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Abstract

In this paper we generalize the concept of a non-transferable utility game by introducing
the concept of a socially structured game. A socially structured game is given by a set of
players, a possibly empty collection of internal organizations on any subset of players, for
any internal organization a set of attainable payoffs and a function on the collection of all
internal organizations measuring the power of every player within the internal organization.
Any socially structured game induces a non-transferable utility game. In the derived non-
transferable utility game, all information concerning the dependence of attainable payoffs
on the internal organization gets lost. We show this information to be useful for studying
non-emptiness and refinements of the core.

For a socially structured game we generalize the concept of m-balancedness to social
stability and show that a socially stable game has a non-empty socially stable core. In
order to derive this result, we formulate a new intersection theorem that generalizes the
KKM-Shapley intersection theorem. The socially stable core is a subset of the core of
the game. We give an example of a socially structured game that satisfies social stability,
whose induced non-transferable utility game therefore has a non-empty core, but does not
satisfy m-balanced for any choice of 7.

The usefulness of the new concept is illustrated by some applications and examples.
In particular we define a socially structured game, whose unique element of the socially
stable core corresponds to the Cournot-Nash equilibrium of a Cournot duopoly. This places
the paper in the Nash research program, looking for a unifying approach to cooperative

and non-cooperative behavior in which each theory helps to justify and clarify the other.
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1 Introduction

Many economic situations can be modeled as a non-transferable utility game (NTU-game).
In such a game a set of payoffs is assigned to any coalition of players, being a non-empty
subset of the set of all players. A well-known solution concept for cooperative games is
the core, consisting of all payoff vectors that can be attained by the grand coalition and
cannot be improved upon by any coalition. In Bondareva [5] and Shapley [20], the notion
of balancedness has been introduced and it has been shown that a transferable utility
game has a non-empty core if and only if the game is balanced. Scarf [19] has extended
the balancedness condition to games with non-transferable utility and showed that every
balanced NTU-game has a non-empty core. So, for NTU-games balancedness is sufficient
but not necessary. Billera [4] has shown that an NTU-game has a non-empty core if
it satisfies the condition of m-balancedness. Nevertheless, there exist cooperative games
having a non-empty core and not being m-balanced for any 7. Necessary and sufficient
conditions for non-emptiness of the core have been given by Keiding and Thorlund-Petersen
[11], and Predtetchinski and Herings [17]. The conditions in the latter paper constitute
a natural generalization of m-balancedness, by allowing 7 to vary continuously with the
payoffs that a coalition can reach, and by allowing 7 to be multiple-valued. The resulting
condition is labeled II-balancedness.

In this paper we generalize NTU-games and introduce the concept of a so-called
socially structured game. An NTU-game summarizes the results of mutual cooperation by
members of a coalition by a unique set of attainable payoffs. In many economic situations of
interest, however, the players within a coalition may have several possibilities for choosing
an internal organization. For instance, in order to run a firm, a group of workers has
often multiple possibilities to organize itself, for instance according to different hierarchical
structures with different numbers of levels and different span of controls. Within a chosen
hierarchical structure the internal organization may differ in the distribution of the players
over the positions within the hierarchy.

In general, the admissible internal organizations of a group of players depend on the
specific application one has in mind. In running a firm it may be appropriate to choose the
internal organization of a hierarchy, whereas in other situations communication structures
or permutational structures, as studied for TU-games by Myerson [14] and Nowak and
Radzik [16], respectively, might fit better, or ordered structures as studied in van der
Laan, Talman and Yang [12] for NTU-games.

In the usual approach of an NTU-game internal organizations are taken into account
by assigning to any coalition the set of payoff vectors that contains all payoff vectors
attainable within some internal organization of that coalition. According to this approach

all information about the payoff sets for the different internal organizations is neglected.



The concept of a socially structured game exploits this information by allowing that a
payoff set is assigned to any organizational structure within any coalition. The set of
payoffs attainable to a group of players does not depend only on the set of players, but
also on the internal organization of the group.

We further assume that to any possible internal organization of any coalition a
power vector is associated, whose components reflect the relative strengths of the individual
members of the coalition within the internal organization. Although we present a number
of proposals made in the literature to determine the strength of an individual in a certain
organizational structure, in this paper we will make no attempt to discuss the pros and
cons of the various ways a power vector can be determined. Instead, we will treat the
power vector as exogenously given, and consider its derivation as part of for instance the
sociological literature. This treatment parallels the exogenous treatment of preferences in
the economic literature.

We hold the point of view that the power of an individual within an internal orga-
nization of a coalition matters. If an individual in a certain internal organization has more
power than another individual, then he is assumed to be able to increase his payoff at the
expense of the other individual. This process can only be stopped by a credible threat of
the other individual to leave the internal organization or to reorganize the current group
of individuals. Such a threat is only credible if the deviating individual can guarantee his
new coalition members at least the same payoff as before, and the individual has the power
to enforce the outcome that leads to these payoffs.

An obvious question is whether this refined modeling of games can be used to define
a new solution concept. In this paper we introduce the concept of the socially stable core.
For a payoff vector to be in the socially stable core, there should be neither incentives to
deviate from an economic point of view, nor from a social one. A payoff will be called
economically stable if it is feasible for some admissible organization of the grand coalition
and it is undominated, i.e. there is no subcoalition that can organize itself to give all its
members a higher payoff. Socially motivated deviations do not occur when all individuals
are equally powerful at the proposed payoff. This is formalized by considering the power
vectors of all internal organizations that could realize the payoff. If there is a weighted
sum of these power vectors that gives all individuals the same power, then individuals are
said to be equally powerful at the proposed payoff. Obviously, the socially stable core is a
subset of the core. In general, it is a proper subset of the core and therefore the socially
stable core can be considered as a refinement of the core.

We define the property of social stability for a socially structured game and refer
to games satisfying this property as socially stable games. It will be shown that a socially

stable game has a non-empty socially stable core. To do so, we formulate an intersection



theorem on the unit simplex that generalizes the well-known intersection theorem used by
Shapley [20], see also Herings [8], Ichiishi [10], and van der Laan, Talman and Yang [13].

Socially stable games have a non-empty core. We show by an example that so-
cial stability of the socially structured game does not imply that there exists a 7-system
such that the induced coalitional game is m-balanced. From this we conclude that more
information on the internal organization not only refines the core, but also may produce
games for which non-emptiness of the core cannot be established by m-balancedness. Social
stability leads therefore to conditions for the core to be non-empty that are in between
m-balancedness and Il-balancedness.

