be proposed in the next section.

5 A polynomial algorithm for CRP

In this section, we consider a given CRP graph D, and we present a polynomial algorithm for CRP

as formulated in De�nition 4. As is explained in Section 3, the optimal selection in D can generally

not be computed by solving for a shortest path in the subgraph that is induced by the grip nodes

of D, since the side-constraints that are induced by the precedence relations of the interfering place

10

activities would be completely ignored in that case. The general approach in this section is to model

each of these side-constraints as an arc between two grip nodes, with its length equal to the smallest

longest path in D between these grip nodes. The optimal selection can then be retrieved by solving

for the shortest path in this newly constructed graph, which will be denoted by DN . Since the

arc lengths in DN can be computed by a (polynomial and simple) forward dynamic programming

approach, and since a shortest path in DN can be computed likewise, our procedure can be thought

of as a \two-phase" forward dynamic programming algorithm.

This section is built up as follows. First, a simpli�ed version of CRP will be considered, which can

be solved by forward dynamic programming in polynomial time. The insights that have thus been

obtained will then be used to arrive at a polynomial algorithm for CRP itself. Application of the

proposed algorithm to the numerical example of Section 4 will conclude this section.

5.1 A simpli�ed version of CRP

Lemma 1 The length of the path (p0; p1; : : : ; pn+1) through the place nodes is a lowerbound on the

optimal solution value of CRP.

Proof. Straightforward. 2

This simple observation motivates our interest in the following problem.

CRP�

INPUT: A CRP graph D;

QUESTION: Is there a selection S such that the path (p0; p1; : : : ; pn+1) through the place nodes is a

longest path of D(S) ?

Note that, if the answer to CRP� is a�rmative for some selection S, then S is an optimal solution

to CRP (cf. Lemma 1). For 0 � i � j � n+ 1, let LP (i; j) be the length of the path (pi; pi+1; : : : ; pj)

from pi to pj through the place nodes. Similarly, for a selection S = fg1; g2; : : : ; gng and for j� i � 2,

let LG(S; i; j) be the length of the path (pi; gi+1; : : : ; gj�1; pj) from pi to pj with all intermediates

nodes in S.

Theorem 2 For every selection S, the path (p0; p1; : : : ; pn+1) is a longest path of D(S) if and only

if LG(S; i; j)� LP (i; j) for all i; j 2 f0; : : : ; n+ 1g with j � i � 2.

Proof. If LG(S; i; j)> LP (i; j) for some i; j, then the path (p0; p1; : : : ; pi; gi+1; : : : ; gj�1; pj ; : : : ; pn+1)

is longer than the path through the place nodes. On the other hand, the inequalities in the theorem

imply that the path through the place nodes will be at least as long as any path containing some grip

nodes. 2

Theorem 2 motivates the introduction of a collection of s-labels associated with each selection S,

which reect the slack that S displays with respect to the necessary and su�cient conditions stated

in the theorem.

11

De�nition 5 For every selection S and every j 2 f1; 2; : : : ; ng, de�ne

s(S; j) = min
0�i�j�1

fLP (i; j + 1)� LG(S; i; j+ 1)g: (8)

We view label s(S; j) as being attached to the j-th grip node of S. Theorem 2 can now be equivalently

stated as follows.

Corollary 1 For every selection S, the path (p0; : : : ; pn+1) is a longest path of D(S) if and only if

s(S; j) � 0 for all j 2 f1; 2; : : : ; ng: (9)

The s-labels satisfy the following recursion:

Lemma 2 For every selection S = fg1; g2; : : : ; gng and every j 2 f2; 3; : : : ; ng,

s(S; j) = minfs(S; j � 1) + LP (j; j + 1) + d(gj�1; pj)� d(gj�1; gj)� d(gj ; pj+1);

LP (j � 1; j + 1)� d(pj�1; gj)� d(gj ; pj+1)g:

Proof. For each i 2 f0; : : : ; j � 2g, we can rewrite

LP (i; j + 1)� LG(S; i; j+ 1)

= [LP (i; j) + LP (j; j + 1)]� [LG(S; i; j)� d(gj�1; pj) + d(gj�1; gj) + d(gj; pj+1)]:

The validity of the lemma follows directly from this observation and from De�nition 5. 2

Lemma 2 provides a recursive formulation of the s-labels associated for a given selection S. In order

to solve CRP�, we now generalize the s-labels by introducing a label s�(gj) attached to each grip

node gj 2 Gj . The value of s
�(gj) is the largest value of s(S; j) that can be attained by any selection

S containing gj and satisfying condition (9) up to layer j � 1. More precisely,

De�nition 6 For all j 2 f1; 2; : : : ; ng and all gj 2 Gj, let T (gj) denote the set of selections S with

(i). gj 2 S, and

(ii). s(S; i) � 0 for all i 2 f1; : : : ; j � 1g.

Then we de�ne s�(gj) = maxS2T (gj) s(S; j).

