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A recursive core for partition function form games

László Á. Kóczy∗

December 8, 2005

Abstract

We present a new solution to partition function form games that is
novel in at least two ways. Firstly, the solution exploits the consistency
of the partition function form, namely that the response to a deviation
is established as the same solution applied to the residual game, itself
a partition function form game. This consistency allows us to model
residual behaviour in a natural, intuitive way. Secondly, we consider a
pair of solutions as the extrema of an interval for set inclusion. Taking
the whole interval rather than just one of the extremes enables us to
include or exclude outcomes with certainty.
JEL subject classification: C71
Keywords: Core; Externalities; Partition function Games; Optimism;
Pessimism

1 Introduction

Its intuitive, straightforward definition makes the core one of the most popular
solution concepts in coalition formation games. Peleg (1992) claims that a
solution is “acceptable” only if its axiomatisation is similar to that of the core.
The original definition, however, relies on the assumption that the value of
a coalition can be given independently of other coalitions. Game theory is
more and more often used in models where this assumption is simplistic, where
the externalities of coalition formation form a fundamental part of the model.
Examples include trade blocks (Yi, 1996), common pool resource games (Funaki
and Yamato, 1999), and international environmental agreements (Eyckmans and
Tulkens, 2003).

Such effects are captured by the more general partition function form (Thrall
and Lucas, 1963) we consider here, where the value of a coalition depends on
the entire coalition structure or partition. While this game form specifies the
value of a coalition given all possible partitions of the remaining players it does
not specify and it is not clear which of those partitions would emerge should
this coalition form.

∗University of Maastricht, Email: l.koczy@algec.unimaas.nl
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In the case of the core the stability of imputations is tested against possible
coalitional deviations. In a partition function form game the value of this de-
viation depends on the potential reaction of the remaining or residual players.
Different assumptions about this reaction can make the deviation profitable or
not; accurate modelling is essential to understand deviation and hence the core.
The present paper develops a model that unifies a number of existing theories.

When von Neumann and Morgenstern (1944) defined the characteristic func-
tion form they used the minimax rule. This definition equips deviators with
excessive pessimism: they expect that residual players hurt them to the max-
imum possible extent. While this is perfectly appropriate to assume in the
constant-sum case, generally they might hurt their own interests. Rosenthal
(1971) argues that any reaction should be reasonable and already such a mild
restriction has a substantial effect on the core (Richter, 1974). Using pessimism
(or optimisim for that matter) to evaluate the residual reaction is still common
practice. As a major step Chander and Tulkens (1997) introduced a model that
considers individual best responses of the residual players. While per definition
the reaction of the residual players is “best” it is restricted in the sense that
no coalitions are allowed to form and the existing ones must break apart. As
externalities are often either uniformly positive or negative reducing this model
respectively to the pessimistic or optimistic case. Our model generalises this
approach to allow coalitions to form.

A similar enterprise was –independently– undertaken by Huang and Sjöst-
röm (2003). Their r-core allows also arbitrary reactions, but as an intermediate
step it uses a characteristic function that is, for larger games especially, seldom
defined. Our approach is new in the sense that we do not attempt to generate
a characteristic function, but to define the core directly to the game.

We must also mention the equilibrium binding agreements of Ray and Vohra
(1997), a farsighted concept, where only credible, refining deviations are per-
mitted. Our concept allows for arbitrary deviations and includes some limited
farsighted flavour while being a fundamentally myopic concept; it offers the
same rational behaviour to residuals as to deviators.

The structure of the paper is as follows. After the fundamentals we present
the motivation and the key definitions. Then we show some properties and give
comparisons to existing concepts.

2 Preliminaries

Let N be a finite set of players. Subsets of N are called coalitions. A partition P
of N is a breaking up of N into disjoint coalitions. Π(S) is the set of partitions
of any set S of the players with S denoting a typical element. A characteristic
function v : 2N −→ R assigns a value to each coalition. A partition function
V : Π −→ (2N → R) assigns a characteristic function to each partition. In
essence V : Π × 2N −→ R and the payoff of coalition C in partition P is
denoted V (C,P).1 A partition function form game is a pair (N,V ). Payoffs are

1The assumption V (C,P) = 0 if C /∈ P is usual, though not necessary.

