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Abstract This paper is concerned with the number of profiles at which
a nondictatorial social choice function is manipulable. For three or more
alternatives the lower bound is derived when the social choice function is
nondictatorial and unanimous. In the case of three alternatives the lower
bound is also derived when the social choice function is nondictatorial and
surjective. In both cases all social choice functions reaching that lower bound
are characterized when there are at least three agents. In the case of two
agents the characterized social choice functions are only a subset of the set
of all social choice functions reaching the minimum.

1 Introduction

A well-known result of Gibbard (1973) and Satterthwaite (1975) shows that
any surjective nondictatorial social choice function with more than two al-
ternatives must be manipulable. However, little is known about the degree
of manipulability of nondictatorial social choice functions. An investigation
was pioneered by Kelly (1988), who gave the minimal number of manipulable
profiles for social choice functions with three alternatives and two agents, and
formulated several conjectures about the general case. This line of research
was continued by Fristrup and Keiding (1998), who gave the minimal num-
ber of manipulable profiles for two agents and any number of alternatives. It
was also conjectured in their paper, that there is hope that the social choice
functions they use also give the minimum in the general case.

We prove their conjecture if surjectivity is replaced by unanimity, but
show that it is not true with only surjectivity in the case of three alterna-
tives. The minimally manipulable social choice functions given as examples
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in Fristrup and Keiding (1998) can be described as almost dictatorial social
choice functions. We show that these form the set of all minimally manipula-
ble nondictatorial and unanimous social choice functions in the case of three
agents or more, and a subset of this set in the case of two agents. Example 4
in Kelly (1989) shows a unanimous two person social choice function hitting
the minimum, but which is not almost dictatorial. In the case of three alter-
natives almost dictatorial social choice functions lead to 2n — 1 manipulable
profiles where n is the number of agents and there are at least three agents.
We present six social choice functions that are manipulable at n profiles. We
characterize these social choice functions as all minimally manipulable social
choice functions for three alternatives and more than two agents. For n = 2
these social choice functions reach the minimum of 2 manipulable profiles,
but there are many other such social choice functions that do this, again see
e.g. example 4 in Kelly (1989). We mention that an optimization program we
wrote shows that there are 135 social choice functions reaching the minimum
of two manipulable profiles in the case of two agents and three alternatives.

Another surprising feature of the minimally manipulable social choice
functions characterized in the three alternative surjectivity case is that they
are anonymous. Considering the distribution of power among agents, anony-
mous social choice functions are rather far away from dictatorial or almost
dictatorial social choice functions. However, we did not find a generalization
of these social choice functions to more than three alternatives that beats
almost dictatorial social choice functions in that case. In fact, in Maus et
al. (2004) we show that any surjective and anonymous social choice func-
tion has more manipulable profiles than an almost dictatorial one if m > 4
and n > m + 2, where m is the number of alternatives. So the conjecture of
Fristrup and Keiding (1998) can still be true for more than three alternatives,
and as mentioned above we show that it is true if one replaces surjectivity
by unanimity.

First, Section 2 is on notation and model description. Section 3 introduces
the concept of manipulation and some basics about it. After that Section 4
concerns well-known results on minimal manipulability. Section 5 contains
the result for unanimous and nondictatorial social choice functions, and Sec-
tion 6 contains the result for surjective and nondictatorial social choice func-
tions with three alternatives. Finally a conclusion is given in Section 7. The
appendix is on unanimous and nondictatorial social choice functions for the
special three agents case.



2 Preliminaries

We denote the cardinality of a set S by |S| and its powerset by 2V.

Let A be a finite set of alternatives, m := |A| > 3, and N a finite set of
agents, n := |N| > 2.

Let ¢t € A x A. We call t complete if for all z,y € A (z,y) € t or
(y,z) € t. Note that completeness of ¢ implies (z,x) € t for all z € A. We
call t transitive if for all z,y, 2 € A (z,y) € tand (y, z) € t implies (z, 2) € A.
We call t antisymmetric if for all z,y € A (x,y) € t and (y,z) € t implies
that x = y.

A preference t C A x A is a linear ordering (complete, transitive, an-
tisymmetric) on A. Let P denote the set of all preferences. Suppose that
A ={xy,29,...2,}. By completeness, transitivity and antisymmetry we can
write conveniently

t=2x1T9...Tm

for the preference ¢ such that (z;,z;) € ¢ if and only if i > j, i,j €
{1,2,...,m},
t=...0...9Y...

if we want to express only that x is strictly preferred to y, and
t=ux...

if we want to express only that x is preferred to all other alternatives. Fur-
thermore we use

X Y. 2., xy... and Tyz.

whose meanings can be easily deduced.

A profile p is a map from N to P. Let PY denote the set of all these maps.
Thus, a profile assigns to every agent i a preference p(i) over the alternatives.
For a nonempty subset S of N we denote by p|s the restriction of the map p
to the domain S. By (p|y_s,t°) we denote the profile ¢ such that

[ pi) forallie N —S,
q(0) = { t foralli e S.

In the particular case S = {i} we write (p_;, t) instead of (py_ g, t{"), and if
p(N — {i}) = {t} we write (=1} ). For a profile p € PV and alternatives
z,y € Alet S@¥)(p):={i € N | (z,y) € p(i)} be the set of all agents that
prefer x to y.

For two profiles p,q € PV we define the distance between p and ¢ by
dist(p,q) :== |{i € N | p(i) # q(i)}]. A finite sequence r°,...,r! € P such
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that f(r%) = p, f(r!) = ¢, and dist(r’,r"*!) = 1 for all i = 0,...,1 — 1 is
called a path from p to ¢. A path r° ... r! such that [ = dist(p, q) is called
a shortest path from p to q.

For a profile p and a set of profiles () we define the distance between p
and Q by dist(p, Q) := mingeqdist(p, q).

A social choice function is a function f : PN — A. Hence, a social choice
function selects a unique alternative f(p) at every profile p.

A social choice function is called surjective if any alternative in A is
chosen at least once, i.e. if f(P") = A. In literature this is also known as
citizen-sovereignity. A social choice function is called unanimous if f(p) = x
for all profiles p € PY such that p(i) = z... for all i € N, i.e. for all profiles
in top(z) := {p € PV | p(i) = x... for all i € N}. Clearly, unanimity is
stronger than surjectivity. Throughout this paper we assume that any social
choice function is at least surjective.

For a permutation o of N and a profile p € PV let p o o be the profile
given by (poo)(i) := p(o(i)) for all i € N. A social choice function is called
anonymous if f(p) = f(poo) for all permutations o of N. Thus, anonymous
social choice functions are symmetric in the arguments. In a sense they treat
agents equally.

In contrast to anonymity, the following dictatorial social choice functions
dicty respect only the preference of one single agent d € N, the dictator. For
any profile p dicty is defined by

dicty(p) :== x

where z is such that p(d) = z.... So, dicty(p) is the most preferred alterna-
tive of agent d in p(d). A social choice function f is called nondictatorial if
there is no agent d such that f = dicty.

3 Manipulation of social choice functions

We are interested in strategic behaviour of individuals when facing cooper-
ative decision-making as captured by social choice functions. This is for-
malised by the following definitions. Let f be a social choice function.

A social choice function is said to be intermediate manipulable at a profile
p (by coalition S C N, S # (), if p(S) = {t} for some ¢t € P, and there is an
S-deviation q, i.e. q|n_s = p|n—s and ¢(S) = {t}, such that (f(p), f(q)) ¢ t.
We call p intermediate manipulable towards q. Let

IM; := {p € PV | f is intermediate manipulable at profile p}.



