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Abstract

We consider the problem of determining a set of optimal tariffs for an agent in the network,
who owns a subset of all the arcs, and who receives revenue by setting the tariffs on the arcs
he owns. Multiple rational clients are active in the network, who route their demands on the
cheapest paths from source to destination. The cost of a path is determined by fixed costs
and tariffs on the arcs of the path.

We introduce a remodeling of the network, using shortest paths. We develop three algo-
rithms based on this shortest paths graph model, namely a combinatorial branch and bound
algorithm, a path oriented mixed integer program and a known arc oriented mixed integer
program. Combined with reduction methods this remodeling enables us to solve the problem
to optimality, for quite large instances. We provide computational results for the methods
developped and compare them with the results of the arc oriented mixed integer programming
formulation of the problem, applied to the original network.

Subject Classification: Networks/Graphs: Applications. Programming: Integer Algorithms.
Mathematics: Combinatorics.

1. Introduction

The tariff-setting problem in a network involves two non-cooperative groups, tariff setting agents
and tariff following clients. Each arc in the network is owned by (at most) one agent. Being
the owner of an arc an agent can set the price for renting capacity on the arc freely, in order to
maximize his revenues. The clients wish to route a certain demand for flow capacity on a path
connecting two vertices (a commodity). A selected route can involve connections belonging to
different agents. Clearly, each client will select a route with minimum cost to satisfy the demand
for their commodity. This problem is essentially a game theoretic problem, see Fisk [3], where
the agents decide on their prices based on (partial) knowledge of the prices of competing agents.
We restrict the problem to a single agent who knows the tariffs of his competitors and intends to
charge revenue-maximizing tariffs on the subset of the network arcs owned by himself. This agent
is generally referred to as the leader, while the clients are referred to as followers. Labbé et al. [7]
showed that the single agent problem is NP-hard, already with only one commodity, given bounds
on the tariffs. They also identify two polynomially solvable special cases: the case with multiple
commodities, but one tariff arc; and the case with one commodity where the path in the network
taken by the client in the optimal solution is known a priori.
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The tarification problem has a wide range of applications such as tariff setting in freight
transportation, and highway toll optimization, see Brotcorne et al. [1] and Labbé et al. [7],
respectively. Recently, the problem has become of interest in the telecommunications market.
Here, many operators are active, who rent their capacity on connections to customers. In general,
a single operator does not own complete connections between all pairs of vertices in a network.
Thus, a customer has to rent connections from different operators to establish a complete line.

An interesting variant of the tarification problem occurs in highway traffic routing, see Jahn
et al. [5], Roughgarden et al. [8], and IP (Internet etc.) traffic routing, see Fortz et al. [4]. Here a
single operator is active, and tariffs are introduced with the objective to divert traffic from areas
of congestion.

A linear bilevel model is a very natural and elegant formulation of the problem. The upper
level relates to the leader and fixes the tariffs, the lower level belongs to the clients, who given the
tariffs set by the leader, can determine their best (shortest) path. This model was proposed first
in Labbé et al. [7]. For the single-commodity case, primal-dual heuristics based on a penalization
of the lower level objective function are proposed by Brotcorne et al. [1]. These heuristics were
extended to multiple commodities in Brotcorne et al. [2]. Furthermore, in Labbé et al. [7], the
problem was reformulated as a mixed integer program. This program solves up to medium sized
instances within reasonable time.

The solution methods we propose here are all based on a remodeling of the network, that
generally reduces the problem. Moreover, the essential structure of solutions to the problem is
simultaneously captured. Concretely, we consider shortest paths that can be used by the clients
in the network. These shortest paths consist of fixed cost arcs and tariff arcs, but between each
pair of consecutive tariff arcs the shortest path, using only fixed cost arcs, will always be selected,
independent from the tariffs. Such paths are replaced by arcs in the so called shortest paths graph
model, which is equivalent to the original problem. This simple, but elegant, reformulation works
very well on almost any instance. For this shortest paths graph model, the still huge number
of possible paths for each commodity can be reduced enormously with processing techniques
using dominance criteria among paths. These ideas are exploited in three solution methods: a
combinatorial branch and bound algorithm, a path oriented mixed integer program, and a known
arc oriented mixed integer program (Labbé et al. [7]). All three methods allow us to solve fairly
large instances of the problem in a small amount of time.

In section 2, we define the tarification problem, address its complexity and introduce the
necessary notation. Then, in section 3, the remodeling of the network is described. In section 4,
model specific graph reduction methods are given. In section 5 these concepts are used in a branch
and bound algorithm, while section 6 gives a path and arc oriented mixed integer program. We
present some computational results in section 7, where we compare the three methods developed
to the arc oriented mixed integer program of Labbé et al. [7] on the original network, to illustrate
the efficiency of our methods and remodeling technique.

2. The Tariff-Setting Problem

Consider a network represented by a directed graph G = (N, A) with nodes N and arcs A. The
arc set A is partitioned into two sets: the set of tariff arcs T', and the set of fized cost arcs F'. The
tariff arcs belong to the leader in the network and incur a revenue generating toll for routing a
unit of a client’s demand. The fixed arcs are owned by other agents in the network, whose tariffs
are known a priori and hence can be viewed as fixed per unit costs. The tariffs on the arcs of T
are determined such that the total revenue of the leader is maximized. Both the tariffs and the
fixed costs are assumed to be nonnegative. The clients on the network route their demands from
source to destination according to the shortest path with respect to total cost, where the total cost
of a path is defined as the sum of all the tariffs and fixed costs on the arcs of the path. Whenever
the client has a choice among multiple shortest paths with the same total cost but with different
revenues for the leader, we suppose the client takes the shortest path that is most profitable to
the leader. This tie-breaking rule is justified by noting that we can always decrease the tariff on



one of the arcs of the path with highest revenue for the leader by e.

