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Abstract

In this paper we study the structure of the bilateral communication links within

Online Consumer Communication Networks (OCCNs), such as virtual communities.

Compared to the offline world, consumers in online networks are highly flexible to
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choose their communication partners and little is known about how this affects commu-

nication exchange structures. We analyze these structures by using a general approach

from the game-theoretic literature of social and economic network formation where

individuals trade off the cost of forming and maintaining links against the potential

rewards of doing so, which results in a stable network structure. In our analysis, a com-

bination of aspects common to OCCNs is incorporated that has not been investigated

in this literature until now. First, the negative externality of communication specificity

is included in the sense that the more direct connections an individual has to maintain

with other individuals, the less she is able to specify her attention per link within her

total time available. Therefore, the additive value per individual of her communications

declines with an increasing number of links, and she also derives less additive value

per individual from others with an increasing number of links. Second, a distinction

is made between the social and informational value of communication, where informa-

tional communication value is assumed to be transferable via indirect links, whereas

social communication value is not transferable. Analytical results are derived by us-

ing the concept of pairwise stability. A tendency towards fragmented pairwise stable

structures - consisting of small, disjoint (star) components - is discovered, which can

be attributed to the joint effect of the two aspects mentioned. We demonstrate that

only some of the pairwise stable structures provide optimal welfare (total payoffs), and

that the relative focus on informational versus social value of communication affects

this welfare.

JEL Classification: A14, C79

Keywords: Consumers, Communication Specificity, Social vs. Informational Com-

munication Value, Online Network Formation, Game Theory
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1 Introduction

The large-scale availability of high-speed Internet allows a growing number of consumers to

easily communicate with like-minded individuals based on shared interests around for ex-

ample products, consumption activities, or personal conditions (e.g., Algesheimer, Dholakia,

and Herrmann, 2005; Dellarocas, 2003). Web sites such as www.saabnet.com,

www.ediets.com/community/, and www.healthboards.com offer online platforms on which

consumers share information that supports their decisions. We refer to the individuals and

their interactions on such websites as Online Consumer Communication Networks (OCCNs).

In this paper we study the structure of the bilateral communication links within OCCNs.

Compared to the offline world, consumers in online networks are highly flexible to choose their

communication partners and little is known about how this affects communication structures.

In our analysis, a combination of aspects common to OCCNs is incorporated that has not

been investigated in the literature before. First, we present a game-theoretical model for

communication network formation that features link specificity in the sense that the more

direct connections an individual has to maintain with other individuals, the less she is able

to specify her attention per link within her total time available. Therefore, her additive value

per link for others declines and she also derives less additive value from links with others.

Second, we realize that as soon as the value derived from communication is not only social

but also contains an informational component, this value is transferable via indirect links.

This is more prominently so in online communication than in offline communication since

information can more easily be forwarded to others. However, also in this forwarding process,

specificity plays a role. The combination of these two features, specificity and transferability,
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has a fragmentizing effect on network structure and consequently welfare implications, which

means that the informational versus social orientation of an OCCN could be of managerial

concern.

The paper is structured as follows: Section 2 shortly reviews the existent literature and

illustrates our contribution, Section 3 deals with the case of communication having social

value only in order to illustrate the impact of link specificity on structure, Section 4 deals

with the case of communication from which both social and informational value is derived

in order to illustrate the impact of value transferability on structure, Section 5 deals with

welfare implications, and Section 6 concludes and offers directions for further research.

2 Literature review

Research in the emerging area of online communication networks initially was largely con-

ceptual in nature (e.g., Dellarocas, 2003; Hagel and Armstrong, 1997; Wellman et al., 1996;

Butler, 2001). More recently however, scholars have focused on the question why individuals

choose to participate in, and contribute to OCCNs highlighting various individual motives

including informational value, social value and self discovery (e.g., Dholakia et al., 2004;

McLure Wasko and Faraj, 2005). Social influence variables such as identification with the

group (social identity) and group norms have also been found to play a role in individuals’

participation behavior (Bagozzi and Dholakia, 2002).

The current paper takes a complementary approach to understanding OCCNs by fo-

cusing on the structure of the underlying networks. This structure can determine impor-

tant outcome variables such as the extent to which social and informational value is shared
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throughout the network, and how it is distributed.

This type of analysis is related to work in organization research that has addressed ques-

tions like the degree of centralization in virtual organizations (e.g., Ahuja and Carley, 1999).

In contrast to this work in organization however, we address the case in which individuals

participate in an OCCN on a voluntary basis and do not necessarily share the same common

purpose and/or obtain compensation from their organizations for participating, as do, for

example, virtual teams (Lipnack and Stamps, 2000).

For this reason, and because of earlier research findings emphasizing that individuals may

have various motives for participation in OCCNs, we allow for two categories of individual

participation value in our analysis: (1) social and (2) informational value. These two cate-

gories are largely representative of most individual-level benefits of participating in OCCNs

. Social value is related to the fact that individuals may simply enjoy communicating with

others (for example because they find it entertaining, or because they feel it enhances their

self-worth; e.g., Hennig-Thurau et al., 2004). Informational value refers to the fact that con-

sumers may obtain new valuable knowledge from other consumers when they communicate

in an online exchange. Typically, informational communication value or knowledge can be

transferred relatively easily to third parties through indirect links, whereas social communi-

cation value is even more personal and therefore hardly transferable. This transferability is

an example of a positive network externality (e.g., Asvanund et al., 2004).

To analyze the underlying structure of OCCNs we develop an analytical model for the

formation of links in online OCCNs that allows us to understand the relative impact of social

and informational member orientation on the network structure in an OCCN. In this model,

we interpret the formation of OCCNs as a type of non-cooperative network formation pro-
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cess in which individuals choose to create links, only if the participants in the link benefit

from doing so (Jackson and Wolinsky, 1996). This way of modelling network formation is

more appropriate in the online context than in the offline context, since in OCCN formation,

it is much easier for individuals to strategically choose their communication contacts com-

pared to the offline case. The reason is that in the offline world consumers are much more

constrained by geographical distance and by social networks that are already in place (e.g.,

family structures).