An S-deviation where S = {i}, i € N, is called an i-deviation. If it is not
important which set of agent deviates from p to ¢ we call ¢ a deviation from
p. A profile p is called (individually) manipulable (under f) if there is an
agent that is better off by being dishonest about his preference, i.e. if there
is an ¢ € N, and an i-deviation ¢ such that

(f(p), f(q)) ¢ p(2).

We call p manipulable towards q. Let
M; = {p € P" | p is manipulable under f}.

A social choice function is called strategy-proof if M; = (), otherwise it is
said to be (individually) manipulable. Note that M; = ) for all dictatorial
rules f. The prominence of the dictatorial rules arises from the following
impossibility result due to Gibbard (1973) and Satterthwaite (1975).

Theorem 1 Let A be a finite set of alternatives, |A| > 3. Let f : PN — A
be a nondictatorial surjective social choice function. Then

|My| > 1.

We show some useful connections between intermediate manipulability
and manipulability. Clearly, My C IMy. If p € IM; — M, is intermediate
manipulable towards ¢, the following (standard) lemma holds.

Lemma 2 Let f : PN — A. Let p be intermediate manipulable towards q,
but not manipulable. Let r°, ..., r! be a shortest path from p to q. Then there
is a k€ {1,...,1— 1} such that r* is manipulable towards r**1.

Proof. Let D = {i € N | p(i) # q(i)}. Since f is intermediate ma-
nipulable at p by D towards ¢, we have p(D) = {t} for some t € P, so
p = (tP,p|n_p) and (f(p), f(q)) ¢ t. As % ... r! is a shortest path from
p to ¢, r**1is a j-deviation from r* for every k € {0,...,1} for some agent
j € D, and r*(j) = t. By the transitivity of ¢ and (f(r°), f(r')) & t = r*(j),
there must be at least one k € {0,...,1 — 1} such that (f(r*), f(r**!)) ¢ ¢.
Then r* is manipulable towards r*™'. As r® ¢ M; k> 1. m

Each set of disjoint shortest paths from p to ¢ contains at most dist(p, q)
elements. So we can state the following corollary to Lemma 2.

Corollary 3 Let f : PN — A. Let p be intermediate manipulable towards q,
but not manipulable. Then there are at least dist(p,q) profiles in My, each
of them on a shortest path from p to q.
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Let p,q € IMy— My be such that p is intermediate manipulable towards
g and vice versa. Suppose that there is a shortest path from p to ¢ that
contains only one manipulable profile. Then we can state the following about
the preferences of the manipulating coalition S in p and g¢.

Lemma 4 Let p,q € IMy — My be such that p is intermediate manipulable
by S towards q and q is intermediate manipulable by S towards p. Suppose
that there is a shortest path r°, ... r" from p to q such that {r° ... r'} N

My = {r*}. Let x := f(p), y == f(q), z == f(r*). Then z € A — {z,y}

and p(S) = {t} q(S) = {t}, are such that t = ...y...x...2... and t =

N TR . In particular, if m = 3 thent—yxz t = xyz, and f(r') =
a:forallle{() Lk=1}, fr)y =y foralli e {k+1,...,1}.

Proof. Note that 7°,...,r!is a shortest path from p to ¢ and r!,...,r% is
a shortest path from ¢ to p. By the intermediate manipulability of p towards
q and ¢ towards p we have t = ...y...z...and t = ...x...y...,z # y.
As {r%...;7y n My = {r*}, we have t = ... f(r®)... f(rit!)... for all i €
{0,...,k —1}. As f(r°) = f(p) = v and t = ...y...z... this implies

that f(rit1) # y for all i € {0,...,k — 1}. Likewise f(r""!) # z for all
i€{k+1,...,n}. 50, 2= f(r¥) € A—{x,y}. Now, if t =...z...z... then
{r% ..., r* 1y N My # 0, a contradiction.So t = ...y...z...z.... Likewise
t = ...x...y...z In particular if m = 3 then ¢ = yzz,{ = zyz. Then
{r0 kb ek N My = () implies that f({r%...,r*7'}) =z and
fHr* ) =y, =

Note that any intermediate manipulable profile of a unanimous social
choice function must contain at least two different preferences. We show
that furthermore any p € I M/ that is intermediate manipulable by a coalition
S C N such that p = (tS,tNN_S) can be manipulated by using a preference

T {17

Lemma 5 Let f : PN — A be unanimous and let (tS,%VN*f) be inter-
mediate manipulable by S. Then there is a preference t ¢ {t,t} such that

(F(S,TN5), f(7°, N 9)) ¢ .

Proof. By the definition of intermediate manipulability there is a t#£t
such that (f(¢%, N9, f(fs, tN=5)) ¢ ¢. If £ # t we are done, so suppose that
t=1. Then ((f(t5,tN=5), f(tV)) ¢ t. Let { # T be a preference with the same

" =S ~ ~
top as t. Such a preference exists if m > 3. Then f(f ,tN %) = f(tV) by
unanimity, and thus the coalition S can also manipulate (¢°,#V=%) towards

@, 5,7 ¢ {t,7). m



4 Minimal manipulability of social choice func-
tions

Let F' be a nonempty set of social choice functions. For any f € F we
measure its manipulability by the number of manipulable profiles | M| that
f has. We call f* € F' minimally manipulable in F if |M| < |Mj| for all
f € F. Let F* be the set of all minimally manipulable social choice functions
in F. If f* € F* then mp := |My-| is a lower bound on the number of
manipulable profiles that any social choice function in F' has.

Let F' be the set of surjective nondictatorial social choice functions for
fixed m > 3,n > 2. Then the result of Gibbard (1973) and Satterthwaite
(1975) says that mp > 1, but it does not say what the actual minimum
is. This question has been solved by Kelly (1988) for two agents and three
alternatives, and by Fristrup and Keiding (1998) for two agents and any
number of alternatives larger than three. For reference we summarize their
results in the following theorem.

Theorem 6 Let n=2. Then

S 2 ifm=3,
E7l 2 ifm >4

2

For the general case of n > 2, Fristrup and Keiding (1998) conjecture that
mp = (n—1)(%2 — 1) + L if (n,m) # (2, 3). We describe a class of functions
that attain this number if (n, m) # (2, 3). A social choice function f is called
almost dictatorial if there is a profile p € PV, an alternative z € A, and an
agent d € N such that (x,dicty(p)) € p(i) for all i € N — {d}, and

_ [ dicta(p) ifp#D
fy={ w7y )

Proposition 7 Let f be an almost dictatorial social choice function and let
D, x be such that equation 1 holds. Then

My =A@ 1) [ i€ N —{d},(z,dicta(p)) € t,t # (i)} U{P}

and thus |My| = (n —1) (% — 1) +1.

Proof. Suppose that p and ¢ are i-deviations such that (f(p), f(q)) ¢
p(7). This implies that if i = d then p = p and if i # d then ¢ = p. We show
first that p is manipulable and treat then the case where ¢ = p. If agent
d deviates to ¢ by changing his preference in p to another preference with



the same most preferred outcome we have (f(q), f(p)) € p(d) since agent
d is a dictator at ¢. Thus p is manipulable. Suppose that i € N — {d},
ie. ¢ =p. Let p = (p_;,t),t # p(i), be an i-deviation of ¢ such that
(f(q), f(p)) € p(i). Thus (z,dicta(p)) € t. As (z,dicta(p)) € p(i) there are

% — 1 such preferences ¢ for every agent i € N — {d}. This proves that

My =A{(p_;,t) | i € N —{d}, (=, dicta(p)) € t,t #p(i)} U{p}. m

We show that the conjecture of Fristrup and Keiding cannot be true
for m = 3. Consider the following social choice functions if m = 3. Let
A ={a,b,c}, t = zyz € P. Let m' : P¥ — {a,b,c} be the social choice
function given by

z if S@Y)(p) = SWA)(p) = N,
m'(p) = q y if S®I(p) =
2 if e (p) #

Observe that m! is surjective but not unanimous. Then we have the following
proposition.

