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Abstract. Two important aspects of network structure are network density and network 
centrality. These two aspects highlight different characteristics of a network. Empirical studies 
tend to find that one or the other is the better explanatory variable for certain aspects of corporate 
behaviour. This note makes a simple and compelling point. There is a hill-shaped relationship 
between network density and network centrality. A purely stochastic process of alliance 
formation will lead to a hill-shaped relationship. A mathematical, functional relationship can be 
shown between network density and the upper bound to network centrality. The combination of 
these outcomes sets lower and upper bounds on network centrality. This approach can offer a 
vantage point for an evolutionary study of network structure.  
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1. Introduction 

Alliances and interlocking directorates are examples of links (or ties) between companies. The 
ensemble of links constitutes a social network of the companies involved. Social networks act as 
conduits of information. The structure of a social network determines who has access to 
information and under which conditions. The network structure describes features of the network 
that are measurable, stable, and that capture the influence of the network on information flows 
and resulting firm behavior. Among several indicators of network structure, two stand out. 
Network density indicates how many of the possible links between firms are actually formed. A 
dense network will tend to quickly spread information. News of unethical or opportunistic 
behavior tends to travel fast in a dense network. A dense network provides a control benefit that 
reduces unethical behavior and increases trust (Brass, Butterfield, & Skaggs, 1998; Hite & 
Hesterly, 2001). A dense network may also reduce the ability of individual network members to 
manipulate and control others (Burt, 1997). Network centrality indicates how much firms differ in 
the extent of being linked to others in the network. Someone with a central and unique position in 
a network tends to benefit from that (Burt, 1997; Kogut, Walker, & Kim, 1995; Powell, Koput, & 
Smith-Doerr, 1996). Network centrality can indicate network power (social capital): a better-
connected firm has an information advantage, which it may use to control other firms that have 
less access to information. Since it leads to information asymmetry, network centrality predicts 
strategic advantages and potential performance benefits for firms that occupy central positions in 
the network. 

Firms create alliances and other links with each other in order to improve their 
information access. They may also be motivated by an attempt to increase their overall network 
position. The creation of new links changes both the density of the network and its centrality. 
Both network density and network centrality are functions of the number and allocation of links 
between nodes in the network. They are thereby interrelated, which accounts for a functional 
relation between them. An important relationship between network density and centrality is that 
the higher the density of a network, the higher network centrality is, up to a point, beyond which 
centrality decreases. When the number of network links increases, some firms initially may 
attract more links than others. As a result of this difference in connectedness, the network 
becomes somewhat centralized. If the number of links increases still further, the less well 
connected firms catch up with the others. As a result, network centrality decreases again. This 
relationship is implicit in the seminal article by Kogut, Walker and Kim (1995). Network 
centrality is zero in both extreme cases where there are no links and where every firm is linked to 
every other one (Kogut et al., 1995). When density lies in between these extreme cases, we can 
expect a positive level of network centrality. This argument leads to the following proposition: 
 
There is a hill-shaped relationship between network density and network centrality, with network 

centrality peaking for intermediate levels of network density.  
 
For given levels of network density, we will develop the lower bound and the upper bound of 
network centrality. The lower bound is based on stochastic effects, resulting from chance 
elements in link formation. This approach is similar to Sutton’s (1997) theory of lower bounds on 
concentration, based on independence effects. While rivals are interdependent as they compete in 
a market, they also face independent growth opportunities. The chance that a firm realizes a 
growth opportunity has an effect on the overall size distribution of firms in a market. This process 
sets a lower bound on concentration. Alliances too express to some extent local and independent 
opportunities. The chance element of realizing this opportunity sets a lower bound on network 
centralization. The upper bound on network centrality depends directly on network density: given 
the number of links, there is a maximum to the centrality that a network can achieve.  
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2. Network structure 