As usual, we let s�(gj) = �1 when T (gj) = ;. Let us stress the following properties of the s�-labels,

which are direct consequences of De�nition 6.

12

P1. �1 < s�(gj) < 0 if and only if T (gj) 6= ; and s(S; j) < 0 for every selection S 2 T (gj).

P2. s�(gj) � 0 if and only if there exists a selection S with gj 2 S and s(S; i) � 0 for all i 2 f1; : : : ; jg.

In particular, combining these properties with Corollary 1 renders

Theorem 3 The answer to CRP� is a�rmative if and only if s�(gn) � 0 for some node gn 2 Gn.

Similar to the s-labels, the s�-labels can also be computed by dynamic programming (cf. Lemma 2).

Theorem 4 For all j 2 f2; 3; : : : ; ng and for all gj 2 Gj,

s�(gj) =

max
gj�12Gj�1; s

�(gj�1)�0
minf s�(gj�1) + LP (j; j + 1) + d(gj�1; pj)� d(gj�1; gj)� d(gj; pj+1);

LP (j � 1; j + 1)� d(pj�1; gj)� d(gj ; pj+1)g: (10)

Proof. Fix j 2 f2; 3; : : : ; ng and gj 2 Gj . Denote the right-hand side of (10) by �.

(i). Assume �rst that T (gj) 6= ;. Then, by De�nition 6, there exists an S 2 T (gj) with s
�(gj) =

s(S; j). If we write S = fg1; g2; : : : ; gng, then it is clear that S 2 T (gj�1), so s(S; j � 1) �

s�(gj�1). In addition, s(S; j � 1) � 0. Combining the latter two inequalities with Lemma 2,

renders �1 < s�(gj) = s(S; j) � �.

(ii). Conversely, assume now that � > �1, and let gj�1 2 Gj�1 attain the maximum in the de�nition

of �, i.e. � = minfa; bg with a = s�(gj�1) +LP (j; j+ 1)+ d(gj�1; pj)� d(gj�1; gj)� d(gj ; pj+1)

and b = LP (j � 1; j + 1) � d(pj�1; gj) � d(gj; pj+1). By De�nition 6, there exists a selection

S 2 T (gj�1) with s
�(gj�1) = s(S; j � 1). Without loss of generality, we can assume that gj 2 S

(otherwise, substitute gj for the j-th grip node of S). Then, by Lemma 2, s(S; j) = �. On the

other hand, since s�(gj�1) � 0, we deduce that S 2 T (gj) and, by De�nition 6,

� = s(S; j)� max
R2T (gj)

s(R; j) = s�(gj):

Taken together, (i) and (ii) establish the theorem. 2

Theorem 4 implies that the s�-labels can be computed in polynomial time, layer by layer. In view of

Theorem 3, we have thus obtained a polynomial algorithm for the solution of CRP�. This algorithm

can be implemented to run in O(e) time, where e is the number of arcs of D. Moreover, the proof

of Theorem 4 establishes that, in addition to answering CRP�, we can also �nd a selection S with

s(S; j) � 0 for all 0 � j � n if one exists. As a �nal remark, we observe that, up to this point,

we have not made any use of the properties of arc lengths recorded in De�nition 1. In other words,

Theorem 4 applies for arbitrary arc lengths.

13

5.2 Further properties of the s-labels

We have just described the role that the s-labels play in solving CRP�. In the next subsection, these

ideas will be incorporated into an algorithm for the full-edged Component Retrieval Problem. In

order to achieve this goal, we �rst need to understand some of the basic properties of the s-labels.

These properties will now be recorded in a sequence of lemmas.

Lemma 3 For any j 2 f1; 2; : : : ; ng and gj 2 Gj, let S = fg1; g2; : : : ; gng be a selection in T (gj).

Consider D(S). Then

(i). the path (p0; p1; : : : ; pj) is a longest path from p0 to pj with length LP (0; j);

(ii). the path (p0; p1; : : : ; pi; gi+1; gi+2; : : : ; gj) is a longest path from p0 to gj with length

LP (0; j + 1)� s(S; j)� d(gj; pj+1): (11)

where i is any index that realizes the minimum in the expression (8) de�ning s(S; j).

Proof.

(i). By De�nition 6, s(S; i) � 0 for all i 2 f1; : : : ; j�1g: The claim is now a straighforward extension

of Corollary 1.