Proposition 8 Let t = xyz. Then M, = {(xyz""1} z29) | i € N} and
thus |My,t| = n.

Proof. No agent will want to manipulate when f(p) = x. Suppose that
f(p) = y. Then (y,z) € p(i) for all i € N, so no agent can manipulate to
a profile ¢ where f(q) = z. Furthermore there is an agent i € N such that
(x,y) ¢ p(i). This agent has no incentive to manipulate to the profile ¢V,
which is the only profile ¢ where f(g) = x. On the other hand, as p(i) # t,
this agent would have to change his preference in order to manipulate to the
profile V. So f is strategy-proof at all profiles p € P where f(p) € {x,y}.
Suppose that f(p) = 2. Then there is an agent i € N such that (z,y) € p(i).
This agent has no incentive to manipulate to a profile ¢ where f(q) = v.
Again, on the other hand, as (y, z) € ¢(i) for such profiles, this agent would
have to change his preference in order to manipulate to such a profile. The
only place left where manipulations can occur is from p to tV. If p and ¢V
are i-deviations we have that p = (t¥~1} p(i)). If agent i has an incentive to

manipulate to ¢V we must have (z,z) € p(i) and as f(p) = z we must have
(2,9) € p(i). Hence, My, = {(t" 1} z29) | i € N} and M| =n. m

Note that n < (n —1)(Z — 1)+ 1 = 2n — 1 for all n > 2. Hence, the
conjecture of Fristrup and Keiding cannot be true for m = 3. We will show
however that it is true if we replace F' by the set of unanimous nondictatorial
social choice functions G C F), i.e., we show that mg = (n — 1)(2 — 1) + 1.



Moreover, we will show that then for n > 3 g € G* if and only if g is almost
dictatorial.

For the case m = 3,n > 3, we have thus mr < n < mg = 2n — 1. This
will allow us to show that mpr = n in this case, and that f € F™* for n > 3,
if and only if f = m! for some t € P.

5 Minimal manipulability with unanimity

Let n > 3. To show that mg = (n — 1)("2 — 1) + 1 we will use the results
of Kelly (1988) and Fristrup and Keiding (1998), summarized in Theorem
6, applied to two agent social choice functions derived from f € G. The
first step is to embed the domain of two agent social choice functions into
PV depending on some S € 2V — {(), N}. This is achieved by the map
IIg : P12 — PN given by IIg(r) := (r(1)%,7(2)N=%) for all r € P{1?}, Now,
for f € G, define fg := f ollg, then fg is a unanimous two agent social
choice function.

Clearly, any profile in ITg(Mjy,) is in IM;. Let M3 := Ig(M;y) N M;. We
make the following important observation, which holds by unanimity.

Lemma 9 If S, T € 2V — {(), N}, S # T, are such that M2 N M2 # (), then
T=N-5.

Proof. Let p € M2N MZ. Then p = (7,11 %) = (t3,2)'~") for some
ti,ti € P.If T # N — S then, since T # S, this implies that p = ¢tV for some
t € P. But by unanimity such p are not intermediate manipulable. Hence,
T=N-S5Sm

Let § := {{1,i} | i € N}. Then, if S,T € S are such that S # T, also
S # N —T. We will show that for all f € ¢

2n itm=3
Myl 2 {(n—l)%’ if m > 4
|

> (n—l)(%—1)+1,

if fs is nondictatorial for all S € S§. The simplest case is covered by the
following lemma.

Lemma 10 Suppose that all fs, S € S, are nondictatorial and that I1g(M;,) C
My for all S € S. Then

2n  ifm =3
> : ; ’
|Mf|_{%n if m > 4.



Proof. In this case, for all S € 8§, M2 = I1g(M;,) N My = Is(My,), and
thus by Theorem 6

2 ifm=3
2] )
HERAER S

By Lemma 9, M2%N M2 = () for all pairwise different S, T € S. Since, |S| =n
this implies the lemma. m

Suppose that we cannot use Lemma 10, i.e. there are S € § such that
s(Mgy) — My # 0. If there is only one such S we can show the following.
Note that r ¢ M2 for all r € PY such that |r(N)| # 2.

Lemma 11 Suppose that all fs,S € S, are nondictatorial and that there is
a T €8 such that Tlg(My,) € My for all S € S —{T}, Ilp(My,) — My # 0.

Then
2n ifm=23
> | . ’
|Mf|_{%(n—1) if m > 4.

Proof. For m > 4 this follows in the same way as in the proof of Lemma
10. Suppose that m = 3. There is a p € IIp(My,) — M;. Then p is
intermediate manipulable towards some ¢ € PV, and by Lemma 5 we can
assume that [p(N)Ug(N)| = 3. By Corollary 3 there are at least dist(p, q) >
2 (otherwise p € My) manipulable profiles r ¢ {p,q} on a shortest path
from p to g, say r1,72. As [p(N) U g(N)| = 3 and [p(N)| = [¢(N)| = 2
we must have |ri(N)| = |ro(N)| = 3. But then {r;,rs} N M2 = § for all
S € 8. By Theorem 6, |[M3| > 2 for all S € S — {T'}. Hence, by Lemma 9,
M| = [{rera}] + Yges M2 = 20, m

If there is more than one S € S such that IIg(My,) — M; # (0 the
manipulable profiles that we find by the intermediate manipulability of the
p € IIg(My,) — My can be the same. The following lemma combines Lemma
5 and Corollary 3 to ensure that we are then still able to find sufficiently
many manipulable different profiles r € PV such that |7(N)| = 3 if there are
more than three agents.

Lemma 12 Let S, T € S and letn > 3. Suppose that there are p € Tlg(Myy)—
M; and p € Nyp(My,) — My, p # p. Then there are q € Ilg(P{1?}),q €
Iy (P2Y)) such that |[p(N) U q(N)| = [p(N) Ug(N)| = 3 and 5 (p) is
manipulable towards TI5' (q), TI5" (p) is manipulable towards 5" (). Suppose
that there is an r ¢ {p,p} that is on a shortest path from p to q and on a
shortest path from p to q. Then:

1. Ifn>4and S, T € §—{{1}}, then S=T, p=q and p = q.
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2. Suppose that S = T. Then p = q and p = q. Furthermore, if m = 3
and there is a path between p and q that contains only one manipulable
profile then p or p is intermediate manipulable by S and by N — S and
son > 4. On the other hand, if n = 3, then all profiles on shortest
paths between p and q are manipulable.

Proof. The existence of such ¢ and § is an immediate implication
of p € Ug(Mys) — My and p € Myp(My,) — My and Lemma 5. Then
p=(t),t) %) and p = (t;:f,%%v_T) and there are preferences t,,#; € P such

=S N ~N-S _ T N N-T
that ¢ € {(Z,, 1)), (t5,F, ")} and q € {(F, 10 "), (tL,7; ~)}. By our
assumptions there is an r ¢ {p,p} that is on a shortest path from p to ¢

and on a shortest path from P to . Then, either r = (tg,tN;)v_S_Up,fgp) for

some U, C N—-S5,1<|U,| <|N|—|S|—-1,0rr = (tg_Vp,pr,fzj,v_S) for
some V, C S, 1 <|V,| <|S|— 1. Similarly, r = (t%,%?_T_Uﬁ, fg]_’) for some
Up ©GN—T,1<|Uy| <|N|=|T| =1, 0rr=(t; 7, £7#T) for some
Vo C T, 1 < |Vl <IT| = 1. So, {ty, by, b} = {tp, tp, tp}. As [{tp, 1, 1,}] =3
this implies that S € {T,N — T — Uz, Uz} or S € {T — V5 V5 N — T} or
N-—Se{T,N-T—-U,U}or N—Se{T -V, V,,N—T}.