We demonstrate the usefulness of the concept of the socially stable core by an ex-
ample resembling an unexpected relationship between non-cooperative and cooperative
games. The non-cooperative Cournot quantity competition game between firms producing
a homogeneous commodity will be reformulated as a socially structured game. The socially
stable core of the game contains a unique element that corresponds to the Cournot-Nash
equilibrium of the non-cooperative quantity competition game. We show also that for a
non-cooperative leader-follower game, the Stackelberg equilibrium yields the unique ele-
ment of the socially stable core of that game. For these models the cooperative concept
of socially stable core is sustained by the non-cooperative Nash equilibrium outcome and
reversely. From this viewpoint this paper contributes to the Nash research program, see
for instance Nash [15], looking for a unifying theory in which each approach helps to justify
and clarify the other. A final application concerns the case that each internal organization
is represented by a graph whose nodes are the agents and whose edges reflect the domi-
nance relations between agents in decision making. For this case we present a number of
proposals in the literature concerning the modeling of the power vectors.

The structure of the paper is as follows. In Section 2 socially structured games are
introduced as well as the associated solution concept of the socially stable core. In Section
3 a new intersection theorem is presented and it is proven that a socially stable game has
a non-empty socially stable core. In Section 4 we provide an example of a socially stable
game, whose induced NTU-game does not satisfy the w-balancedness condition for any

choice of 7. Section 5 contains examples and applications and Section 6 concludes.

2 Socially Structured Games

Aumann and Peleg [2] have introduced cooperative non-transferable utility games with a
finite number of agents as games in which for each coalition of agents a certain subset of
payoff vectors is available on which the coalition can agree. When a coalition agrees on

a payoff vector in the attainable payoff set, then each player of the coalition receives a



payoff as specified by this player’s component of the payoff vector. A payoff vector that is
attainable for the grand coalition lies in the core of the game if no coalition can improve
upon this vector, i.e. if there does not exist a coalition and a vector in its payoff set that
makes all players better off, see Aumann [1].

In this paper we generalize the concept of an NTU-game by allowing for the possi-
bility that a coalition can organize itself in several ways, where every admissible internal
organization of a coalition leads to a payoff set on which the members of the coalition can
agree. The internal organization could be, for example, a structure where one agent is the
leader of the coalition making all decisions, while all other agents of the coalition follow
him, a structure in which all members of the coalition are in an equal position to each other
and decisions are made by a unanimity or majority voting rule, or a hierarchy in which
the agents are ordered on several levels. To any feasible internal organization corresponds
a non-empty set of payoff vectors which the members of the coalition can guarantee them-
selves when this structure applies. We further assume that a power vector is associated to
any admissible internal organization of any coalition. The components of this power vector
reflect the relative strengths of the individual members of the coalition within the internal
organization. For example, in a hierarchy the agent at the top of the hierarchy has more
power within the coalition than the other coalition members, whereas within an internal
organization in which the members are in an equal position to each other, all members
have the same power. A socially structured game (SSG) is given by a set of admissible
internal organizations and for any admissible internal organization a non-empty payoff set
and a power vector.

More formally, we assume that there is a finite set of agents N = {1,...,n}. Any
coalition S, where S is a non-empty subset of IV, is able to choose one of a finite number of
possible internal organizations. The number of feasible internal organizations for coalition
S is assumed to be finite and is denoted by mg. We allow the number mg to be zero in
which case there is no way the members of coalition S are able to organize themselves

and generate payoffs to all the members of the coalition. For singleton coalitions S = {i},

i € N, we assume that my; = 1. The collection of feasible internal organizations of
coalition S is denoted by Z° and its elements are denoted by I7, ..., I;?;S. The union over

S of all internal organizations for S is denoted by Z.

The payoff sets associated with every internal organization of a coalition are rep-
resented by a mapping v from Z to the collection of non-empty subsets of R". For every
S C N and 5 =1,...,mg, the set U(I]S) is assumed to be cylindric with respect to S,
where a non-empty set X C IR" is said to be cylindric with respect to S if for any two
vectors x and y in R" with z; = y; for all 2 € S, it holds that z € X implies y € X. When

x € ’U(I]S) for some IJS € 7, this means that if coalition S organizes itself according to IJS



the members of the coalition can attain payoffs (x;);cs for themselves, independent of what
the agents outside S are doing.

We further assume that to any possible internal organization of any coalition a
power vector is associated, whose components reflect the relative strengths of the individual
members of the coalition within the internal organization. We will present a number of
proposals made in the literature to determine the power vector. For the purpose of this
paper, the power vector is assumed to be exogenously given. The power of an agent within
an internal organization is measured by a power vector function p from Z to R’ \ {0"},
where IR} is the nonnegative orthant of R" and 0" is the n-vector of zeros. For I € 7 and
i = 1,...,n, the number p;(I) denotes the power of agent i within internal organization
I. We assume that every player outside the coalition on which an internal organization is
defined has zero power, i.e. for every S C N, and j = 1,...,mg, we have that pi(I]S) =0
for all i € N\ S. Moreover, we assume that the power of every agent involved in the
internal organization is nonnegative and that at least one of these agents has a positive
power. For every S C N and j = 1,...,mg, it holds that pi(If) > 0 forall i € S and
Yies Pi(If) > 0. We now have the following definition of a socially structured game (SSG).

Definition 2.1 (Socially Structured Game)
A socially structured game is given by the quadruple ' = (N,Z,v,p).

We are interested in payoff vectors that are socially and economically stable. If an
individual in a certain organizational structure has more power than another individual,
then he is assumed to be able to increase his payoff at the expense of the other individual.
Such a payoff is not socially stable. This process can only be stopped by a credible threat
of the other individual to leave the coalition or to reorganize the current coalition. Such a
threat is only credible if the deviating individual can guarantee his coalition members at
least the same payoff as before, and the individual has the power to enforce the outcome
that leads to these payoffs. To define social stability of a payoff vector in an SSG I' =
(N,Z,v,p) more formally, we first define the power cone of a payoff vector. The power

cone of a payoff = is defined by

PCz)={yeR"|y= > (), \r >0 forall I}.
{I|lzev(1)}
Notice that the power cone of an arbitrary payoff vector in R" is indeed a, possibly empty,
cone and is a subset of RY}. The power cone of x is equal to the set of all nonnegative
linear combinations of power vectors of all internal organizations that are able to generate
x. A payoff vector is called socially stable if the vector of ones is contained in its power
cone. Let e denote the n-dimensional vector of ones.



Definition 2.2 (Socially Stable Payoff)
For a socially structured game I' = (N, Z,v,p) a payoff vector x € R" is socially stable if
PC(z) contains the vector e.