(ii). Let Pgj be any longest path from p0 to gj and let k = maxf` j p` 2 Pgjg. Since 0 � k � j � 1,

we have S 2 T (gk), and hence (p0; p1; : : : ; pk) is a longest path from p0 to pk (cf. (i)). Thus,

without loss of generality, we can assume that Pgj = (p0; p1; : : : ; pk; gk+1; : : : ; gj). The length of

Pgj is now easily checked to be given by

LP (0; j + 1)� (LP (k; j + 1)� LG(S; k; j + 1))� d(gj; pj+1):

In view of (8), the latter expression is maximized when LP (k; j+1)�LG(S; k; j+ 1) = s(S; j),

i.e. when k = i. Thus we may indeed conclude that the path (p0; p1; : : : ; pi; gi+1; gi+2; : : : ; gj)

is a longest path from p0 to gj with length as stated in (11). 2

Next, let us consider what happens when, in a selection induced subgraph D(S), the longest path is

not the path of place nodes (p0; p1; : : : ; pn+1) (this is the only interesting case, since we know from

the previous subsection how to handle yes-instances of CRP�). In such a case, we already know by

Corollary 1 that s(S; j) must be negative for some layer j. Let us consider the �rst such layer.

Lemma 4 For any selection S = fg1; g2; : : : ; gng, let j be the smallest index in f1; 2; : : : ; ng with

s(S; j) < 0. Then, in D(S), every longest path from p0 to pn+1 contains gj.

Proof. Since every path from p0 to pn+1 goes through either pj+1 or gj+1, it su�ces to show that gj
is contained in every longest path from p0 to pj+1 and from p0 to gj+1. Since S 2 T (gj) (by de�nition

14

of j), the length of a longest path from p0 to pj (resp. gj) is given by Lemma 3. Thus, it su�ces to

show that

(LP (0; j + 1)� s(S; j)� d(gj; pj+1)) + d(gj; pj+1) > LP (0; j)+ d(pj; pj+1) (12)

(i.e., the longest path to pj+1 via gj is longer than the longest path to pj+1 via pj), and that

(LP (0; j + 1)� s(S; j)� d(gj; pj+1)) + d(gj; gj+1) > LP (0; j)+ d(pj; gj+1) (13)

(i.e., the longest path to gj+1 via gj is longer than the longest path to gj+1 via gj).

Now, (12) is trivially equivalent to the assumption that s(S; j) < 0. On the other hand, according to

De�nition 1,

d(gj; gj+1) + d(pj; pj+1) � d(gj; pj+1) + d(pj; gj+1): (14)

The inequality (13) is then obtained by the addition of (14) to (12). 2

For an arbitrary selection S = fg1; g2; : : : ; gng, Lemma 4 suggests that a longest path of D(S) can

be obtained by the following procedure. (Let us mention right away that this procedure is much

more involved than necessary, if its only purpose is to obtain a longest path of D(S). The reason for

considering it in this form is that it will rather naturally lead to an algorithm for CRP.) First, compute

all labels s(S; j) (e.g. layer by layer, as suggested by Lemma 2). If all s-labels are nonnegative, then

we know that (p0; p1; : : : ; pn+1) is a longest path of D(S). Otherwise, let

j = minfk 2 f1; : : : ; ng j s(S; k) < 0g:

In view of Lemma 4, a longest path from p0 to pn+1 in D(S) can be obtained by concatenating a

longest path from p0 to gj with a longest path from gj to pn+1. Accordingly, for any selection S, we

call the �rst grip node gj 2 S for which s(S; j) is negative, a reset node of D(S). The terminology

reset expresses the fact that the computation of a longest path of D(S) can be started anew from

such a node. Now, by Lemma 3, a longest path from p0 to gj is readily available. Thus, we only need

to �nd a longest path from gj to pn+1 in D(S). This subproblem clearly has the same structure as

the problem we started with. More precisely, we can handle it as follows. We discard from D(S) all

layers with index i � j, except for gj . Moreover, we decrease the length of both arcs (gj ; gj+1) and

(gj ; pj+1) by d(gj; pj+1) (this is to account for the last term of (11); see (15) hereunder). Denote the

new CRP graph thus constructed by Dgj(S). The observation we make now is that, as a consequence

of Lemma 3 and Lemma 4,

L(D(S)) = LP (0; j + 1)� s(S; j) + L(Dgj(S)) (15)

(cf. De�nition 3). The procedure just described can be applied iteratively until either gn receives a

nonnegative label or gn becomes a reset node. In either case, let u1; u2; : : : ; ur denote the reset nodes

15

sequentially identi�ed in the process. Thus, for k = 1; : : : ; r, uk is the reset node of Duk�1
(S) (where

we let u0 � p0). Denote by s(S; uk�1; uk) the (negative) s-label attached to uk in Duk�1
(S). The

previous discussion can then be summarized as follows.

Lemma 5 If uk is the reset node of Duk�1
(S) for k = 1; : : : ; r, and Dur(S) has no reset node, then

L(D(S)) = LP (0; n+ 1)�
Pr

k=1 s(S; uk�1; uk): (16)

Proof. This statement is a consequence of Lemma 3 and Lemma 4, and the foregoing discussion.

