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Abstract

This paper proposes new error correction based cointegration tests for

panel data. The limiting distributions of the tests are derived and critical

values are provided. Our simulation results suggest that the tests have

good small-sample properties with small size distortions and high power

relative to other popular residual-based panel cointegration tests. In our

empirical application, we present evidence suggesting that international

health care expenditures and GDP are cointegrated once the possibility

of an invalid common factor restriction has been accounted for.

JEL Classification: C12; C32; C33; O30.

Keywords: Panel Cointegration Test; Common Factor Restriction; Cross-

Section Dependence; International Health Care Expenditures.

1 Introduction

The use of panel cointegration techniques to test for the presence of long-run

relationships among integrated variables with both a time series dimension T

and a cross-sectional dimension N has received much attention recently. The

literature concerned with the development of such tests has thus far taken two

broad directions. The first consists of taking cointegration as the null hypothesis.

This is the basis of the panel cointegration tests proposed by McCoskey and Kao

(1998) and Westerlund (2005a).

∗Previous versions of this paper were presented at the 13th International Conference on
Panel Data in Cambridge and at a seminar at Lund University. The author would like to thank
conference and seminar participants, and in particular Anindya Banerjee, David Edgerton,
Rolf Larsson, Johan Lyhagen, Peter Pedroni, Jean-Pierre Urbain, and two anonymous refer-
ees for many valuable comments and suggestions. The author would also like to thank the
Maastricht Research School of Economics of Technology and Organizations for its hospitality
during a visit at the Depertment of Quantitative Economics at the University of Maastricht,
where a part of this paper was written. Thank you also to the Jan Wallander and Tom
Hedelius Foundation for financial support under research grant number W2006-0068:1. The
usual disclaimer applies.

†Department of Economics, Lund University, P. O. Box 7082, S-220 07 Lund, Sweden. Tele-
phone: +46 46 222 4970; Fax: +46 46 222 4118; E-mail address: joakim.westerlund@nek.lu.se.
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The second approach is to take no cointegration as the null hypothesis. Tests

within this category are almost exclusively based on the methodology of Engle

and Granger (1987) whereby the residuals of a static least squares regression

is subjected to a unit root test. The most influential theoretical contributions

within this category are those of Pedroni (1999, 2004), in which the author

generalizes the work of Phillips and Ouliaris (1990) by developing several tests

that are appropriate for various cases of heterogeneous dynamics, endogenous

regressors, and individual specific constants and trends. Tests are developed

both for the case with a common autoregressive root under the alternative

hypothesis as well as for the case that permits heterogeneity of the autoregressive

roots.

Of course, this new development has not gone unnoticed in the empirical

literature, where the new tests have attracted an enormous amount of interest.

Although there are many reasons for this, the single most cited rationale for

using these tests is the increased power that may be brought to bear on the

cointegration hypothesis through the accounting of both the time series and

cross-sectional dimensions. In spite of this, however, many studies such as Ho

(2002) fail to reject the null hypothesis, even in cases when cointegration is

strongly suggested by theory.

One plausible explanation for this failure to reject the null centers on the fact

that residual-based tests of this sort require the long-run cointegrating vector

for the variables in their levels being equal to the short-run adjustment process

for the variables in their differences. Kremers et al. (1992) refer to this as a

common factor restriction and show that its failure can cause a significant loss

of power for residual-based cointegration tests.

In this paper, we propose four new panel tests of the null hypothesis of no

cointegration that are based on structural rather than residual dynamics, and

therefore do not impose any common factor restriction. The proposed tests are

panel extensions of those proposed in the time series context by Banerjee et al.

(1998). As such, they are designed to test the null by inferring whether the

error correction term in a conditional error correction model is equal to zero. If

the null hypothesis of no error correction is rejected, then the null hypothesis

of no cointegration is also rejected.

