
The minimal dominant set is a non-empty
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A set of outcomes for a transferable utility game in characteristic function
form is dominant if it is, with respect to an outsider-independent dominance
relation, accessible (or admissible) and closed. This outsider-independent dom-
inance relation is restrictive in the sense that a deviating coalition cannot de-
termine the payoffs of those coalitions that are not involved in the deviation.
The minimal (for inclusion) dominant set is non-empty and for a game with a
non-empty coalition structure core, the minimal dominant set returns this core.
We provide an algorithm to find the minimal dominant set.
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1 Introduction

For a characteristic function form game there are two fundamental and strongly linked
problems: (i) what coalitions will form, and (ii) how will the members of these coalitions
distribute their total coalitional worth. We attempt to answer these questions. Following
Harsányi (1974), we presuppose some bargaining process among the players. At first,
one of the players proposes some outcome (a payoff vector augmented with a coalition
structure). In case some coalition could gain by acting for themselves, it can reject this
initial outcome and propose a second outcome. Of course, in order to be able to make a
counter-proposal, the deviating coalition is a member of the new coalition structure and
none of the players in the deviating coalition loses when moving towards the new outcome.
We impose an additional condition that we call outsider-independence: a coalition C that
belongs to the initial coalition structure and that does not contain a deviating player
survives the deviation; the players in C stay together and keep their pre-deviation payoffs.
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This contrasts with, for example, the approach by Sengupta and Sengupta (1994), Shenoy
(1980, Section 5). They tackle the same problem without incorporating such an outsider-
independence condition: the deviating coalition is allowed to determine the payoffs and the
structure of all players. This seems unrealistic to us. In contrast, our approach is based
on the observation that outsiders’ payoffs are unaffected by the formation of the deviating
coalition and hence outsiders do not necessarily notice the deviation until the new coalition
structure is announced.

Once such a counter-proposal has popped up, another coalition may reject this counter-
proposal in favor of a third outcome, and so forth. This bargaining process generates a
dominating chain of outcomes. In case the game has a non-empty coalition structure core
(Aumann and Drèze, 1975), the bargaining process enters this core after a finite number
of steps (this is shown in Kóczy and Lauwers, 2003). Conclusion: the coalition structure
core, if non-empty, is accessible.

Similarly to the core, the coalition structure core has an important shortcoming: non-
emptiness is far from being guaranteed. The present paper tackles games with an empty
set of undominated outcomes.

We impose three conditions upon a solution concept. First, we insist on accessibility: from
each outcome there is a dominating chain that enters the solution. Second, the solution
is closed for domination: each outcome that dominates an outcome in the solution also
belongs to the solution. The intuition behind this axiom is straightforward. In case there
are no “undominated outcomes”, there might exist “undominated sets” of outcomes. Such
a set must be closed for outsider-independent domination. A collection of outcomes that
combines accessibility and closedness is said to be a dominant set. And, third, from all the
dominant sets, we only retain the minimal (with respect to inclusion) ones.

The following observation provides a further argument in favor of these three conditions:
in case the game generates undominated outcomes, then the accessibility of the coalition
structure core implies that this core is the unique minimal dominant set. Uniqueness and
non-emptiness extends to arbitrary games:

Theorem A. Each characteristic function form game has exactly one minimal
dominant set. Moreover, this minimal dominant set is non-empty.

In other words, the minimal dominant set is a non-empty coalition structure core extension.
On the one hand, the three conditions we impose upon a solution concept are strong enough
to filter out the coalition structure core (in case it is non-empty), and on the other hand
these conditions are weak enough to return a non-empty set of outcomes in case the game
has an empty coalition structure core. As a matter of fact, the minimal dominant set meets
Zhou’s (1994) minimal qualifications for a solution concept: non-imposition with respect
to the coalition structure1 and non-emptiness.

1In the framework of endogenous coalition formation, a solution concept “is not a priori defined for
payoff vectors of a particular coalition structure, and it does not always contain payoff vectors of every
coalition structure,” (Zhou, 1994, p513).
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We close the discussion on Theorem A with an example. Consider a three player game with
an empty core: singletons have a zero value, pairs have a value equal to 8, and the grand
coalition has a value 9. The payoff vector (4, 4, 0) supported by the coalition structure
({1, 2}, {3}) belongs to the minimal dominant set. This outcome, however, is not efficient:
the total payoff in this vector amounts to 8, where the value 9 is obtainable. On the other
hand, the efficient outcome (3, 3, 3; {1, 2, 3}) does not belong to the minimal dominant set.
Hence, the minimal dominant set might contain inefficient outcomes and at the same time
there might be efficient outcomes outside the minimal dominant set. Where the core selects
those outcomes that satisfy efficiency and stability, these two properties are not so well
linked as soon the core is empty (Section 5 returns to this issue).
Along the proof of Theorem A we come across the following properties of the outsider-
independent domination relation. First, the set of outcomes that indirectly dominate an
(initial) outcome is closed in the Euclidean topology. And, second:

Theorem B. There exists a natural number τ = τ(n) such that for each game
with n players and for all outcomes a and b in this game, we have that a
indirectly dominates b if and only if there exists a dominating chain from b to
a of length at most τ .

As a consequence, the accessibility axiom can be sharpened: for each game the minimal
dominant set can be reached via τ subsequent counter-proposals. This number τ can be
imposed as a time-limit for the completion of the bargaining process.