More precisely, let ur lie in G`, where 1 � ` � n. Then, induction on (15) leads to

L(D(S)) = LP (0; `+ 1)�
Pr

k=1 s(S; uk�1; uk) + L(Dur(S)):

There are now two cases. If ` = n, i.e. the reset node ur coincides with gn 2 S, then L(Dur(S)) = 0,

from which (16) follows. Conversely, if gn is not a reset node, then L(Dur(S)) = LP (`+ 1; n+1) (by

Corollary 1), and (16) follows again. 2

Finally, consider two selections in T (gj), which are identical from layer j onwards, but which have

di�erent s-label values at layer j. The next lemma states su�cient conditions for one of the selections

to dominate the other one, as far as minimizing L(D(S)) is concerned.

Lemma 6 For any j 2 f1; 2; : : : ; ng and gj 2 Gj, let S = fg1; g2; : : : ; gng and S0 = fg01; g
0
2; : : : ; g

0
ng

be two selections in T (gj) with gi = g0i for i = j; : : : ; n. If s(S; j) < s(S0; j) and s(S; j) < 0, then

L(D(S0)) < L(D(S)).

Proof. Let P be any longest path in D(S0). Then, P contains either pj or gj . In the �rst case,

we can assume without loss of generality that P contains p0; : : : ; pj (cf. Lemma 3 sub (i)), so that

P is also a path in D(S). But then Lemma 4 implies that P is not a longest path of D(S), hence

L(D(S0)) < L(D(S)). Conversely, if P contains gj , then Lemma 3 sub (ii) states that the subpath of

P from p0 to gj has length LP (0; j+ 1)� s(S0; j)� d(gj; pj+1), and that the longest path from p0 to

gj in D(S) has length LP (0; j + 1)� s(S; j)� d(gj; pj+1). Since the latter is strictly larger than the

former, the result follows. 2

5.3 The general case

Below we are going to show how Lemmas 5 and 6 can be combined to produce a polynomial time

algorithm for CRP. First, we reformulate and extend some of the notation introduced earlier. For

every node gj 2 Gj of D (j = 0; 1; : : : ; n� 1), we denote by Dgj the subgraph of D induced by the

node set fgjg [
Sn+1
i=j+1 Li. The arc lengths in Dgj are the same as in D, except that the length of

each arc leaving gj is decreased by d(gj; pj+1) for all j � 1. Note that Dg0 is thus identical to D. For

each graph Dgj , we can de�ne s�-labels as we did for graph D in De�nition 6; the s�-label attached to

node gk in Dgj is denoted by s�(gj; gk) (gk 2
Sn
i=j+1Gi). In addition, Sgjgk will refer to any selection

that realizes the value of s�(gj; gk).

16

Before giving a more formal description of our algorithm, let us clarify the intuition behind it.

Observe that, according to (16), CRP can be seen as the problem of minimizing the expressionP
k �s(S; uk�1; uk) over all possible selections S. Let S be an optimal selection of the CRP graph

D, and let u1; : : : ; ur be the corresponding sequence of reset nodes. By de�nition of the quantities

s(S; uk�1; uk), we have s(S; u0; u1) = s(S; j) if u1 is in layer j. Consider now the selection Su0u1 ,

which is such that (by de�nition)

s(Su0u1 ; j) = s�(u0; u1) = max
R2T (u1)

s(R; j);

and suppose that

s(S; j) < s(Su0u1 ; j):

Then, construct the selection S0 that coincides with Su0u1 from layer 1 to layer j and that coincides

with S from layer j to layer n. It follows directly from Lemma 6 that S0 dominates S, and this

contradicts the optimality of S. Thus we have established that

s(S; j) = s�(u0; u1);

or equivalently

s(S; u0; u1) = s�(u0; u1):

By repeating this argument r times, we can derive that

�
Pr

k=1 s(S; uk�1; uk) = �
Pr

k=1 s
�(uk�1; uk): (17)

In this way, we have reduced CRP to the problem of minimizing the right-hand side of (17) over all

possible choices of the uk 's, under the restriction that these nodes are the sequence of reset nodes

associated with some selection.

We will now translate the latter problem into a shortest path problem in an auxiliary network DN ,

where the length of each arc (gj; gk) is \essentially" equal to �s�(gj ; gk). More precisely, the node

set of DN is fg0g [
Sn
i=1Gi. The arcs of DN are all pairs of nodes of the form (gj ; gk) where gj 2 Gj ,

gk 2 Gk and 0 � j < k � n. The length of arc (gj ; gk) is de�ned to be w(gj; gk), where

Case 1: w(gj ; gk) = �s�(gj ; gk) if �1 < s�(gj ; gk) < 0; (18)

Case 2: w(gj ; gk) = 0 if s�(gj; gk) � 0 and k = n; (19)

Case 3: w(gj ; gk) =1 otherwise. (20)

In view of De�nition 6 and Theorem 4, Case 1 corresponds to a situation where gk is a reset node in the

subgraph of Dgj induced by the selection Sgjgk (see property P1 following De�nition 6). Similarly,

17

Case 2 occurs when there is no reset node in the subgraph induced by Sgjgn up to and including

layer n. Finally, in Case 3, any reset node of the subgraph induced by Sgjgk lies either before gk
(s�(gj ; gk) = �1) or after gk (s

�(gj; gk) � 0 and k < n).