We distinguish between two types of communication in OCCNs. First, an individual can

choose to communicate to all other individuals simultaneously. In this case no personal,

bilateral interaction takes place between individuals (e.g., a question is placed on a notice

board). We do not interpret such communication as a bilateral exchange link between

individuals. For example, as soon as an individual enters or subscribes to a virtual community

or e-mail list, this communication becomes available to her. In our analysis we focus on a

second type of communication, that requires that two individuals decide to communicate

to each other. In this case, individuals can choose to communicate with selected other

participants. Since this communication is bilateral, we assume that only those participants

involved in the communication can obtain direct value from it. This is due to the specificity

of the exchanged text, that is unique for the relationship (the exchanged text may still be

available to all other individuals as well and thus provide a common indirect value). The

second type of communication is most relevant for explaining potential structural differences

between networks because it differs between individuals. Therefore, we focus on it in our

analysis.

In fact, this type of communication represents the main explanation for non-completeness
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of OCCNs because it is a source of negative externalities (e.g., Asvanund et al., 2004): the

more direct connections an individual has to maintain with other individuals, the less she is

able to specify her attention per link within her total time available. Therefore, her additive

value for others declines and she herself also derives less additive value from others (Kvassov,

2002; Currarini, 2002; Jackson and Wolinsky, 1996).

3 Social value

Although we expect that OCCNs will typically combine social and informational value as-

pects in their communication, we first deal with the simpler case in which only social value

is derived from communication. This approach allows us to illustrate the separate impact of

link specificity on structure and welfare. The externalities of link formation are much more

crucial in our context than in the co-author setting, which has been the subject of investi-

gation in earlier research (Jackson and Wolinsky, 1996). In the communication context no

benefits arise from individual contributions per se. The reason is that communication is only

valuable if it is two-sided, whereas each co-author can write independently. The objective

of this section therefore is to propose a model for network formation in OCCNs with only

social value from communication. We also develop an appropriate stability concept for this

case and the large category of stable network structures is characterized.

3.1 Model

Consider a community of agents N = {1, ...n} , n ≥ 3. A direct link gi,j between agents i and

j in this community (i, j ∈ N ; i 6= j) can be interpreted as a virtual exchange relationship
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between i and j which is established if they both wish the link. Virtual exchange relationships

are expressed by undirected links, for any two agents i and j, gi,j = gj,i.

In case of an isolated relationship where communication has only social value, j derives

social value V s > 0 from i. However, maintenance of the relationship between i and j

costs time: both agents are assumed to divide their available sending time as well as their

available receiving time equally among all their relationships, as a result of which the value V s

is divided proportionally. This is due to the fact that although the agents represent constant

potential value for each other, time investment of both sender and receiver is needed in order

to make the potential value specific and hence useful for the receiver. Therefore, the payoff

for agent i is given by

Πi (g) =
∑

j∈NN
i (g)

V s

µN
i (g) · µN

j (g)
(1)

if µN
i (g) > 0, and Πi (g) = 0 if µN

i (g) = 0, where gi,j in link structure g indicates with a 1 or

a 0 whether i is directly linked to j or not (by definition, gi,i = 0, as agents do not establish

communication links with themselves); NN
i (g) is the set of agents with whom i has a direct

link, where agent j is a neighbor of agent i if j ∈ NN
i (g), and µN

i (g) =
∣∣NN

i (g)
∣∣ is the

number of neighbors of agent i, which can also be referred to as the degree of i ; and V s > 0

denotes the social value that i derives from observing j if all attention of the community

were going to the social value of communication and neither i nor j were linked to any other

agent.1

1For comparison: the payoff function in the co-author model of Jackson and Wolinsky (1996) can be

written as

Πi (g) =
∑

j∈NN
i (g)

(
V s

µN
i (g)

+
V s

µN
j (g)

+
V s

µN
i (g) · µN

j (g)

)
.
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For the model thus described stable network structures can be predicted to emerge by

using the concept of pairwise stability (Jackson and Wolinsky, 1996), where a network struc-

ture is stable if no single agent can strictly improve her payoff by deleting one of her direct

links and no pair of agents can strictly improve her sum of payoffs while each of the two

members is at least indifferent by creating a direct link between the two members. This

concept differs from a Nash solution in the sense that it only assumes stability against de-

viations of exactly one link (which involves the permission of two agents in the case of link

formation), whereas the Nash network is stable against individual deviations of any size. In

our notation, we have the following definition.

Definition 1 (pairwise stability) The structure g is pairwise stable if for all i, j ∈ N

with gi,j = 1 it holds that

Πi (g) ≥ Πi (g
′) and Πj (g) ≥ Πj (g′) ,

where g′ is such that g′i,j = 0 and g′k,l = gk,l for all {k, l} 6= {i, j}, and for all i, j ∈ N with

gi,j = 0 it holds that

Πi (g) > Πi (g
′) or

Πj (g) > Πj (g′) or

(Πi (g) = Πi (g
′) and Πj (g) = Πj (g′)) ,

where g′ is such that g′i,j = 1 and g′k,l = gk,l for all {k, l} 6= {i, j}.

3.2 Results

We prove that the class of pairwise stable network structures can be characterized by two

easily verifiable conditions: (i) they are what we will call equal neighbor degree structures,

9



meaning that everybody has at least one neighbor and every neighbor of agent i has the

same degree, and (ii) there is at most a difference of one between the degrees of agents in

the same component.

Definition 2 (equal neighbor degree structure) A structure g is an equal neighbor de-

gree structure when it holds for each agent i that µN
i (g) ≥ 1 and for all agents j, j′ ∈ NN

i (g)

that µN
j (g) = µN

j′ (g).

Definition 3 (component) A component in a network g is a maximal set of agents C ⊆ N

who are connected to one another directly or indirectly, so for each i, j ∈ C there exists a

sequence of agents k1, . . . , km ∈ C for whom it holds that gi,k1 = gk1,k2 = ... = gkm−1,km =

gkm,j = 1.