Theorem B dramatically improves previous results on the accessibility of the core. We
mention two of them. First, Wu (1977) has shown the existence of an infinite bargaining
scheme that converges to the core and rephrased this result as “the core is globally stable”.
Second, Sengupta and Sengupta (1996) construct for each imputation a sequence of domi-
nating imputations that enters the core in finitely many steps. We extend these results to
the coalition structure core and to the minimal dominant set. In addition, we provide an
upper bound for the length of the dominating chains.
Finally, Theorem B implicitly provides directions on how to compute the minimal dominant
set. The proof of Theorem B rests upon a stratification of the set of all imputations into a
finite number of classes. Each class gathers imputations that we label similar. Apparently,
the minimal dominant set coincides with the union of some of these classes. As such, the
search for the minimal dominant set boils down to a finite problem. As an illustration,
we retake the above three player game. Here, the set of outcomes is partitioned into 29
classes. First, there are 19 (non-empty) classes of efficient outcomes:

(x, {1, 2, 3}) with x1 + x2 + x3 = 9, xi + xj ./1
ij 8, xk + xl ./2

kl 9, xm ≥ 0,

where the indices i, j, k, l, and m all run over the set {1, 2, 3} and where ./ stands for
either < or ≥. Additional labels are used to distinguish different instances –which may be
different inequalities– from each other.
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Next, there are 9 classes in which one player is standing alone:

(x; {i, j} , {k}) with {i, j, k} = {1, 2, 3} , xi + xj = 8, xi ./1
i 8, xj ./2

j 8, and xk = 0.

Finally, there is the zero-outcome: (0; {1} , {2} , {3}).
The minimal dominant set collects 26 of these classes: the (large) class

(x, {1, 2, 3}) with x1 + x2 + x3 = 9, x1 + x2 < 8, x1 + x3 < 8, and x2 + x3 < 8,

and the zero-outcome are excluded from the minimal dominant set.

The next Section collects notation and definitions. Section 3 considers dominating chains,
the length of such chains, and proves Theorem B. Section 4 defines the minimal dominant
set and proves Theorem A. Section 5 lists some deficiencies and some properties of the
minimal dominant set. An example indicates that the outsider-independency condition
rightly prevents some outcomes (that belong to the solution of Sengupta and Sengupta,
1994) from entering the minimal dominant set. Section 6 returns to the computability of
the minimal dominant set.

2 Preliminaries

Let N = {1, 2, . . . , n} be a set of n players. Non-empty subsets of N are called coalitions.
A coalition structure is a set of pairwise disjoint coalitions so that their union is N and
represents the breaking up of the grand coalition N . Let P and Q be two coalition struc-
tures such that for each coalition C in Q we have that either C belongs to P or there exists
a coalition in P that includes C, then Q is finer than P (and P is coarser than Q). For a
coalition structure P = {C1, C2, . . . , Cm} and a coalition C, the partners’ set P (C,P) of
C in P is defined as the union of those coalitions in P that have a non-empty intersection
with C. The complement N \P (C,P) is denoted by O(C,P).

A characteristic function v : 2N \{∅} → R assigns a real value to each coalition. The
pair (N, v) is said to be a transferable utility game in characteristic function form, in short,
a game.

An outcome of a game (N, v) is a pair (x,P) with x in Rn and P a coalition structure
of N . The vector x = (x1, x2, . . . , xn) lists the payoffs of each player and satisfies ∀i ∈ N :
xi ≥ v({i}) and ∀C ∈ P : x(C) = v(C), with x(C) =

∑
j∈C xj. The first condition is known

as individual rationality: player i will cooperate to form a coalition only if his payoff xi

exceeds the amount he obtains on his own. The second condition combines feasibility and
the myopic behavior of the players, it states that each coalition in the coalition structure
P allocates its value among its members. Outcomes with the same payoff vector are said
to be payoff equivalent.

The set of all outcomes is denoted by Ω(N, v). The set Ω(N, v) is non-empty: it contains
the outcome in which the grand coalition is split up in singletons.

In case the grand coalition forms, then an outcome is a pair (x, {N}), xi ≥ v({i}), and
x(N) =

∑
i∈N xi = v(N). As such, outcomes generalize imputations.
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Now, we define the outsider-independent dominance relation. An interpretation and a
discussion follows. Later on, we use the shorthand o.i.-domination.

Definition 2.1. Let (N, v) be a game and let a = (x,P) and b = (y,Q) be two outcomes.

Then, outcome a outsider-independent dominates b by C, denoted by b
C−→ a, if

C1: x(C) > y(C) and for each i in C: xi ≥ yi,

C2: P contains C,

C3: (a) P contains all coalitions in Q that do not intersect C, and

(b) for each player i in O(C,Q): xi = yi.

Coalition C is called the deviating coalition. We make an additional, simplifying assump-
tion:

C4: in P the players in P (C,P) \ C form singletons.

Outcome a outsider-independently dominates b, if P contains a coalition C such that a
outsider-independently dominates b by C, and we abbreviate this as a o.i.-dominates b or
b −→ a.

Our definition is a restriction of widely used concepts of dominations: if only condition
C1 is imposed we talk about domination at the level of payoffs ; if conditions C1 and C2
are imposed, about domination at the level of outcomes. Condition C3 is referred to as the
outsider independence condition.

This o.i.-domination relation can be interpreted in a dynamic way. Let (y,Q)
C−→

(x,P) and consider (y,Q) as the initial outcome. Note that the initial partition Q and
the deviating coalition C completely determine the new partition P . Also, the deviating
coalition C enforces the new outcome (x,P). Indeed, in order to obtain a higher total
payoff, coalition C separates from its partners (and at least one member of C is strictly
better off). The players in P (C,Q)\C become ex-partners of C and fall apart in singletons.
Finally, the outsiders, i.e. the players in O(C,P) = N \ P (C,Q), are left untouched.

The definition clearly indicates that o.i.-domination is more restrictive than domination
at the level of outcomes, which was employed by Shenoy (1979) and Sengupta and Sengupta
(1994) among others and where the deviating coalition is allowed to affect the payoffs of
all the players and thus to ignore the behavior and the motivation of the outsiders. The
imposition of the outsider independence condition removes these privileges.

Definition 2.1 also models a merger: the deviating coalition is the union of some of the
coalitions in the initial coalition structure.