Labbé et al. [7] studied the tarification problem on a transportation network and have shown
that the related decision problem is NP-complete for a single commodity when lower bounds on
the tariffs are given. Some variants of the tarification problem have been shown to be solvable by
polynomial-time algorithms. Among these is the class of problems with only a single tariff arc and
multiple clients and the class of problems where the leader is dealing with multiple tariff arcs and
a single client for which the path taken at optimality is known a priori. The reader is referred to
Labbé et al. [7] for a description of these algorithms.

We denote by ¢, the cost of routing a unit demand on a fixed cost arc a € F' and by t,, to be
determined by the leader, the cost of routing a unit demand on a tariff arc a € T'. The commodities
are denoted by the set K. The demand of a commodity k € K is given by di. The source and
destination of commodity k are given by the pair (sg,tr). The set of paths that connect s and
ty is given by Py. For each path p € P, we introduce T}, for its set of tariff arcs, and F}, for its set
of fixed cost arcs. Furthermore, the cost of routing a unit demand on p is denoted by its length
1,(t), which is a function of the tariffs ¢. The length of p is determined by the sum of the costs on
the fixed arcs of the path, denoted by c,, and the costs on the tariff arcs of the path, represented
by 7, (t). Thus, 1,(t) = ¢, + m,(t), where ¢, = Cq, and m,(t) = t,. Note that our
modgl( iznplicitly ilrjl(cgrporgtes aII)‘EZS)With botﬁJ ﬁxe%:;relgptariff costsp gizlce v%ac%% divide such an arc
a with cost ¢, and tariff ¢, into two arcs: a fixed arc with cost ¢, and a tariff arc with tariff ¢,.

To ensure that the problem is bounded, we assume that for each commodity there exists a
path from source to destination which uses only fixed cost arcs. Otherwise, the leader can set the
tariffs on the arcs in T arbitrarily high.

The following formulation of the tarification problem is a direct implementation of the above
description.

>0

max Y dpmp (1)
st. pp=argminly(t) Vke K
PEP:

The formulation given by (1) is a bilevel problem where at the upper level the leader strives
to maximize his revenue, while at the lower level the clients (followers) seek to minimize the cost
of routing their demands. Both objective functions are linear and hence we are dealing with a
linear-linear bilevel program. The general linear-linear bilevel program has been shown to be
NP-hard by Jeroslow [6]. For a reference on bilevel programming, we refer the reader to Vicente
and Calamai [9] who have compiled an annotated bibliography on this subject containing more
than one hundred references. Notice furthermore that the bilevel program given by (1) is not
polynomial in its input data, since the set of all possible paths for each client ¥ € K may be
exponential.

Labbé et al. [7] rewrite the path oriented formulation (1) to the following arc oriented bilevel
model. Let the vector b¥ be the demand/supply vector for each commodity where each element
of the vector represents the demand/supply for a commodity at each node in the graph.

max > Y tayk

20 peK a€T

min )" { > otk + % cayéf}

y*>0  kex laeT a€F

st. Ayt =0k Vke K

In this bilevel model, y* € RI4l represents the flow on the arcs, in vector notation of commodity
k. Furthermore, A represents the node-arc incidence matrix of the network. This formulation has



Figure 1: Shortest Paths Graph Model (right) for |T'| = 3.

been used in Brotcorne et al. [1] and Brotcorne et al. [2] for the development of primal-dual
heuristics in case of a single-commodity and multiple commodities, respectively.

Labbé et al. [7] have reformulated the bilevel model (2) as a mixed integer program. To this
end the lower problem is separated into |K| problems, one for each commodity. This is done by
introducing for each commodity its own tariff t*. Next, the LP for each commodity is restricted
to its optimal solution(s) by adding the variables and constraints of the dual LP, and a constraint
that sets the primal and dual objective at the same value. Later, constraints are added to force
equality of tariffs for all commodities. We will refer to the single-level mixed integer program of
Labbé et al [7] in the remainder of this paper as AMIP.

3. The Shortest Paths Graph Model

If for given tariffs ¢, for all a € T a client will select the shortest path, say p, between the two end
nodes of his commodity, then clearly, the subpaths of p are also shortest paths. Consider two tariff
arcs a1 = (i1,71) and as = (i2, j2) that appear consecutively on p. Then the subpath between
j1 and iy is a shortest path that only contains fixed arcs. Since such paths can be computed
using the original data, we constructed a new graph model, for each commodity, in which this is
actually done: the shortest paths graph model (SPGM). We will define this graph model for a
single customer first. Consider the original graph G = (N, A) with the tariff arcs in T C A. For a
client with a demand d from s to ¢, we define the graph G* = (N*, A*) and the tariff arcs T* C A*.
In this graph, the tariff arcs are copied from G as a matching. So, arcs with a common vertex
are separated. Next, we construct the following fixed cost arcs. For two tariff arcs a; = (41,71)
and ay = (i2, j2) we connect j; with 4o, if there is a path in G that uses fixed arcs only. Similarly,
we connect jo with i;. From the source s we construct arcs to all the tail nodes of the tariff arcs,
and from all the head nodes we construct an arc to the destination ¢, again only if paths exist
using only fixed arcs in G. Any fixed arc in A* has a cost equal to the length of the shortest
path between its end vertices in G, using only fixed cost arcs in G. The new network is called the
shortest paths graph model (SPGM).