Social stability of a payoff vector x means that nonnegative real numbers or weights can
be assigned to the internal organizations that are able to generate z in such a way that the
weighted total power of every agent is equal to one and therefore the same for every agent.
Sometimes it will be useful to define social stability of a collection of internal organizations

without reference to a particular payoff vector.

Definition 2.3 (Socially Stable Collection of Internal Organizations)
A collection of internal organizations in I, {Iy,..., I}, is socially stable if the system
of equations Z?Zl \ip(I;) = e has a nonnegative solution. A socially stable collection of

internal organizations in I is minimal if no subset of it is socially stable.

A socially stable payoff vector is therefore a payoff vector whose components can be
achieved by every element of a socially stable collection of internal organizations for its
members.

A socially stable payoff vector may not be achieved by an internal organization
on the grand coalition. In general, if a payoff vector x can be sustained by an internal

organization on the grand coalition we say that x is feasible.

Definition 2.4 (Feasible Payoff)
For a socially structured game T' = (N, Z,v,p) a payoff vector x € R" is feasible if z € v(I)
for some I € TV

Furthermore, social stability of a payoff vector does not imply that payoff improvements
are impossible. A feasible payoff vector upon which improvements are impossible is called

economically stable.

Definition 2.5 (Economically Stable Payoff)

For a socially structured game I' = (N,Z,v,p) a payoff vector x is economically stable if
x is feasible and there does not exist an I € I° for some S C N and y € v(I) satisfying
y; > x; foralli e S.

Economic stability of a payoff vector x means that it is feasible and that there is no internal
organization of a coalition that can make all members of that coalition better of than in x.
Economic stability is a one-to-one translation of the concept of the core for NTU-games to
SSG’s. We will therefore also refer to the set of all economically stable payoffs of an SSG
[' as the core of T'.

The set of all socially and economically stable payoff vectors is called the socially

stable core of the game.



Definition 2.6 (Socially Stable Core)
The socially stable core of a socially structured game I' = (N, Z,v,p) consists of the set of

soctally and economically stable payoff vectors of T'.

A payoff vector x is an element of the socially stable core if there is an internal organization
of the whole set of agents that is able to generate x (feasibility), there is no internal
organization on a coalition that is able to generate more payoff for its members (economic
stability), and x can be achieved by a socially stable collection of internal organizations
(social stability).

3 Non-emptiness of the Socially Stable Core

In this section we give sufficient conditions for the non-emptiness of the socially stable
core of a socially structured game. The most important condition is that the game itself is
socially stable. A socially structured game is called socially stable if every socially stable

payoff vector can be sustained by an internal organization on the grand coalition.

Definition 3.1 (Socially Stable Game)
A socially structured game I' = (N, Z,v,p) is socially stable if any socially stable payoff

18 feasible.

Besides social stability of the game the other conditions for non-emptiness of the socially
stable core are rather standard and more technical. All payoff sets should be comprehensive,
closed and bounded from above. Recall that every payoff set of an internal organization
of a coalition S is cylindric with respect to S and that my; = 1 for all « € N. In the
sequel, the payoff set corresponding to the unique internal organization of the single player
coalition {7}, i € N, is denoted by v(i) and the maximum payoff that agent i can guarantee

himself is given by the real number «;.

Theorem 3.2 (Non-emptiness of the socially stable core)

A socially structured game I' = (N,Z,v,p) has a non-empty socially stable core if

(i) forevery S C N, for every I € %, the set {(2;)ies | * € v(I) and x; > «; for all i €
S} is bounded,

(i1)  for every I € T, the set v(I) is closed and comprehensive,

(iii)  the game is socially stable.



Observe that (ii) together with the fact that v(7) is cylindric with respect to {i} for any
i € N implies that v(i) = {z € R" | z; < oy }.
In order to prove the theorem we first give an intersection result on the (n — 1)-

dimensional unit simplex A defined by
A={geR}|Y a=1}
i=1

This intersection result is interesting in itself and generalizes the well-known KKM-Shapley

intersection theorem (Shapley [20], see also Herings [8]).

Lemma 3.3
Let T be a finite collection of internal organizations, p : T — R’} \ {0} a power function,
and let {CT|I € I} be a collection of closed subsets of A satisfying

(i) UrerC! = A,

(ii)  for every q in the boundary of A it holds that S C {i € N | ¢ > 0} when q € C!
for some I € I°.

Then there exists a socially stable collection {1y, ..., Iy} such that ﬂle Cli £ 0.

Proof
Without loss of generality we may normalize the power vector function such that >N | p;(I) =
n for every I € Z. For I € Z, let us define ¢/ = e — p(I). Let the set Y™ be defined by

Y™ =conv({c" | I € T}),

where conv(X) denotes the convex hull of a set X C R". Observe that 37_, ¢j = 0 for all
I €7 and hence 377, y; =0 for all y € Y. Next, define the correspondence F': A — Y™

by
F(g) =conv({c' |qe C",I €T}), g€ A.

Since the collection of subsets {CT|I € T} is a covering of A, the set F(q) is non-empty
for all ¢ € A. It is easily verified that, for every ¢ € A, F(q) is convex and compact and
that Uyea F(q) is bounded. Moreover, since the sets C', I € Z, are closed, the mapping
F : A — Y" is an upper hemi-continuous mapping from the set A to the collection of
subsets of the set Y. Further, both sets A and Y are non-empty, convex, and compact.
Next, let H be the mapping from Y™ to the collection of subsets of A defined by

H(y)={GeA|q'y<q'yforevery g€ A}, ye Y™

Clearly, for every y € Y™ the set H(y) is non-empty, convex, and compact, and H is

upper hemi-continuous. Hence, the mapping D from the non-empty, convex, compact set

8



A x Y™ into the collection of subsets of A x Y™ defined by D(q,y) = H(y) x F(q) is upper
hemi-continuous and for every (¢,y) € A x Y™, the set D(q,y) is non-empty, convex, and
compact. According to Kakutani’s fixed point theorem, the mapping D has a fixed point
on A x Y™ i.e. there exist ¢* € A and y* € Y" satisfying y* € F(¢*) and ¢* € H(y*).

Let of = ¢*Ty*. From ¢* € H(y*) it follows that ¢'y* < o* for every ¢ € A. By
taking ¢ = e(i), where e(i) € A denotes the i-th unit vector, we obtain that y; < o,

t=1,...,n. Hence,

yr =af if g >0,
y; <a* ifg =0.

(1)

Since Y., y* = 0, we obtain also that a* > 0.