Each test is able to accommodate individual specific short-run dynamics,

including serially correlated error terms, non-strictly exogenous regressors, in-

dividual specific intercept and trend terms, and individual specific slope pa-

rameters. Bootstrap tests are also proposed to handle applications with cross-

sectional dependence.

Two tests are designed to test the alternative hypothesis that the panel is

cointegrated as a whole, while the other two test the alternative that there is

at least one individual that is cointegrated. All four tests are shown to be very

straightforward and easy to implement. The asymptotic results reveal that the

tests have limiting normal distributions, and that they are consistent.
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Simulation evidence is also provided to evaluate and compare the small-

sample performance of the tests relative to the performance of the popular

residual-based tests by Pedroni (2004). The results suggest that the new tests

maintain good size accuracy, and that they are more powerful than the residual-

based tests provided that the conditions laid out in the paper hold. In our

empirical application, we provide evidence suggesting that international health

care expenditures and GDP are cointegrated once the long- and short-run ad-

justment processes are allowed to differ.

The plan of the paper is as follows. Sections 2 and 3 specify the model and

outlines the new cointegration tests. Section 4 then analyzes the asymptotic

properties of the tests under the assumption of cross-sectional independence,

while Section 5 presents bootstrap tests that relaxes this assumption. Section

6 is devoted to the Monte Carlo study, while Section 7 contains the empirical

application. Concluding remarks are given in Section 8. Proofs of important

results are regelated to the appendix.

2 The error correction setup

In this section, we present the basic error correction setup, in which the new

cointegration tests will be developed. We begin by specifying the model of

interest, and then we go on to discuss how it relates to the model used in the

residual-based approach.

2.1 Model and assumptions

We consider the following data generating process

yit = φ1i + φ2it + zit, (1)

xit = xit−1 + vit, (2)

where t = 1, ..., T and i = 1, ..., N indexes the time series and cross-sectional

units, respectively. For simplicity, the K dimensional vector xit is modelled as

a pure random walk while the scalar yit consists of both a deterministic term

φ1i + φ2it and a stochastic term zit, which is modeled as

αi(L)∆zit = αi(zit−1 − β′

ixit−1) + γi(L)′vit + eit, (3)

where αi(L) = 1 −
∑pi

j=1 αijL
j and γi(L) =

∑pi

j=0 γijL
j are scalar and K

dimensional polynomials in the lag operator L. Note that (3) is basically the

conditional model for zit given xit in a standard vector error correction setup,

with (2) being the associated marginal model for xit. By substituting (1) into

(3), we get the following conditional error correction model for yit

αi(L)∆yit = δ1i + δ2it + αi(yit−1 − β′

ixit−1) + γi(L)′vit + eit, (4)
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where δ1i = αi(1)φ2i − αiφ1i + αiφ2i and δ2i = −αiφ2i now represent the

deterministic components. Typical deterministic elements include a constant

and a linear time trend. To allow for this, we distinguish between three cases.

In Case 1, φ1i and φ2i are both restricted to zero so yit has no deterministic

terms, while in Case 2, then φ1i is unrestricted but φ2i is zero so yit is generated

with a constant. Finally, in Case 3, then there are no restrictions on either φ1i

or φ2i, which suggests that yit is generated with both a constant and trend.

In all three cases, note that the error correction model in (4) can only be

stable if the variables it comprises are all stationary.1 Thus, as yit−1 − β′

ixit−1

must be stationary, the vector βi defines a long-run equilibrium relationship

between xit and yit, provided of course that the errors vit and eit are also

stationary. Any deviation from this equilibrium relationship lead to a correction

by a proportion −2 < αi ≤ 0, which is henceforth referred to as the error

correction parameter. If αi < 0, then there is error correction, which implies

that yit and xit are cointegrated, whereas if αi = 0, then the error correction will

be absent and there is no cointegration. This suggests that the null hypothesis

of no cointegration for cross-sectional unit i can be implemented as a test of

H0 : αi = 0 versus H1 : αi < 0. In what follows, we shall propose four new

panel statistics that are based on this idea.