2



transferable.
In a partition function form game strategies correspond to coalitions and

the details of the bargaining to form coalitions is hidden. An outcome is then
an imputation-partition pair (x,P), with x in RN and P in Π such that the
vector x = (x1, x2, . . . , xn) satisfies participation rationality ∀i ∈ N : xi ≥ 0 and
feasibility and efficiency ∀C ∈ P : x(C) ≡

∑
C xi = v(C). The first condition

expresses that a player should be interested in taking part in the game, the
second that a coalition can only share the payoff available to it (x(C) ≤ v(C)),
but it will do this without waste (x(C) ≥ v(C)). The set of outcomes of game
(N,V ) is denoted Ω(N,V ).

Outcome (x,P) dominates (y,Q) if there exists a coalition C in P such
that x >C y.2 Then we say that (y,Q) is dominated by (x,P) via C. Also
C dominates (y,Q) if such an (x,P) ∈ Ω(N,V ) exists. Outcome (y,Q) is
dominated if some coalition C dominates it. The coalition structure core or
simply core collects undominated outcomes.

We also say that coalition C deviates if its members reject the current out-
come and form coalition C. A deviation is profitable if the abandoned partition
is dominated via the coalition. We adopt the terminology of calling this set
the deviating coalition, the players in it the deviators, and the remaining set of
players the residuals, who then form the residual set.

2.1 Existing models

In the following we return in more detail to the approaches already mentioned
in the introduction.

2.1.1 Optimism/pessimism

Pessimism corresponds to the maximin-minimax principle of von Neumann and
Morgenstern (1944), although their equivalence is not true in general. Fol-
lowing Aumann and Peleg (1960) we denote the characteristic functions and
cores derived from these approaches as α- and β- characteristic function and
core. Here it is the deviating coalition who makes the first move and there-
fore it is natural to focus on the α-approach. Further variants are discussed
by Cornet (1998). Shenoy (1979) assumes that residual players maximise the
payoff of the deviating players. We refer to this as the ω-approach to stress
being at the other extreme. Consider an outcome (x,P). Coalition C α-
dominates (x,P) if x(C) ≤ minR∈Π(N\C) {V (C, {C} ∪ R)}. It ω-dominates
(x,P) if x(C) ≤ maxR∈Π(N\C) {V (C, {C} ∪ R)}.

The α-core (ω-core) collects α-(ω-)undominated outcomes. It is denoted by
Cα(N,V ) and Cω(N,V ), respectively.

The following proposition requires no proof:

Proposition 1. The α-core contains the ω-core: Cω(N,V ) ⊆ Cα(N,V ).

2We write x > y if xi ≥ yi for all i ∈ N and there exists i ∈ N such that xi > yi. We
write x >C y if xi ≥ yi for all i ∈ C and there exists i ∈ C such that xi > yi.
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Our solution concept refines this approach and uses the extra “information”,
namely that the residual players are also rational, and that based on this knowl-
edge some behaviours may be expected from them others not. This enables us
to predict the core much better.

2.1.2 Structural approaches

Hart and Kurz (1983) proposed two approaches where the residual partition is
explicitly determined. In the γ model, coalitions which are left by some member,
dissolve. In the δ model they stay together and form smaller coalitions. These
are used with slight modifications as follows.

Chander and Tulkens (1997) study the (naive) pessimistic and optimistic
approaches and find that it is not reasonable to assume that the residual players
act to hurt or help deviating players and not to maximise their own payoffs.
Therefore they introduce the γ-approach that is individually reasonable in the
sense that residual players choose their strategies according to a Nash behaviour,
essentially breaking up to singletons. Let S(C) denote the partition consisting
of C and N \ C partitioned into singletons.

Consider an outcome (x,P). Coalition C γ-dominates (x,P) if x(C) ≤
V (C,S(C)). The γ-core, denoted Cγ(N,V ), collects γ-undominated outcomes.

In a partition function form game where strategies correspond to coalitions
the γ-approach leaves the residual players defenseless.

The δ- or status quo approach first appeared in studies of cartel games
(d’Aspremont et al., 1983). Here deviators assume that residuals do not re-
act, completely overlooking the externalities arising from a deviation. For
partition P = {P1, P2, . . . , Pk} and coalition C let P−C denote the partition
{P1 \ C,P2 \ C, . . . , Pk \ C}.