In case one is concerned with coalition formation processes, o.i.-dominance seems to
be a natural and a straightforward extension of the domination relation at the level of
payoffs. On the other hand, if outcome b is dominated by a at the level of payoffs, then
there exists an outcome a′ that o.i.-dominates b. Therefore, the set of o.i.-undominated
outcomes coincides with the set of undominated outcomes. In other words, in the definition
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of the coalition structure core (Aumann and Drèze, 1975), ‘not dominated’ can be replaced
by ‘not o.i.-dominated’:

Definition 2.2. Let (N, v) be a game. The coalition structure core C(N, v) is the set of
outcomes that are ‘not dominated’, i.e. outcomes (x,P) with x(S) ≥ v(S) for each coalition
S ⊆ N .

The coalition structure core might contain payoff equivalent outcomes. Also, if ‘the’ core is
non-empty (i.e. in case the grand coalition forms), then the coalition structure core includes
the core.

3 Dominating chains

We introduce sequential o.i.-domination and we show that in order to check for this, one
can concentrate on chains the length of which does not exceed some upperbound.

Definition 3.1. Let a, b ∈ Ω. Outcome a is said to be accessible from b (denoted by b � a
or a � b), if one of the following conditions holds

- a and b are payoff equivalent, or

- a sequentially o.i.-dominates b, i.e. there exists a natural number T and a sequence
of outcomes a0 = b, a1, . . . , aT−1, aT = a such that at o.i.-dominates at−1 for
t = 1, 2, . . . , T . The sequence a0 = b −→ a1 −→ · · · −→ aT−1 −→ aT = a is called
an o.i.-dominating chain of length T .

This accessibility relation � is the transitive and reflexive closure of the o.i.-domination
relation →.
Two different outcomes might be accessible from each other. E.g. payoff equivalent out-
comes are accessible from each other; this refers to the implicit assumption that reparti-
tioning involves no costs in case the payoff vector does not change.
The accessibility relation describes a possible succession of transitions from one outcome
to another. An initial outcome is proposed and the players are allowed to deviate from it.
We are interested in the outcomes that will appear at the end of a sequence of transitions.
Some of the outcomes will definitely disappear, while others show up again and again. As
such, the game is absorbed in (hopefully) a small set of outcomes. The following result
gives a precise content to the expression ‘end of an o.i.-dominating chain’.

Theorem 3.2. Let (N, v) be a game. Then there exists a natural number τ = τ(n) such
that for all outcomes a and b in Ω(N, v) we have that a is accessible from b if and only if
there exists an o.i.-dominating chain from a to b of length at most τ .

The if -part in the above statement (accessibility if there is a chain) is immediate. In order
to prove the only-if -part, we need some additional preparations.
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• First, the set Ω(N, v) of outcomes is partitioned such that two outcomes of the same
class induce similar deviations,

• Second, the set N is partitioned according to the behavior of the players in an o.i.-
dominating chain.

The finiteness of these operations is crucial in the proof of Theorem 3.2. We start the
discussion with the partitioning of the set of outcomes.

Definition 3.3. Let (N, v) be a game. Two outcomes (x,P) and (y,Q) are similar if they
satisfy the following list of conditions:

• P = Q,

• for each coalition C we have, x(C) ≥ v(C) if and only if y(C) ≥ v(C), and

• for each coalition C, for each coalition structure C of C, and for each D in C, we
have

x(D)− v(D) ≥ v(C)− v(C) if and only if y(D)− v(D) ≥ v(C)− v(C), (1)

where v(C) = ΣE ∈C v(E).

In this way the set Ω(N, v) of outcomes is partitioned into a finite number of classes. The
number of classes in this partition depends upon the cardinality of N . Observe that each
class is obtained as an intersection of linear inequalities and is, therefore, a convex set.

Definition 3.4. Let (N, v) be a game and let

b = (x0,P0)
D1−→ (x1,P1)

D2−→ · · · Dt−→ (xt,Pt)
Dt+1−→ · · · DT−→ (xT ,PT ) = a,

be an o.i.-dominating chain from b to a. We interpret t as a time index.
For each t = 0, 1, . . . , T − 1 we divide the set of players into two subsets:

• The set Wt of winning players collects those players who, from t onwards, are either
outsiders or deviators. Formally: i belongs to Wt if i ∈ O(Ds,Ps−1)∪Ds, for all s =
t + 1, . . . , T. From t onwards the payoff of a winning player cannot decrease.

• The set Lt of losing players collects those players who, at a certain point in time, are
left behind as singletons. Formally: i belongs to Lt if there exists s ≥ t + 1 such that
i ∈ P (Ds,Ps−1) \Ds. Let `(t, i) ≥ t + 1 denote the first time (after t) that player i is
standing alone, i.e. {i} ∈ Q`(t,i).

Obviously, along the o.i.-dominating chain we have

W0 ⊆ W1 ⊆ . . . ⊆ WT−1 = O(DT ,PT−1) ∪DT .
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Indeed, once a player is winning, his status cannot change. As a consequence we obtain

L0 ⊇ L1 ⊇ . . . ⊇ LT−1 = P (DT ,PT−1) \DT .

Furthermore, at each moment t a losing player i with `(t− 1, i) = t might move up to the
class Wt of winning players.

Since winners and losers are completely determined by the coalition structures and the
deviating coalitions, this division of N into winning and losing players does not depend
upon the individual payoffs.

Proof of Theorem 3.2 (Only-if part).
The key idea is that any chain from b to a longer than τ can be made shorter. We construct
such a shorter chain. First, we locate two similar outcomes c and c′. Next, we trisect the
chain (b � c, c � c′, c′ � a), we remove the middle part, and we reattach the head and
the tail. Since the outcomes c and c′ are not likely to be identical the tail of the chain must
be modified; we keep the deviating coalitions and we adjust the outcomes along the tail.

We proceed in four steps. The first step is the surgical one: we locate two similar outcomes
and we make the cuts; here we implicitly define the value of τ . In Step 2 we show that
the first deviation in the tail of the original chain can be attached to the head. Then, the
second deviation is attached (Step 3) and so forth (Step 4).