First consider the following lemma, in which the own degree of agent i is denoted by di

and her neighbors’ degree by ei.

Lemma 4 A structure is pairwise stable if and only if it is an equal neighbor degree structure

where it holds for each not directly linked pair of agents i, j that

ei ≤ dj or ej ≤ di or (ei = dj + 1 and ej = di + 1) . (2)

Proof. (⇐=) Assume that g is an equal neighbor degree structure where for each not directly

linked pair of agents i, j Condition (2) is satisfied. The payoff of an agent k as expressed in

Eq. (1) reduces to dkV
s/(dkek), so agent k does not want to delete a link, for

dk
V s

dkek

≥ (dk − 1)
V s

(dk − 1) ek

.
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Moreover, no link between any pair of agents i, j will be created if it will make either i or j

strictly worse off or both of them equally well off. Therefore, no link is created if

V s

ei

> di
V s

(di + 1) ei

+
V s

(di + 1) (dj + 1)
or (3)

V s

ej

> dj
V s

(dj + 1) ej

+
V s

(di + 1) (dj + 1)
or (4)

(
V s

ei

= di
V s

(di + 1) ei

+
V s

(di + 1) (dj + 1)
and

V s

ej

= dj
V s

(dj + 1) ej

+
V s

(di + 1) (dj + 1)

)
. (5)

The following illustrates that ei ≤ dj implies (3).

ei ≤ dj =⇒ di(dj + 1) + ei < (di + 1)(dj + 1) =⇒ di (dj + 1) + ei

(di + 1) (dj + 1) ei

<
1

ei

.

Analogously, it can be shown that ej ≤ di implies (4), and (ei = dj + 1) and (ej = di + 1)

implies (5). Therefore, g is pairwise stable.

( =⇒ ) Assume that the structure g is pairwise stable. First, suppose that there is an

agent i for whom it holds that µN
i (g) = 0. Then her payoff would strictly improve from

a link with some other agent k. It is obvious that also k ’s payoff would strictly increase if

µN
k (g) = 0, which contradicts pairwise stability, so consider the case where µN

k (g) ≥ 1. The

payoff of k without this link equals

∑
j∈NN

k (g)

V s

µN
k (g) · µN

j (g)
=

V s

µN
k (g)

 ∑
j∈NN

k (g)

1

µN
j (g)

 ,

whereas by linking with i it would become

∑
j∈NN

k (g)

V s

(µN
k (g) + 1) · µN

j (g)
+

V s

(µN
k (g) + 1) · 1

=
V s

(µN
k (g) + 1)

 ∑
j∈NN

k (g)

1

µN
j (g)

+ 1



≥ V s

µN
k (g)

 ∑
j∈NN

k (g)

1

µN
j (g)

 .
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The inequality follows from the observation that the expression before the inequality equals

V s times the average of the terms 1/µN
j (g) and 1, the expression after the inequality is equal

to V s times the average of the terms 1/µN
j (g), and that 1 ≥ 1/µN

j (g) for all j ∈ NN
j (g). This

also contradicts pairwise stability. It follows that µN
i (g) ≥ 1 for all i ∈ N .

Secondly, suppose that for some i it does not hold that µN
j (g) is constant for all j ∈

NN
i (g). Then there is an agent k ∈ NN

i (g) such that

µN
k (g) >

∑
j∈NN

i (g) µN
j (g)

µN
i (g)

. (6)

The payoff for i is given by

∑
j∈NN

i (g)

V s

µN
i (g) · µN

j (g)
=

V s

µN
i (g)

∑
j∈NN

i (g)

1

µN
j (g)

,

whereas by deleting the link with k, the payoff for i would become

∑
j∈NN

i (g)

V s

(µN
i (g)− 1) · µN

j (g)
− V s

(µN
i (g)− 1) · µN

k (g)
=

V s

(µN
i (g)− 1)

 ∑
j∈NN

i (g)

1

µN
j (g)

− 1

µN
k (g)


>

V s

µN
i (g)

∑
j∈NN

i (g)

1

µN
j (g)

,

where the last inequality follows immediately from the interpretation of the last two terms

as V s times an average of numbers 1/µN
j (g). This contradicts pairwise stability, so µN

j (g) =

µN
j′ (g) for all j, j′ ∈ NN

i (g). We have shown that a pairwise stable structure is an equal

neighbor degree structure.

Finally, suppose that there exists a not directly linked pair i, j for which Condition (2)

is not satisfied, implying

ei ≥ dj + 1 and ej ≥ di + 1 and (ei > dj + 1 or ej > di + 1) . (7)
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Then i and j want to create a link between them, since this would cause the payoff for agent

i to become

di
V s

(di + 1) ei

+
V s

(di + 1) (dj + 1)
≥ di

V s

(di + 1) ei

+
V s

(di + 1) ei

=
V s

ei

,

and for agent j to become

dj
V s

(dj + 1) ej

+
V s

(dj + 1) (di + 1)
≥ dj

V s

(dj + 1) ej

+
V s

(dj + 1) ej

=
V s

ej

,

where according to the last condition in (7) at least one of the ≥ - signs is strict. This

contradicts pairwise stability too. Therefore, g is an equal neighbor degree structure with

ei ≤ dj or ej ≤ di or (ei = dj + 1 and ej = di + 1)

for each not directly linked pair of agents i, j.

Condition 2 in Lemma 4 can be further simplified as is shown in the following proposition.

Proposition 5 A structure is pairwise stable if and only if it is an equal neighbor degree

structure where it holds for each pair of agents k, l in the same component that

|dk − dl| ≤ 1. (8)

Proof. Considering Lemma 4, it is sufficient to show that in an equal neighbor degree

structure Condition 2 holds for each not directly linked pair i, j,

ei ≤ dj or ej ≤ di or (ei = dj + 1 and ej = di + 1) (9)

if and only if Condition (8) is satisfied for each pair k, l in the same component,

|dk − dl| ≤ 1.
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(⇐=) Assume an equal neighbor degree structure where for each pair k, l in the same

component Condition (8) is satisfied. Let i, j be any not directly linked pair. If ei ≤ dj,

Condition (2) is satisfied. If not, then ei > dj and we can derive by applying Condition (8)

twice that

ej ≤ dj + 1 ≤ ei ≤ di + 1.