Example 1. Figure 1 shows the shortest paths graph model (right) of a network (left) containing
three tariff arcs for a commodity from node 13 to 14. The tariff arcs are given by the arcs
(1,2),(3,4) and (11,12). All other arcs in the shortest paths graph model are representations
of the shortest path using no tariff arcs between each node. The cost of the arc is the cost of



Figure 2: Detailed view of tariff arc

the corresponding shortest path in the original network between the two nodes. If no path exists
between two nodes in the original network, the corresponding arc in the shortest paths graph
model is not present or has infinite cost.

The shortest paths graph model can easily be extended to multiple commodities. For each
commodity, we create a SPGM. The inner graph (consisting of the end vertices of the tariff arcs,
and the arcs between them) is equal for all commodities and hence needs to be determined only
once. Additional shortest path calculations are necessary only for the arcs leaving the source
and/or entering the target of each commodity. The shortest path graph model is equivalent to the
original graph in the sense that both have an optimal solution of the same value: if a path exists
in the original graph, then there exists a path in the shortest path graph model which is at least
as good. Alternately, if a path exists in the shortest path graph model, then a path with the same
cost exists in the original graph.

4. Reduction Methods

We can decrease the size of the shortest paths graph model considerably by using reduction
methods. The aim of these methods is to limit the amount of potentially shortest paths for a
commodity to an acceptable number. First, we describe some techniques with which we can
remove arcs from the network. Second, we describe a dominance relationship for paths that
removes paths from the set of potentially optimal paths explicitly. The aim is to end with a
manageable set of potentially optimal paths.

4.1 Arc Reductions

Denote by wu;;, the cost of the shortest path using only fixed arcs from node ¢ to node j in G, i.e.,
u;; is the length of the arc (4, ) in G*. Let [;; denote the cost of the shortest path from 4 to j
in G, possibly using tariff arcs, when the tariffs are set to zero. We restrict ourselves to a single
commodity, where node s represents the source node and node ¢ the destination node. In figure 2
we depict the values defined here: the u;; are arc values, and the /;; are node values.

Note that [;; is a lower bound for the cost of a path from 4 to j, and w;; is an upper bound for
the cost of a path from ¢ to j taken by the client.

Proposition 1. Ifl;; = uj;, then any optimal path from s to t using node j can use arc (j,t): all
other arcs leaving j can be removed.

Proof. A lower bound on the cost of a path, possibly using tariff arcs, from j to ¢ is l;¢. An upper
bound is given by w;;. If 14 = uj, there is no room for taxation on any path from j to ¢. Thus,
(4,t) is an optimal choice. O



Figure 3: Original graph (left) and final SPGM graph (right).

Proposition 2. Ifls; = ug, then any optimal path from s to t using node i can use arc (s,4): all
other arcs entering i can be removed.

Proof. Analogous to proposition 1. O

Proposition 3. Consider two tariff arcs: (i1,j1) and (iz,j2). If uj; < wj iy +ljse, we can delete
arc (j1,%2).

Proof. The lower bound on the cost of a path from j; to ¢ taking the arc (ji,42) is equal to
Ujyis + ljpt- An upper bound on the cost of a shortest path is given by w;,;. Hence, there is
no room for taxation on a path from j; to ¢t using the arc (j1,42). Thus, (j1,¢) is an optimal
choice. O

Proposition 4. Consider two tariff arcs: (i1, j1) and (i, j2). If usiy < Ujyi, + lsiy, we can delete
arc (ja,i1).

Proof. Analogous to proposition 3. O
Proposition 5. If ug <lg, + ¢, we can delete the tariff arc (i1, j1)-

Proof. The lower bound on the cost of a path going through the tariff arc (i1,j1) is lsi; + e
Hence, there is no room for taxation on the tariff arc (¢1,71), and thus (s,t) is always at least as
good. O

Proposition 6. Consider two tariff arcs: (i1, j1) and (i2,j2). If ust < lgiy, + ujyi, + ljse, we can
delete the arc (j1,12).

Proof. The upper bound on the cost of a shortest path from s to ¢ is us. A lower bound on the
cost of a path using the tariff arc (i1, j1) and going to the tariff arc (iz, jo) is at g, + wj iy + List-
Hence, there is no room for taxation on a path from s to ¢ using the arc (j1,%2). Thus, this arc
need not be used in an optimal solution. O

Example 2. We illustrate some of the reduction methods proposed in this section on the graph
shown in figure 3 on the left. For this instance, we are dealing with one client who has a unit
demand from node 13 to node 14. The tariff arcs in the network are given by the arcs (1,2),(3,4)
and (11,12), also indicated by the dotted arcs in the figure. In this graph we can delete the arcs
(4,1), (2,3) and (4,11) of the shortest paths graph model by applying for example proposition 3



Figure 4: Dominated paths example.

or proposition 4. Furthermore, proposition 5 allows us to delete the tariff arc (11,12) from the
graph.