We begin with definitions of network structure. The simplest element of network structure is 
network size, that is, the number of network members, the population N (Burt, 1997). The second 
element of network structure is network density. Call Li the actual number of firms that an 
individual firm i is linked to. In a network of N firms, each firm can form N-1 possible links. 
Network density is the relative measure of which possible links are actually formed (Burt, 1997; 
Kogut et al., 1995). One firm may form N-1 links. For N firms this gives N(N-1) possible links. 
Network density D is the total number of links that have been formed, divided by the total 
number of possible links. This is a number between 0 and 1 defined as follows: 
 

(1) D = 
)1(

1

−
∑ =

NN

L
N

i i
 

 
Network centrality indicates the extent to which some firms are more central in the network than 
others. There are several different statistics for network centrality, largely based on work by 
Linton Freeman (Kogut et al., 1995; Madhavan, Koka, & Prescott, 1998; Powell et al., 1996). The 
most basic indicator is the degree centrality (Bonaccorsi & Giuri, 2001; Powell et al., 1996) . The 
degree centrality of an individual firm indicates how intensely it is connected to the network. It is 

normalized as a number between 0 and 1: Ci = 
1−N

Li . The most central firm is the one with the 

highest degree centrality, Cdmax = Lmax/(N-1). The degree centrality of the network , Cd, is the 
average distance between the degree centrality of the most central firm and every other firm. 
Dividing this expression by N-2 normalizes the degree centrality between 0 and 1: 
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The betweenness centrality indicator also goes back to Linton Freeman (Kogut et al., 1995; 
Madhavan et al., 1998). Betweenness measures for each firm k how many pairs of firms i and j 
firm k connects (i.e., i and j are both connected to k), and how important this connection is for the 
pair i and j (which share this connection is among all direct and indirect contacts between i and j). 
If firm i and j have a direct connection, then a(i,j) = 1, otherwise, a(i,j) = 0. The betweenness 
centrality of an individual firm k to a pair of firms i,j, Ck(i,j), equals 
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. The highest value of this indicator Ck(i,j) is 1, when firm k is the 

one link between firms i and j. Firm k is potentially involved in 1/2(N-1)(N-2) pairs of other 
companies: besides firm k there are N-1 firms i, and these have N-2 contacts j. The overall 

betweenness centrality of firm k, Ck, equals ∑
<−− ji
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. Call Cbmax the highest 

value of network betweenness of any firm in the network. Then betweenness centrality of the 
network is defined as follows: 
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3. Network density and the upper boundary of network centrality 

In this section we demonstrate a link between network density and degree centrality that is 
consistent with the proposition. Since the number of links ÓiLi affects both the network density 
(in equation 1) and network centralization (through ÓiCi in equation 2), there is a relationship 
between the two indicators of network structure. Network centrality at a point in time is both a 
result of how many alliances (links) there are, and how they are distributed over the network 
participants. Combining equations (1) and (2) gives the following relationship between network 
density and network degree centrality: 
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We can prove two aspects of the relationship between D and Cd in equation (4). Firstly, the slopes 
of the relationship between D and Cd at the two extreme points of (0, 0) and (0, 1) are consistent 
with a hill-shaped relationship. The very first link formed in the network has a network density D 
of 2/(N(N-1)), a Cdmax of 1/(N-1), and a network centrality Cd of 1/(N-1). The slope of the incline 
at the origin (0, 0) is thus N/2. The negative slope of the curve at the point (1, 0) can also be 
determined. Imagine that all potential links are formed but one. Hence, the total number of links 
is N(N-1)-2. Network density D is (N(N-1)-2)/(N(N-1)). There will be two firms that are linked to 
all N-2 other firms, but not to each other. They have N-2 links. All other firms have N-1 links. 
Thus, Cdmax is 1. Using equation (4), this gives Cd = 2/((N-1)(N-2)). The negative slope of the 
curve is (0-C)/(1-D), which gives -N/(N-2). This is in absolute terms a smaller slope than at the 
origin (N/2), if N exceeds four. Hence, we know that for a network size of five or larger, the hill-
shaped relationship between network centralization and network density is not symmetrical. 