If ej ≤ di, Condition (2) is satisfied. If not, then ej = di + 1 and Condition (2) is satisfied if

it also holds that ei = dj + 1. Suppose not, then ei ≥ dj + 2 and we can derive by applying

Condition (8) that

ei ≥ dj + 2 ≥ (ej − 1) + 2 = di + 2,

which contradicts Condition (8). Therefore, Condition (2) is satisfied.

( =⇒ ) Assume an equal neighbor degree structure where for each not directly linked pair

i, j Condition (2) is satisfied. Let k, l be any pair in the same component. There exists at

least one path between k and l. Assume that the number of other agents on any of these

paths is odd. Due to the equal neighbor degree structure it holds that

ek = el and dk = dl,

so Condition (8) is satisfied. Assume that the number of other agents on all of these paths is

even. If the component consists of only k and l, then Condition (8) trivially holds. Otherwise,

there either exists an agent m ∈ NN
l (g) , m 6= k, or there exists an agent n ∈ NN

k (g) , n 6= l.

Without loss of generality, assume the former is the case. Since all paths between k and l

have an even number of other agents, it follows that m is not directly linked to k. Due to

the equal neighbor degree structure it holds that

ek = em, dm = dk, em = dl, and el = dm.
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Suppose that Condition (8) is not satisfied, so without loss of generality

dl ≥ dk + 2.

Then it follows that

ek ≥ dm + 2 and em ≥ dk + 2,

which contradicts Condition (2) for k,m. Consequently, Condition (8) is satisfied.

The following examples illustrate the wide range of structures thus proven to be pairwise

stable in the social value case.

Definition 6 (complete structure) A structure g is complete if all agents are connected,

so for all i, j ∈ N it holds that gi,j = 1.

Corollary 7 The complete structure is pairwise stable, for it is an equal neighbor degree

structure where it holds for each pair of agents k, l in the single component that

|dk − dl| = 0.

Definition 8 (wheel structure) A structure g is a wheel if it has exactly n links and there

exists a sequence of different agents k1, ..., kn ∈ N for whom it holds that gk1,k2 = gk2,k3 =

... = gkn−1,kn = gkn,k1 = 1.

Corollary 9 The wheel is pairwise stable, for it is an equal neighbor degree structure where

it holds for each pair of agents k, l in the single component that

|dk − dl| = 0.
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Definition 10 (regular structure) A structure g is regular if it exists of one component

and for each agent i ∈ N it holds that di = d.

Corollary 11 The regular structure is pairwise stable, for it is an equal neighbor degree

structure where it holds for each pair of agents k, l in the single component that

|dk − dl| = 0.

Example 12 A non-regular structure that is pairwise stable is given in Figure 1.
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Figure 1: A non-regular pairwise stable structure.

Example 13 A structure consisting of multiple components that is pairwise stable is given

in Figure 2.

Example 14 A “small world” is a structure with local clusters of highly interlinked agents

together with agents that link the various clusters. As a consequence, although most agents

are not directly connected, every agent is indirectly linked to every other agent by a relatively

small number of steps. A “small world” structure that is pairwise stable is given in Figure 3.
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Figure 2: A multiple-component pairwise stable structure.
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Figure 3: A “small world” pairwise stable structure.
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4 Informational as well as social value

This section now introduces the case in which both social and informational value is derived

from communication. Thus, we can illustrate the impact of value transferability on structure

and welfare along with the effect of specificity. More specifically, we make a distinction be-

tween social and informational value derived from communication, where only informational

value is transferable through the network. For example, social value from communication

between two Saab enthusiasts only exists for the two communication partners, but informa-

tional value (e.g, about a solution to a technical problem) can (partly) exist for others in

the network. After proposing a model for network formation in this setting, the pairwise

stable network structures will be characterized again. We demonstrate that the set of stable

structures is much more limited in range than in the social value setting.

4.1 Model

Consider a community of agents N = {1, . . . , n} , n ≥ 3. A direct link gi,j between agents i

and j in this community (i, j ∈ N ; i 6= j) can be interpreted as a virtual exchange relationship

between i and j which is established if they both wish the link. Virtual exchange relationships

are expressed by undirected links, for any two agents i and j, gi,j = gj,i, and gi,i = 0.

In case of an isolated relationship where communication has only social value, an agent

derives social value V s > 0 from the other agent. In case of an isolated relationship where

communication has only informational value, an agent derives informational value V i > 0

from the other agent. Both agents are assumed to give relative attention to informational

and social value in the proportions α and 1 − α respectively, where α is assumed to be
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constant satisfying 0 < α < 1.2 Maintenance of the relationship between i and j costs time:

both agents are assumed to divide their available sending time as well as their available

receiving time equally among all their relationships, as a result of which the value V i and

V s is divided proportionally. Moreover, informational value is, without any decay except for

this time division, transferred to third parties through indirect links (paths of links), whereas

social value is not transferable. Therefore, the payoff for agent i is given by

Πi (g) = α
∑

j∈Ni(g)

∑
p∈Pi,j(g)

V i

µN
i (g) · µN

j (g) ·
∏

k∈P̆

(µN
k (g))

2

+ (1− α)
∑

j∈NN
i (g)

V s

µN
i (g) · µN

j (g)
, (10)

if µN
i (g) > 0, and Πi (g) = 0 if µN

i (g) = 0, where α is the proportion of communication

through each link in the community that concerns product-, service- or firm-related infor-

mation and 1 − α is the proportion of communication through each link in the community

that concerns social interaction; Ni (g) is the set of agents with whom i has either a direct

or an indirect link; Pi,j (g) is the set of paths between i and j, where a path is defined as a

sequence of consecutive edges without repeated nodes, and P̆ is the set of agents on path p

between i and j excluding i and j themselves.