On the other hand, y* € F(¢*) implies there exist nonnegative numbers A}, ..., A}
satisfying 35 A5 = 1 and y* = ¥, Xch for a collection {I1,... I} of k different
internal organizations in Z such that ¢* € CU for every j, j = 1,..., k. Without loss of
generality we assume that A} > 0 for every j = 1,..., k. Let S; be the set of agents on
which I; is an internal organization, i.e. I; € Z% for j = 1,..., k. By condition (ii) we

have that ¢f = 0 implies i € S7 for every j = 1,...,k, and thus cfj = 1. Hence,

k
yi=Y N =1>0 if ¢f = 0. (2)

j=1
Suppose there exists an index 7z € N such that ¢ = 0. Then it follows from the equations
(1) and (2) that yF > 0 for all ¢ € N, which contradicts Y1 ; y© = 0. Consequently, for all
© € N, we have that ¢7 > 0 and thus y7 = o*. Together with 7", y© = 0 this proves that
y* = 0". Hence

k

k
Z)\;p(lj) :e—Z)\;clf —e—y"=c¢
7=1

7=1
and thus the collection {Ii,..., I} is socially stable. Since ¢* € ﬂleCIf, this completes
the proof. Q.E.D.

The proof of Theorem 3.2 follows by applying Lemma 3.3.

Proof of Theorem 3.2

Without loss of generality we assume that 0" € v(i) for every i € N. To apply Lemma
3.3, we define a collection {CT | I € I} satisfying the conditions of the lemma and show
that an intersection point of a collection of socially stable sets induces an element in the
socially stable core of the game. For given M > 0 and for any ¢ € A, let the number )\,
be given by

A =max{A € R | —Mqg+ Xe € Urez v(I)}.

9



Since 0" € v(i) and because of conditions (i) and (ii) of the theorem, A, exists and is
positive for every M > 0 and for any ¢ € A. Moreover, following Shapley [20], using
condition (i) of the theorem, the number M > 0 can be chosen so large that for every
i€ Nand g € A, ¢; =0 implies that ¢ ¢ S for any S C N satisfying —Mgq + \e € v({)
for some I € Z°. Now, for I € T, define

C'={qgeA|-Mqg+\eecv()}

Since every v(I), I € Z, is closed and comprehensive, the collection of sets {C'|T € T} is
a family of closed sets covering A and satisfies also Condition (ii) of Lemma 3.3. Hence,
there is a socially stable collection {Iy,...,I;} of internal organizations in Z such that
ﬂ;?:l Cli £ (. Let ¢* be a point in this intersection, so ¢* € C% for j = 1,..., k. Then the
point ¥ = —Mq* + A4-e lies in ﬂ?zlv(lj), i.e. x* is a socially stable payoff vector supported
by the socially stable collection {1, ..., Iy }. Since the game is socially stable we have that
x* € v(I*) for some I* € IV, i.e. z* is feasible. To prove economic stability, suppose there
exist an internal organization I € Z° for some S C N and a payoff vector y € v(I) such
that y; > a7 for all i € S. Since v([) is comprehensive and cylindric with respect to S,
there is a p > 0 such that 2* + pe € v(I). However, then —Mg* + (A, + p)e € v(I), which
contradicts that —M¢* + Xe & v([I) for any A > A\,«. Hence, z* cannot be improved upon
by any internal organization I € Z, i.e. x* is also economically stable. This completes the
proof. Q.E.D.

Since the socially stable core of a socially structured game is a subset of the core of that

game, we have the following corollary.

Corollary 3.4
Let (N,Z,v,p) be an SSG satisfying the conditions of Theorem 3.2. Then the core of the

game 18 non-empty.

We conclude this section with an example to show that the socially stable core of a socially

structured game might be indeed a proper subset of the core.

Example 3.5 Let (IV,Z,v,p) be a socially structured game with N = {1,2} and my 2) =
2. The payoff set mapping v is given by

v(i) ={r € R*|2; <0}, i=1,2,
o(IY = {z € R? | 23, + 7, < 3},

oIV = {z € R? |z, + 2z, < 3.

10



The power vector function p is given by p(I*) = e(i), where I* denotes the unique internal
organization on the singleton coalition {i}, i = 1,2, pi(I{"*) > po(I1**), and po(I3**) >
pl(IZ‘.{I’Q}). The core of this game is the union of the two sets {z € R?*|2x; + 25 =3, 0 <
71 <1} and {z € R?|2; +225 = 3, 0 < 25 < 1}. The socially stable core contains only one
element, the point (1,1). All other points of the core are not socially stable. Notice that
in this game there are four minimal socially stable collections of internal organizations,
namely {I', 12}, {1/, 12}, {f}**, '}, and {11, I{"#}. Only the last collection

sustains the unique element in the core that is socially stable.

4 Social Stability and m-Balancedness

In this section we consider the relationship between social stability of socially structured
games and m-balancedness of coalitional games, as introduced in Billera [4]. To define
m-balancedness, for any subset S of the set N = {1,...,n}, let 7° € R"} be a power vector
satisfying ﬂf =0forj & Sand 7 > 0fori € S. Then a collection {Si, ..., S} of subsets

of N is called w-balanced if there exists positive numbers Aq, ..., Ag, such that
k
V= Z )\JWSJ'.
j=1

Observe that for any m-system {7° | S C N}, the collection containing only the grand
coalition N is balanced. Further, in case for all S C N we take 77 = 1 for all i € S,
m-balancedness reduces to the well-known balancedness as introduced by Shapley [20].

A coalitional game on N is defined by a payoff set mapping v¢ : N' — 28" where
N ={S |0 # S C N} is the collection of all non-empty subsets of N, assigning to any
S € N a non-empty payoff set v°(S) C R" which is cylindric with respect to S. For a
given m-system, a coalitional game (NN, v¢) is m-balanced when for any m-balanced collection
{S1,..., Sk} it holds that

k

ve(S;) C v(N).
When any set v¢(S) satisfies the conditions (i) and (ii) of Theorem 3.2, it is well-known
that the coalitional game has a non-empty core when there exists a m-system for which
the game is m-balanced. Clearly, any w-balanced coalitional game (N, v°) yields a socially
stable game (N, Z,v,p) with, for all S C N, mg = 1, v(I{) = v°(S), and p;(I}{) = 77 /7l
i € N. Since {N} is m-balanced, {IN} is also socially stable and the socially stable core
and the core coincide.