Secondly, equation (4) implies the following upper bound to degree centrality for a given 
level of network density:  
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The explanation for this upper bound is as follows. Imagine we increase network density one link 
at a time. At each step, we allocate the link to firms such as to maximize network centrality. This 
consists of giving all links to one central firm until it is linked to every other firm. Its partner is 
each time another firm, to keep their number of links low. At a low number of links, the central 
firm is linked to as many partner firms as there are unique links. If there are h unique links, this 
means that Lmax = h, Cdmax = h/(N-1), D = 2h/((N(N-1)), and Cd = h/(N-1). This upward sloping 
curve increases up to the point that the central firm is linked to all other firms: h = N-1, Cdmax = 1, 
D = 2/N, and Cd = 1. Any further increase in the number of links has no effect on Cdmax, while it 
increases D, and thus decreases Cd as a linear function in D.  

We note that the lower bound to network centrality is either zero or ‘near’ zero. By 
rearranging network links, the difference between individual firms’ degree centralities can always 
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be reduced to at least zero (for a symmetric network) and at most 1/(N-1). Insert this in equation 
(2) to see that the lower bound to Cd is at most 1/(N-2).  

Both the theoretical upper bound and the inclines of the actual curve at the two extreme 
points are consistent with a hill-shaped relationship in the proposition. The next section presents a 
simulation model to explore these links between alliance formation and network structure. 
 

4. A stochastic process leads to a hill-shaped relationship 

The formation of links between nodes in a network is partly a chance process. The chance aspect 
of link formation implies that some firms will accumulate more links than others. This accounts 
for some degree of network centrality. We present a simulation that shows that this argument 
offers support for the proposition. 

A frequency distribution based on a chance process may have a specific form called the 
Power Law (Riccaboni & Pammolli, 2002). Applied to firms and their ties, the power law states 
that when nk is the share of firms that have k or more ties, that nk = αk-γ, with α and γ positive 
parameters specific to an industry or country. Riccaboni and Pammolli (2002) show that for 
alliances in the life sciences and in the information and communication technology industries, the 
actual distribution differs somewhat from the one predicted by the power law. The number of 
firms that have k or more ties (alliances), for about ten or more alliances, is actually larger than 
predicted by the power law. Still, the point is made that a chance process devoid of specific 
economic content will already lead to some firms having more alliances than others. A certain 
amount of network centrality emerges due to chance. This implication we intend to show here.  

In a pure chance model there is a given chance á that any link between firms (i, j) is 
formed. For a given alliance formation chance á and population N, the chance P(k) that a firm 
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(nk = αk-γ) isn’t quite good. 1 
The expected degree centrality E(CD) is a function of the expected network density E(D). 

The expected density E(D) equals the given link formation chance α. The chance that all N firms 

have j links or fewer is N
i jLP )( ≤ . The chance that the maximum links in a network is j (in 

between 0 and N-1) is N
i

N
i jLPjLP )1()( −≤−≤ . The expected value of Cdmax is the following 

expression: 
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1 We ran ln(P(L>=k)) = a0+a1ln(k), then regressed ea0+a1ln(k) on P(L>=k) to find an adjusted R2 of 0.436. 
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With equation (4) the expected degree centrality E(Cd) is ( )( ))(
2 max DECE

N

N
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−
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substitute the expression in equation (6) for E(Cdmax) and E(D) for α in the expected degree 
centrality E(Cd), we have a relationship of E(Cd) as a function of E(D) and the population size N. 
Figure 1 plots this function for several values of population size. It shows that the larger the 
population, the lower degree centrality tends to be, given the expected level of density. 
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Figure 1: Expected degree centrality as a function of expected network density 
 
We simulate the model for 20 and for 100 companies. There is a given chance á that any link 
between firms (i, j) is formed. We run 999 simulations, in increasing size of á from 1/1000 to 
999/1000. For each simulation, we calculate the network density and network centrality. This 
gives 999 pairs per simulation. Using these outputs, we run a regression of network centrality on 
network density. Figure 2 plots the degree centrality Cd and the upper bound Cd

up (equation 5) 
against network density, simulated for a population size of 20. For each level of network density 
there is considerable variation in the network degree centrality. It illustrates the hill-shaped 
relationship. 