For the model thus described stable network structures are again predicted to emerge

by using the concept of pairwise stability (Jackson and Wolinsky, 1996), where a network

structure is stable if no single agent can strictly improve her payoff by deleting one of her

direct links and no pair of agents can strictly improve her sum of payoffs while each of the

2The results in the case where the value derived from knowledge exchange are only informational (α = 1)

slightly differ from those in this mixed case (α < 1). Specifically, it appears that structures also containing

one four-agent star component can be pairwise stable.
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two members is at least indifferent by creating a direct link between the two members.

4.2 Results

It can be proven that the pairwise stable structures consist of small star components.

Definition 15 (star) A structure g is a star if it has exactly n − 1 links and there exists

an agent j for whom it holds that gj,i = 1 for all i 6= j. Similarly, a component C is a star if

it has exactly |C| − 1 links and it contains an agent j for whom it holds that gj,i = 1 for any

other i ∈ C. Agent j is called the center agent whereas the other agents are the periphery

agents of the star.

First consider the following lemma in which it is shown that the star structure becomes

unstable when there are more than three agents.

Lemma 16 The star structure is pairwise stable if and only if n = 3.

Proof. From the star structure, it is not beneficial for any of the periphery agents to delete

her link with the center agent as then her payoff will be zero. For the center agent, deleting

a link with any of the periphery agents will provide her with the same payoff. To verify

this result, it is crucial to observe that the center agent is not involved in any indirect links

to other agents in star structures. Periphery agent i will not create a link with another

periphery agent i’ if and only if

αV i

(
1

n− 1
+

(n− 2)

(n− 1)2

)
+ (1− α) V s 1

n− 1
≥

αV i

(
1

2 (n− 1)
+

1

8 (n− 1)
+

1

4
+

1

4 (n− 1)2 +
(n− 3)

2 (n− 1)2 +
(n− 3)

8 (n− 1)2

)
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+ (1− α) V s

(
1

2 (n− 1)
+

1

4

)
⇐⇒ αV i (4− n) + (1− α) V s (3− n) ≥ 0 ⇐⇒ n ≤ 3.

Since we assumed societies to consist of at least three agents, it holds that n = 3.

Now the following proposition can be proven.

Proposition 17 A structure is pairwise stable if and only if it consists of disjoint star

components of two or three agents.

Proof. (⇐=) It is not beneficial for any of the periphery agents in a star component to

delete her single link as then her payoff will be zero. Equivalently, for the center agent in a

three-agent component, deleting a link with any of the two periphery agents is not beneficial

as it will provide her with the same payoff.

With respect to link creation, apart from links between periphery agents from the same

star that are eliminated by Lemma 16, the following cases (a)− (f) exist:

2 3c 3p

2 (pair agent) (a) (b) (c)

3c (center agent of three-agent star) x (d) (e)

3p (periphery agent of three-agent star) x x (f)

For each of these cases, it can be proven by evaluating the payoffs with and without the link

that no link will be created: in case (a), a pair agent would get payoff

αV i

(
1

2
+

1

4
+

1

8

)
+ (1− α) V s

(
1

2
+

1

4

)
≤ αV i + (1− α) V s,

in case (b), the pair agent would get payoff

αV i

(
1

2
+

1

6
+

1

18
+

1

18

)
+ (1− α) V s

(
1

2
+

1

6

)
< αV i + (1− α) V s,
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in case (c), the pair agent would get payoff

αV i

(
1

2
+

1

4
+

1

16
+

1

32

)
+ (1− α) V s

(
1

2
+

1

4

)
< αV i + (1− α) V s,

in case (d), a center agent would get payoff

αV i

(
1

3
+

1

3
+

1

9
+

1

27
+

1

27

)
+ (1− α) V s

(
1

3
+

1

3
+

1

9

)
≤ αV i

(
1

2
+

1

2

)
+ (1− α) V s

(
1

2
+

1

2

)
,

in case (e), the center agent would get payoff

αV i

(
1

3
+

1

3
+

1

6
+

1

24
+

1

48

)
+ (1− α) V s

(
1

3
+

1

3
+

1

6

)
< αV i

(
1

2
+

1

2

)
+ (1− α) V s

(
1

2
+

1

2

)
,

and in case (f), a periphery agent would get payoff

αV i

(
1

4
+

1

4
+

1

8
+

1

16
+

1

32

)
+ (1− α) V s

(
1

4
+

1

4

)
≤ αV i

(
1

2
+

1

4

)
+ (1− α) V s 1

2
.

(=⇒) For this part of the proof, we need some extra notation. The payoff function in

(10) can be rewritten as

Πi (g) =
1

µN
i (g)

∑
j∈NN

i (g)

Ti,j (g) ,

where Ti,j (g) is the total payoff that j transmits to i via her direct link with i. Formally,

Ti,j (g) = α


V i

µN
j (g)

+
∑

j′∈Nj(g)\{i}

∑
p ∈ Pj,j′ (g) :

i /∈ P̆

V i

µN
j′ (g) ·

(
µN

j (g)
)2 · ∏

k∈P̆

(µN
k (g))

2


+ (1− α)

V s

µN
j (g)

.
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Assume that g is a pairwise stable structure. Let i be an agent in g and k ∈ NN
i (g) be

such that

Ti,k (g) = min
j∈NN

i (g)
Ti,j (g) .