Consider an outcome (x,P). Coalition C δ-dominates (x,P) if x(C) ≤
V (C, {C} ∪ P−C). The δ-core, denoted by Cδ(N,V ) collects δ-undominated
outcomes.

The core Cδ(N,V ) is very similar to the set of Strong Nash equilibria
(Aumann, 1959), but in the Strong Nash setting nonprofitable deviations are
also possible and so the set of Strong Nash equilibria may not contain payoff-
equivalent outcomes.

The δ- is the opposite of the γ-approach in the sense that there the smallest
number of ‘links’ break up between players. Our solution generalises these
two approaches: As special cases residual players do not react or break up to
singletons, but they can form any other partition as well if they find that more
attractive.

2.1.3 A recursive theory

Huang and Sjöström (2003) introduce the r-theory, a recursive approach that
translates a normal form game into the characteristic function form and solves it
using the usual techniques for characteristic function games. The normal form
game in question has two stages: first a partition is formed cooperatively and we
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look for the Nash equilibria of the noncooperative play among these coalitions.
Our interest lies in the first, cooperative stage. The main difference between
this and the previous approaches is that it uses the “same concept” to evaluate
the residual game as is used in the original game. While this start is rather
attractive and intuitive the actual application of this “same concept” is rather
indirect and while when one uses familiar tools one expects an easy journey the
definition is actually rather technical so that we prefer not to reproduce it here.

Apart from the complexity of the presentation, the r-theory has a number
of limitations. Firstly, the characteristic function used to define the core is
seldom defined. Its existence requires all residual cores to be non-empty - a
condition which becomes very demanding as the number of players increases.
The authors also acknowledge a problem inherent to the normal form they work
with: superadditivity. A translation of the r-theory to partition function form
games can solve this problem. As soon as we allow for subadditivity in a game
we can give characteristic function games with a nonempty core, where the
appropriately defined r-core is undefined. Hence the r-core is not an extension
of the core of a characteristic function form game.

Example 2. Consider a 4-player game with a characteristic function that gives
a payoff of 2 for each singleton, 6 for each pair and 0 for every other coalition.
The corresponding partition function form game is rather easy to define as the
partition function assigns the same characteristic function to each partition.
The vector of coalitional payoffs for partition {1, 2, 34} is then (2, 2, 6). Huang
and Sjöström (2003) define a characteristic function by checking how much a
coalition would obtain by deviating. Suppose player 1 deviates (as a singleton).
It is easy to see that the remaining players will not settle to any outcome as a
triple will not form and a singleton can always convince one of the other players
to form a pair. It is clear without a formal argument that the core is empty,
making the characteristic function undefined despite the fact that player 1 will
obtain a payoff of 1 irrespective of the partition players 2,3 and 4 form.

Finally, authors take the pessimistic approach: while this is not pessimism
in the naive α-sense it may produce a core too large.

3 Our model

3.1 Motivation for a new concept

The listed core concepts for partition-function games (or in general for games
with externalities) exhibit certain shortcomings. A new concept should ideally
answer all these criticisms. In the following we elaborate these criticisms, some
of which have already been mentioned in the introduction

3.1.1 Rational residual reaction

Unless explicitly mentioned otherwise game theory deals with rational, that is,
payoff-maximising players. Surprisingly the widely used approach of pessimism
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(or conservativism) as well as optimism assumes that the residual players look
at the deviators’ payoff when choosing their course of action rather than max-
imising their own as rational players ought to do. “Why should we expect that
residual players act in such a bloodthirsty fashion as to hurt deviators to the
maximum extent?” Ray and Vohra (1997) Why should residual players ever
choose (or be assumed to choose) an ‘inferior’ strategy? (What is inferior is to
be made precise soon.) In sum we can state the following property:

Property 1. Residuals do not (are not assumed to) choose an inferior strategy.

While both the optimistic and the pessimistic approaches fail the γ- and r-
core satisfy this property. In the case of the δ-core we cannot really talk about
a reaction.

3.1.2 Consistent choice of equilibria

If residual players discard some partitions by the very same act they embrace
others. Their selection should be consistent with their selection in the original
game.

Property 2. Residuals (are assumed to) exhibit “consistence” in their choice of
partitions. In particular, if their reaction can be modelled by a game similar to
the initial game, they select outcomes that belong to the core of this residual
game.