 6

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

Network density (N = 20)

D
eg

re
e 

ce
nt

ra
lit

y

Degree centrality
Max centrality

 
Figure 2: simulation of the degree centrality and network density (N = 20) 
 
Table 1 shows the results of the regression analysis. We know from section 3 that the hill-shape 
will not be symmetric between (0, 0) and (1, 0). To approximate that, we use a beta-distribution. 
That is, we test for Ci = Dα-1(1-D)β-1 (i = b, d). This gives regressions lnCi = a0 + a1lnD + a2ln(1-
D). We have two runs of simulations, one for N = 20 and one for N = 100. We report the adjusted 
R2 for the regression of Exp(a0 + a1lnD + a2ln(1-D)) on Ci. We also have a simulation where N is 
randomly drawn from the uniform distribution on [5, 100]. This adds the network size 
(population) as another determinant of network centrality.  
 
Table 1: results of the regression analyses 

N = 20 N = 100 N random between 5 and 
100 

 

Degree 
centrality 

Betweenness 
centrality 

Degree 
centrality 

Betweenness 
centrality 

Degree 
centrality 

Betweenness 
centrality 

Constant 
(a0) 

-0.572 a 
(0.025) 

-1.432 
(0.035) 

-1.217 a 
(0.016) 

-4.065 a 
(0.033) 

-0.434 a 
(0.027) 

-1.177 a 
(0.054) 

N - - - - -0.0080 a 
(0.0003) 

-0.0287 a 
(0.0006) 

lnD (a1) 0.531 a 
(0.014) 

0.770 a 
(0.020) 

0.508 a 
(0.008) 

0.281 a 
(0.017) 

0.550 a 
(0.012) 

0.534 a 
(0.024) 

ln(1-D) 
(a2) 

0.773 a 
(0.012) 

1.209 a 
(0.017) 

0.670 a 
(0.008) 

1.030 a 
(0.018) 

0.724 a 
(0.011) 

1.125 a 
(0.023) 

Adj. R2 0.556 0.563 0.728 0.622 0.617 0.502 
Standard error in parentheses. a: p < 0.01. 
 
With a1 > 0 and a2 > 0, the beta distribution gives a hill-shape, which is asymmetric since a1 < a2.

2 
When the population size is variable, the population size has a significant negative impact on both 
                                                 
2 The difference between the a1 and a2 is significant in all cases. When forcing identical parameters by 
taking ln(D)+ln(1-D) as independent variable, the resulting adjusted R2 are less than in table 1, resp., 0.500, 
0.305, 0.696, 0.017, 0.324, and 0.047. 
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degree centrality and betweenness centrality. This supports the intuition from figure 1. The results 
on degree centrality and betweenness centrality differ somewhat in table 1. The correlation 
between both centrality measures is 82.6% for the case where N varies between 5 and 100.  
 
5. Discussion and conclusion 

This note has shown that three different indicators (statistics) of network structure are inherently 
linked. The economic relevance of a network indicator such as, notably, network centrality, raises 
the question what determines how centralized a network is? This paper presents a parsimonious 
explanation of network centrality that uses only data about the network itself. 

The paper identifies two factors that have an influence on network centrality. It shows 
that network size and network density both indicate how centralized the network is. First, the 
network size has an impact. The larger the network size is, the smaller the degree centrality will 
be. The network size reduces the difference between the best-connected member and the 
unconnected population members, relative to the total number of contacts possible. The same 
holds for betweenness centrality. Population size reduces the ability of centrally connected firms 
to connect other, mutually unconnected, firms.  