For a socially structured game (N,Z,v,p) we may define the induced coalitional

game (N, v°) by defining the payoff set mapping function v on N by
UC(S) = UIGIS U(I), @ §£ S C N,
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i.e. the induced NTU-game payoff set v¢(.S) of coalition S C N is defined to be the union of
all payoff sets assigned to the admissible internal organizations on the coalition S of players.
It is straightforward that the core of this induced coalitional game (N, v°) coincides with
the core of the socially structured game (N,Z, v, p).

In the previous section we have seen that the socially structure game has a non-
empty socially stable core, and thus a non-empty core, when the game is socially stable.
Hence, it follows immediately that the induced coalitional game has a non-empty core when
the underlying socially structured game is socially stable. We now show that social stability
of a socially structured game does not necessarily imply that the induced coalitional game
satisfies m-balancedness for some m-system. The concept of a socially structured game may
yield for no w-system m-balanced induced coalitional games, but whose core non-emptiness

follows from the social stability of the original game. This is shown in the next example.

Example 4.1 Let (IV,Z,v,p) be asocially structured game with N = {1,2,3} and my; oy =
2, mpi 3y = mya3y = 0 and mg = 1 for all other S C N. The payoff set mapping v is given
by

v(i)={z e R*|z; <0}, i=1,2,3,
oI = {z € R® | 22y + 25 < 3},
oY = {z € R® |z, + 21, < 3},

and
o(IY) = v(3) NI NI,

The power vector function p is given by p(I*) = e(i), where I* denotes the unique internal
organization on the singleton coalition {i}, i = 1,2, 3, p(Ii{l’Q}) = (2,1,0)T, p(IZ‘,{l’Q}) =
(1,2,0)" and p(I¥) = (1,1,1)T. This socially structured game is socially balanced. To
show this, it should be observed that there are only five minimal socially stable collections,
(14, 12, 1%y, {1V, iy, (i 12 Yy {18 14, 13) and {INV}. For each of these
collections we have that the intersection of the payoff sets of the members of the collection

is a subset of v(I"V). For instance,
1
(I nv@2) Nu) C {z € Rz, < 150 22 <0, 23 <0} Co(I™).

Because the game is socially stable, the socially stable core is non-empty. In fact, the
payoff vector (1,1,0)" is the unique element in the socially stable core and is also the
unique core element. This payoff vector lies in v(I"V) and no coalition can improve upon

this outcome, so it is in the core. Further, there are no other core elements, since the
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agents 1 and 2 can improve upon each other point in v(I") through one or both of their
internal organizations [ i{l’Q} and 12{1’2}. Finally, this payoff vector is sustained through the
socially stable collection {11{1’2}, Al I*}.

We now consider the induced coalitional game. The payoff set mapping v¢ of this

game is given by
ve(i) = wv(i), 1=1,2,3,
v({1,2}) = v(@") v o)
ve(N) = v(I"V)

and v¢(S) = 0 for all other S. Of course, again the payoff vector (1,1,0)" is the unique
element in the core of this coalitional game and thus the core is non-empty. However,
there does not exist a m-system for which the game is 7w-balanced. To show this, first let
{75 ] S C N} be a w-system such that rib3 = 7i83  Then the collection {{1,2}, {3}}is
m-balanced. However, v({1,2})Nv%(3) is not contained in v*(N), for instance z = (3, 2,0) "
is in v°({1, 2})Nv°(3) but not in v*(IN). Hence, the game is not w-balanced for any m-system
with Wfl’Z} = 7@{1’2}. Next, suppose this latter equality does not hold. In this case we assume
without loss of generality that 7"* < 75**'. Then the collection {{1,2}, {1}, {3}} is
m-balanced. However, the payoff vector z = (0,3,0)7 is in v¢({1,2}) Nv(1) Nv°(3) but not
in v¢(N) and again the game is not w-balanced. Hence, there does not exist a 7w-system for
which the induced coalitional game is m-balanced, so that the non-emptiness of the core

can not be concluded from the w-balancedness condition. This concludes the example.

We conclude this section by considering the socially stable core of a socially struc-
tured game as a subset of the core. For any element x in the socially stable core of a
game T, feasibility of z implies that = € v(I) for some I € Z. Moreover, there exists a
socially stable collection H C Z sustaining x. We noticed already that that there does not
need to be a socially stable collection of internal organizations on the whole set of agents.
Therefore, H may contain internal organizations of proper subsets of N. Moreover, it
might be that x is sustained by several socially stable collections. Now, let Z(z) be the
‘supercollection’ containing all internal organizations that can achieve x. This supercollec-
tion contains at least one internal organization of the grand coalition N and typically some
internal organizations on subsets of N. Economic stability implies that improvements are
not possible and therefore x cannot be in the interior of any of these payoff sets. So, we

have the following corollary.

Corollary 4.2 (Boundary property)
For a payoff x in the socially stable core of T', let Z(x) be the collection of all internal
organizations I such that x € v(I). Then x is on the boundary of v(I) for all I € I(x).
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The corollary says that the socially stable core typically selects payoff vectors in the core,
which are on the boundary of several payoff sets. In general, an element x of the socially
stable core lies in the (relative) interior of the core if Z(z) contains only internal organi-
zations on N and x lies in the boundary of the core if Z(z) contains at least one internal

organization on a proper subset of agents.

5 Applications and Examples

In this section we consider some applications and examples of socially structured games
and discuss conditions under which the socially stable core is non-empty and how this
set, differs from the core itself. First, we consider a duopoly with two profit maximizing
firms. We model this economic setting as a socially structured game and show that under
rather general conditions its socially stable core contains exactly one element. Depending
on the set of admissible internal organizations, this unique socially stable core element
corresponds to either the Cournot-Nash outcome of duopoly or the Stackelberg solution.
Next we consider socially structured games, in which every internal organization of
a coalition is represented by a directed graph. From the literature several power vector
functions for graphs are known and we will give sufficient conditions under which the
socially stable core of a game in graph structure is non-empty. In case there is only (at
most) one graph and corresponding payoff set for any coalition, we consider by means of
some examples how the subset of the core selected by the socially stable core depends on

the graph structure and the corresponding power vector function.