There is only a point in discussing approaches that have passed the previous
test, and of these only the r-core exhibits this property.

3.1.3 Well-defined

The solution of a game should be unambigous and should always exist.

Property 3. The solution is well-defined.

The r-core is only defined for games with non-empty residual cores. (In
Example 2 we have seen a game with an empty residual core, where the r-
core was undefined.) For other models existence is guaranteed, but of course
existence does not mean non-emptiness, which we do not require here.

3.1.4 Efficient

The solution should not contain outcomes such that another outcome is pre-
ferred by all players. In other words: a Pareto improvement should always be
possible to make.

Property 4. The solution contains only efficient outcomes.

If we want to meet this condition we must allow deviations by multiple coali-
tions: in essence deviations that end up with the deviating coalition splitting
up. Consequently, pure characteristic function approaches fail this property.

In the following we present the new core concept and show that it satisfies
these properties.
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3.1.5 Generalisation of the core

If we want to call our concept “core” then, when applied to a game with a
well-defined characteristic function form, it should coincide with the (coalition
structure) core.

Property 5. When applied to a game that has a well-defined characteristic func-
tion form, the solution should return the solution as defined by the original
concept for characteristic function form games.

All listed solutions satisfy this property except the r-core, which may be
undefined for such games, as in Example 2.

3.1.6 Robust to behavioural assumptions

In general these conditions do not uniquely determine the residual behaviour.
The remaining alternatives still leave room for making an optimistic or pes-
simistic choice as well as something in between. For instance, Huang and Sjöst-
röm (2003), as many others, choose pessimism. This choice will typically affect
the solution. Pessimism results in a larger, optimism in a smaller solution
(Theorem 11). Mathematically the chance that the deviators behaviour can
be described by perfect optimism or pessimism is very small. The “empirical
solution” would therefore lie somewhere in between. By choosing optimism we
would not get some of these solutions, but with the pessimistic approach we
would get too many. A situation similar to hypothesis testing in statistics and
to making type I or type II errors. It is, of course the best to take the two
approaches together to see which outcomes are solutions for sure and which are
not for sure. 3

3.2 Recursive cores

Before we proceed to the formal definitions we provide the intuition for the
concept.

When players deviate they break away from the rest and start to live their
own life. First of all they form a partition. The particular partition formed
influences the payoff of residual players and this triggers a reaction: the residual
players find themselves in a game that is embedded in the original game, but
with part of the partition (the deviating players’ partition) already fixed. One
of the attractive features of the partition function form is its consistency: this
embedded game is also a partition function game and hence we can apply the
same solution to this game as to the original one. Notably, this game is smaller,
which fact hints the possibility of an inductive definition.

3Our choice of using the word pessimistic instead of conservativie is not per chance. A
player is conservative if it is not willing to take chances, if it considers the worst cases. Often
it seems more appropriate to “be conservative” in this sense and use conservative players.
Yet, if we are looking for the stable outcomes in an international environmental agreement,
the conservative approach is to use optimistic players to get a small, hopefully nonempty core
to see which are the agreements (if any) that are “very” stable. Using pessimistic players can
give completely the wrong answer, although nonemptiness is more likely.
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What is a “solution?” Irrespective of why do we pick a particular solution,
if we did, we assume that in “equilibrium play” the outcomes collected in that
solution will emerge. The core has the unattractive property that it can be
empty. When this is the case, the core does not define such a preferred set,
instead, based on our solution, any outcome might emerge equally likely. In
particular, if a residual core is empty, the corresponding deviating coalition will
still have an idea about its best and worst case scenarios, except that these will
be rather extreme and might offer little support in its decision.

Before moving on to the main definitions we formalise the treatment of
residual players: After a deviation the residual players play a game embedded
in the initial one. The set of players is given; the residual partition function
has to be consistent with the partition function of the initial game, and, at the
same time, take account of the deviation. Then the residual game is defined as
follows:

Definition 3 (Residual Game). Let (N,V ) be a game. Let S be the set of devi-
ators and S their partition. Then R ≡ N \S denotes the set of residual players.
Given the deviation S the residual game (R, VS) is the partition function form
game over the player set R and with the partition function

VS : Π(R)× 2R −→ R

VS : R, C 7−→ V (C,R∪ S)

Once the residual game is defined it can be solved without reference to the
way it was created or to the fact that it is residual. As a very trivial, but crucial
property this game has fewer players than the initial one.