Step 1. Starting up the proof.
If the length of the o.i.-dominating chain from b to a is large enough (larger than τ), then
there exist two outcomes c = (y0,Q0) and c′ = (z0,Q) in the o.i.-dominating chain that (i)
are similar and (ii) partition the players (winning versus losing) in the same way. Indeed,
there are only a finite number of different classes of similar outcomes and there are only
a finite number of ways to split up the finite set N of players into two subsets. We write
Q0 instead of Q and we assume that (y0,Q0) comes later than (z0,Q0). Denote the sets of
winning and losing players for the outcomes (y0,Q0) and (z0,Q0) by W0 and L0. In sum,
we have the following o.i.-dominating chain

b = (x0,P0) −→ · · · −→
W0,L0︷ ︸︸ ︷

(z0,Q0) −→ · · · −→
W0,L0︷ ︸︸ ︷

(y0,Q0) −→ · · · −→ (xm,Pm) = a.

We rename the last part in this original o.i.-dominating chain and we indicate the deviating
coalitions:

(x0,P0) −→ · · · −→
W0,L0︷ ︸︸ ︷

(z0,Q0)−→ · · · −→
W0,L0︷ ︸︸ ︷

(y0,Q0)︸ ︷︷ ︸
middle part

C1−→ (y1,Q1)
C2−→ · · · CT−→ (yT ,QT )︸ ︷︷ ︸
y−chain

.

We show the existence of payoff vectors z1, z2, . . . , zT such that this initial chain from b to
a (of length m) can be shortened to

(x0,P0) −→ · · · −→
W0,L0︷ ︸︸ ︷

(z0,Q0)
C1−→ (z1,Q1)

C2−→ · · · CT−→ (zT ,QT ) = a︸ ︷︷ ︸
z−chain

.
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Since the coalition structure Q0 and the deviating coalitions C1, C2, . . . , CT coincide along
the initial y-chain and the new z-chain, both chains generate the same sets Ws and Ls of
winning and of losing players, s = 1, 2, . . . , T − 1.

Along the z-chain, the payoffs of certain players are straightforward. Indeed, in the step

Qs
Cs+1−→ Qs+1, each player i in P (Cs+1,Qs) \ Cs+1 drops off as a singleton and obtains his

stand alone value. Furthermore, the post-deviation payoff of an outsider (i.e. a player in
O(Cs+1,Qs)) is equal to his pre-deviation payoff. Hence, it is sufficient to concentrate on
the payoffs of the deviators.

Step 2. The first deviation: Q0
C1−→ Q1.

The similarity of (z0,Q0) and (y0,Q0) implies that z0(C1) < v(C1). Hence coalition C1 has
an incentive to deviate. The payoff of a deviator depends upon the status of the deviating
coalition:

1. C1 is a subset of W0.
Then we define z1,k = y1,k for each k in C1. This can be done because (i) player k
in C1 is winning (from (z0,Q0) onwards) such that z0,k ≤ y1,k and (ii) coalition C1 is
deviating such that y1(C1) = v(C1).
Also, the inclusion C1 ⊂ W0 implies that the players in C1 glue together and will not
be separated in subsequent steps.

2. C1 intersects L0.
Then we allocate the surplus v(C1)−z0(C1) to those players who are the first to drop
off as singletons in subsequent deviations (i.e. losing players k in C1 with the smallest
`(1, k)-value). In other words, the payoff of such a player is temporarily increased
and will fall back on his stand alone value later on.
The payoffs of the remaining players in C1 stay at the pre-deviation level.

We close this step with the following observations. If player i moves up from L0 to W1,
then the singleton coalition {i} belongs to Q1 and z1,i = y1,i = v({i}). Players in W0 either
have their initial z0-payoff or obtained a y1-payoff.

Step 3. The second deviation: Q1
C2−→ Q2.

Let us investigate the composition of the deviating coalition C2. We regard this deviation
as a merger of a set C of (possibly singleton) coalitions in Q1 that pick up further players
from other coalitions. Let D denote the set of these picked-up players.

We have to check whether coalition C2 can improve upon (z1,Q1) by standing alone,
i.e. v(C2) > z1(C2). In the above notation we have C ⊂ Q1, and hence

z1(C2) = ΣC v(C) + z1(D). (2)

We investigate the nature of a player in D. Such a player in D cannot have a temporarily
high payoff. We show this by contradiction and we assume that a player j in D has a
temporarily high payoff. Player j is, by construction, a future loser that belonged to C1.
Since the surplus v(C1) − z0(C1) of the previous deviation was allocated to those losers

9



that are the first to drop off, coalition C2 can only contain player j in case C2 includes C1.
Therefore, j ∈ C1 ∈ C and j is not in D. A contradiction.

Conclude that each player in D was, in the previous step, either an outsider or a
deviator. Now, we are able to specify the pre-deviation payoff z1,i of a player i in D:

• The payoff z1,i of an outsider is still at the z0-level.

• The payoff z1,i of a deviator also is at the z0-level. Indeed, in this case the deviating
coalition C1 is not included in C2. Only the payoffs of those players that are the first
to left behind as singletons were temporarily increased. Obviously, player i belongs
to C1 ∩ C2 and his payoff is equal to z0,i.

Therefore, we can rewrite Equation 2: z1(C2) = ΣC v(C) + z0(D).

Next, we look at the y-chain. In the step Q1
C2−→ Q2 the same decomposition of C2

appears. Because C2 improves upon y1 and because players in D are either outsiders or
deviators when moving from y0 to y1 we have

v(C2) = y2(C2) > y1(C2) = ΣC v(C) + y1(D) ≥ ΣC v(C) + y0(D);

Now use the similarity of the outcomes (y0,Q0) and (z0,Q0) (Condition (1) in Definition
3.3) and conclude that C2 indeed has an incentive to deviate:

v(C2) > z1(C2) = ΣC v(C) + z0(D).