5.1 Duopoly

As a first application we consider an industry with two profit maximizing firms producing a
homogeneous good. Each firm ¢, 1 = 1, 2, has a strictly convex, increasing and differentiable
cost function ¢*(g;), where ¢; > 0 is the quantity produced by firm i, and ¢'(0) = 0. The
demand ¢ for the good is given by the concave, decreasing and differentiable inverse demand
function p = P(q), saying that the total demand for the good equals the total production
q¢ = ¢1 + ¢2 when the price p is equal to P(gq). The profit function of both firms depends

on the quantities produced by each of the firms and is for firm ¢ given by
™0, ¢5) = 4P (4 + 45) — (@)

A well-known solution concept for this duopoly model is the non-cooperative Cournot-Nash

solution in which simultaneously each firm chooses an optimal quantity given the choice of
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the other firm. For given i = 1,2, let ¢; > 0 be the quantity chosen by firm j # ¢. Then

the optimal reaction of firm ¢ is the quantity solving the profit maximization problem
max ;P (gi + ;) — ¢(¢)-

Let 7°(g;) be the solution to this problem. Under the conditions stated above on the
demand and cost functions, the reaction functions r* : R, — R, i = 1, 2, are well-defined

and continuous. A pair (¢V, ¢)’) of quantities is called a Cournot-Nash equilibrium if
g =r'(q)), fori,j=1,2, i#]j.

We also consider the Stackelberg leader-follower quantity competition game. In this
model one of the firms, called the follower, say firm j, responds with his optimal reaction
r(g;) to the quantity ¢; set by the other firm, called the leader, firm i, 7 # j. So, firm 7’s
profit when it chooses quantity ¢; > 0 is given by

75(¢:) = a:P(q; + 1 (4:)) — (@)

A pair of quantities (¢}, ¢) is a Stackelberg solution of the non-cooperative market game
with firm ¢ as leader and firm j # ¢ as follower when

(i) ¢ =r(q),

(ii) ¢! solves max,>o my(q:)-

Under the conditions on the demand and cost functions stated above, the profit maximiza-
tion problem

max ¢P(q) - ()

of a monopolistic firm i has a unique solution, say ¢™. Let MC" : Ry — IR be given by

MC(q;) = acail(;i]i), i.e. MC'(-) is the marginal cost function of firm i, i = 1,2. We now

assume that also the following conditions hold.

(i) For both firms ¢ = 1,2, the Stackelberg leadership profit function 7% is strictly

concave in g;.
(ii)  For both firms i = 1,2, it holds that P(¢™) > MC?(0), j # i.

The first condition guarantees that there exists a unique Cournot-Nash equilibrium, see
for instance Tirole [21], page 225-226. The second condition, saying that the market price
in case firm ¢ operates as a monopolist is higher than the marginal cost of firm j # 7 at
¢; = 0, guarantees that at the Cournot-Nash equilibrium both firms are on the market,

i.e. ¢ > 0fori=1,2. Observe that in a Cournot-Nash equilibrium each player has a
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nonnegative profit, because a firm always has the possibility to set its production equal to
zero, making profit equal to zero. Furthermore, under the first condition also the profit
maximizing problem of the leader in the Stackelberg game has a unique solution.

We show first that the Cournot-Nash model can be formulated as a socially struc-
tured NTU-game. There are two agents, so N = {1,2}. On the grand coalition of both
players, we consider two internal organizations. For ease of notation, let I;, i = 1,2, de-
note the internal organization of N in which player ¢ follows the decision of player j # i.
Further, let I' denote the unique organization for player ¢ himself, i = 1,2. Then the
collection of feasible internal organizations is equal to Z = {I',I? I, I,}. Next, we define
the payoff sets v(I) for I € Z. The internal organization I;, i = 1,2, corresponds to the
case where the firms play the Stackelberg game with player j # ¢ as the leader and firm ¢ as
the follower. We assign to this internal organization the set of payoffs that can be attained
when the other firm j produces an arbitrarily chosen quantity ¢; and firm ¢ chooses his

optimal reaction ¢; = r*(g;) to g;, i.e.

v(l;) ={x € R? | 3 ¢; > 0 such that z; < ﬂj(qj,ri(qj)), xz; < ﬂi(ri(qj),qj)}, i=1,2.

To define the sets v(17), j = 1,2, we assume that firm j is aware that the other player i # j
will never set a quantity above his optimal leadership quantity ¢ in the Stackelberg game.
Each firm can get at least the (low) payoff to be realized as a follower in the Stackelberg

game solution. This yields for the singleton coalitions the cylindrical payoff sets
v(j) = v(l’) = {z € R?a; <7 (7 (¢7), q))}, j =1, 2.

Since the profits are bounded from above by the monopoly profits and are closed and
comprehensive by definition, the conditions (i) and (ii) of Theorem 3.2 are satisfied.

As power vector function we take p(I') = e(i), i = 1,2. For I, and I, we assume
that p;(I;) < p,;(I;), i = 1,2, j # 14, in order to express that player j as a leader has more
power than player ¢ as a follower. From this power vector function it follows that there
are only four minimal socially stable collections, {I*, 1%}, {I},I,} and {I*, I;} for i = 1,2.

Since
(I Nu(I?) ={z e R*|z; <7i(ri(q),¢)), i=1,2} Co(l;)Uv(ly),
U(II)QU(IQ) CU(II)UU(IZ)J
v(I’)No(l) ={xeR* |z <7'(r'(q), )} No(l;) Coll)Uu(l), i=1,2,
it follows that any socially stable payoff vector x is feasible for the grand coalition N. So,
the game is socially stable and thus satisfies also condition (iii) of Theorem 3.2. Since all
conditions of Theorem 3.2 are satisfied the game has a non-empty socially stable core.

Let 2% = (z},73)" be a payoff vector in the socially stable core. Then there are

three possibilities. First, suppose z* is supported by the socially stable collection {I*, I?}.
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Then, x* € v(I') and thus z} < wi(ri(qg),qg), i = 1,2, i.e. each firm gets a payoff at most
equal to his profit he gets as follower in the Stackelberg game. This contradicts that z*
is economically stable, since ﬂi(ri(qg), qg) < (¢}, qj’) for i = 1,2 and the payoff vector
(T (g, ¢), (g5, q))) " lies in v(I;) as well as in v(l5). Secondly, suppose z* is supported
by {I*,I;} for some i = 1,2. Then z* € v(I*) Nv([;). Because z* € v(I;) there exists a
quantity ¢; such that

oy < (g, (q))) and ;7 < 7 (r'(q)), q}).-

Because z* € v(I") it follows that
z; < 7'(r'(q), 4))-

Since z* is economically stable, all three inequalities hold with equality. Hence,
T (r'(q)), ¢) = ™ (r'(d)), 4,

implying that ¢; = qj-‘ and the payoffs are the Stackelberg leader-follower game payoffs with
player j as leader and player ¢ as follower. However, then there exists a payoff vector x in
the set v([;), with j # ¢ as the follower, that dominates z*. To see this, observe that the
profits of both players increase if player ¢ continues to play ri(qg ) but player j decreases his
quantity from qg to his optimal reaction r’/ (rl(qj )) against ri(qg ), yielding the payoff vector
z in v(l;) with z; = Wi(ri(qg),rj(ri(qg))) > 7 and x; = Wj(rj(ri(qg)),ri(qg)) > z7. This
contradicts that * cannot be improved upon. Therefore, any socially stable core element
is supported by the family (I, I,), i.e. * € v(1;), i = 1,2. Because z* € v(I;) we have by
definition of the set v(/3) that there exists a quantity ¢} such that

i < 7 (i, () and 25 < 7 (r¥(q), 47).
Analogously, from z* € v([;) it follows that there exists a quantity ¢5 such that
vy < (r'(g3), ¢5) and 25 < 7(q3, 7 (q3))-