Secondly, the number of links that have been formed impact on network centrality. An 
increase in network density tends to make some firms better connected than others; hence 
centrality in the network increases. As the network density increases even further, more and more 
firms get better connected, and centrality decreases.  

The argument in this note is contingent on how these indicators are measured. Different 
measurements lead to a differently specified relationship, as table 1 showed. While other 
indicators of network centrality exist, such as closeness centrality, we feel confident that the 
relationships found in this paper express a matter of substance.  

We should be careful in interpreting what the simulation does and does not show. It does 
not argue that more than 50% of the variation in betweenness centrality or degree centrality 
depends on network density and network size (see table 1). These results may not carry over to 
real-life networks, as these may not have the same distribution of network sizes and network 
densities as our simulation. For example, the network densities in the pharmaceutical industry 
decreased from about 1% in the early 1980s to 0.15% in 1997 (Orsenigo, Pammolli, & Riccaboni, 
2001). In a study of the semiconductor industry, the mean network density was a mere 0.003 
(Kogut et al., 1995). In these studies of broadly defined, large -scale industries, network densities 
of the levels included in this study, including ones close to unity, are not relevant. In studies of 
small-scale industrial networks, on the other hand, higher densities such as included in this study 
do occur (Bonaccorsi & Giuri, 2001).  

A strand in the literature on industry studies is the search for trends and stylized facts 
(Sutton, 1997). The literature that applies this approach to industry networks has looked at the 
power law (see references in Riccaboni & Pammolli, 2002). The fit of our results with the power 
law is not quite good. The power law does not appear to be a reasonable benchmark for a pure 
chance process of alliance formation among companies. Nor does it appear to describe real 
industries very well (Riccaboni & Pammolli, 2002) . There does not appear to be a theory behind 
the power law that would hold in the case of network structure. If we apply the kind of reasoning 
that Sutton (1997) uses to link formation and networks, we may be able to come up with stylised 
facts that do fit with insights on networking.  

A direct empirical test of our argument will be a demanding endeavour. It is consistent 
with the hill-shaped relationship, for example, that for data with a small mean level of network 
density of 0.003, Kogut et al. (1995) found that there was a positive correlation between network 
centrality and network density of 0.591. Note that table 1 would predict, for a network density of 
0.003, and N = 20, a slope of 0.695 of betweenness centrality and density.  
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A cross-sectional test of our proposition needs data about different networks. In cross-
sectional terms, our argument is that differences in the size of these networks, and their density, 
have telling implications for the centrality in these networks.  

In an inter-temporal perspective, our approach suggests that during the life cycle of an 
industry, its network centrality will change as the population size of the industry and the density 
of its networks will change. In a dynamic setting, it may be expected that network centrality 
affects firm performance, with feedback effects on network size and network density. This is 
surely a correct argument. This argument can be taken on board, to argue, for example, that 
changes in network size, by processes of entry and exit, and changes of network density, by the 
formation or dissolution of links, affect the centrality of the network.  

The paper shows that a chance element in the alliance formation is enough to create 
network structure. Real-life economic processes will deviate from a pure chance process. In an 
empirical setting, the question becomes whether network centrality exceeds the level that would 
be expected from a chance process. If the formation of networks is subject to virtuous circles, as 
observed for example by Powell, Koput and Smith-Doerr (1996), network centrality will be 
higher than our simulation in this paper would suggest. A chance process may trigger some 
network centrality, which may feed on itself in an evolutionary process, to reach higher levels of 
network centrality. In common with Sutton’s (1997) Bounds approach, the approach in this paper 
identifies lower and upper bounds on network centrality. Our approach can offer a starting point 
for an evolutionary theory of network structure by identifying the process hemmed in by these 
lower and upper bounds on network centrality.  
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