The payoff vector z2 is defined in the same way as z1. The payoff of a deviator depends
upon the status of C2.

1. C2 is a subset of W1.
Then a deviator either already belonged to W0 or obtained in the previous step his
stand alone value; in both cases the payoff of the deviator can be lifted to the y2-level.

2. C2 intersects L1.
Then the payoff of a deviator is either equal to his pre-deviation payoff or is tem-
porarily increased.

Step 4. The t-th deviation: Qt−1
Ct−→ Qt.

The subsequent deviations by the coalitions C1, C2, . . . , Ct−1 are all executed and the payoff
vectors z1, z2, . . . , zt−1 are all defined. Again, we start with the decomposition of the
deviating coalition Ct. Since players now have a longer history, the decomposition of Ct is
more complicated.

In the outcome (zt−1,Qt−1) we distinguish four types of players: players with a temporarily
high payoff, players (that do not form a singleton coalition) with a payoff at the yk-level
with k ≤ t−1, players having their stand alone payoff, and untouched players with a payoff
still at the z0-level. By construction, these four types exhaust the set N of players. Indeed,
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when a player leaves his z0-level, he either enters the y-level, or obtains a temporarily high
payoff, or obtains his stand alone value.
Consider a player in Ct with a payoff at the yk-level with k ≤ t − 1. By construction, a
player can move up to the yt−1-level only after joining a deviating coalition Cj that enters
the set Wj of winners. Such a coalition Cj never breaks up. However, the coalition Cj

can be picked up as a whole by a later deviating coalition. Let Ck be the latest deviating
coalition that includes Cj and that is a subset of Ct (i.e. Cj ⊂ Ck ⊂ Ct). Let C1 collect
these coalitions Ck. Note that two different coalitions in C1 must be disjoint. Hence each
player in Ct with a payoff at the y-level is sheltered in some coalition in C1.

Now, consider a player in Ct, not yet sheltered by C1, with a temporarily high payoff. Then
Ct must include the entire deviating coalition Cj (with j < t) which was at the basis of this
temporarily high payoff. Indeed, the surplus of a deviation was (in case Cj contains future
losers) allocated to those players that are the first to drop off. Hence, if such a future loser
is present in Ct, then the drop off has not yet happened. The coalition Cj is still together
and is included in some deviating coalition Ck which is a subset of Ct (again let k be as
large as possible, j ≤ k < t− 1). Let C2 collect these coalitions Ck. Different coalitions in
C1 ∪ C2 are disjoint. Each player with a payoff at the y-level or with a temporarily high
payoff is sheltered in some coalition in C1 ∪ C2. Let S collect the remaining players in Ct

with a payoff equal to their stand alone value. Such a player is been dropped off as a
singleton coalition; later on such a player might become a winner in a deviating coalition
that also contained losers. Finally, let the coalition D collect the remaining players in Ct.
They have a payoff at the z0-level.

In contrast to Step 3, the coalitions in C1, C2 need not be present as coalitions in Qt−1,
they are included in one of the coalitions in Qt−1. In conclusion: zt−1(Ct) = ΣC1 v(C) +
ΣC2 v(C) + ΣS v({i}) + z0(D).

We have to check whether v(Ct) > zt−1(Ct). Consider the same decomposition in

the step (yt−1,Qt−1)
Ct−→ (yt,Qt). Since coalition Ct can improve upon yt−1, we know

v(Ct) > ΣC1 v(C) + ΣC2 v(C) + yt−1(S) + yt−1(D). For each player k in D we have
yt−1,k ≥ y0,k. For each player k in S we have yt−1,k ≥ v({k}). Hence, v(Ct) > ΣC1 v(C) +
ΣC2 v(C) + ΣS v({k}) + y0(D). Use the similarity of the outcomes (y0,Q0) and (z0,Q0)
(Condition (1) in Definition 3.3) and conclude that Ct indeed has an incentive to deviate.

The payoff zt,k with k in Ct depends upon the status of Ct and is lifted to the yt-level
(Ct ⊆ Wt−1), or is either equal to the pre-deviation payoff or is temporarily increased
(Ct ∩ Lt−1 6= ∅). �

4 The minimal dominant set

Here we introduce dominant sets and show that the minimal dominant set is non-empty.
Let (N, v) be a game and let Ω = Ω(N, v) be the set of all outcomes.

Definition 4.1. A set ∆ ⊆ Ω of outcomes is said to be dominant if it satisfies
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Accessibility: the set ∆ is accessible from Ω, i.e. for each b in Ω there exists an a in ∆
such that b � a, and

Closure: the set ∆ is closed for o.i.-domination, i.e. for each a in Ω and each b in ∆, if
b � a then a ∈ ∆.

For example, the set Ω of all outcomes is dominant. Furthermore, the complement Ω \∆
of a dominant set ∆ is not dominant. The non-emptiness of the minimal dominant set will
follow from the existence of outcomes that are maximal for the sequential o.i.-dominance
relation �.

Definition 4.2. Outcome a is maximal for � if for each outcome b in Ω that sequentially
o.i.-dominates a, we have that a sequentially o.i.-dominates b.

In order to show the existence of a maximal outcome, we follow (Kalai and Schmeidler,
1977, Theorem 3) and use some standard arguments from topology. We embed the set
Ω in the Euclidean space Rn by neglecting the coalition structures behind the outcomes.
Formally, we study outcome vectors x, y, . . . instead of outcomes (x,P), (y,Q), . . .. Observe
that the set of all outcome vectors (i.e. the set Ω after neglecting the coalition structures)
is compact. Furthermore, within the universe Ω we consider the relativization of the
Euclidean topology to Ω. Theorem 3.2 implies the next continuity property.

Lemma 4.3. Let a, b ∈ Ω. The set â = {c ∈ Ω : a � c} of outcomes that sequentially
o.i.-dominate a is closed (in the Euclidean topology). In addition, if a � b, then â ⊃ b̂.