Proof of (1): Then 1 € S and 1 € T and |S| = |T| = 2 imply that only
the first and the last case is possible, and both cases lead to S =T, p = 7@
and p=gqasn >4.

Proof of (2): If n > 4 the first part of (2) follows by (1) if S € S — {{1}}.
If n >4and S = {1} orif n = 3 then p = g and p = ¢ follows in a
similar way using the extra assumption that S = 7. Let m = 3. Let z :=
f(p), y := f(p) and z := f(r). Then by Lemma 4, p = (yzzY,t¥ V) and
p = (xyzY,tV"Y) for some U € {S, N — S}. Unanimity of f implies that
t € {zzy, zyx}. Without loss of generality ¢ = zyx. Then p is intermediate
manipulable towards (yzzY,yza¥~Y) and towards p, i.e. by S and N — S,
and so |S|,|N — S| > 2 implying that n > 4.

On the other hand, if n = 3, then on any shortest path between p and ¢
there is only one element, which is manipulable by Lemma 2. m

Now, we can prove the following theorem.

Theorem 13 Suppose that for m > 4 all fs,S € S — {{1}}, are nondicta-
torial, and for m =3 all fs,S € S, are nondictatorial. Then

2n ifm=3
> : ; ’
|Mf|_{@(n—1) if m > 4.

2
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Proof. We distinguish two cases. If n > 4 we can use Lemma 12. This
case is presented here. The case n = 3 is presented in an appendix because
of its different and rather elementary technique, see Propositions 16 and 17.

So, let us assume that n > 4. For each S € S and p € IIg(M;,) — My let

Qp) : = {qeTg(P"?) | I3 (p) is manipulable towards 15" (q)
and [p(N) Ugq(N)| = 3}.
By Lemma 5 Q(p) # (), and by Corollary 3 there are at least dist(p,q) > 2
manipulable profiles for each ¢ € Q(p) on shortest paths between p and
q. Let R(p,q) be the set of all these manipulable profiles for given p €

Hg(Mys) — My, S €S, and g € Q(p).
For all S € S let

M} = U U R0

pe(Tis(M;y)—M;) 9€QP)

Let S, T € S—{{1}}and p € Ig(Ms,)—M;s,q € Q(p),p € Hg(Ms;)—Ms,q €
Q(p). By part 1 of Lemma 12

R(p.q) N R(p,q) # 0
implies that S =T and p =¢,p = q if n > 4. Hence, if S £ T, then
Mg n M; =0,

and for each S € S one p € IIg(My,) — M/ can be assumed to yield at least

two new manipulable profiles in some R(p,q),q € Q(p), and thus

[T (M) — My
2

| M| > *2 = |TLs(Ms) — Myl

forall S € S.
By definition M2 N M3 = for all S,T € S. Hence,

M2 | Miuo | M3
S€8,5#{1} Se8,5#{1}
and all these sets are pairwise disjoint, so
My > Y Mg+ Y M
Se8,5#{1} SeS,5#{1}

Z |HS(Mfs)me|+ Z |HS(Mfs) _Mf|
5€8,5#{1} S€8,5#{1}

= Z |HS(Mfs)| = Z |Mfs|'

Se8,54{1} Se8,S#{1}

v
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If m > 4 this proves the theorem, as [My,| > " for all S € S by Theorem 6.
So, suppose that m = 3. For all S € S by Theorem 6 |M;,| > 2. If
|M2| = |TIg(Mys) N M| =1 then there is a p € Ilg(My,) — My and ¢ € Q(p)
and thus
|M3| > |R(p. )] > 2.
If |M§| = 0 then |H5(Mf5) — Mf| Z 2. Let p,ﬁ S HS(MfS) — Mf,p 7£ ]_9,
q € Q(p),q € Q(p). Then, either

R(p,q) N R(P,q) =0
and thus
|ME| > |R(p.q)| + |R(P, Q)| > 2+2 =4,

or
R(p,q) N R(p,q) # 0

and without loss of generality part 2 of Lemma 12 yields that p is intermediate
manipulable by S and N — S. So there are ¢s,qy_s € Q(p) such that p is
intermediate manipulable towards gs by S and intermediate manipulable
towards gy_g by N — S. Clearly, R(p,qs) N R(p,qn_s) = @ and thus

M5 > |R(p. gs)| + [R(p,an-s)] > 2+2=4.
Altogether, for all S € S either
| M| = [TIs(Myy) N M| = [Ts (M) = [My] > 2,

or

|M3| =1 and |M2] > 2,
or

|M2| =0 and |M3] > 4.

We distinguish four cases, which show altogether that |M;| > 2n.
Case 1: There are U,V € § — {{1}}, U # V, such that |M?| = |MZ| = 1.
Then

Myl = Y IME+ Y M

Ses,S#{1} Ses,S#{1}

= S M+ M| 4 [ME]+ | M| + | M| + | M
Se8,S¢{{1},U,V}

Y

> 2| +14+2+1+2=(n—23)246 =2n.
SeS8,S¢{{1},U,V}

13



Case 2: There is a U € S — {{1}} such that |MZ| = 0.

Then
My > Y IME+ ) M
Ses,S#{1} Ses,SA{1}

= Do IME MG + M|+ | M|
ses.SEL(1L)

> > 2| 40+4=(n—22+4=2n
Ses,S¢{{1}L,U}
Case 3: Thereisa U € S—{{1}} such that |M2| > 2 forall S € S—{{1},U}.
Consider M{212}, M?1}- ?])3y definition also M{Ql} U M?1} C M.
Case 3.1: [Mp,| + [ M}, > 4.
Then

|My| > |MPy |+ M|+ > Mg
Ses—{{1},U}

> 44 Y 2| =4+2(n-2)=2n
ses—{{1},U}
Note that in particular we have case 3.1 if |M{21}| = 0.
Case 3.2 |M?,| > 2.
Then
My > M+ MG+ > |ME
Ses—{U}

> 24| > 2| =2+(m-12=2n
Ses—{U}

Case 3.3: |[M7,| = 1 and | M}, | = 2.

Then

My > Myl + M| + o IME | MG - M|+ M
SeS—{{1},U}

> 142+ S 2|+ MF - M|+ M2
ses—{{1},0}

= (n—1)241+ My — M}y, |+ [M7] > 2n,

14



if |M7| # 0 or My & M},,. But suppose that [M{] = 0. Then [Mj] > 4 and
so Mi; & MP,y, as [M{};| = 2. This finishes case 3.3, thus case 3, and proves
the theorem. m

Let f € G. We use Theorem 13 to conclude that there must be a dic-
tatorial fs,S € S, if |[My| < (n —1)(%Z — 1) + 1. With the help of this
fs we can show that f must be almost dictatorial, and thus mqg = |M/;| =
(n—l)(%!— )+ 1.

Theorem 14 For alln > 3, mqg = (n—l)(%!—l)+1 and G* = {f € G |
f is almost dictatorial}.