Suppose that there exists an agent ` ∈ NN
i (g) for whom it holds that

Ti,` (g) > Ti,k (g) . (11)

Deleting the link between i and k results in structure g′, where it holds that

Ti,j (g′) ≥ Ti,j (g) , ∀j ∈ NN
i (g′) ,

since k, to whom j might be (in)directly linked, has one costly direct link less, so more

informational value might flow from j to i via k. The payoff for i then becomes

Πi (g
′) =

1

µN
i (g)− 1

∑
j∈NN

i (g′)

Ti,j (g′) >
1

µN
i (g)

∑
j∈NN

i (g)

Ti,j (g) = Πi (g) ,

which contradicts pairwise stability of g. It follows that

Ti,j (g) = Ti,j′ (g) , ∀j, j′ ∈ NN
i (g) . (12)

Next, suppose that g contains a cycle, meaning that there exists a sequence of agents

k1, ..., kn ∈ N for whom it holds that gk1,k2 = gk2,k3 = ... = gkn−1,kn = gkn,k1 = 1. Let i be an

agent in this cycle. Deleting the link with one of i’s neighbors in the cycle, say k, results in

g′, where it holds for the other neighbor of i in the cycle, say m, that

Ti,m (g′) > Ti,m (g) ,

since k, to whom m is (in)directly linked, has one costly direct link less, so more informational

value flows from k to i via m. Moreover,

Ti,j (g′) ≥ Ti,j (g) , ∀j ∈ NN
i (g′) .
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The payoff for i then becomes

Πi (g
′) =

1

µN
i (g)− 1

∑
j∈NN

i (g′)

Ti,j (g′) >
1

µN
i (g)− 1

∑
j∈NN

i (g′)

Ti,j (g)

=
1

µN
i (g)

∑
j∈NN

i (g)

Ti,j (g) = Πi (g) ,

where the second equality follows from Eq. (12). This implies that g is not pairwise stable,

leading to a contradiction. We have therefore shown that g does not contain any cycle.

Suppose that g consists of components that are not stars. Since we have already shown

that g contains no cycles, all components of g are trees. In a tree the number of links is one

less than the number of agents. Moreover, in a tree there is a unique path between any two

agents. A tree that is not a star contains an agent, say i, with a neighbor h that only has

i as a neighbor, and, moreover, i is directly linked to an agent j who has another neighbor

different from i. According to Eq. (12) it holds that

Ti,h(g) = Ti,j(g).

Since h has only one neighbor, i, it follows that

Ti,h(g) = αV i + (1− α)V s.

We will now evaluate Ti,j(g) and show it is smaller than Ti,h(g). Think of Nh(g) as a tree

with h as top agent. For players k, k′ ∈ Nh(g), player k′ is a subordinate of k, denoted

k′ ∈ S(k), if k is on the unique path from h to k′. Player k′ is a direct subordinate of k,

denoted k′ ∈ SN(k), if k′ is a subordinate of k and there is a link between k and k′. We now

write

Ti,j(g) = αT i
i,j(g) + (1− α)T s

i,j(g),
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where

T s
i,j(g) =

V s

µN
j (g)

≤ V s

2
, (13)

and

T i
i,j(g) =

V i

µN
j (g)

+
∑

k∈S(j)

V i

µN
k (g)(µN

j (g))2
∏

k′∈p̆j,k
(µN

k′(g))2
,

where pj,k is the unique path between j and k.

Consider k ∈ S(i). We define the informational payoff that k receives from its successors

by

U i
k(g) =

1

µN
k (g)

∑
k′∈SN(k)

T i
k,k′(g),

where T i
k,k′(g) is defined analogously to T i

i,j(g). We obtain a recursive relation by observing

that

T i
k,k′(g) =

V i + U i
k′(g)

µN
k′(g)

.

We will show by induction that

U i
k(g) ≤ V i(µN

k (g)− 1), (14)

from which it follows that

T i
k,k′(g) ≤ V i + V i(µN

k′(g)− 1)

µN
k′(g)

= V i,

and, consequently,

T i
i,j(g) ≤ V i. (15)

Let K0 be the set of agents without subordinates. For m ≥ 1, let Km be the set of

agents with all subordinates in K0 ∪ · · · ∪Km−1. Let m′ be the smallest integer for which
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j ∈ Km′
. First consider an agent k in K0, the set of agents without subordinates. Then

U i
k(g) = 0 = V i(µN

k (g)− 1), so (14) is satisfied.

Suppose that (14) holds for agents in Km, m < m′. Consider an agent k ∈ Km+1.

U i
k(g) =

1

µN
k (g)

∑
k′∈SN(k)

T i
k,k′(g)

≤ 1

µN
k (g)

∑
k′∈SN(k)

(
V i + V i(µN

k′(g)− 1)

µN
k′(g)

)

=
µN

k (g)− 1

µN
k (g)

V i ≤ 1

2
V i(µN

k (g)− 1),

so (14) holds for all k ∈ S(j).

Combining (13) and (15) implies Ti,j(g) < Ti,h(g), a contradiction to Eq. (12), so g

consists of star components only.

Lemma 16 implies that these stars have at most three agents. “Stars” of a single agent

cannot be part of g, for it is always strictly beneficial for this single agent to create a link to

the center agent of another star, whereas this center agent is indifferent or improves if she is

isolated too.

Comparing these results to the social value case, clearly a smaller range of (fragmented)

structures has thus been proven to be pairwise stable in the case where transferable infor-

mational value also plays a role. Specifically, complete, wheel, and regular structures are

never pairwise stable and also the example structures in Figures 1, 2, and 3 are not stable

anymore. This may seem counter-intuitive, since apparently transferability of information

causes structures to become more fragmented and therefore less able to transfer information.

The intuition behind this finding is that the specificity property of communication is now

strong enough to prevent individuals from creating many links, because it is strengthened
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by the transferability of value. The co-author model of Jackson and Wolinsky (1996) also

contained a type of specificity, but since it was not combined with value transferability, the

resulting stable structures were not as fragmented. Similarly, the connections model of Jack-

son and Wolinsky contained value transferability, but since it was not combined with link

specificity, the resulting structures are not fragmented at all.3

5 Welfare

In this section, the structural results from the previous sections are assessed by their impact

on welfare issues. The welfare of a network structure is defined as the sum of payoffs for

all agents. It will turn out that because of link specificity, the efficient structures are very

fragmented, regardless of whether there is transferable informational value. Furthermore,

the from a welfare point of view best and worst pairwise stable network structures are

characterized (Sections 5.1 and 5.2). We also analyze differences in welfare due to variations

in social versus informational orientation in the network (Section 5.3).

Definition 18 (welfare) The welfare provided by structure g is given by

W (g) =
∑
i∈N

Πi (g) .