The final graph is shown on the right in figure 3. For this graph it is easy to see that the
optimal solution is to set the tariff on the arc (1,2) to 7, while setting all the other tariffs to a
suitable large value, i.e. 11, yielding a revenue of 7 for the leader.

4.2 Path Reduction

By applying the propositions described in section 4.1 and finding all paths in the graph, we obtain
a reduced set of paths that remains relevant for the commodity. Hopefully, this set of paths
is small. It is however possible to reduce the size of this set in some instances even more by
eliminating paths which are always dominated by others. The notion of path dominance is given
by the following definition.

Definition 1. If we can replace in all feasible solutions the path q by the path p without violating
the feasibility constraints or decreasing the value of the objective function, then path p dominates
path q.

The following proposition allows us to eliminate dominated paths. Recall that T}, is the set of
tariff arcs from path p, and that ¢, is the total cost of the fixed arcs from p.

Proposition 7. Consider a path p, resp. q. If T,, C T, and ¢4 > cp, then path p dominates path
q for all tariff values.

Proof. Suppose that path ¢ is the shortest path taken by the client. Then

cq + Z ta <cp+ Z to or equivalently ¢4+ Z ta <c¢p (3)
acTy a€T), a€T\Tp

Since ¢; > ¢, and t, > 0 for all tariff arcs a € T, equation (3) only holds when ¢, = ¢, and
to = 0 for all a € T;\T,. Hence, we can replace path ¢ by path p without violating the feasibility
constraints or changing the value of the objective function since path p has the same revenue
for the leader and the same cost for the client as path ¢q. Equation (3) shows furthermore that
whenever ¢, > ¢p, path ¢ can never be the path taken by a client in a feasible solution, since path
p will always be cheaper. O

Example 3. An instance where this dominance of paths occurs is given in figure 4. The tariff
arcs are the arcs (i1,41), (i2,j2) and (i3,j3). The leader is dealing with one client who wants to
route his demand from node s to node t. For this graph, the path {s, i1, j1,42, j2,t} is dominated
by the path {s, i1, j1,t}.

The shortest paths graph model combined with the arc and path reductions mentioned in this
section allow us to create a sparse graph for each commodity, which in turn yields a small set of
relevant paths for each commodity, as will be shown by the numerical results in section 7.



5. Branch and Bound Algorithm

In this section we describe a branch and bound algorithm for our tariff-setting problem which uses
the shortest paths graph model from section 3 and the reduction methods from section 4. This
algorithm consists of two steps. In the first step we create for each client a shortest paths graph
model and apply to it the reduction methods of section 4. For each client we thus find the relevant
shortest paths. In step two we solve the problem to optimality by a classical branch and bound
method.

As stated in section 2, denote the clients by the set K and the set of paths a client k € K
can take by P;. The reduction methods applied to the shortest paths graph model allow us to
determine the set of relevant paths for each commodity. We suppose that Py is reduced to contain
the relevant paths only. Recall furthermore from section 2 the linear function I,(t) = ¢, + mp(¢)
denoting the cost of a path p as a function of all tariff values. Let pﬁc be the path for client
k € K with the smallest fixed cost, i.e., p}, = argmin,cp, ¢, and p¥ the path with the largest fixed
cost, i.e., pp = argmax,cp, ¢p- Note that pi has no revenues for the leader, since it denotes the
path with fixed cost arcs only. Clearly, cpz — ¢, is an upper bound on the revenues that can be
generated from client k. This is an important measure in the branch and bound algorithm.

5.1 Branching Rules

In each node of the branch and bound tree, we select a client, and we create a branch for each of
the relevant paths of the client. The selection method of the clients is based on the upper bound
Cpp — €1 ON the revenue generated by each client for the leader: the client for which this upper
bound is highest, is selected first. Next, we walk through the search tree in a depth-first manner.

5.2 Node Processing

Due to our branching rules, in each node of the branch and bound tree for some clients the path
taken in the solution is fixed, whereas for other clients this choice is still to be made. In each
node, we denote by the set Ky C K the set of clients for which we have fixed the path taken in
the solution. Suppose that for any client k¥ € Ky, we have fixed the path p;. We can find the
optimal, revenue maximizing tariffs for the problem restricted to the clients in Ky by solving the
following linear problem.

max ) dpmp: (1)

kEKf
st Lp(t) > L (t) Vke Ky,V¥pe Py (4)
t, >0 YaeT

The linear program described in (4) forces the path pj to be the shortest path in Py, while
maximizing the leader’s revenue.

We generate lower bounds in each node of the branch and bound tree by computing a feasible
solution. Such a feasible solution can be created by solving (4) and then adding the revenues from
the tariffs of (4) for the clients in K\Ky. A better lower bound may be generated by fixing for
all clients the path taken in the solution. For each client k¥ € K; we already know which path is
taken in the solution and we denote it by p;. For the clients £ € K\K, we fix the path to the
one for which the possible revenue is highest. This is the path with smallest fixed cost, i.e. the
path p:

max dkﬁp; (t) + > dkﬂ—pk (t)
kEK; keK\K;

s.t. lp(t) > ZPZ (t) Vk € Kf,‘v’p € Py (5)
I,(t) > ll’i (t) Vk € K\K,Vp € P,
t, >0 YaeT
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Figure 5: Upper bound on revenue or cost is not reached.

Note that this linear program may be infeasible in which case no sensible lower bound is
generated.