Proof. First, let A ⊂ Ω be a closed set of outcomes. Observe that the set A1 of outcomes
that o.i.-dominate A (in one step) also is a closed set. According to Theorem 3.2 there
exists a natural number τ such that

â = {c ∈ Ω : there is a chain from a to c of length smaller than τ}.

Hence, â is the union of τ closed sets, and is therefore closed. The second statement (the
finite intersection property along a chain) is obvious.

Lemma 4.4. The set Ω, equipped with the sequential o.i.-dominance relation, has at least
one maximal outcome.

Proof. By Zorn’s lemma it is sufficient to show that each chain in (Ω, �) has an upper-
bound. Hence, let A be a chain in Ω. In case the chain contains an outcome a such that
â = {a}, then a is a maximal element. Otherwise, the intersection ∩a∈A â of closed sets is
non-empty (use the finite intersection property of closed sets in the compact set Ω). Each
outcome in this intersection is an upperbound for the chain A.

Now, we identify the minimal dominant set with the set of maximal outcomes.

Theorem 4.5. Let (N, v) be a game and let Ω be the set of outcomes. Then, the minimal
dominant set coincides with the set of maximal outcomes and is therefore non-empty.
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Proof. Let ∆ be some minimal dominant set and let M collect the maximal outcomes.

First, let a be a maximal outcome. Because ∆ satisfies accessibility, it contains an outcome
b such that a � b. The maximality of a implies that b � a. Since ∆ satisfies closure, a
belongs to ∆. Conclusion: M ⊆ ∆ and ∆ is non-empty.

Next, suppose that a belongs to ∆ and that b sequentially o.i.-dominates a. Then, either
a sequentially o.i.-dominates b, or ∆ is not a minimal o.i.-dominant set: outcome a and
each outcome that is sequentially o.i.-dominated by a can be left out. Since ∆ is assumed
to be minimal, the outcome a must be maximal. Hence, ∆ ⊆ M .

Finally, consider a game (N, v) with a non-empty coalition structure core C(N, v). As the
coalition structure core collects the o.i.-undominated outcomes, it follows that the minimal
dominant set ∆ includes C(N, v). As a matter of fact the equality C(N, v) = ∆ holds:

Corollary 4.6. Let (N, v) be a game. Then, the minimal dominant set is a non-empty
coalition structure core extension.

Proof. First, the minimal dominant set is non-empty (Theorem 4.5). Second, consider a
game with a non-empty coalition structure core. The accessibility of the coalition structure
core is proven in Kóczy and Lauwers (2003). Hence, the minimal dominant set coincides
with the coalition structure core.

5 Properties

We discuss some deficiencies and we list some properties of the minimal dominant set.
Consider a game (N, v). Let Ω be the set of outcomes and let ∆ be the minimal dominant
set.

5.1 Dummy players

We start with the observation that an outcome in ∆ might assign a positive payoff to a
dummy player, i.e. a player i for which v({i}) = 0 and v(C ∪{i}) = v(C) for each coalition
C. Indeed, consider a three player majority game augmented with two dummy players:
N = {1, 2, 3, 4, 5}, v(C) = 2 if the intersection C ∩ {1, 2, 3} contains at least two players,
all other coalitions have a value equal to 0.
The outcome (1, 1, 0, 0, 0; {1, 2} , {3} , {4} , {5}) belongs to ∆ and is o.i.-dominated by the
outcome

a = (0, 1.2, 0.4, 0.4, 0; {1} , {2, 3, 4} , {5})

which allocates a positive amount to player 4. Since ∆ is closed for o.i.-domination, out-
come a belongs to ∆.

Sengupta and Sengupta (1994, Section 3.2) observe that this affliction is common to many
solution concepts: the Aumann-Maschler set, the Mas-Collel bargaining set, the consistent
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bargaining set of Dutta et al., and the set of viable proposals by Sengupta and Sengupta
all generate solutions for this game with a positive payoff for the dummy players.

An artificial way to circumvent this problem is to impose a stability condition upon the
deviating coalitions. Call a coalition S stable against splitting up in case each proper
partitioning D of S has a value that is strictly smaller than the worth of S, i.e. v(D) < v(S).
In other words, a coalition will split up in case it can be partitioned without lowering its
total worth. As such, a deviating coalition will never contain a dummy player and dummy
players will end up in their stand alone position.

If one insists on the dummy player axiom (according to which a dummy player obtains a
zero payoff), then one can impose this mentioned stability axiom on the deviating coalition.
After such a modification, the minimal dominant set restricted to the non-dummy players
coincides with the minimal dominant set of the game restricted to the non-dummy players,
so insisting on the dummy axiom does not affect the properties of the minimal dominant
set.

5.2 Efficiency

Next, we observe that the shortsightedness or myopia of the players may lead to inefficient
coalition structures.

Definition 5.1. Let (N, v) be a game and let S be some coalition. A coalition structure C
of S is said to be efficient if the total payoff v(C) = ΣE ∈C v(E) decreases when the coalition
structure C is made finer or coarser.

Efficiency combines stability against splitting up with stability against mergers, i.e. C does
not contain coalitions A and B such that v(A ∪ B) > v(A) + v(B). The next example
indicates that inefficient coalition structures might enter the minimal dominant set.

Example 5.2. Repeat the three player game (N, v) with v({i}) = 0, v({i, j}) = 8, and
v(N) = 9. The minimal dominant set is the union of two sets. The first one is the
boundary of a triangle spanned by (8, 0, 0), (0, 8, 0), (0, 0, 8):

∆1 = { (x1, x2, x3; {i, j} , {k}) | {i, j, k} = {1, 2, 3} xi + xj = 8, and xk = 0 } .

The second one is a part of a triangle spanned by (9, 0, 0), (0, 9, 0), (0, 0, 9):

∆2 = { (x1, x2, x3; N) |x1 + x2 + x3 = 9 and ∃ k ∈ N : xk ≤ 1 } .