Denote by w(P) the length of a path P in DN . For brevity, when we write \shortest path in DN",

we mean \shortest path in DN from g0 to some node in Gn, with respect to the length function w".

We are now �nally ready for our next, and main, result. Note, however, that its proof is simply a

formal generalization of the arguments presented above.

Theorem 5 The length of a shortest path in DN is equal to LP (0; n+ 1)+L(D), where L(D) is the

optimal value of the Component Retrieval Problem on the graph D.

Proof.

(i). Let S be an optimal selection for CRP and let uk denote the reset node of Duk�1
(S)

(k = 1; : : : ; r; u0 = g0). By Lemma 5, equation (16) holds. Let now P 0 = fu0; u1; : : : ; urg,

and consider any index k 2 f1; : : : ; rg. By de�nition of reset nodes, s(S; uk�1; uk) < 0 and

s(S; uk�1; u) � 0 for all grip nodes u lying between uk�1 and uk in S. Therefore, by De�ni-

tion 6, we get S 2 T (uk), where T (uk) is de�ned with respect to the graph Duk�1
, and this

implies that �1 < s(S; uk�1; uk) � minf0; s�(uk�1; uk)g. If, for all k = 1; : : : ; r, w(uk�1; uk) is

de�ned by either Case 1 or Case 2 (cf. (18){(19)), then,

�s(S; uk�1; uk) � w(uk�1; uk) for k = 1; : : : ; r:

Combining these inequalities with (16) yields

L(D) � LP (0; n+ 1) + w(P 0): (21)

Thus, assume now that w(uk�1; uk) is de�ned by Case 3 (see (20)) for some k. In that case,

s�(uk�1; uk) � 0, or equivalently s(Suk�1uk ; uk�1; uk) � 0 (notice that s�(uk�1; uk) = �1 has

been ruled out earlier). Let now S0 denote the selection which coincides with S from p0 to uk�1
and from uk to pn+1, and which coincides with Suk�1uk from uk�1 to uk. Apply Lemma 6 to the

selections S and S0, both viewed as selections of Duk�1
. This lemma implies that the longest

path in the subgraph of Duk�1
induced by S0 is shorter than the longest path in the subgraph

induced by S, contradicting the optimality of S. As a result, the case that w(uk�1; uk) is de�ned

by (20) does not occur for arcs (uk�1; uk) on paths in DN that are de�ned by the reset nodes

of optimal selections.

(ii). Conversely, let P = fu0; u1; : : : ; urg be a shortest path in DN , with u0 = g0 and ur 2 Gn.

From (i) it follows that w(P) � w(P 0) < 1. Hence, for k = 1; : : : ; r � 1, the w(uk�1; uk)'s

on P are all de�ned by (18), which means that uk is a reset node in the subgraph of Duk�1

induced by the selection Suk�1uk . Now consider the selection S = [1�k�rS
0
uk�1uk

, where S0uk�1uk

is the set of nodes of Suk�1uk that lie between uk�1 and uk. Lemma 5 implies that L(D(S)) =

LP (0; n+ 1) + w(P), and hence

L(D) � LP (0; n+ 1) + w(P): (22)

From (21) and (22), we conclude thatL(D) � LP (0; n+1)+w(P) � LP (0; n+1)+w(P
0) � L(D).

This establishes the result. 2

18

In summary, the Component Retrieval Problem can be solved by the following algorithm:

procedure SOLVE-CRP:

begin

for all j = 0; 1; : : : ; n� 1 and for all gj 2 Gj do

begin

set up the graph Dgj ;

for all k = j + 1; : : : ; n and all gk 2 Gk do

begin

compute the label s�(gj ; gk) of node gk in Dgj , and the corresponding selection Sgjgk ;

de�ne w(gj; gk) according to (18), (19) and (20);

end

end

set up the graph N ;

compute a shortest path in DN from g0 to Gn with respect to the length function w;

let P = fu0; u1; : : : ; urg denote this shortest path;

return the optimal selection S = [1�k�rS
0
uk�1uk

with length L(D) = LP (0; n+ 1) + w(P)

end

Theorem 6 Procedure SOLVE-CRP is correct and solves the Component Retrieval Problem in

O(ve) time on a CRP graph D with v nodes and e arcs.

Proof. The correctness of procedure SOLVE-CRP follows from (the proof of) Theorem 5. As for

its complexity, note that each execution of the loop \for all j, for all gj" requires O(e) time (by the

comments following Theorem 4), and that this loop is executed O(v) times. A shortest path in DN

can be found in O(v2) time since DN is acyclic (see e.g. Ahuja, Magnanti and Orlin (1993)). 2

The complexity of procedure SOLVE-CRP can be alternatively stated as follows. Let m be an

upper-bound on the number of feeders of each type, i.e. m = max1�i�n jGij. Then, v = O(mn) and

e = O(m2n), so that SOLVE-CRP runs in O(m3n2) time.