For a client k£ € K an upper bound for the revenue generated by that client is given by cpu —Cpt.-
As is shown by Labbé et al. [7], this upper bound is not necessarily reached. Even the upper
bound on the cost of the path, ¢y, is not tight. This is shown by the example given in figure 5.
For a single client with a unit demand from node 1 to node 4, the optimal tarification scheme is
to set the tariffs on the tariff arcs to t; =t = 2. Hence, the cost of the path taken by the client
is 6, yielding a revenue of 4 for the leader. The upper bound on the cost of the path is however 7,
while the upper bound on the revenue is given by 7 — 2 = 5.

In each node of the branch and bound tree, let II* be the optimal value of (4), i.e., the optimal
revenue obtained from the commodities with fixed paths. The remaining customers can contribute

no more per unit than ), - K\K; {cp;; —Cpt } An upper bound on the total revenue for the leader
in a node is thus given by:

e+ Y d {cp;: — e } (6)

keK\K;

This upper bound can be tightened by using the information we can retrieve from the con-
straints of the linear program given by (4). These constraints must be satisfied by any feasible
solution, for all clients and their relevant paths. Thus, the constraints of (4) also hold for the
commodities for which a path is not fixed yet, as can be seen from the constraints in (5). Each of
the constraints in (4) involves two paths, say p and ¢, and states that the total cost of one path
(say p) is at most the total cost of the other path (say ¢): ¢,(t) < ¢,(t). Now, let T}, be the set of
tariff arcs on path p. The constraint reads in more detail

Gt D ta<cgt Yt (7)
a€Ty a€Ty
or equivalently,
Soota— Y ta<ei—op (8)
a€T\Ty a€T \Tp

If EaeTq\Tp t, can be bounded from above, then we have an upper bound on the sum of a set

of tariffs. For instance, if T;\T} is empty, then we get zero as a trivial upper bound. Thus, this
way we find a number of constraints of the type

Y ta<b; (i€®) 9)

a€T;CT

for index set ®.



Next, consider a path p € Py, from commodity k € K\Ky, i.e., a commodity for which no path
has been fixed yet. An upper bound on the total cost per unit demand was previously given by
the path using only fixed arcs, i.e. the path c,z. With the constraints of type (9) obtained from
the commodities in Ky and by defining b; = 0 for T; = (), the upper bound on the total cost of a
path p € Py, denoted by v(p), is given by:

= i i K\K P 1
7(p) el (cp +bi) Vke K\Ky,Vp€ Py (10)
For each commodity k € K, the total cost of each path taken in a solution can be at most the
minimum cost of all other possible paths for that commodity. Hence, an upper bound on the total
cost of any path in Py is given by:

min v(p) (11)

For each commodity k € K , the upper bound on the revenue is still highest for the path with
smallest fixed cost, i.e. the path pi. We can thus improve the upper bound computation given in
(6) by using the following upper bound:

m+ > dk{min'y(p)—cpi} (12)

PEF;
kEK\K; *

We will use the upper bound calculation of (12) for our branch and bound algorithm.

6. Mixed Integer Programming Formulations

In this section, we introduce two mixed integer programs. The first is a formulation using path
variables, where the paths are generated by the shortest paths graph model. The second is an
application of the mixed integer program formulation of Labbé et al. [7], which uses the arcs of
the shortest paths graph model instead of the original arcs in the network.

We rewrite the bilevel formulation (1) to the following single-level program, using path vari-
ables. To this end, we introduce the binary variable h;, which indicates whether or not a given
path is taken in the optimal solution.

max », ., di > hptg

kEK pEP; a€Ty

s.t. > hp=1 Vke K
pEP; 13
() > % holy(t) Vk€K,Vpe Py (13)
qEPy
hp € {0,1} Vk € K,Vp € P,
te >0 VaeT

The first constraint in this formulation indicates that a client selects only one path. The second
constraint ensures that the path taken by the client is indeed the cheapest available path. Note
that this formulation is not only nonlinear in its objective function, but also in this constraint. It
is however possible to use standard linearization techniques for (13) by introducing the variable
Tpe for each path p € P, and tariff arc a € T'. The variable 7, is equal to ¢, if and only if client
k € K takes the path p € P, going through the tariff arc a € T and is equal to 0 otherwise.
After adding the constraints enforcing this relationship, we can write the following mixed integer
programming formulation. We will refer to this formulation as PMIP.

10



max », Y, dk<2 Tpa>

keEK pEP; a€T,
s.t. > ohp=1 Vk e K
PE Py
I, >3 > heeca+ DX, D 19 VEEK,Vpe B
qEP, acF, qEP;, a€T,
b= cat X ta Vk € K,Vpe Py
a€EF, a€T),
Tpa —tq < (1 — hp)M Vk € K,Vp € P,Va €T,
Tpa —tq > —(1—hp)M Vk € K,Vp € P,Va €T,
Tpa < hpM Vk e K,Npe P,,YaeT
hp € {0,1} Vk € K,Vp € P,
te >0 VaeT
Tpa > 0 Vk e K,Vp€ Py,VYNaeT

(14)

Note that for the PMIP, we are in theory still left with an exponential number of constraints.
However, the remodeling of the network proposed in this paper, combined with the model specific
graph reduction methods, will allow us to generate the relevant paths for each commodity and
thus reduce the necessary variables and constraints to a manageable amount.