Definition 19 (efficiency) The structure g is more efficient than the structure g′ if it holds

3Note that this proposition is similar to what Haller & Sarangi (2003) find in their setting with one-sided

link formation, Nash equilibrium and negative externalities on link reliability (p. 27). In contrast, most

studies find less fragmented stable structures, e.g. Goyal & Vega-Redondo (2004) find large star structures

in their setting of structural holes.
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that

W (g) > W (g′) .

5.1 Best pairwise stable structures

In the social value case, there are many pairwise stable structures. These structures are not

at all equivalent from a welfare point of view. The next proposition characterizes the most

efficient structures.

Proposition 20 In the social value case, if n is even, then the most efficient pairwise stable

structures consist of pairs only. If n is odd, then the most efficient pairwise stable structures

consist of one three-agent star and furthermore only pairs.

Proof. Since

Πi(g) =
V s

µN
i (g)

∑
j∈NN

i (g)

1

µN
j (g)

,

the highest possible payoff for player i is obtained if µN
j (g) = 1 for all j ∈ NN

i (g). If i belongs

to a pair, then this condition holds, so a player in a pair obtains the highest payoff possible.

The highest payoff possible is therefore equal to V s. If a structure consists of only pairs, then

all players get the highest payoff possible, and as a consequence, also the welfare provided

by the structure is maximized.

If n is odd, then the structure cannot consist of pairs only. There should be at least one

player, say i, with at least two neighbors. Since pairwise stable structures are equal neighbor

degree structures, all neighbors of neighbors of i have the same degree as i, and therefore

a payoff equal to V s divided by µN
i (g). The sum of the payoffs of all players is therefore

maximized if there is only one player with more than one neighbor, and this player should
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have two neighbors. The structure therefore consists of one three-agent star and furthermore

only pairs.

It is not hard to show that in the social value case, the structures identified in Propo-

sition 20 are the most efficient ones among all structures, pairwise stable or not. This

conclusion does not differ when informational value is included in the analysis. Agents that

are part of a pair obtain the highest payoff possible, αV i + (1 − α)V s, so structures with

many pairs achieve a high degree of efficiency. The next proposition characterizes the most

efficient pairwise stable structures for the case with both social and informational value.

Proposition 21 In the case with both social and informational value (0 < α < 1), if n is

even, then the most efficient pairwise stable structures consist of pairs only. If n is odd, then

the most efficient pairwise stable structures consist of one three-agent star and furthermore

only pairs.

Proof. Proposition 17 implies that all pairwise stable structures consist of disjoint star

components of two or three agents. The payoff for an agent in a pair is

αV i + (1− α) V s,

whereas the average payoff for an agent in a three-agent star is only

5

6
αV i +

2

3
(1− α) V s.

Welfare of the structure is maximized by having only pairs if n is even, and one three-agent

star and furthermore only pairs if n is odd.
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The most efficient pairwise stable structures coincide in the social value case, and the

case with social and informational value. The worst case scenarios, i.e. the least efficient

pairwise stable structures, are considerably different, as is shown in the next subsection.

5.2 Worst pairwise stable structures

In the social value case, many pairwise stable structures exist that are not efficient. The

worst-case scenario is described in the following proposition.

Proposition 22 In the social value case, the complete structure provides the lowest welfare

of all pairwise stable structures.

Proof. Since

Πi(g) =
V s

µN
i (g)

∑
j∈NN

i (g)

1

µN
j (g)

,

and since every player has at least one link in a pairwise stable structure, the lowest payoff

possible for player i is obtained if all players j ∈ NN
i (g) have maximal degree µN

j (g) = n− 1.

It follows that the complete structure has the lowest welfare of all pairwise stable structures.

The worst-case scenarios for the situation with both social and informational value are

described in the following proposition.

Proposition 23 In the case with both social and informational value (0 < α < 1),

(a) if n ∈ {3, 6, 9, . . .}, a structure consisting of only three-agent stars provides lowest

welfare of all pairwise stable structures,
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(b) if n ∈ {7, 10, . . .}, a structure consisting of two pairs and furthermore only three-agent

stars provides lowest welfare of all pairwise stable structures,

(c) if n ∈ {5, 8, 11, . . .}, a structure consisting of one pair and furthermore only three-

agent stars provides lowest welfare of all pairwise stable structures.

Proof. Proposition 17 implies that all pairwise stable structures consist of disjoint star

components of two or three agents. The payoff for an agent in a pair is

αV i + (1− α) V s,

whereas the average payoff for an agent in a three-agent star is only

5

6
αV i +

2

3
(1− α) V s,

which implies (a), (b), and (c).

Note that the worst-case scenarios in the case with social and informational value are not

as bad as the worst-case scenario in the social value case. For any value of n, V i, and V s, the

least efficient pairwise stable structure achieves an efficiency of at least 2/3 times the most

efficient structure. In the social value case, for any value of V s, this ratio can be as bad as

1
n−1

, which tends to zero as n grows large.

5.3 Informational versus social orientation

Apparently, there are welfare differences attached to structural differences in an OCCN and

structural differences arise by its informational versus social orientation (α). Therefore, in

the following propositions different levels of α are compared. A managerial implication is
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that the welfare level provided by an OCCN can be influenced depending on how strongly

α can be influenced. In order to affect α, communication network managers could think

of modifying moderator tasks, entry policy, rules of conduct, and reward systems, hereby

emphasizing social versus informational value.

Proposition 24 The worst-case scenario for social value (α = 0) is worse than a worst-

case scenario when also a marginal amount of transferable informational value is provided

(α ↓ 0).4

Proof. For α = 0, Proposition 22 shows that the complete structure is the worst-case

scenario, which provides a total payoff of

n

n− 1
V s.

For 0 < α < 1, Proposition 23 shows that the total payoff in the worst-case scenario is at

least equal to

n

(
5

6
αV i +

2

3
(1− α)V s

)
→ n

2

3
V s if α ↓ 0.

Since n ≥ 3, it holds that

n
2

3
V s >

n

n− 1
V s.

The question whether more emphasis on social aspects rather than informational aspects

is justified when maximizing welfare, depends on the ratio between V s and V i. We denote

this ratio by x, so V s = xV i.