Two of the statistics are based on pooling the information regarding the

error correction along the cross-sectional dimension of the panel. These are

referred to as panel statistics. The second pair do not exploit this information

and are referred to as group mean statistics. The relevance of this distinction

lies in the formulation of the alternative hypothesis. For the panel statistics,

the null and alternative hypotheses are formulated as H0 : αi = 0 for all i versus

Hp
1 : αi = α < 0 for all i, which indicates that a rejection should be taken as

evidence of cointegration for the panel as a whole. By contrast, for the group

mean statistics, H0 is tested versus Hg
1 : αi < 0 for at least some i, suggesting

that a rejection should be taken as evidence of cointegration for at least one of

the cross-sectional units.

We now lay out the assumptions needed for the development of our new

panel statistics.

Assumption 1. (Error process.) The vector wit = (eit, v
′

it)
′ satisfies the fol-

lowing set of conditions:

(a) The vector wit is independent and identically distributed (i.i.d.) across

both i and t with E(wit) = 0 and var(eit) = σ2
i < ∞;

(b) var(vit) = Ωi is positive definite;

(c) E(ektvij) = 0 for all k, t, i and j.

1Formally, for the single equation error correction model in (4) to be stable, for some
complex number z, we require that the roots of the equation αi(z) = 0 lie outside the unit
circle, see for example Zivot (2000).
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Assumption 1 establishes the basic conditions needed for developing the

new cointegration tests. Many of these are quite restrictive but are made here

in order to make the analysis of the tests more transparent, and will be relaxed

later on.

For example, Assumption 1 (a) states that the individuals are independent

over the cross-sectional dimension. Although not strictly necessary, this condi-

tion is convenient as it will allow us to apply standard central limit theory in a

relatively simple manner. Some possibilities for how to relax this condition will

be discussed in Section 5. Similarly, independence through time is convenient

because it facilitates a straightforward asymptotic analysis by application of

the conventional methods for integrated processes. In particular, Assumption

1 (a) ensures that the following invariance principle holds individually for each

cross-section

T−1/2

[Tr]∑

t=1

wit ⇒ Bi as T → ∞,

where the symbol ⇒ signifies weak convergence and Bi = (B1i, B
′

2i)
′ is a vector

Brownian motion of dimension K + 1 with block-diagonal covariance matrix,

with elements σ2
i and Ωi. Also, for notational convenience, the Brownian motion

Bi(r) is written as Bi with the argument r ∈ [0, 1] suppressed.

Assumptions 1 (b) and (c) are concerned with the covariance matrix of Bi,

equally the long-run covariance matrix of wit. Specifically, Assumption 1 (c)

states that the K × K matrix Ωi is positive definite, which is tantamount to

requiring that xit is not cointegrated in case we have multiple regressors. This

assumption is very standard and will be maintained throughout.2

Assumption 1 (c) requires that the vector of regressors is independent of the

regression error eit, which is satisfied if xit is strictly exogenous. Although this

might seem overly restrictive at first, our model is actually quite general when it

comes to the short-run dynamics of the system. In fact, the only really necessary

requirement is that the regressors contained in xit are weakly exogenous with

respect to αi and βi, the parameters of interest, which is implicit in our model

since xit is not error correcting. Apart from this, however, our model is flexible.