We can use the shortest paths graph model in an arc oriented model by applying the formulation
referred to as AMIP of Labbé et al. [7]. The idea is to create a multiple commodity mixed integer
program by first allowing the tariffs on each tariff arc of the shortest path graph model to be
different for each commodity, i.e. to allow for price discrimination and maximize the revenue of
the leader over all commodities, and then prohibit price discrimination by setting tariffs on the
arcs of each SPGM equal to each other if they represent the same tariff arc in the original network.
We will refer to the adaptation of the formulation AMIP to the shortest paths graph model as
AMIP+.

The results of AMIP+ and PMIP, together with the numerical results of the branch and bound
algorithm developed in this paper, will show the efficiency of the shortest paths graph model when
compared to AMIP on the original network.

7. Numerical Results

The branch and bound algorithm (PBB) was implemented in C++, using CPLEX 7.5 to solve
the linear programs as described in (4) in each node of the tree. The formulations AMIP, AMIP+
and PMIP were also implemented in C++, using CPLEX 7.5. All tables concerning the numerical
results are found in the appendix.

The solution methods developed in this paper were tested on two type of data sets. The first
type are data sets provided by France Télécom Research and Development and represent real life
instances of the tarification problem as occurring for France Télécom at the international level.
In these instances, the graph represents a telecommunications network and the tariff arcs are the
interconnections between the different operators. The clients are large corporations who wish to
route their (international) demand on the network. A description of these real life instances is
given in table 1, where, for each data set, we describe the number of nodes and arcs in the network,
the number of tariff arcs and the number of clients.

The second type of data set consists of randomly generated graphs (subgraphs of grid graphs),
where the arc between two nodes is created with a given probability. To each arc, we assign a
uniformly distributed random cost. The tariff arcs are also assigned randomly, just as the source
and destination and demand of each commodity. These instances are much larger than the real
life instances, and are used to illustrate what happens with each algorithm when the number of
(tariff) arcs or the number of clients in the network increases. Each of these data sets has a name
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of the form '2TyD’, where x represents the number of tariff arcs and y the number of clients in
the network. Moreover, for the randomly created instances, each data set referred to as 'zTyD’
actually consists of 5 instances. Statistics or execution times of a data set 'zTyD’' are averages
over all 5 instances created. Hence, each formulation developed in this paper has been tested on
a total of 165 random instances.

To illustrate the effectiveness of the shortest paths graph model, table 3 and table 4 show some
statistics on the number of paths generated for each data set using the shortest paths graph model
and its reduction methods for both type of data sets. In these two tables, the column MIN, resp.
MAX, indicates the minimum, resp. maximum, number of paths generated over all commodities.
The column AVRG gives the average number of paths generated for each commodity for the whole
data set. As stated previously, in table 4 the value of MIN, MAX and AVRG for each data set is
an average over the 5 instances used. We can see from these two tables the competitiveness of the
shortest paths graph model and its reduction methods by the small number of paths generated on
average for the given data sets. With this information we can expect the PBB algorithm and the
PMIP formulation to benefit from this small number of paths for each commodity.

The performance of the shortest paths graph model was tested using the PBB algorithm, the
PMIP and AMIP+ formulations and compared to the mixed integer programming formulation
AMIP of Labbé et al. [7], which uses the original arcs in the network and all tariff arcs available.

The computational results for the PBB algorithm, AMIP, AMIP+ and PMIP were established
on an AMD Athlon 2400XP+ with 1 Gb RAM, running Debian GNU/Linux 3.0 with kernel
2.4.18. For the AMIP+ formulation, the arcs generated by the shortest paths graph model were
used instead of the original arcs in the network. For the PMIP and the PBB algorithm, the size
of the set Py for each commodity k € K was determined by the number of paths generated by the
shortest paths graph model and its reduction techniques. As can be seen from tables 3 and 4, for
all data sets this resulted on average in a small number of constraints for each commodity.

Table 2 gives an overview of the results for all algorithms for the real life instances. In this
table, the column OPT indicates the value of the optimal solution for the given data set. The
column CPU(s), resp. Nodes, indicates the execution time in seconds, resp. the number of nodes
in the B&B tree for each algorithm. For the PBB algorithm, the PMIP and the AMIP+, the
CPU time includes the time needed for the generation of the shortest paths graph model and all
relevant paths. As can be seen in table 2, the PBB algorithm efficiently uses the few relevant
paths generated to find the optimal solution for each data set. When we compare its execution to
the AMIP, we see that the execution time of the PBB algorithm is less or equal to the running
time of CPLEX for the AMIP for each data set considered. The difference is especially large for
the data sets D2, D3, D6, D7 and D8. The most striking difference is for the data set D3, for
which the execution time of the AMIP is 113423 seconds, whereas the PBB algorithm takes only
30 seconds. The PMIP and AMIP+ columns show the efficiency and power of the shortest paths
graph model used in this paper. The execution time of the PMIP is 3 seconds or less for all data
sets, except the data set D6. For this data set the execution time is however still much less than
the execution time of the AMIP and less than the time needed for the PBB algorithm to execute.
The AMIP+ column shows furthermore that the AMIP formulation can benefit very much from
the shortest paths graph model: for all data sets, the time needed for the AMIP+ formulation is
a little more than the time needed for the PMIP formulation and much less than the time needed
for the same formulation on the original network (AMIP).