Now we can move on to our main definition.
Once we know this preferred set of the residual players (the core or if the

core is empty, the set of all outcomes), we can give the post-deviation payoffs for
the deviating coalitions. This payoff is nothing but the payoff of the deviating
coalitions in the partition completed with the preferred residual partitions. Then
a deviation is only profitable if it is profitable for all deviating coalitions.

In general the preferred set contains outcomes with different partitions, thus
giving different values for the coalitions, some of which may be attractive, some
may be very bad for the deviating coalitions. It is up to the deviating players
to decide which ones to take into account. We consider both an optimistic and
a pessimistic scenario.

The definition of the core is inductive and is done if four steps. For a trivial
single-player game we can give the core explicitly. Given the definition for all
at most k− 1 player games we can give our definition of dominance for k player
games. Once dominance is defined, we may define the core.

Definition 4. Pessimistic recursive core. The definition consists of four steps.

1. Trivial game. Let (N,V ) be a game. The core of a game with N = {1} is
the only outcome with the trivial partition: C−({1} , V ) =

{(
V

(
1, (1)

)
, (1)

)}
.
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2. Inductive assumption. Given the definition of the core C−(R, V ) for every
game with at most k − 1 players we can define dominance for a game
of k players. Let A−(R, V ) denote the pessimistic assumption about the
game (R, V ). If C−(R, V ) 6= ∅ then A−(R, V ) = C−(R, V ), otherwise
A−(R, V ) = Ω(R, V ).

3. Dominance. The outcome (x,P) is dominated via the coalition S forming
partition S if for all assumptions (yN\S ,R) ∈ A−(N \ S, VS) there exists
an outcome ((yS , yN\S),S ∪R) ∈ Ω(N,V ) such that y >S x.
The outcome (x,P) is dominated if it is dominated via a coalition.

4. Core. The core of a game of k players is the set of undominated outcomes
and we denote it by C−(N,V ).

Optimistic recursive core. The definition consists of four steps.

1. Trivial game. Let (N,V ) be a game. The core of a game with N = {1} is
the only outcome with the trivial partition: C+({1} , V ) =

{(
V

(
1, (1)

)
, (1)

)}
.

2. Inductive assumption. Given the definition of the core C+(R, V ) for every
game with at most k + 1 players we can define dominance for a game
of k players. Let A+(R, V ) denote the optimistic assumption about the
game (R, V ). If C+(R, V ) 6= ∅ then A+(R, V ) = C+(R, V ), otherwise
A+(R, V ) = Ω(R, V ).

3. Dominance. The outcome (x,P) is dominated via the coalition S forming
partition S if there exists an assumption (yN\S ,R) ∈ A+(N \S, VS) and
an outcome ((yS , yN\S),S ∪R) such that y >S x.
The outcome (x,P) is dominated if it is dominated via a coalition.

4. Core. The core of a game of k players is the set of undominated outcomes
and we denote it by C+(N,V ).

The difference between the optimistic and pessimistic cores is solely in the
definition of domination: while an optimistic player deviates if the deviation may
represent an improvement, a pessimistic player deviates only if an improvement
is inevitable.

In the definition of deviation we discuss two cases. While our contribution is
to look at the residual core outcomes a residual core may be empty. We can see
this by considering a game with an empty core, and from this game we can build
up a larger game containing this as a residual game. Considering this option
makes our concept generally applicable. We return to this issue in Section 2.1.3.

Having nonempty residual cores may still lead to very different optimistic
and pessimistic cores. Indeed, unlike in a characteristic function form game, here
the core may contain, in their effect, substantially different outcomes. Already
having a 0 residual game (a game where all payoffs are 0) the residual core
contains all residual outcomes. While the residual players are indifferent among
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these the deviating players may experience very different payoffs depending
on the partition of the chosen residual core outcome. Moreover we have the
following proposition.

Proposition 5. In partition function games we may have core outcomes with
different partitions that are not only not payoff equivalent, but even where the
total payoffs are different.