In particular, as we will show later, the orthogonality condition in Assumption

1 (c) can be easily relaxed to accommodate regressors that are weakly but not

necessarily strictly exogenous.3

2Note the data generating process used here can be seen as a restricted version of the one
used by Larsson et al. (2001). The restriction being that the cointegration rank is at most
one. Thus, if one suspect that there is cointegration in xit, then the rank test of Larsson et

al. (2001) may be used to determine the exact number of cointegration relationships.
3Note the distinction here between strict exogeneity, weak exogeneity and endogeneity. In

particular, because the error correction model in (4) has been conditioned on all current and
past values of vit, we have by construction that E(eitvit−j) = 0 for all j ≥ 0. In addition, the
marginal model for xit is assumed not to be error correcting. Strict exogeneity corresponds
to requiring that E(eitvit−j) = 0 for all j, including all j < 0. Weak exogeneity, on the other
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Moreover, the fact that αi(L) and γi(L) are permitted to vary between the

individuals of the panel indicates that we are in effect allowing for a completely

heterogeneous serial correlation structure. In addition, although the regressors

are specified as pure random walks, our results can easily be generalized to allow

for more general dynamics. In fact, it is straightforward to show that vit can

be endowed with a general autoregressive representation without affecting the

results reported in this paper.

2.2 A comparison with the residual-based approach

Although the data generating process adopted in this paper is quite general,

since the regressors are not permitted to be endogenous, it is more restrictive

than the one used by Pedroni (2004) for developing his residual-based panel

cointegration tests. Thus, in view of this, it seems fair to question the relevance

of introducing the new tests. The reason is that, while more general when it

comes to the endogeneity of the regressors, residual-based tests are also more

restrictive because they impose a possibly invalid common factor restriction.

Accordingly, to better understand the trade-off between these two competing

approaches, it is important to discuss the implications of the weak exogeneity

and common factor restrictions.

We begin with weak exogeneity, which essentially says that (4) is the model

of interest when testing for cointegration, and that the marginal model in (2)

can be ignored. The concept of weak exogeneity has been studied to some length

by for example Johanssen (1992) and Urbain (1992), and the reader is referred

to these sources for full details. In the present context, Johansen (1992) has

shown that xit is weakly exogenous with respect to αi and βi if the marginal

model for xit is not error correcting. If this is the case, then αi and βi can be

efficiently estimated from the single equation conditional error correction model.

In particular, weak exogeneity ensures that a test for no cointegration can be

implemented as a test for no error correction in (4) only.

On the other hand, if the weak exogeneity assumption does not hold, then

the conditional model in (4) does not contain all of the necessary information

to conduct the cointegration test. In particular, although irrelevant under the

null of no cointegration, it is not difficult to see that such a test might have

difficulties finding cointegration under the alternative if it is mainly xit that is

error correcting. The intuition lies in noting that αi can be written as

αi = αiy − γ′

i0αix,

where αiy and αix are the error correction parameters of the equations for yit

and xit in the underlying unconditional error correction model, respectively,

hand, only requires that the marginal model is not error correcting. Specifically, eit and vit

do not have to be uncorrelated at all lags and leads. Finally, endogeneity does not preclude
xit from being error correcting, nor does it prevent eit and vit from being correlated.
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see for example Zivot (2000). Now, because the signs of γi0 and αix are not

constrained in any way, we can just as well assume that γi0 is positive, and

concentrate on αix. In this case, it is clear that a left-sided cointegration test

based on the conditional model will have reduced power if αix is negative, and

it will have no power if γ′

i0αix if greater than αiy. On the other hand, power

can also be increased in the sense that αix may just as well be positive.

In order to better understand the common factor restriction in the residual-

based setup, consider the conditional error correction model in (4). The test

regression that forms the basis for the tests of Pedroni (2004) can be derived

from this model, thus establishing a relationship between the error correction

and residual-based tests. Indeed, by subtracting αi(L)β′

ivit from both sides of

(4), we obtain

∆(yit − β′

ixit) = δ1i + δ2it + αi(yit−1 − β′

ixit−1) + ẽit. (5)

where ẽit denotes the composite error term

ẽit = (γi(L) − αi(L)βi)
′vit + eit.

The residual-based approach tests the null hypothesis of no cointegration by

inferring if the putative equilibrium error yit − β′

ixit in (5) has a unit root or,

equivalently, if αi is equal to zero. The problem with this approach is that it

imposes a possibly invalid common factor restriction as seen by the fact that eit

and ẽit are not equal unless γi(L) and αi(L)βi are equal.