Table 5 and table 6 illustrate the behaviour of all formulations developed for larger networks
and show what happens when we increase the number of tariff arcs or clients in the network. For
these instances, the CPU time of the PMIP, AMIP and AMIP+ does not include the time needed
for the shortest paths graph model. This value is given in the column SPGM. The maximal
execution time for each solution method was set to 3600 seconds. If for a certain formulation
or algorithm an instance could not be solved within this time, the column CPU indicates the
number of instances where the time limit was exceeded, while the column Nodes gives the average
percentual gap between the best (optimal) solution as found by any of the other algorithm within
the time limit. All instances were solved to optimality by both the PMIP or AMIP+ formulation.

The numerical results for the random instances show that the performance of the algorithms
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developed is consistent with the numerical results for the real life instances: the PMIP and AMIP+
are the fastest, followed by respectively the PBB and AMIP. For the PMIP, AMIP+ and PBB
algorithms, the numerical results show also that the time needed for the generation of the SPGM is
the largest part of the execution time of the algorithm. When the size of the network increases, the
shortest paths graph model takes more time to generate, but its execution time is more dependent
on the number of shortest paths that need to be calculated (depending on the number of tariff
arcs or clients in the network) than on the size of the network each shortest path calculation is
executed on. The execution time of the SPGM increases when the number of clients is increased,
but is especially sensitive to the number of tariff arcs in the network. We can furthermore conclude
that although the time needed for the SPGM generation increases when the number of tariff arcs
or clients increases, the AMIP+ and PMIP formulation still use the information generated by
the shortest paths graph model very efficiently when compared to the PBB algorithm or AMIP
formulation, where an increase in the number of clients in the network is soon a problem. For
example, for the networks with 100 nodes and 2000 arcs, the data set 907°'50D, consisting thus of
90 tariff arcs and 50 clients, cannot be solved in 4 out of 5 instances for the PBB algorithm and
5 out of 5 instances for the AMIP formulation.

We can also note that although the PMIP and AMIP+ are much faster than the PBB algorithm
and the AMIP, the advantage of the PBB algorithm over the PMIP, AMIP+ and AMIP is that
it does not need a powerful mixed integer programming solver. Since very basic techniques have
been used both with respect to concept and implementation, there is still room for improvement
on this algorithm.

8. Summary

In this paper we studied the tariff-setting problem. After introducing the problem and its com-
plexity we propose in a first part of the paper a remodeling of the network referred to as shortest
paths graph model, which in our opinion, reduces the problem and captures the essential structure
of solutions to the problem. The available arcs and paths in the shortest paths graph model are
furthermore reduced by processing techniques using dominance criteria among paths.

In the second part of the paper, we use this remodeling of the network in three solution methods:
a combinatorial branch and bound (PBB), a path oriented mixed integer programming formulation
(PMIP) and an adaptation of the arc oriented mixed integer programming formulation described
by Labbé et al. [7] and referred to as AMIP+. These three solution methods are compared to the
general arc oriented mixed integer program (AMIP) as described by Labbé et al. [7] and tested on
two type of instances: real life instances provided by France Télécom Research and Development
and randomly generated grid graphs.

It is shown that the shortest paths graph model is very helpful in remodeling the network
and that formulations based on this remodeled network are very efficient, as demonstrated by the
numerical results of the PMIP, AMIP+ and PBB algorithms. The execution time of the AMIP+
and AMIP formulations illustrate that existing formulations (AMIP) can also benefit from the
information provided by the shortest paths graph model.

As a possible future extension, the paths generated by the shortest paths graph model and its
reduction methods could be used in other models based on a path formulation of the tarification
problem. Based on the numerical results given in section 7, such a path formulation could benefit
from the small number of paths generated.
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Appendix

Table 1: Description of France Télécom instances.

Data | #Nodes | #Arcs | #Tariff Arcs | #Clients
D1 29 92 6 13
D2 29 98 11 13
D3 43 176 10 20
D4 60 212 9 22
D5 60 212 10 8
D6 60 212 17 8
D7 60 212 21 18
D8 49 116 9 23
D9 33 116 15 30

Table 2: CPU times for France Télécom instances.

PMIP PBB AMIP+ AMIP
Data | OPT | CPU(s) | Nodes | CPU(s) | Nodes | CPU(s) | Nodes | CPU(s) | Nodes
D1 6.6225 0 1 0 52 1 8 2 187
D2 7.7928 0 10 1 201 0 49 8 1060
D3 728.435 1 55 30 14856 2 786 113423 | 13619345
D4 1321 1 78 37 21523 6 2445 208 10305
D5 995 1 6 0 185 1 16 1 35
D6 1426 35 134 39 1195 39 1246 399 71013
D7 1565 3 257 25 9689 8 1254 1426 76003
D8 664406 0 110 23 16709 1 32 317 29509
D9 189180 1 112 11 6129 1 132 56 3141
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Table 3: SPGM statistics for France Télécom instances.

Data | MIN | MAX | AVRG
D1 2 3 2.5
D2 2 5 3.1
D3 2 8 5.5
D4 2 15 4.2
D5 2 20 5.0
D6 2 30 12.0
D7 2 9 4.8
D8 2 10 4.0
D9 2 8 3.1

Table 4: SPGM statistics for random instances.