Proof. We want to prove the theorem by induction. Our induction
basis is given by Theorem 6 and our induction assumption is as follows. Let
n > 3. Assume that it has been shown for all £ € {2,...,n— 1} and k agent
unanimous nondictatorial social choice functions ¢ that

(k=12 —1)+1 if (k,m) # (2,3),
| M| Z{ 2 if (k,m)=(2,3),

and that equality holds for £ > 3 if and only if g is almost dictatorial.

Induction Step:

Let f € G be such that |M;| < (n—1)(" — 1) + 1. Under the induction
assumption we show that then |M;| = (n — 1)(Z — 1) + 1 and that f is
almost dictatorial. This proves the theorem by the induction principle.

By Theorem 13 there must be an S € & such that fg is dictatorial. If
m > 4 this S has to be in § — {{1}}. Let D := S if agent 1 is the dictator
in fg, and D := N — S if agent 2 is the dictator. Let : € N and ¢ € P.
We define (n — 1)-agent social choice functions g;; : PY~{} — A derived
from f by gi:(p) = f(p,t1}),p € PN=1}. Now, for alli € N — D # () and
t € P, g;; is unanimous. If such a g;; is nondictatorial, then by the induction
assumption

(n—2)(Z -1)+1 if (n,m) # (3,3),
| My,,.| > { 2 if (n,m) = (3,3).

Furthermore, if such a g, is dictatorial then the dictator d must be in D.
Let T; be the set of ¢ € P for which g;; is dictatorial. Now, if p € M,, , then
(p,ti) e M s and clearly these profiles are different for different ¢. Hence,
as |My| < (n—1)(%—1)+1,

m|>{ P -1 if(

n,m) # (3,3)
|P|—2 if (n,m)=(3,3

(5.3),
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as each g;;,t € P —T;, is nondictatorial and yields |M,, | different manip-
ulable profiles. We show that there is a d € D that is the dictator for all
git,t € T;. Suppose to the contrary that there are dy,dy € D,d; # do,
and t,ty € T; such that g;,, is dictatorial with dictator d; and g;, is dic-
tatorial with dictator d,. Then, agent ¢ can choose a dictator to his ad-
vantage. Let p be a profile such that (dicty, (p), dictq,(p)) € p(i) = t3 or
(dictg, (p), dictq,(p)) € p(i) = t;. Each such profile is manipulable by agent
t, and there are

m(m — 1) m! m!

5 (m—1)(m)"? = (2(m — 1)(m — 1)!(m!))"*) — > n— (n,m > 3)

2
2 2

such profiles, (m — 1)12(m!)"= ones for every of the ™21 pairs (z,y) €

p(i),z # y, and a given p(i) € {t1,12}, [{t1,t2}| = 2. This contradicts |M;| <
(n — 1)(™ — 1) + 1. Hence, every g;;,t € T;, is dictatorial with the same
dictator d € D.

As f is nondictatorial, there must be a p € PV such that f(p) # dict(D).
Then, for all ¢ € T; such that (dicty(p_;,t), f(P)) ¢ t, (p_;, t) is manipulable.
For all p € PV let

Ulp) == {t € T; | (dicta(p—i, 1), f(p)) & t},

then because of reflexivity of ¢ f(p) # dictq(p-i,t) and (p_;,t) € M for all
t € U(p). Furthermore, |U(p)| > 2 — |P — T;| = |T;| — " for all p such that
f(p) # dicty(p) and the manipulable profiles (p_;,t), (¢_4,t) that we find for
such p,q € PV are different if p_; # ¢_,. Hence,

|
™y

(=15

m)!
y1z iz 3 gl (- )
teP—T;

where u is the number of p having different p_; and satisfying f(p) # dict4(p).
If (n,m) = (3,3) this implies 5 > 2 % (6 — |T;|) + u(|Z;] — 3) which, as
|T;| € {4,5}, shows that w = 1. On the other hand, if (n,m) # (3,3) we use
T3] = m!—1 and obtain (n—1)(2 —1)+1> (n—2)(% - 1)+ 1+u(Z —1),
which also implies that u = 1.

Now, note that u = 1 implies that f(p) = dicty(p) for all p € PY such that
p—i # D_;- We show that g; 5;) is almost dictatorial. Clearly, p is manipulable
by agent d. Let j € N — {i,d}. Then all (p_;, ) such that (dictq(p), f(D)) ¢
t # p(j) are manipulable. This yields

| M 2|N—{i,d}|(m?!—1)+1:(n—2)(m7!—1)+1,

9i,5(i)
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where equality holds if and only if (f(p), dicty(p)) € p(j) for all j € N—{4i,d}.
Hence, g; 5 is almost dictatorial. If (n,m) = (3,3) this implies that |T;| =
m! — 1 as otherwise

5> My > Y |M,,|>3+3=6,

teP-—T;
a contradiction.
Finally,
m) . m)
(= 1) = 1)+ 12 My > My |+ UG > (1= 2)(5 — 1) +1

shows that |U(p)| = (2 — 1) and so (f(p),dicte(p)) € (i) and f is almost
dictatorial. m

6 Minimal manipulability with three alterna-
tives and surjectivity

Theorem 15 Let n > 3, m = 3 and let F' be the set of surjective nondicta-
torial social choice functions. Then mp =n and F* = {m' | t € P}.

Proof. Let f € F*. Since m! is surjective and nondictatorial we have
|My| < |[M¢| = n. If f is unanimous then by Theorem 14 |M;| > 2(n —
1) +1 > n, a contradiction. So f is not unanimous and there are x € A =
{a,b,c} and p € top(x) such that f(p) # z. Fix such an z and p, and let
{y, 2} = A—{z}.

Claim 1: a € f(top(a)) for all a € A.

To the contrary suppose a ¢ f(top(a)). We deduce that |[M;| > n. As fis
surjective there exist p € PV such that f(p) = a. Then a ¢ f(top(a)) implies
that for some j € N we have p(j) ¢ {abc, acb}. Without loss of generality
j = 1. Furthermore, let p be chosen such that for all ¢, with f(¢) = a we
have dist(q,top(a)) > dist(p,top(a)). For i > 2 let 7 := (t,p_;), where t €
{abc,acb} — {p(i)} and let T := (abe,7" ;). Furthermore let 7' := (abc,p_,)
and 7' := (acbh,p_y). As for i > 2

dist(?i,top(a)) < dist(', top(a)) < dist(p, top(a))
and

dist(T*, top(a)) = dist(7", top(a)) < dist(p,top(a))
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we have f(fl) #afori > 2, f(T') # aand f(7') # a. So 7', 7' € M; and

My {7, 7'} # 0 for all i > 2. Hence |M;| > n+1, the desired contradiction,
and claim 1 is proven.

Let V' := top(xz) N M;. Claim 1 shows that there exist ¢ € top(z) such
that f(q) = x. Now consider a path from p to ¢ through top(x). On this
path at least one profile is manipulable. So, V' # (). Let W := {p € top(x) |
f(p) # x}. Obviously, V. C W.

Claim 2: |W| > n. B
To the contrary suppose |W| < n. Consider f: PY — A defined by

f(a) 12{ fx ac v

(q) otherwise.