Proof. Consider the following 5-player game:

V (123, 4, 5) = (10, 1, 1)
V (123, 45) = (0, 5)

V (12, 3, 4, 5) = (0, 1, 0, 0)
V (12, 3, 45) = (0, 1, 0)

V (1, 2, 3, 45) = (0, 0, 1, 0)
V (12, 345) = (5, 0)

V (1, 2, 345) = (1, 1, 8)

In order to simplify our notation we use some abbreviations. Instead of writ-
ing out the coalitional value for each coalition in each partition, we write the
coalitional values for a partition as a vector. Payoffs not indicated here are all
zero. When we look at possible deviations it is clear that only deviations by
collections of coalitions that form a subset of one of the above partitions may
lead to non-zero payoffs. After an inspection of the game we find that deviations
by (123), (12), (45) and (345) all result in a zero-payoff and that deviations by
(12,3) and (3,45) obtain (0,1) and (1,0) respectively. Moreover the outcomes
with (12,3,4,5), (12,3,45) and (1,2,3,45) are not undominated. Thus the core
outcomes have either (123,4,5) or (1,2,345) as partitions. The total payoff is 12
and 10 respectively. This proves our proposition. Note also that this game is
not a unique example, we have relied on the actual numbers very little, and for
larger games it becomes even easier to devise such examples.

What remains is to see to what extent are the two approaches different.

3.3 Properties

First we verify that the optimistic/pessimistic recursive cores satisfy the prop-
erties listed in Section 3.1.

Proposition 6. Residuals do not choose inferior strategies.

Firstly we must clarify the term “inferior.” While it is clear that the term
captures the fact that something gives a lower payoff than some alternatives we
must stress that these alternatives must be attainable. In particular a player
or coalition cannot have only inferior strategies. In this context it is natural to
link inferior to dominated. Then the recursive cores meet this requirement in
the sense that, if possible, dominated residual outcomes are discarded.

10



Proposition 7. The solution is consistent with itself.

Once again there is no need for a formal proof: By construction the solution
of the residual game is established just as the solution of the original game.

Proposition 8. The solution is well defined.

The property holds for trivial games and then an inductive argument shows
that both in the optimistic and the pessimistic cases the profitability of devia-
tions is well defined, hence undominated outcomes and the core are well defined.
Of course the solution can be empty, just as it is required by Property 5.

Proposition 9. The solution is efficient.

Proof. Suppose not: there exists an outcome (x,P) belonging to a recursive
core, such that there is another outcome (y,Q) with y > x. Then consider
a deviation by coalition N forming partition Q. The deviation is profitable
making (x,P a dominated outcome. Hence it cannot belong to the core. Note
that here there was no need to make a reference to optimism or pessimism.

Proposition 10. The optimistic and pessimistic cores are generalisations of
the (coalition structure) core.

Proof. Property 5 refers to games with well-defined characteristic functions.
The characteristic function is well-defined if a coalition’s payoff is independent
of the strategies, in this case: of the partition of the remaining players. If this is
the case, the assumed payoff of a deviating coalition is the same in the optimistic
and the pessimistic core and also coincides with the payoffs in the α-, ω-, γ- and
δ- approaches as well as the payoff the coalition would get in the characteristic
function form game. Hence the corresponding cores also coincide.

Finally we turn to the issue of behavioural assumptions. For the reasons
explained in Section 3.1.6 we prefer to see the two cores as the two extremes
of the same solution. In order to be able to refer to the recursive core as an
interval for inclusion, we need to prove the following theorem:

Theorem 11. Given a game (N,V ) the pessimistic core contains the optimistic
core, C+(N,V ) ⊆ C−(N,V ).

Proof. There are two key ideas in the proof. Firstly, if deviating players are
less hesitant (optimistic) they deviate even if they would not otherwise (being
pessimistic) making the core smaller. Secondly, expanding the set of options
makes hesitant players even more hesitant.

The proof is by induction on the player set N .
For a single-player game C+({1} , V ) = C−({1} , V ) and so the result holds.
Assuming that C+(Nk−1, V ) ⊆ C−(Nk−1, V ) for all games where |Nk−1| ≤

k− 1, we consider a deviation S from an outcome (x,P) in a game of k players.
As the deviation includes at least one player, the residual game consists of at
most k−1 players. Since the residual game is a game in partition function form
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with a player set R = N \
⋃

S∈S S, and a partition function VS , and |R| ≤ k−1,
we have C+(R, VS) ⊆ C−(R, VS).