Networks with 100 nodes and 2000 arcs

Data MIN | MAX | AVRG Data MIN | MAX | AVRG

20T15D 2 2.8 2.1 90T20D 2 5.8 2.8
30T15D 2 3.4 2.2 90T30D 2 6.4 2.8
40T15D 2 3.6 2.3 90T40D 2 6.4 2.8
50T15D 2 4.0 2.6 90T50D 2 6.4 2.8
60T15D 2 5.0 2.8 90T60D 2 6.8 2.8
70T15D 2 5.4 3.1 90T70D 2 7.2 2.8
80T15D 2 5.4 3.1 90T80D 2 7.8 2.8
90T15D 2 7.2 3.4 90T90D 2 7.8 2.8
100T15D 2 7.2 3.5 90T100D 2 8.0 2.8
Networks with 75 nodes and 4000 arcs
Data MIN | MAX | AVRG Data MIN | MAX | AVRG

20T20D 2 3.6 2.2 100T30D 2 4.6 2.5
30T20D 2 4.0 2.3 100T40D 2 4.8 2.6
40T20D 2 4.2 2.4 100T50D 2 6.2 2.6
50T20D 2 4.4 2.5 100T60D 2 6.2 2.6
60T20D 2 5.0 2.6 100T70D 2 6.4 2.6
70T20D 2 5.4 2.8 100T80D 2 6.8 2.6
80T20D 2 5.8 2.9

90T20D 2 6.0 3.0

100T20D 2 6.8 3.1
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Table 5: CPU times for networks with 100 nodes and 2000 arcs

SPGM PMIP PBB AMIP+ AMIP

Data CPU(s) | CPU(s) | Nodes | CPU(s) | Nodes | CPU(s) | Nodes | CPU(s) | Nodes
20T15D 3.4 0.2 2 0.2 164.8 0.4 5 38.6 121.2
30T15D 7 0.6 4.2 0.1 206.4 0.2 11.8 51.2 163.8
40T15D 11.6 0.2 2.2 04 215.6 04 3 142.2 934.2
50T15D 17.8 0.1 34 0.8 305.4 0.6 4.2 182.6 1105.8
60T15D 26.2 0.2 5 1.6 720.2 0.8 7.6 203.8 1096
70T15D 37 0.4 9.2 1.8 710.4 0.8 35.8 452.8 2868.4
80T15D 514 0.4 9.6 2.4 786 0.6 29.4 772.6 5763.6
90T15D 69 0.8 9 3.4 988.8 14 19.2 445.6 2876.4
100T15D 90 0.8 9 4.2 1038.4 1.2 29.2 754.2 5457.4
90T20D 90.4 0.6 2.8 2.6 555.2 1.6 9.4 856.6 3208.2
90T30D 134.2 0.8 12 69 12545.6 24 47.8 (3/5) 13.09%
90T40D 177.8 1.6 11 1243.6 | 206068.2 2.8 50.8 (4/5) 27.50%
90T50D | 221.2 2.8 582 | (4/5) | 0.48% 36 | 1374 | (5/5) | 26.14%
90T60D | 264.6 3.6 54 4/5) | 3.77% 5.2 163 | (5/5) | 31.48%
90T70D | 309 44 | 2416 | (5/5) | 8.31% 7 3864 | (5/5) | 28.47%
90T80D 352.8 5.2 378.4 (5/5) 10.85% 10 705.4 (5/5) 34.55%
90T90D 396.2 6.6 702.4 (5/5) 13.58% 22.6 2506.6 (5/5) 33.78%
90T100D 441 13 3168.6 (5/5) 16.39% 51.8 7460 (5/5) 35.44%

Table 6: CPU times for networks with 75 nodes and 4000 arcs
SPGM PMIP PBB AMIP+ AMIP

Data CPU(s) | CPU(s) | Nodes | CPU(s) | Nodes | CPU(s) | Nodes | CPU(s) | Nodes
100T30D 316.6 3.2 8.6 46.8 9717 4.8 174 332.33 | 179.33
100T40D 420.4 4.6 274 706.4 114278.6 6.4 44 (2/5) 35.58%
100T50D 523.8 5.8 118.8 (3/5) 1.82% 7.4 166.6 (5/5) 22.18%
100T60D | 627.8 7 16476 | (5/5) | 5.86% 86 | 1928 | (5/5) | 26.26%
100T70D 732.4 12.8 3672.8 (5/5) 9.72% 12.2 1281.6 (5/5) 17.04%
100T80D | 835.6 12.4 2142 (5/5) 15.21% 16.8 2369.6 | (5/5) | 17.38%
20T20D 9.4 0.4 8.2 0.8 477.4 04 6.2 466 960
30T20D 17.8 0.6 16.4 1.4 959.8 0.6 16.8 672.2 1245.2
40T20D 28.4 1 10.4 2 1128.8 1.2 14.8 1267.6 | 2909.2
50T20D 44.2 1 10 2.2 1143.2 14 154 1425.4 3330
60T20D 64.2 14 21.6 3.6 1385.4 14 20.4 (1/5) 4.41%
70T20D 90.6 1 23.4 4.8 1622.8 1.6 30.4 (3/5) 41.81%
80T20D 123.8 1.2 23 5.6 1759.8 1.8 32.6 (2/5) 21.30%
90T20D 163.8 1.6 20.6 6.4 1844.8 2.8 324 (3/5) 40.83%
100T20D 214.4 2.6 45.2 10.4 2499.2 3.6 25.8 (3/5) 39.40%
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