We show that [M7F| < |M;| and have a contradiction with minimal manipu-
lability of f if f is surjective and nondictatorial.

e f is surjective By claim 1y € f(top(y)) forall y € A. So f is surjective.

e f is nondictatorial Suppose to the contrary that f is dictatorial with

dictator d. There is a p € W with f(p) # x. By the definition of f we
have f(p) = f(p) = dicty(p) for all p ¢ W. For i € N — {d} consider
i-deviations ¢ of p such that (z, f(p)) ¢ q(i). Then f is manipulable at
q by i towards p, as ¢ ¢ W and thus f(q) = dicty(q) = dicty(p) = x.
As there are three preferences ¢ in P at which (z, f(p), z) ¢ t there are
at least 2(n — 1) of these g-profiles. Since, 3 < n we obtain |M;| >
2(n—1) > n, a contradiction with the assumption that |M;| < n. Thus

f is nondictatorial.

o |M7| < |My| By the assumption [W| < n, there is for all ¢ € W an
adjacent r € top(z), i.e. dist(r,q) = 1, such that f(r) = z. So f
is manipulable at all ¢ € W. Therefore, V= W. We show that the
transition from f to f repairs more manipulable profiles than it creates.
All the manipulable profiles in V' are not manipulable in f anymore.
Let ¢ € My — My be a manipulable profile that was created by the
transition. Then there is an agent 7 and a profile p € W such that
p and ¢ are i-deviations satisfying (f(q),x) ¢ q(i) ¢ {zyz,xzy}. This
leads to the two possibilities f(q) = z and ¢(i) = yxz or f(q) = y and
q(i) = zzy. Then q ¢ M/ implies in the first case that f(r) = z # «
and in the second case that f(r) = y # x for all i-deviations r from q. If
r(i) # p(i), r is also an i-deviation from p. Hence, for t € {zyz, z2y} —
{p(i)} we have f(p_;,t) #x. As (p_;,t) € V=W, (p_;,t) # p, there are
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at most (|V'|—1) agents 7 such that there is a ¢ € M7— My manipulable
by i towards a profile p in W. Let m; be the number of such profiles ¢
for agent i. As q(i) = yxz if f(q) = z and ¢(i) = zzy if f(q) = y, we
have m; < 1. So, |Mz| < [My| — V| + (V| = 1)m; < [My| — 1. This
proves claim 2.

Claim 3: |V| = n.

By claim 2 |W| > n + 1. By claim 1 top(x) — W # (). So, there are
p,q € PN such that p € W and ¢ € top(x) — W. Hence, f(p) # x and
f(qg) = x. Without loss of generality let p € W — V if such p does not
exist we have |M;| > |V| > n+ 1, a contradiction. As p ¢ My all profiles
rl,r2 ..., r" adjacent to p in top(z) are in W. Consider a path from 77 to
q, say .. .,rij € top(z). Then VN {r!,.. .,rijfl} #+ (). So, if we can find
disjoint paths for every j from r/ to ¢ we have |V| > n. We show how to
construct such paths. Without loss of generality there is a £ € N such that

p(i) = q(i) forn >i >k,
p(i) # q(i) for 1 <i <k,

and the r!, 72, ... " are such that 7 = (p_;,t),t € {zyz, 22y} — {p(j)} for
all j € {1,2,...,n}. Hence, (i) = p(i) if i # j, 77(j) = q(j) if j < k, and
(7)) # q(j) = p(j) if j > k. Let 1 < jy <n,1 < jy < k. For jy <k, j» <k,
let
ifpn<i<p+jp<kor
)= 1 i<~k and i+ o>k
p(7) otherwise,

and for j; >k, 7o < k, let

w1 (7) ::{ q(1) ifi<jy

Jz p(i) otherwise.

Then these are disjoint paths 71,1 < j; < n, between p and ¢. So, |[V| > n
and since |V| < |My| < n this proves claim 3.

Now, n = |V| = |M; Ntop(x)| < |Mf| <n. So, My C top(x). By claim 3
|[W| > n+ 1. So, there is a profile p € W — V.

Claim 4: f~'({z}) C top(z).

Suppose contrapositive without loss of generality that there is an r € PV
such that f(r) = z and r(n) ¢ {zyz, zzy}. Then

rk(i):{ r(i) ifk<i

p(i) otherwise
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defines a path from r = 7% to 7™ = p outside top(z), i.e. r* ¢ top(z) for all
k < n. Since M; N {r% st ..., r" 1} # (), we have a contradiction because
My C top(z). This proves claim 4.

Let U := PN — top(x). Then U N M; =0 and f(U) = {y, z}.

Claim 5: For profiles p € PN and ¢ € U such that f(p) = y and S®*)(p) C

S@2)(q) # 0, we have f(q) =y.

By claim 4 = ¢ f(U), so f(q) # x. Without loss of generality p,q are
i-deviations and ¢(i) € {yzz,yzz}. As q ¢ My, f(q) = y. This proves claim
D.

Now fix y,z € A — {z}. Let

WY : ={SCN |forallpe PY: f(p) #x and S®I(p) = S
implies f(p) =y},
W* : ={SCN |forallpe PY: f(p) #x and SEV(p) = §

implies f(p) = z}.

Then N € WY by surjectivity and claim 5, as S (p) C N = S¥)(q) for
all p such that f(p) =y and ¢ € top(y) C U. Likewise, N € W?=.

Claim 6: f(xyz®, 22y =) = 2 implies S = N or S = ().

To the contrary let i € S and j € N—S. Consider r = (yzz{#, zyz5—11} 22yN=9).
As r € U, and therefore r ¢ M/, we have f(r) # z. But similarly f(7) # v,
where 7 = (zay}, 2yz¥ 22yN~571}). By claim 4 f(r) # 2. Thus f(r) =y
and f(7) # y,7 € U. As SW(r) = SW2(F) £ () we have a contradiction
with claim 5. So S = N or S = (), proving claim 6.

But then W¥ = 2V \ {0} and W* = {N} or W¥ = {N} and W* =
2N\ {@}. Moreover, we have either f1({z}) = {xyz"} if W= = 2N\ {0}, or
FY{x}) = {z2yN} if WY = 2N\ {0}. So, f = m! for some t € {xyz, x2y}.
n

7 Conclusion

In this paper we have found the minimally manipulable surjective and non-
dictatorial social choice functions with three alternatives and more than two
agents. They turn out to be anonymous. This is in contrast to the social
choice functions attaining the global minimum 0 in the class of all social
choice functions, which are the dictatorial ones. The second smallest value
that the function K(f) := |My|, f a social choice function for three alter-
natives, takes is n. This value is not attained, as one might expect, by the
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almost dictatorial social choice functions that give the minimum in the case
of two agents and four or more alternatives, see Fristrup and Keiding (1998),
but it is attained for all numbers of agents larger than two by six anonymous
social choice functions similar in structure. For the case of two agents these
six social choice functions are only part of the set of all minimally manip-
ulable social choice functions, see Kelly (1988) for other examples of social
choice functions attaining the minimum in this case. For more than three
alternatives it is not clear whether the almost dictatorial social choice func-
tions are minimally manipulable for more than two agents. We show this
however if surjectivity is replaced by unanimity. In that case almost dic-
tatorial social choice functions are the minimally manipulable social choice
functions if in addition n > 3. The case of four alternatives and three agents
is after this paper the smallest unsolved case with surjectivity, and for two
agents the minimally manipulable rules are not characterized. It would be
of interest to see whether only almost dictatorial social choice functions are
best in the case of two agents and more than three alternatives, as this might
help with an induction. The following table summarizes these results about
minimal manipulability. FK (1998) stands for Fristup and Keiding (1998),
and K (1988), K (1989) stand for Kelly (1988) and Kelly (1989) respectively.

m=3
n mp feF” in:
=212 if f=mlteP K (1988) mp
>3|n iff f=m'teP Section 6
mea g€ G*
=22 examples K (1989)
>3 2n—-1 iff almost dictatorial | Section 5
m >4
n mr feFr
=2 | = if almost dictatorial | FK (1998)
S3 < n-D)(Z_1)+1]? FK (1998)
ma g e Gt
=2 | = if almost dictatorial | FK (1998)
>3 (n—1)(%-1)+1 iff almost dictatorial | Section 5