To get an intuition of this, note that the variance of ẽit is given by

var(ẽit) = (γi(L) − αi(L)βi)
′Ωi(γi(L) − αi(L)βi) + σ2

i .

Suppose now that σ2
i is close to zero but that the first term on the right-hand

side is large. In this case, the error correction model in (4) has nearly perfect

fit with αi being estimated with high precision. The error correction tests will

therefore have good power. By contrast, the estimation of αi in (5) will be much

more imprecise, producing tests with low power. Thus, we expect the new tests

to enjoy higher power whenever γi(L) and αi(L)βi differ, and the signal-to-noise

ratio of Ωi to σ2
i is large.

Thus, the difference between the assumptions of the two classes of residual-

based and error correction tests essentially boils down to a trade-off in power.

If weak exogeneity fails, then the error correction tests may have low power,

while if the common factor restriction fails, then the residual-based tests may

have low power. In this paper, weak exogeneity is a maintained assumption,

and hence most of the power analysis will be focused on the common factor

issue.4

4Some simulation results of the effects of a failure of weak exogeneity are reported in
Section 6.
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3 Test construction

In constructing the new statistics, it is useful to rewrite (4) as

∆yit = δ′idt + αi(yit−1 − β′

ixit−1) +

pi∑

j=1

αij∆yit−j +

pi∑

j=0

γij∆xit−j + eit, (6)

where dt = (1, t)′ now holds the deterministic components with δi = (δ1i, δ2i)
′

being the associated vector of parameters. The problem is how to estimate the

error correction parameter αi, which, as mentioned earlier, forms the basis for

our new tests. One way is to assume that βi is known, and to estimate αi by

least squares. However, as shown by Boswijk (1994) and Zivot (2000), tests

based on a prespecified βi are generally not similar and depend on nuisance

parameters, even asymptotically.

As an alternative approach, note that (6) can be reparameterized as

∆yit = δ′idt + αiyit−1 + λ′

ixit−1 +

pi∑

j=1

αij∆yit−j +

pi∑

j=0

γij∆xit−j + eit. (7)

In this regression, the parameter αi is unaffected by imposing an arbitrary βi,

which suggests that the least squares estimate of αi can be used to provide a

valid test of H0 versus H1. Indeed, because λi is unrestricted, and because the

cointegration vector is implicitly estimated under the alternative hypothesis,

as seen by writing λi = −αiβi, this means that it is possible to construct a

test based on αi that is asymptotically similar, and whose distribution is free of

nuisance parameters. In this paper, we therefore propose four new tests that are

based on the least squares estimate of αi in (7) and its t-ratio. The construction

of these statistics is described next.

3.1 The group mean statistics

The construction of the group mean statistics is particularly simple and can be

carried out in three steps. The first step is to estimate (7) by least squares for

each individual i, which yields

∆yit = δ̂′idt + α̂iyit−1 + λ̂′

ixit−1 +

pi∑

j=1

α̂ij∆yit−j +

pi∑

j=0

γ̂ij∆xit−j + êit. (8)

The lag order pi is permitted to vary across individuals, and can be determined

preferably using a data dependent rule. For example, we may use the Campbell

and Perron (1991) rule, which is a simple sequential test rule based on the

significance of the individual lag parameters α̂ij and γ̂ij . Another possibility is

to use an information criterion, such as the Akaike criterion. Alternatively, the

number of lags can be set as a fixed function of T .
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The second step involves estimating

αi(1) = 1 −
pi∑

j=1

αij .

A natural way to do this is to use a parametric approach and to estimate αi(1)

using α̃i(1) = 1 −
∑pi

j=1 α̂ij . Unfortunately, tests based on α̃i(1) are known to

suffer from poor small-sample performance due to the uncertainty inherent in

the estimation of the autoregressive parameters, especially when pi is large.