Since x* is economically stable we must have that all inequalities hold with equality and

hence it follows that
(g, (@) = 7' (r'(¢3), ¢3) and 7 (g5, 7' (g3)) = 7 (r*(¢7), 47)-

From the uniqueness of the Nash equilibrium it follows that ¢; = ri(q;‘-‘) and hence ¢f = ¢,
t = 1,2. So, the quantities supporting the unique payoff vector in the socially stable core

are the Cournot-Nash quantities. This gives the following result.
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Result 5.1
The socially stable core of the socially structured duopoly game (N,Z,v,p) with T =
{I',I?,I,, I} contains a unique element x*. The corresponding quantities q; and ¢ form

the unique Cournot-Nash equilibrium for the non-cooperative quantity competition game.

The result shows that the Cournot-Nash outcome of the non-cooperative game is supported
by the socially stable core outcome of an appropriately defined socially structured game. In
fact, it should be noticed that the non-cooperative behavior is modeled by an appropriate
choice of the collection of feasible internal organizations and corresponding payoff sets.
Next we consider the Stackelberg leader-follower quantity competition game. To
formulate a socially structured game yielding as the unique socially stable core outcome
the solution (q{, q%) of the Stackelberg game with firm j being the leader, we take as the

collection of feasible internal organizations
T={I"11},

with I', I? and I;, i # j, as defined above. We take the same payoff sets and power vectors
as above for the three elements of Z, so that the game (N, Z, v, p) satisfies the conditions (i)
and (ii) of Theorem 3.2. Clearly, the only minimal socially stable collections are {I', I*}
and {I;, I'}. Tt follows as above that for both collections the intersection of the payoff sets is
in v(I;). Hence, the game is socially stable and thus also satisfies condition (iii) of Theorem
3.2. Therefore, the game has a non-empty socially stable core. By an analogously reasoning
as in the Cournot-Nash case it follows that any payoff vector x* = (2}, 25)" in the socially
stable core is supported by the socially stable collection {I;, I'}, so that z* € v(I;) Nv(I*)
and the payoff vector z* is supported by the quantities ¢j = qg and ¢ = rl(qj) = q{ for
i # j. Notice that, in contrast to the Cournot-Nash case, these payoffs cannot be improved
by a payoff vector in v([;) by decreasing the quantity of the leader j because now I, is
not in the collection Z. So, the socially stable core contains a unique payoff vector, whose
components are the Stackelberg leader-follower game payoffs with player j as leader and
player 7 as follower. This gives the following result.

Result 5.2

The socially stable core of the socially structured game I = (N, Z,v,p) withZ = {I', I I},
i € {1,2}, contains a unique element x*. The corresponding quantities q; and q; form
the unique Stackelberg equilibrium for the non-cooperative quantity competition game with

player j being the leader and player i being the follower.

5.2 Games in Graph Structure

A special class of socially structured games is what we would like to call games in graph

structure, in which any admissible internal organization of a coalition is modeled by means
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of a (directed) graph. A graph G is defined to be a pair (V, A), where V' is a non-empty
finite set of elements, called the vertices of the graph, and A is a finite collection of ordered
pairs of elements of V| called the arcs of the graph. In our setup V is a subset S of the
grand coalition. Concerning A, two different agents 7,7 € S have no direct organizational
relation in case both pairs (i,4') and (i',4) are not in A, i weakly dominates 7’ if the pair
(i,i") € A, and ¢ dominates ¢' if the pair (i,i') € A and (¢',7) ¢ A. Although in principle
we do not impose any restriction on a graph G = (S, A), it is useful for the definition of
the power vector function to exclude for all i € S the pairs (i,4) from A.

Well-known examples of graph structures are the complete graph A = {(4,)|i,j €
S, i # j}, the empty graph A = (), a hierarchy (a graph that does not contain a directed
sequence of edges from a node to itself), or a tree (a graph that contains for one specific
node, the leader, a unique directed connected sequence of edges to any other node). If the
coalition S is able to generate payoff to its members when organized according to the graph
G = (A,S), we call G feasible and denote the payoff set by v(G). For any subset S of N,
the collection of all feasible graphs G with vertex set S is denoted by G°. The collection
of all feasible graphs G is obtained by taking the union of G¥ over all subsets S of N. The
payoffs are therefore determined by a mapping v from G to the collection of non-empty
subsets of R satisfying that for every graph G € G°, the set v(G) C R" is cylindric with
respect to S.

To each feasible graph G = (S, A) a power vector p(G) is associated measuring the
power of the nodes within G. Because any internal organization of a coalition S is given
by a graph on S, we can use one of the power vector functions for graphs known from the
literature. To give some examples of proposed power vector functions, we define for : € S

the sets of predecessors and successors of ¢ by
PY(G) = {j € S|(j,1) € A} and D'(G) = {j € S|(4,5) € A},

respectively, i.e. P'(G) is the set of all players by which 7 is weakly dominated in G
and D'(G) is the set of all players in G weakly dominated by 7. A well-known method
in graph theory to measure the power of a player in a graph is the score indez, see for
instance Behzad, Chartrand and Lesniak-Foster [3] or Rubinstein [18]. According to the
score index, the power of a player i € S in the graph G = (S, A) is equal to the number of
elements in the set D*(G), i.e. the number of players in S player 7 is dominating. Another
power index has been introduced by van den Brink [6], see also van den Brink and Gilles
[7], according to which the power of a player i in G is given by ;¢ pi(q) |[P?(G)| ", The
interpretation of this dominance index is as follows. Initially, each player gets one point.
This point is equally distributed amongst all his predecessors, so amongst all the players
by which a player is weakly dominated. The power of a player is the sum of all his shares

in the points of the players he weakly dominates.
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Finally, we give the so-called positional power index introduced in Herings, van der
Laan and Talman [9]. While the score index of a player only depends on his number of
successors and the dominance index of a player on the number of predecessors of each of his
successors, the positional power of a player depends also on how powerful these successors

are. More precisely, for a graph G = (S, A) the positional power index is the solution to

n= Y (E+%) ies (3)
JEDH(G) "

It means that a player gets a power of % for each weakly dominated player plus a fraction
% of the power of that player. The power index of a player is higher if he weakly dominates
more powerful nodes. As shown in [9], the system (3) has a unique nonnegative nonzero
solution. We now take some power index for the power vector function p : G — R", i.e. for
any graph G € G on S, the powers (p;(G));cs are determined by a given power index for
nodes in graphs, for instance the positional power index. This gives the following definition

of a graph game.