We relate the result in Section 6 also to a conjecture made in Kelly (1988).
The Kemeny distance between two preferences ¢ and t' is defined to be the
minimal number of transpositions of adjacent positions in the preference ¢
necessary to obtain the preference t'. Local strategy-proofness is said to
hold if there is a 6 > 1 such that to manipulate, an agent always has to
change to a preference ¢’ that has a larger Kemeny distance from his true
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preference ¢ than 6. In the minimally manipulable social choice functions
characterized here, the manipulating agent changes from xyz to xzy. So
the Kemeny distance is 1. Now, in Kelly (1988) the conjecture was that
local strategy-proof social choice functions and minimally manipulable social
choice functions have a nonempty intersection. So instead of looking for
minimally manipulable social choice functions one can look for local strategy-
proof social choice functions, which might be easier. The result from Section
6 says that this is not true for three alternatives and more than two agents.
This relation is also not true for almost dictatorial social choice functions and
two agents. But since Fristrup and Keiding (1998) do not prove that these
are all minimally manipulable social choice functions for two agents, this does
not say that the relation is not true in this case. So, it is of interest not only
to find the minimum in the other cases than the ones considered here, but to
characterize also all social choice functions that give this minimum, as was
achieved here. In the case of three alternatives and two agents the conjecture
will remain true of course, since this was the example given in Kelly (1988).

In another interesting paper by Kelly (1993), a computer draws social
choice functions uniformly from all social choice functions satisfying axioms
like anonymity, neutrality and Pareto optimality, or combinations thereof.
He then investigates the sample distributions with respect to the number of
manipulable profiles of these social choice functions. One sees that imposing
anonymity in the case of three alternatives causes a shift towards social choice
functions with less manipulable profiles, compared to the sample obtained
without any constraints. We saw here that the minimally manipulable social
choice functions for three alternatives are anonymous. So in this sense anon-
imity is for three alternatives a good property when looking for minimally
manipulable social choice functions. It would be interesting to see what the
distributions look like for more than three alternatives, to see what the effect
is there.

8 Appendix

In this appendix we study the case where n = 3 and so Lemma 12 cannot
be used to show that MiN M2 =@ if S,T € S, S # T. Instead we use even
more elementary techniques.

Proposition 16 Let f : P23 — {2y 2} be a unanimous and nondicta-
torial social choice function. Suppose that all fs,S € S, are nondictatorial.
Then

| M| > 6.
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Proof. By Theorem 6 there are pi,ps € My, ,,,p3,pa € My, ,, and
ps,pe € My, ,, such that

P = (tlatla%vl)ap3 = (t3,;3,t3)7p5 = (tNE,,t5,t5);
p2 = (ta,ta,t2), 04 = (4, s, ts), 06 = (L6, L6, ts),

and p; # pip1,i € {1,3,5), t; # ti,i € {1,2,3,4,5,6}, as otherwise these
profiles cannot be manipulable because of unanimity. This also implies that
{p1, P2, P3, D1, D5, P6 }| = 6, since otherwise t; = ¢; for some i € {1,2,3,4,5,6}.
For each p; there is a t; € P and an S € &, such that p; ¢ M; and p; is
manipulable towards ¢; := (ff,fz) by S or p; € M; and p; is manipulable
towards ¢; := (t?,%;) by N — S. If p; ¢ M; then #; # t; and if p; € M, then
t; # t;.

Claim: Let p; ¢ M/. Then |Mf| > 6 or p; is manipulable towards some
¢ = (T,1),S € 8, such that ; ¢ {t;,7;}.

Asp, ¢ Myagq = (ff,ﬂ) towards which p; is manipulable must exist and
as p; # ¢; t; # t;. Suppose to the contrary that |M;| < 5 and #; € {t;,1;},
i.e. 7; = t;. Without loss of generality let S = {1,2}, i.e. i € {1,2}. We omit
the subscript i. Let u := f(p),v := f(q). Then v # u and (v,u) € t. Ast =1
and f(q) = f(Z,%,t) = v unanimity implies that = 7 € {vwu, vuw}. Then,
t = wou as by unanimity and f(p) # v t € P — {vwu,vuw}, and (v,u) € t.
This in turn implies that t = 7 = vuw as otherwise p = (wvu, wvu, vwu) is
manipulable under f by {3} towards (wvu, wvu, wvu) by unanimity. Hence,

p = (wvu, wou, vuw), ¢ = (Vuw, Vuw, Vuw).

Now, unanimity implies that p is also manipulable towards (vwu, vwu, vuw)
by the coalition {1,2} and so, as p ¢ My,

My D {(t,t,1), (1, t,1), (t,vwu, t), (vwu, t,1)}.

Consider ps, ps, ps and pg. Then |M;| < 5 implies that |M;N{ps, ps, ps, ps}| <
1. So, without loss of generality ps,ps ¢ M;. But then

Mf 2 {(t3aft;a¥3)a (¥37/tv37t3)7 (t47/t\;la¥4)a (¥4a£l7t4)}7

and |M;| < 5 implies that without loss of generality {(t3,ts,73), (3,13, t3)} =
{(¢,t,1), (vwu, t,1)}, since (¢,t,t), (vwu, t,t) are the only profiles in

{(t,t,1), (t,t,1), (t,vwu, ), (vwu, t,t)}

where the second agent has an identical preference. But this implies that
t;s =t = t3, a contradiction. This finishes the proof of the claim.
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Now, we consider three cases.

Case 1: There is an ¢ € {1,3,5} such that p;, piy1 ¢ M;.
Without loss of generality i = 1. By the claim there are #;,, € P such
that |{t1,t1,¥1}| = |{t2,t2,¥2}| = 3 and

Mf 2 {(tlafla%vl); (Elatla/tvl)a (t27¥2;%\/2); (¥2at27/t\/2)}-

We ShOW that |{(t1aflaa)7 (Zlatlaftvl)’ (-@’52’%42) (t27t27t2)}| — 4 SO suppose
contrapositive that |{(¢1, %1, t1), (1, t1,t1), (t2,t2,t2) (t2,t2,t2)}| < 3. As

|{t1:%v17¥1}| - |{t2:%v2:¥2}| =3

and p; # ps this implies that ¢; = fs,11 = to and t; = to. Hence, if we let
t—tl,tl—tandtl—tthenpl—(ttt)—q2 andpQ—(ttt)—ql An
application of Lemma 4 yields that ¢ = uwvw and ¢ = vuw where v = f(p1)
and u = f(pz). By unanimity then t € {wuv,wvu}. But then, if £ = wuwv
p1 € My by unanimity and if t = wou py € M/ by unanimity, a contradiction.
Hence,

|{(t17¥1a?1)a (Elatlaa)a (t27¥2a%;)’ (fz,tg,ft\/g)ﬂ =4.

Note that we are now in a similar situation as in the end of the proof
of the claim, except that we have additionally that |{t,?1,%;}| = 3 and
[{t5, 12, %2}| = 3. So, by considering ps, ps., ps and pg, we can obtain the same
contradiction. This finishes case 1.

Case 2: There is an ¢ € {1,3,5} such that p;, pis1 € M;.
Then |M;| < 5 and case 1 implies that without loss of generality either

P1, P2, 3, s € My and p4;p6_§§ My or py,pa, p3, ps, ps € My and p6_§’-fNMf- In
both cases we can choose tg, t5, ts € P by the claim such that |{te,t6,t6}| = 3
and (tﬁ,tG,EG), (tG,fﬁ,tG) S Mf. Then

{pl:p25p3:p5} N {(,tvﬁatﬁaffi): (ZG:zGatﬁ)} - ®7

contradicting |M | < 5. This finishes case 2.