5.4 Example

Below we will illustrate the algorithm of the previous subsection by applying it to the problem instance

that was described in Section 4, Figure 3, with n = 5. Recall that d(g4; g5) = 4 + x in this problem,

with x being equal to either 0 or 5. The �rst phase yields the s�-labels; the relevant values of these

labels are listed in Table 4.

The auxiliary graphDN has node set fg0; g
1
1; g

2
1; g

1
2; g

2
2; g3; g4; g5g; its relevant arcs are listed in Table 5.

If x = 0, the shortest path of DN is (g0; g3; g5) with a length of 2. Tracing back the predecessors in

the third column of Table 4 reveals the corresponding optimal selection fg11; g
1
2; g3; g4; g5g, which has

19

grip node pair (gi; gj) s�(gi; gj) arg max in (10)

(g0; g
1
1) 2 g0

(g0; g
2
1) 2 g0

(g0; g
1
2) 2 g11

(g0; g
2
2) �4 g21

(g0; g3) �2 g12
(g22; g3) 3 g22
(g22; g4) 3 g3
(g3; g4) 0 g3
(g22; g5) 3� x g4
(g3; g5) �x g4

Table 4: (Relevant) s�-labels for the numerical example.

Arc Length Remark

(g0; g
2
2) 4

(g0; g3) 2

(g22; g5) 2 only if x = 5

(g3; g5) 5 only if x = 5

(g22; g5) 0 only if x = 0

(g3; g5) 0 only if x = 0

Table 5: (Relevant part of) graph DN for the numerical example.

a makespan of 16 + 2 = 18 (cf. Theorem 5). On the other hand, if x = 5, then the shortest path

in DN is (g0; g
2
2; g5) with a length of 6. The corresponding optimal selection reads fg21; g

2
2; g3; g4; g5g,

which has a makespan of 16 + 6 = 22. Note that these outcomes are consistent with the optimal

selections that were reported in Section 4.

6 An NP-hard generalization of CRP.

Our de�nition of the Component Retrieval Problem includes condition (1) on the arc lengths of CRP

graphs. This condition has been explicitly used in the proof of Lemma 5 in Section 5. In this section

we will show that the problem becomes NP-hard when condition (1) is absent. Consider the following

decision problem (Generalized CRP).

GCRP

INPUT: An integer � and a graph D satisfying the assumptions of De�nition 1, except for (1).

QUESTION: Is there a selection S such that the longest path in the selection induced subgraph D(S)

has length at most �?

20

Arc Length For

(g14i�3; g
1
4i�2) K + x2i�1 i = 1; : : : ; N

(g24i�3; g
2
4i�2) K + x2i i = 1; : : : ; N

(g14i�2; g
1
4i�1) 0 i = 1; : : : ; N

(g24i�2; g
2
4i�1) 0 i = 1; : : : ; N

(g14i�1; g
1
4i) K + x2i i = 1; : : : ; N

(g24i�1; g
2
4i) K + x2i�1 i = 1; : : : ; N

(g14i; g
1
4i+1) K i = 1; : : : ; N

(g14i; g
2
4i+1) K i = 1; : : : ; N

(g24i; g
1
4i+1) K i = 1; : : : ; N

(g24i; g
2
4i+1) K i = 1; : : : ; N

(g1k; g
2
k+1) M k 2 f4i� 3; 4i� 2; 4i� 1g

(g2k; g
1
k+1) M k 2 f4i� 3; 4i� 2; 4i� 1g

(p4i�2; p4i�1) 0 i = 1; : : : ; N

other place arcs2 K

all cross arcs3 Q

Table 6: Arc lengths of the GCRP instance (D; �)

Theorem 7 GCRP is NP-complete, even if jGij � 2 for i = 1; : : : ; n.

Proof. GCRP is clearly in NP . Below we will present a polynomial transformation from the NP -

complete Even-Odd Partitioning problem (EOP; see Garey and Johnson (1979)) to CRP.

EOP

INPUT: N pairs of positive integers Ii = fx2i�1; x2ig for i = 1; : : : ; N .

QUESTION: Is there an even-odd partition of f1; 2; : : : ; 2Ng, i.e. a partition of f1; 2; : : : ; 2Ng into

disjoint subsets A and B with jA \ Iij = jB \ Iij = 1 for i = 1; : : : ; N , and
P

i2A xi =
P

i2B xi?