We discuss four cases, depending on the emptiness of the residual cores.
In each of these cases we consider residual outcomes that make the deviation
profitable or not, and show that profitability in the pessimistic case implies
profitability in the optimistic case.

1. Both residual cores are non-empty
Deviating players form their expectations with respect to the residual cores
C+(R, VS) and C−(R, VS). If under pessimistic assumptions the deviation is
profitable, it is profitable for all outcomes in the set C−(R, VS). By our as-
sumption C+(R, VS) ⊆ C−(R, VS) and is non-empty, all outcomes in C+(R, VS)
make the deviation profitable, so it is profitable in the best case as well. On the
other hand profitability in the best case has no implications on the worst case.

2. Both residual cores are empty
Deviating players form their expectations with respect to the entire residual
outcome set Ω(R, VS). If in the worst case the deviation is profitable, it is
profitable for all residual outcomes, and therefore in the best case as well. Again,
profitability in the best case has no implication on the worst case.

3. The optimistic residual core is empty, the pessimistic is non-empty
Deviating players form their expectations with respect to the entire residual
outcome set Ω(R, VS) in the optimistic approach and C−(R, VS) in the pes-
simistic approach. If in the worst case the deviation is profitable, it is profitable
in the entire set C−(R, VS). Since C−(R, VS) is contained in Ω(R, VS), the set
Ω(R, VS) contains residual behaviours for which the deviation is profitable, and
hence it is profitable in the best case.

4. The optimistic residual core is non-empty, the pessimistic is empty
Formally we have ∅ = C−(R, VS)  C+(R, VS), which contradicts to our induc-
tive assumption, and hence this case does not arise.

If a deviation is profitable in the pessimistic case, it is profitable in the
optimistic one as well. Hence if an outcome does not belong to the pessimistic
core C−(N,V ) it does not belong to the optimistic core C+(N,V ) either.

Corollary 12.
∅ ⊆ C+(N,V ) ⊆ C−(N,V ) ⊆ Ω(N,V ),

and we can talk about intervals (where size is defined for inclusion).

In the following we further reduce the interval in which the recursive core
(also an interval) is confined to.

Lemma 13. The optimistic core contains the ω-core, that is, Cω(N,V ) ⊆
C+(N,V ). The pessimistic core is contained in the α-core, that is, C−(N,V ) ⊆
Cα(N,V ).

We prove the part for the optimistic approaches; the corresponding result
for the pessimistic approaches is proven in a like manner.
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Proof. In the given game, consider an outcome and a deviation from it. We
want to check the profitability of this deviation. The two concepts, the ω and
the optimistic approach look at two different residual outcome sets. The ω-
approach considers the entire residual outcome set Ω(R, VS), our optimistic
approach considers C+(R, VS) only, provided this set is not empty.

If the residual core is empty the two approaches both look at Ω(R, VS) and
expect the same post-deviation payoff. In particular, if the deviation is profitable
in the optimistic approach it is also profitable for the ω-approach.

Now we look at the case when the residual core is not empty. Since C+(R, VS)
is contained in Ω(R, VS) the best case in the ω approach is at least as good as
in our optimistic approach looking only at residual core outcomes. Therefore if
the deviation is profitable in the optimistic approach, it is also profitable in our
ω-approach.

If an outcome is not in the optimistic core C+(N,V ), there exists a profitable
deviation from it in the optimistic approach. As the same deviation is also
profitable in the ω-approach the outcome is neither in the Cω(N,V ).

Corollary 14. The proposed new concepts, as a pair are a refinement of the
α-core, ω-core pair. Cω(N,V ) ⊆ C+(N,V ) ⊆ C−(N,V ) ⊆ Cα(N,V ).

This corollary expresses that the recursive core is less sensitive to behavioural
assumptions than the α-/ω-pair.

Corollary 15.

∅ ⊆ Cω(N,V ) ⊆ C+(N,V ) ⊆ C−(N,V ) ⊆ Cα(N,V ) ⊆ Ω(N,V ), (1)

and we can talk about intervals (where size is defined for inclusion).