Case 3: For all i € {1, 3,5} either p; € M; and p;11 ¢ My or p; ¢ M; and
pi+1 € My. -

Without loss of generality py, p3, ps € M. By the claim there are t;,1;,¢; €
P,i € {2,4}, such that

Mf 2 {(t27¥27/{2); (EQa t?a%v?)a (t47/t\;17¥4); (¥4aaa t4)}
and |{t;,7;,1;}| = 3 for all i € {2,4}. Then |M;| < 5 implies that
{(t2:¥2:?2): (¥27t27/{2)} — {(t47/t\;17¥4)7 (¥4:£1: t4)}:
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and so 1y = tN4 = t9, a contradiction. This finishes case 3.

All three cases together show that under the assumptions of the propo-
sition |My| < 5 leads to a contradiction. Hence, |M;| > 6, proving the
proposition. =

Proposition 17 Let f : P23} — A be a unanimous and nondictatorial
social choice function. Suppose that all fs,S € S—{{1}}, are nondictatorial.
Then

|
|Mf|zm!>2<%—1>+1.

Proof. As N = {1,2,3} we have S—{{1}} = {{1,2},{1,3}}. By Lemma
6 [s(My,)| > 2 for all S € S — {{1}}. Without loss of generality k :=
TTg12y (M oy ) VM| < [Ty 3y (M, 4, ) N M| I the following claim is proven
the proposition follows immediately, as then

|My| > 2% Ty (My,, o, ) — Mg| 4 [Tl 0y (M, ,,) 0 My
+|H{1 3}(Mf{1 3}) N Myl

m) m)
2*(——k>+k+k—m‘>2<7—l>+l.

Y

2

Claim: To each p € Iy 9y (My,, ,,) — My we can associate two profiles 7,12 €

My such that [r)(N)| = [r2(N)| = 3 and {rj,r2} N {r}, 72} = 0 for all
ﬁe H{L?} (Mf{l,:)}) - Mfa ﬁ?é p-

Let p = (tp,tp,1,) ¢ M; be manipulable towards ¢ = (tp, 1y, 1,). By
Lemma 5 we can assume that ¢, ¢ {tp,tp} For all such p by Lemma 2
= (tp, tp,tp) € My and r2: (t tp.tp) € My If {rl, 2} N {rL, 12} = { for

all p,pE H{1 2y (My,, ,,) — My, p # p, we are done.

So, suppose that there is an r € {rp, p} N { 1%} for some p,p €
H{lg}(Mf{12}) My, p # p. By Lemma 12 then p = (t,¢,{) = ¢ and
q= (1,%,t) = p for some t, 1,1 € P such that |{t,1,7}| = 3. Let z := f(p) and
f(») =y. Then x # v, (y, x) € t and (z,y) € ¢ because f is manipulable
from p to p and from p to p. Without loss of generality we may assume that
(z,y) € t. As f is unanimous and f(p) = y either t+# T...or t 75 T.... As,
m > 4 there are (m —2)! > 2 preferences ¢ such that t = zy..., hence we
can choose such a t ¢ {t,7}. Let p= ({,1,1) and

o= (L), (t.1,1)
o= (441),7 = (1)

We need the following subclaim concerning these profiles.
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Subclaim: Let 7 ¢ M/ for some i € {1,2}. Then 7 € My and p ¢ H{l 2}(Mf{1 n) ™
M. Furthermore then for all p € Iy oy (My,, ,,) — M; such that p is manip-
ulable by {1,2} towards ¢’ with |[p'(N)U ¢ (N)| =3 and 7 or 7,7 € {1, 2},

is on a shortest path from p’ to ¢, p’ = p or p’ = p respectively.

Without loss of generality ¢ = 1. If f(7') € A — {z,y} then agent 1 can
manipulate at 7' towards p, Contradicting 7H ¢ M;. If f(7') = z then pis
manipulable by agent 1 towards 7', contradicting p ¢ M;. Thus

) =y.

If £(P) = y, then p € M; as agent 3 can deviate towards (2,1, 1) and (z,y) € 1.
If f(p) € A—{z,y} thenp € Mf as agent 2 can deviate towards 7' and p(2) =
t=wy....If f(p) =z then p ¢ [y 9y(My,, ,,) — My as p({1,2}) = t=ux.

SO coalition {1,2} has no incentive to manipulate. Hence, for all values of
f(p) either p€ My or p ¢ I 9y(My,, ,,) — My implying in particular that

ﬁq—f H{L?}(Mf{r,z}) - Mf‘

If f(T') = x then agent 2 can manipulate at 7' towards 7', contradicting
7' ¢ M;. Hence, f(7') # x. But then agent 1 can manipulate at 7' towards
P, SO
7! € Mf.

Now, to end the proof of the subclaim let p’ € Il 2y(My,, ,,) — My be such
that p' is manipulable by {1,2} towards ¢’ with |p'(N) U ¢'(N)| = 3 and 7
or 7,i € {1,2}, is on a shortest path from p’ to ¢’. Then 7 (7%) is also on a
shortest path from pto p (p to p) and p # p" as p ¢ Iy, 2}(Mf{1 2}) M; and
p € H{12}(Mf{12}) M. Hence, by part (2) of Lemma 12 p' = p (p' = p).
This proves the subclaim.

Now we consider three cases.

Case 1: {7',72} N M; = 0.
Then by the subclaim 7',7% € M;. By the furthermore part of the sub-
claim 7%, 72 can be umquely associated to p. Then 71, r2 can be uniquely

PP
assoc1ated to p.

Case 2: {71, 72} N M; = {7},i € {1,2}.

Without loss of generality : = 1. By the furthermore part of the claim we
can uniquely associate 72,7, to p and 7,72 to p.
Case 3: {7, 7%} C M;.

Now suppose, otherwise we are obviously done, that there is an 7%,i €
{1,2}, and a p’ € Il 9y(My,, ,,) — My, manipulable by {1, 2} towards ¢’ with
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|p'(N) U ¢ (N)| = 3, such that 7% is on a shortest path from p’ to ¢’. Then,
by part (2) of Lemma 12 {p',¢'} = {p,p}. If p’ = p for all such p' we are
done, since we can uniquely associate 7,7 to p and 7,, 72 to p. So, suppose
that p’ = p and ¢ = p, i.e. p = (,%,1) is manipulable towards p = (1,1, 1)
by coalition {1,2}. As f(p) = y this implies that (y, f(p)) € t and f(p) # ¥.
Sincet = zy ... and f(p) =z, p=(t,t,1), it follows that p'is also manipulable
by {1,2} towards p. As p = p’ € Il (My,,,,) — My this implies that
7', 7> € My. So, we have found six manipulable profiles {r,,r2, 7,7, 7",7%}
for the three distinct profiles p,p,p € I 9y (My,,,,) — My. We are done
if we can show that these six manipulable profiles are uniquely associated
to p, p,p. The profiles r,, 77, 7',7% are by construction not associated to any
p’ € Hpoy(My,,,) — My,p" ¢ {p,p,p}. Suppose that 7",i € {1,2}, is
associated to p” € H{LQ}(Mf{LZ}) — My, i.e. on a path from p” to ¢”. Again
then, by part (2) of Lemma 12 {p”,¢"} = {p, p}, and this finishes case 3.

Cases 1 to 3 show that the claim is true, and this proves the proposition
by the remarks before the claim. m
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