Given an instance of EOP, we de�ne a graph D as in De�nition 1, with n = 4N . For k = 1; : : : ; 4N ,

each layer k contains three nodes, namely one place node pk and two grip nodes g1k and g2k. Layers

4i� 3; 4i� 2; 4i� 1 and 4i are associated with pair Ii in the instance of EOP (1 � i � N). In order

to de�ne the arc lengths, we introduce three large numbers of di�erent magnitudes:

Q = (N + 1) �max1�i�2Nfxig

K = (N + 1)Q

M = 4(N + 1)K

The arc lengths in D are listed in Table 6. (For notational convenience we indi�erently denote the

sink of D by pn+1, g
1
n+1 or g

2
n+1.) Recall that arcs emanating from g0 have length zero. Finally, we

set � = N(3K + Q) + 1
2

P2N
i=1 xi. This completely speci�es an instance (D; �) of GCRP. It remains

to show that the instance of GCRP obtained in this way and the original instance of EOP have the

same answer.

3A place arc connects two place nodes.
3A cross arc connects a grip and a place node.

21

(i). Suppose �rst that the instance of EOP has a positive answer, and let (A;B) de�ne an even-odd

partition of f1; 2; : : : ; 2Ng. Without loss of generality we may assume that A = f2i � 1ji =

1; : : : ; Ng and B = f2iji = 1; : : : ; Ng. Consider the selection S that contains g14i�3, g
1
4i�2, g

1
4i�1

and g14i for i is odd, and g
2
4i�3, g

2
4i�2, g

2
4i�1 and g

2
4i for i is even (i = 1; : : : ; N). We now claim

that L(D(S)) = �, implying that the instance (D; �) has a positive answer.

Denote by Di the subgraph of D(S) induced by layers 4i � 3; 4i � 2; : : : ; 4i + 1, for every

i 2 f1; 2; : : : ; Ng. Two candidate longest paths in Di are of the form

fp4i�3; p4i�2; g
�
4i�1; g

�
4i; g

3��
4i+1g and fg

�
4i�3; g

�
4i�2; p4i�1; p4i; p4i+1g; (23)

respectively, where � = 1 when i is odd, and � = 2 otherwise. One of these paths has length

3K +Q+ x2i�1 and the other one has length 3K +Q+ x2i. Furthermore, it is easily seen that

all other paths in Di are strictly shorter than the ones in (23). Using mathematical induction

to N then reveals that any longest path from g0 to p4N+1 in D(S) is the concatenation of paths

in Di of the types mentioned in (23) (i = 1; 2; : : : ; N). Hence, the two candidate longest paths

in D(S) are

P1 = (g0; g
1
1; g

1
2; p3; p4; p5; p6; g

2
7; g

2
8; g

1
9; g

1
10; p11; p12; p13; p14; g

2
15; g

2
16; g

1
17; : : : ; p4N+1)

= fg0g [
[

1�i�N;

i odd

fg14i�3; g
1
4i�2; p4i�1; p4ig [

[

1�i�N;
i even

fp4i�3; p4i�2; g
2
4i�1; g

2
4ig [fp4N+1g

and

P2 = (g0; p1; p2; g
1
3; g

1
4; g

2
5; g

2
6; p7; p8; p9; p10; g

1
11; g

1
12; g

2
13; g

2
14; p15; p16; p17; : : : ; p4N+1)

= fg0g [
[

1�i�N;

i odd

fp4i�3; p4i�2; g
1
4i�1; g

1
4ig [

[

1�i�N;
i even

fg24i�3; g
2
4i�2; p4i�1; p4ig [fp4N+1g:

with lengths N(3K+Q)+
PN

i=1 x2i�1 = N(3K+Q)+
P

i2A xi = � andN(3K+Q)+
P

i2B xi = �

respectively. Consequently, both candidate longest paths are in fact longest paths, and the

answer to the GCRP instance (D; �) is like the answer to the EOP instance, viz. a�rmative.

(ii). Suppose next that the answer to the GCRP instance (D; �) is a�rmative, and let S be a selection

of D with L(D(S)) � �. Since M is very large, D(S) cannot contain any arc with length M .

This means that, for each quadruple of layers 4i�3; 4i�2; 4i�1 and 4i (i = 1; 2; : : : ; N), either

all four grip nodes g14i�3, g
1
4i�2, g

1
4i�1 and g

1
4i, or all four grip nodes g24i�3, g

2
4i�2, g

2
4i�1 and g

2
4i

are in S. Therefore, S can be denoted by

S = fg0g [
N[

i=1

fg�i4i�3; g
�i
4i�2; g

�i
4i�1; g

�i
4i g [fp4N+1g

with �i 2 f1; 2g (i = 1; : : : ; N). Now consider the two paths

P 01 = (g0; g
�1
1 ; g

�1
2 ; p3; p4; p5; p6; g

�2
7 ; g�28 ; g

�3
9 ; g�310 ; p11; p12; p13; p14; g

�4
15 ; g

�4
16 ; g

�5
17 ; : : : ; p4N+1)

P 02 = (g0; p1; p2; g
�1
3 ; g

�1
4 ; g

�2
5 ; g

�2
6 ; p7; p8; p9; p10; g

�3
11 ; g

�3
12 ; g

�4
13 ; g

�4
14 ; p15; p16; p17; : : : ; p4N+1)