4Note that results for the informational case (α = 1) can be derived analogously.
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Proposition 25 Consider the case with social and informational value (0 < α < 1). Then

it holds that

(a) the higher α the better the best-case as well as the worst-case scenarios if x < 1, and

(b) the lower α the better the best-case as well as the worst-case scenarios if x > 11
4
.5

Proof. If n is even, Proposition ?? implies that a structure consisting of only pairs is a

best-case scenario, which provides a total payoff of

V in ((1− x) α + x) ,

which is increasing in α if x < 1 and decreasing in α if x > 11
4
. If n is odd, Proposition ??

implies that a structure consisting of one three-agent star and furthermore only pairs is a

best-case scenario, which provides a total payoff of

V i

((
n− 1

2
− (n− 1) x

)
α + (n− 1) x

)
,

which, since n ≥ 3, is increasing in α if x < 1 and decreasing in α if x > 11
4
. If n = 3, 6, 9, ...

Proposition 23 implies that a structure consisting of only three-agent stars is a worst-case

scenario, which provides a total payoff of

V in

((
5

6
− 2

3
x

)
α +

2

3
x

)
,

which is increasing in α if x < 1 and decreasing in α if x > 11
4
. If n = 4, 7, 10, ..., Proposition

23 implies that a structure consisting of two pairs and furthermore only three-agent stars is

a worst-case scenario, which provides a total payoff of

V i

((
5

6
n +

2

3
−
(

2

3
n + 1

1

3

)
x

)
α +

(
2

3
n + 1

1

3

)
x

)
,

5For x between 1 and 1 1
4 , comparative statics depend on the value of n.
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which, since n ≥ 4, is increasing in α if x < 1 and decreasing in α if x > 11
4
. The proof for

n = 5, 8, 11, . . . is similar.

6 Discussion and conclusion

This paper has shown that the structure of bilateral communication links within an OCCN

can be appropriately studied by using a general approach from the game-theoretic literature

of social and economic network formation where individuals trade off the cost of forming and

maintaining links against the potential rewards of doing so, which results in a stable network

structure. A combination of aspects common to OCCNs was incorporated that has not been

investigated in the literature until now. First, the negative externality of communication

specificity was included in the sense that the more direct connections an individual has to

maintain with other individuals, the less she is able to specify her attention per link within

her total time available. Therefore, her additive value for others declines with an increasing

number of links, and she also derives less additive value from others with an increasing

number of links. Second, a distinction was made between the social and informational value

of communication, where informational value is assumed to be transferable via indirect links,

whereas social value is not transferable. Analytical results derived by using the concept

of pairwise stability showed a tendency towards fragmented pairwise stable structures -

consisting of small, disjoint (star) components - which can be attributed to the joint effect

of the two aspects mentioned. Finally, it was shown that only some of the pairwise stable

structures provide optimal welfare (total payoffs), and that the relative focus on informational

versus social value of communication affects this welfare.
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Further research could study the sets of pairwise stable and efficient network structures

with other functional forms to model specificity. In the model of this paper the specificity

property of communication is such that value is divided proportionally by the number of

links that agents face, whereas other forms of specificity might be applicable to other com-

munication forms. For example, agents may have economies of scale in coping with several

links. A functional form which captures this phenomenon would for instance be given by

Πi (g) = α
∑

j∈Ni(g)

∑
p∈Pi,j(g)

V i√
µl

i (g) ·
√

µl
j (g) ·

∏
k∈P̆i,j(p;g)

µl
k (g)

+ (1− α)
∑

j∈N l
i(g)

V s√
µl

i (g) ·
√

µl
j (g)

.

With this payoff function, the three-agent star component is not pairwise stable anymore,

for the two periphery agents both benefit from creating a link between them. Indeed, payoffs

with and without the link are

αV i

(
1

2
+

1

4
+

1

2
+

1

4

)
+ (1− α) V s

(
1

2
+

1

2

)
> αV i

(
1√
2

+
1

2

)
+ (1− α) V s

(
1√
2

)
.

In general, economies of scale in coping with several links will diminish the fragmentation

caused by full specificity.

The stability concept used here was pairwise stability. Alternatively, the model could

be analyzed by applying the Nash concept, which assumes stability against single-agent

deviations of more than one link. If the strategies gi,j indicate with a zero or a one whether

i wants to be directly linked to j or not and again the actual links ḡi,j = min {gi,j, gj,i} are
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only formed if both agents want the link, the payoff function can be written as

Πi (g) = α
∑

j∈Ni(ḡ)

∑
p∈Pi,j(ḡ)

V i

µN
i (ḡ) · µN

j (ḡ) ·
∏

k∈P̆i,j(p;ḡ)

(µN
k (ḡ))

2

+ (1− α)
∑

j∈NN
i (ḡ)

V s

µN
i (ḡ) · µN

j (ḡ)
.

Now ḡ is defined to be a Nash network if it is supported by some g from which no single

agent can change her strategies such that she strictly improves her payoff. If n = 3, all

possible structures except for the complete one are Nash networks. For example, the empty

network is Nash since it is supported by the strategies gi,j = 0 for all i and j, even though

agents would obviously benefit by changing their strategies simultaneously. Further research

could look for a refinement of the Nash concept such that this extreme coordination problem

would not take place.

The outcome variable focused on here was the overall welfare level. It may also be inter-

esting from both a theoretical and a managerial point of view, to study the structural effects

on the actual product-, service-, or firm-related information exchanged, thus disregarding

the value derived from the social aspects of communication.

The informational versus social orientation appeared to be of managerial concern here.

The model can be extended to allow for investigating the effectiveness of other community

design issues, like introducing an expert or a social animator in the OCCN, who possibly

does not even act strategically in the link formation game. Therefore, future research could

introduce valuation heterogeneity in the sense that agents represent different values for their

fellow customers (quality heterogeneity) or have different opinions on the values of their

fellow customers (judgement heterogeneity) (e.g., Haller and Sarangi, 2003).

Thus, we hope that our current work stimulates future research in the exciting area of
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OCCNs and the role of balancing social and informational value in these communication

networks.
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