Definition 5.3 (Graph Game)
A socially structured game in graph structure or graph game is given by the quadruple
= (N,G,v,p).

Social and economic stability are defined as before, but with respect to G instead of Z.
From Theorem 3.2 it follows that a graph game (N, G, v, p) has a non-empty socially stable
core if (i) the game is socially stable, (ii) for all i € N, G; = ({i},0) € G and v(G;) =
{x € R"|z; < oy} for some a; € R, and (iii) for all S C N, every set v(G), G € G, is
comprehensive, closed and its individual rational points are bounded in IR”.

As an example consider a firm that can be organized internally according to a tree
in several ways. Not all tree structures might be allowed, for instance because of legal
restrictions involved in the execution of certain tasks. Fach feasible tree will generate
possible payoffs for the people that are located on the nodes of the tree. Typically, these
payoff sets are closed (continuity), comprehensive (free disposal) and bounded from above
(finite profits). Suppose that, except for the singletons (outside options), only trees are
feasible that involve all agents. Then it follows that either the profits corresponding to
the outside options cannot be realized by any internal organization of the firm, in which
case the firm cannot survive, or the socially stable core is non-empty. When the socially
stable core is non-empty, there is a payoff vector, at least as good as the outside option
vector, which cannot be improved upon by any other internal organization, and which is
supported by a graph balanced collection of internal organizations. Any tree on the whole

set, of agents in this collection could be used to internally organize the firm. Notice that the
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balanced collection may contain one or more singletons, in which case the corresponding
agents do not get more than their outside option.

As a second example we consider a firm with a fixed internal organization on N,
being a hierarchy (tree) given by a linear ordering on the set of players, i.e. the agents
can be numbered in such a way that the internal organization is given by the graph (N, A)
where A = {(i,i+ 1) | i = 1,...,n — 1}. We further suppose that a coalition can only
generate payoffs for themselves when they are connected in this graph (N, A). So, for
S C N, G° contains at most one element. When S = {j,7 +1,...,k} for some j, k with
1 <j<k<n,then G5 = {(S,A%)} where A = {(h,h+1) | h = j,...,k — 1} is the
restriction of A to S, otherwise G° = ). For ease of notation, in the following we denote
a coalition of the form {j,7 + 1,...,k} by [j, k]. We further assume that for any graph
G = ([j, k], AVk]) the power index p satisfies p,(G) > ppi1(G), h = j,...,k—1. This is for
instance the case when we take the positional power index. Since G only contains graphs of
the form ([, k], AP*)), this implies that any socially stable collection of graphs must contain
a graph of the form ([h, k], A"*!) for any h € N, i.e. any player h must be in a coalition
not containing players before h in the hierarchy. So, any payoff vector x in the socially
stable core is sustained by a socially stable collection containing for any h € N a graph
([h, k], A"#1) for some k > h. According to Corollary 4.2 it follows that when = is a payoff
vector in the socially stable core, for any h € N there is a coalition [h, k| such that z is
on the boundary of the payoff set v(([h, k], A"*])). Within this setting, the socially stable
core selects a subset of the core such that at any payoff vector in this subset any player h
gets only a share in the payoff he can realize within some coalition [h, k|, i.e. a coalition
containing some of its subsequent subordinates, but no superiors. So, within a firm with a
linearly ordered hierarchy all profits that a player can realize in cooperation with superiors
is distributed amongst its superiors. The example shows that by using information on the
internal organization correctly, the framework of a socially structured game may provide
more precise predictions about the outcome of economic situations.

Finally we consider an example of a graph game with a fixed internal organization
on N, being the complete graph (N,C), i.e. C ={(i,j) | i,j € N, i # j}. Suppose that
only the coalitions are able to generate payoffs by full cooperation, so for any S C N,
G° contains only the complete graph (S, C®). Within this framework we have a unique
internal organization for every coalition. Since any graph is complete, we have that for
every G = (S,C%) any power index p discussed before satisfies p;(G) = p;(G) for all
t,J € S. Moreover, in this case the collection consisting only of the complete graph on the
grand coalition is socially stable. It follows that the socially stable core coincides with the

core.
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6 Concluding Remarks

In this paper we have introduced socially structured games. The concept of socially struc-
tured games extends the standard NTU-game setting by taking into account the internal
organization of a coalition and the associated power of players in this internal organiza-
tion. We allow for several potential internal organizations of the same set of players, all
potentially leading to different associated powers of the players involved.

We introduce the socially stable core as a refinement of the core. For a payoff to
be in the socially stable core, it has to be both socially and economically stable. Social
stability of a payoff is related to a condition of equal power of the players involved in
internal organizations that are able to generate the payoff. Excess power of certain players
will allow them to increase their payoff at the expense of others, an unstable situation.
Economic stability reduces to the standard notion of the core. We have shown that the
socially stable core of a socially structured game is non-empty if the game satisfies the
condition of social stability, as well as some standard technical conditions. To prove this
result, we formulate a new intersection theorem, which is of independent interest. Since
the socially stable core refines the core, non-emptiness of the socially stable core implies
non-emptiness of the core.

Any socially structured game induces an NTU-game. Although any balanced NTU-
game induces a socially stable socially structured game, it is not necessarily the case that a
socially stable socially structured game leads to a balanced NTU-game for some balancing
weights. We have therefore shown that the additional structure of socially structured games
can be used to provide new conditions that are sufficient for non-emptiness of the core.

We conclude the paper with two applications. The first application shows that the
modeling of a duopoly with Cournot competition as a socially structured game leads to a
socially stable core that coincides with the payoffs of the Cournot-Nash equilibrium. We
also consider a special class of socially structured games in more detail, the so-called graph
games. The literature provides a number of proposals to define the power of players, when
their internal organization is modeled as a graph. We derive a number of first results
for graph games. Since the class of graph games is sufficiently rich to encompass many

economic phenomena of interest, we believe it to be a nice candidate for further research.
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