Can we further reduce the “distance” of the optimistic and pessimistic cores?
There is no general answer to this question. Their distance can be maximal (the
optimistic core is empty, the pessimistic contains all outcomes), and they might
also coincide. We think that the latter happens more often, and that the interval
is, in general, rather small. While no formal proof exists, we can provide some
evidence.

Our main argument is that the inductive definition diminishes differences
before going to higher levels. Even large differences of the optimistic and pes-
simistic approaches in one of the residual cores may or may not lead to differ-
ences at the top level. Differences disappear due to the following:

• As long as the optimistic and pessimistic expectations are not too different
the resulting cores will be the same.

• Should the two cores be non-empty even if they are different in most of
the cases they support only one partition. Then for deviations in a larger
game the optimistic and pessimistic scenarios coincide.
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• If the partition function satisfies some regularity, the externalities exerted
by “similar” residual outcomes will also be similar. Since the core collects
outcomes that are stable against the same possible deviations, and hence
the individual payoffs can vary only to a limited extent, the deviating
payoffs will not be very different when two residual core outcomes are
considered even if they support different partitions. In other words, in such
games even if the core supports multiple partitions there are no substantial
differences between the outcomes realising them.

Where things can go wrong are residual cores that are empty. Here the
residual behaviour is unpredictable and optimistic and pessimistic expectations
can indeed be rather different. We must note however that it is not expected
that the solution will work here the best, but even here thanks to the diminishing
effect during the induction we may expect to get far better results than with
other concepts that are explained in Section 2.1.

4 Summary

We present a new solution to partition function form games that is novel in at
least two ways. Firstly the solution exploits the consistency of the partition
function form, namely that a residual game is also a partition function form
game. This consistency allows us to model residual behaviour in a natural,
intuitive way. Secondly, we consider a pair of solutions as the extrema of an
interval for set inclusion. Taking the whole interval rather than just one of the
extremes enables us to include or exclude some outcomes with certainty.

The solution captures some of the best elements of the existing concepts.
The recursive core, although uses optimism/pessimism, it is less sensitive to
such behavioural assumptions than the classical α-/ω-approaches. It allows for
any residual partition, and as special cases it covers the γ- and δ-approaches.
It implements a similar logic as the r-core, but in our view, in a more natural
environment and making sure that the solution is defined for all games.

A few questions are left open. Firstly, in case a residual core is empty it
is somewhat naive to take the entire residual set: some outcomes can often be
discarded with certainty. We may, for instance, only consider Pareto-efficient
outcomes. One possibility is to consider a dynamic version of the game: start-
ing from the status quo in the residual game, residual players start to make
deviations and only outcomes emerging in these negotiations are considered.
In characteristic function form games such a coalitional bargaining process will
reach the core if it is nonempty (Kóczy and Lauwers, 2004a), moreover this
dynamic bargaining process defines a non-empty core extension (Kóczy and
Lauwers, 2004b) allowing us to treat the empty/nonempty core cases together.
Unfortunately we suspect a similar result does not hold when externalities are
introduced and hence the corresponding solution concept would not be attrac-
tive for partition function form games.
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Kóczy LÁ, Lauwers L (2004b) The minimal dominant set is a non-empty core-
extension. Research Memorandum RM/04/019, METEOR, Maastricht Uni-
versity, Maastricht

Peleg B (1992) Axiomatizations of the core. In: Aumann RJ, Hart S (eds.)
Handbook of game theory with economic applications, Elsevier, Amsterdam
chapter 13, pp. 397–412

Ray D, Vohra R (1997) Equilibrium binding agreements. Journal of Economic
Theory 73(1):30–78

Richter DK (1974) The core of a public goods economy. International Economic
Review 15(1):131–142

15



Rosenthal RW (1971) External economies and cores. Journal of Economic The-
ory 3:182–188

Shenoy PP (1979) On coalition formation: A game-theoretical approach. Inter-
national Journal of Game Theory 8(3):133–164

Thrall RM, Lucas WF (1963) n-person games in partition function form. Naval
Research Logistics Quarterly 10(4):281–298

von Neumann J, Morgenstern O (1944) Theory of Games and Economic Behav-
ior Princeton University Press, Princeton

Yi SS (1996) Endogenous formation of customs unions under imperfect com-
petition: open regionalism is good. Journal of International Economics 41(1-
2):153–177

16