The outcomes in ∆1 are inefficient. Coarsening the coalition structure ({i, j} , {k}) to N
improves the value from 8 to 9. Furthermore, the efficient outcome (3, 3, 3; N) does not
belong to the minimal dominant set.

These observations raise a rather fundamental issue: the conflict between efficiency and
undomination. Here we insisted on undomination. As a consequence, inefficient outcomes
might enter and some efficient outcomes might leave the solution.
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We do not regard this as a serious conceptual problem: we view the minimal dominant
set as a first solution concept. In other words, outcomes outside the minimal dominant
set certainly will not survive.2 Hence, if one insists on efficiency, then one can select the
efficient outcomes out of the minimal dominant set. Since (i) each inefficient outcome
is o.i.-dominated by an efficient outcome and (ii) the minimal dominant set is closed for
o.i.-domination, this restriction is non-empty. In addition, this restricted set of efficient
outcomes still satisfies accessibility. In the example, ∆2 collects the efficient outcomes.

5.3 Composed games

Finally, we study the behavior of the minimal dominant set in composed games. Let
(N1, v1) and (N2, v2) be two games, with N1 and N2 disjoint. The juxtaposition of these
games is the game (N, v), with N = N1 ∪N2 and

v : 2N \ {∅} −→ R : S 7−→ v(S) =


v1(S) if S ⊆ N1,

v2(S) if S ⊆ N2,

0 otherwise.

In such a juxtaposition the restriction to one of the initial sets of players coincides with
the corresponding initial game. On the other hand, cross-coalitions have a zero worth.
Furthermore, in case ai = (xi,Pi) is an outcome of the game (Ni, vi), i = 1, 2, then the
juxtaposition a1 × a2 = (x1, x2 ;P1 ∪ P2) is an outcome of the game (N, v).
The next proposition indicates that the minimal dominant set behaves well with respect
to such composed games.

Proposition 5.3. The minimal dominant set of the juxtaposition of two games coincides
with the juxtaposition of the two minimal dominant sets.

Proof. Let (N, v) be the juxtaposition of the games (N1, v1) and (N2, v2). Let (xi,Pi) be
an outcome of the game (Ni, vi) that is maximal for the sequential o.i.-domination relation,
i = 1, 2. In other words, let (xi,Pi) belong to ∆(Ni, vi).
Obviously, the juxtaposition (x1, x2 ;P1 ∪ P2) is maximal. Hence, ∆(N, v) includes the
juxtaposition of ∆(N1, v1) and ∆(N2, v2).
The inclusion ∆(N, v) ⊆ ∆(N1, v1)×∆(N2, v2) also is immediate.

Although this property seems natural, it illuminates some advantages of the minimal dom-
inant set above other solution concepts. Consider the juxtaposition of a small game with
an empty and a large game with a non-empty core. As each outcome of this game is
dominated, the coalition structure core is empty. Nevertheless, the composed game con-
tains almost stable outcomes. The minimal dominant set is able to trace this locally

2The literature on tournaments provides an analogue (Laslier, 1997). The top-cycle gathers the maximal
elements of a tournament, and the top-cycle is considered as a starting point for further investigations:
most tournament solutions are top-cycle selections.
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stable behavior. As a matter of fact, each solution concept that does not incorporate an
outsider-independency condition will allow a local instability to extend to the entire game.

Furthermore, this property illustrates the implications of the outsider-independence as-
sumption in the o.i.-dominance relation. Consider the following juxtaposition. Let N =
{1, 2, 3, 4, 5} and let v({1, 2}) = v({1, 3}) = v({2, 3}) = v({4, 5}) = 2, all other coalitions
have a zero value. The minimal dominant set of this game is equal to

∆ = {(x ; {i, j} , {k} , {4, 5}) | {i, j, k} = {1, 2, 3} , xi + xj = x4 + x5 = 2, xk = 0} .

When the deviating coalition is allowed to intervene in the structure of the outsiders, the
set of maximal elements does contain outcomes that are not plausible. For example, the
outcome a = (1, 1, 0, 0, 0 ; {1, 2} , {3} , {4} , {5}) dominates in the sense of Sengupta and
Sengupta (1994) the outcome b = (1, 1, 0, 1, 1 ; {1, 2} , {3} , {4, 5}). Indeed, start from b
and consider a deviation by {2, 3} that separates players 4 and 5, next consider a deviation
by {1, 2}. This example shows that the set of viable proposals (i.e. the solution of Sengupta
and Sengupta, 1994) does not satisfy the juxtaposition property.

6 The minimal dominant set is the union of classes of

similar outcomes

We now focus on the computability of the minimal dominant set. Let (N, v) be a game and
let ∆ be its minimal dominant set. As it easy to calculate the coalition structure core and
to check its emptiness, we assume that the coalition structure core of the game is empty.

Lemma 6.1. Let a and b be two outcomes in ∆ such that a � b. Then, there exists

an o.i.-dominating chain a = (x0,P0)
C1−→ (x1,P1)

C2−→ · · · Cm−→ (xm,Pm) = b, such that
the set of winning players only contains outsiders, i.e. in the notation of Definition 3.4,
W0 = ∩k

j=1 O(Cj,Pj−1).

Proof. Since a � b, there exists an o.i.-dominating chain πab from a to b. We explain how
to modify this path in order to meet the statements in the lemma.

Suppose that player i gains in moving from a to b. As a consequence, in moving from b to
a this player loses. For each o.i.-dominating chain πba from b to a (existence of such an o.i.-
dominating chain is guaranteed since a ∈ ∆ and a � b) player i is a loser, i.e. i ∈ L0(πba).
Consider the composed path πab ∧ πba ∧ πab from a to b. With respect to this path player
i is a loser.
Next, suppose that player i is equally well off in a as in b but is not an outsider (i.e. at
some stage k along the chain πab player i belongs to the deviating coalition). In other
words, player i had the opportunity to improve his payoff, but along the path πab it just
happens that he does not gain anything. Create a new path of length k in which i exploits
this opportunity to raise his payoff and denote the new outcome (at stage k) by c. Hence,
player i gains in moving from a to c. Again, for each o.i.-dominating chain πca from c to

16



a player i will lose (since a ∈ ∆ and a � c, such a path exists). With respect to the
composed path πac ∧ πca ∧ πab from a to b, player i is a loser.
Conclude the existence of a path in which, at the start, each player is either an outsider
(throughout the whole path) or a loser.