The lengths of these paths are L(P 01) = N(3K+Q)+
P

i2A xi and L(P
0
2) = N(3K+Q)+

P
i2B xi

respectively, where (A;B) is a partition of f1; : : : ; 2Ng with jA \ Iij = jB \ Iij = 1 for i =

22

1; : : : ; N . Since both P 01 and P
0
2 have lengths that are at most the longest path length in D(S),

and since the latter on its turn is at most �, it follows that L(P 01) � � and L(P 02) � �. These

observations, combined with the choice of � = N(3K + Q) + 1
2

P2N
i=1 xi renders

P
i2A xi =P

i2B xi. Hence (A;B) is an even-odd partition of f1; : : : ; 2Ng, thus establishing the fact that

like the GCRP instance (D; �), the EOP instance allows for an a�rmative answer as well. 2

As a �nal comment it may be worth noticing that, as expected, the instance of GCRP that is created

in the proof of Theorem 7, does not satisfy condition (1) (thereby leaving the P = NP question

unanswered). Indeed, for i = 1; 2; : : : ; N , we have

d(g14i�2; g
1
4i�1) + d(p4i�2; p4i�1) = 0 < 2Q = d(g14i�2; p4i�1) + d(p4i�2; g

1
4i�1);

which contradicts condition (1).

7 Conclusions

The main contribution of this paper is a \two-phase", polynomial time dynamic programming al-

gorithm for the Component Retrieval Problem, a problem that arises in the automated assembly of

printed circuit boards. We have broadened the scope of our analysis by modelling the problem as a

longest path minimization problem in a PERT/CPM-like network with design aspects. As an alterna-

tive interpretation, the problem can also be viewed as a shortest path problem with side-constraints.

Both interpretations have proven to be crucial in the development and description of the proposed

solution algorithm. Finally, we have sharply delineated the complexity of the problem by proving

that it becomes NP -hard when additional structure on the activity durations in the PERT/CPM

network is absent.

8 Acknowledgements

The �rst author has been partially supported in the course of this research by AFOSR (grant F49620-

93-1-0041), ONR (grants N00014-92-J-1375 and N00014-92-J-4083) and NATO (grant CRG 931531).

23

9 References

[1] Ahmadi, R.H., \A hierarchical approach to design, planning, and control problems in electronic

circuit card manufacturing", in Perspectives in Operations Management , R.K. Sarin (Ed.), pp.

409{429, Kluwer Academic Publishers, Dordrecht, The Netherlands (1993).

[2] Ahmadi, J., Grotzinger, S. and Johnson, D., \Component allocation and partitioning for a

dual delivery placement machine", Operations Research, Vol. 36, No. 2, pp. 176{191 (1988).

[3] Ahuja, R.K., Magnanti, T.L. and Orlin, J.B., Network Flows , Prentice-Hall, Englewood Cli�s,

New Jersey (1993).

[4] Ball, M.O. and Magazine, M.J., \Sequencing of insertions in printed circuit board assembly",

Operations Research, Vol. 36, No. 2, pp. 192{201 (1988).

[5] Bard, J.F., Clayton, R.W. and Feo, T.A., \Machine setup and component placement in printed

circuit board assembly", The International Journal of Flexible Manufacturing Systems , Vol.

6, No. 1, pp. 5{31 (1994).

[6] Burkard, R.E., Klinz, B. and Rudolf, R., \Perspectives of Monge properties in optimization",

Research Report, TU Graz, Graz, Austria (1994). (To appear in Discrete Applied Mathemat-

ics .)

[7] Crama, Y., Flippo, O.E., van de Klundert, J.J. and Spieksma, F.C.R., \The assembly of

printed circuit boards: A case with multiple machines and multiple board types", Working

Paper, University of Limburg, Maastricht, The Netherlands (1995).

[8] Crama, Y., Oerlemans, A.G. and Spieksma, F.C.R., Production Planning in Automated Manu-

facturing , Lecture Notes in Economics and Mathematical Systems 414, Springer-Verlag, Berlin,

Germany (1994).

[9] Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of

NP-Completeness , W.H. Freeman, New York, New York (1979).

[10] Horak, T. and Francis, R.L., \Utilization of machine characteristics in PC board assembly",

Working paper, Rutgers University, Newark, New Jersey (1995).

[11] Tang, C.S., \A max-min allocation problem: Its solutions and applications", Operations Re-

search, Vol. 36, No. 2, pp. 359-367 (1988).

[12] Tang, C.S. and Denardo, E.V., \Models arising from a exible manufacturing machine, part I:

Minimization of the number of tool switches," Operations Research, Vol. 36, No. 5, pp. 767{777

(1988).

[13] Van Laarhoven, P.J.M. and Zijm, W.H.M., \Production preparation and numerical control in

PCB assembly", The International Journal of Flexible Manufacturing Systems , Vol. 5, No. 3,

pp. 187{207 (1993).

24