Lemma 6.2. Let a, b, and c be outcomes in ∆ such that a � b and a � c. Then, the
smallest (for inclusion) set O(a, b) of outsiders along all possible o.i.-dominating chains
from a to b is well defined. Moreover, O(a, b) = O(a, c).

Proof. First, we show that if O(a, b) (resp. O(a, c)) is a smallest set of outsiders along all
possible paths from a to b (resp. c), then O(a, b) = O(a, c). This is done by contradiction.
Assume that j ∈ O(a, b)\O(a, c). Let πab and πac be two paths for which the corresponding
sets of outsiders are exactly O(a, b) and O(a, c). Consider the composition π′

ab = πac∧πca∧
πab (again, note the existence of a path πca). Since j is not an outsider along πac, he is not
an outsider along π′

ab. This contradicts with O(a, b) being minimal.

Next, apply this result with b = c to obtain that the smallest set O(a, b) of outsiders along
all possible paths from a to b is indeed well defined.

As a consequence of this lemma, the notation O(a, b) can be shortened to O(a). The set
O(a) is the smallest set of outsiders along any possible path from a ∈ ∆ to any possible
outcome that indirectly o.i.-dominates a. When deviating away from a ∈ ∆, the players in
O(a) are ‘stable’ in the sense that they do not have any incentive to change their positions
and payoffs.

Lemma 6.3. Let a be an outcome in ∆ and let b be similar to a. Then, O(a) = O(b).

Proof. By contradiction. Assume j ∈ O(b)\O(a). Since j /∈ O(a), there exists an outcome
c such that (i) a � c and (ii) there exists a path from a to c such that player j belongs at
some stage to the deviating coalition. As a and b are similar, they motivate the very same
sequences of the initial and the subsequent deviations (cf. proof of Theorem 3.2). Hence,
j cannot belong to O(b). This contradicts the initial assumption.

The next lemma shows that when the outsiders are dropped, the similarity of two outcomes
implies that they are both in or both outside the minimal dominant set (of the smaller
game without the outsiders). Before stating the lemma, we want to observe that for an
outcome a = (x,P) in ∆, the set O(a) of outsiders collects some of the coalitions in P .
Also, the restriction a|N\O(a) = (x|N\O(a) , P|N\O(a)) can be interpreted as an outcome of
the game restricted to the set N \O(a).

Lemma 6.4. Let a and b be two outcomes and let a ∈ ∆. Denote the restrictions of a and
b to the set N \O(a) with a′ and b′. If a′ and b′ are similar, then a′ � b′ and b′ � a′.

Proof. Lemma 6.1 implies the existence of an o.i.-dominating chain

π′ : a′ = a0
C1−→ a1

C2−→ · · · Cm−→ am = a′,
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for which the set W0 of winning players is empty. Along the lines of the proof of Theo-
rem 3.2, we can construct a path with the same sequence of deviations (C1, C2, . . . , Cm)
from b′ to a′. This proves b′ � a′.

Next, we use the same sequence of deviations again, and we modify the path π′ towards a
path from a′ = (x′,P ′) to b′ = (y′,P ′). Look at stage k where coalition Ck deviates and
outcome ak is formed. A member of the deviating coalition Ck may have the following
backgrounds: (i) a singleton in Pk−1, (ii) belonging to a coalition that breaks up, or (iii)
belonging to a coalition C that is completely absorbed by Ck, i.e. C ⊂ Ck.
By individual rationality and the particular construction of paths where coalitional sur-
pluses are allocated to the weakest players (i.e. players that are the first to be left behind
as singletons), the players in case (i) and some of the players in case (ii) will cause no
problem: they have a low payoff and raising this to the level of a′ or b′ does not create
any further complication. When entire coalitions (case (iii)) or non-singleton coalitions
(the remaining part of case (ii)) join Ck the players may have high payoffs. Nevertheless,
going back to previous deviations we can guarantee that since the last time they have
become singletons they do not accumulate a payoff too high. This can be assured unless
v(C) > y′(C). By the similarity of a′ and b′ this inequality implies v(C) > x′(C). Then,
however, the construction of the path from a′ to a′ would have failed. Therefore, the
inequalities do not hold and the construction is feasible.

Now we state and prove the main result of this section.

Theorem 6.5. The minimal dominant set coincides with the union of some of the classes
of similar outcomes.

Proof. Let a = (x,P) be in ∆ and let b = (y,P) be an outcome similar to a. We have to
prove that b ∈ ∆. We distinguish two cases depending upon whether the set O(a) is empty
or not.

Case (i), O(a) = ∅.
Here, the theorem follows from the previous lemma.

Case (ii), O(a) 6= ∅.
Introduce the outcome c = ((x|O(a) , y|N\O(a)),P). The outcomes a and c coincide over
O(a). The previous lemma implies that c belongs to ∆.
Furthermore, b and c coincide over the set N \ O(a) where all the deviations take place.
Let d in ∆ and πbd be a path from b to d. We show the existence of a path from d to b. Let
the deviations along the path πbd work upon the outcome c and obtain a path πcd′ from
c to d′. Since c belongs to ∆, also d′ belongs to ∆ and there is a path πd′c from d′ to c.
Copy this path πd′c towards the starting point d and obtain a path from d to b. Conclude
that b is maximal for the relation ‘�’. Therefore, b belongs to ∆.

Hence, in order to determine the minimal dominant set it is sufficient to check the o.i.-
domination relation on the finite number of classes of similar outcomes. As such the
computation is reduced to a finite framework.
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