As an alternative approach, consider the following kernel estimator

ω̂2
yi =

1

T − 1

Mi∑

j=−Mi

(
1 − j

Mi + 1

) T∑

t=j+1

∆yit∆yit−j ,

where Mi is a bandwidth parameter that determines how many covariances to

estimate in the kernel. The relevance of ω̂2
yi is easily appreciated by noting

that under the null hypothesis, the long-run variance ω2
yi of ∆yit is given by

ω2
ui/αi(1)2, where ω2

ui is the corresponding long-run variance of the composite

error term uit = γi(L)′vit + eit. This suggests that αi(1) can be estimated

alternatively using ω̂ui/ω̂yi, where ω̂ui may be obtained as above using kernel

estimation with ∆yit replaced by

ûit =

pi∑

j=0

γ̂ij∆xit−j + êit,

where γ̂ij and êit are obtained from (8). The resulting semiparametric kernel

estimator of αi(1) will henceforth be denoted α̂i(1).

The third step is to compute the test statistics as follows

Gτ =
1

N

N∑

i=1

α̂i

SE(α̂i)
and Gα =

1

N

N∑

i=1

T α̂i

α̂i(1)
,

where SE(α̂i) is the conventional standard error of α̂i.

A few remarks are in order. Firstly, although asymptotically not an issue,

the normalization of Gα by T may cause the test to reject the null too frequently,

especially when the number of lags is comparably large. In such cases, one may

want to replace T with the effective number of observations per individual, which

is expected to produce better performance in small samples without affecting

the asymptotic properties of the test.

Secondly, note the form of the individual quantities T α̂i/α̂i(1) making up

the Gα statistic. This is different from the coefficient statistic proposed by

Banerjee et al. (1998), which is just T α̂i. Apparently, the effect of allowing

for serial correlation in ∆yit does not vanish asymptotically as claimed by these

authors but impacts the test through α̂i(1), which seems very reasonable given
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the results presented by Xiao and Phillips (1998) for the coefficient version of

the augmented unit root test.

Thirdly, note also that the above estimation procedure does not account for

any deterministic terms, and that it needs to be modified to accommodate the

constant and trend in Cases 2 and 3, respectively. This requires replacing ∆yit

in ω2
yi by the fitted residuals from a first-stage regression of ∆yit onto dt, the

vector of deterministic components.

3.2 The panel statistics

The panel statistics are complicated by the fact that the both the parameters

and dimension of (7) are allowed to differ between the cross-sectional units, and

we therefore suggest a three-step procedure to implement these tests.

The first step is the same as for the group mean statistics and involves

determining pi, the individual lag order. Once pi has been determined, we

regress ∆yit and yit−1 onto dt, the lags of ∆yit as well as the contemporaneous

and lagged values of ∆xit. This yields the projection errors

∆ỹit = ∆yit − δ̂′idt − λ̂′

ixit−1 −
pi∑

j=1

α̂ij∆yit−j −
pi∑

j=0

γ̂ij∆xit−j ,

and

ỹit−1 = yit−1 − δ̃′idt − λ̃′

ixit−1 −
pi∑

j=1

α̃ij∆yit−j −
pi∑

j=0

γ̃ij∆xit−j .

The second step involves using ∆ỹit and ỹit−1 to estimate the common error

correction parameter α and its standard error. In particular, we compute

α̂ =

(
N∑

i=1

T∑

t=2

ỹ2
it−1

)−1 N∑

i=1

T∑

t=2

1

α̂i(1)
ỹit−1∆ỹit.

The standard error of α̂ is given by

SE(α̂) =

(
(Ŝ2

N )−1
N∑

i=1

T∑

t=2

ỹ2
it−1

)−1/2

where Ŝ2
N =

1

N

N∑

i=1

Ŝ2
i .

Let σ̂i denote the estimated regression standard error in (8). The quantity Ŝi is

defined as σ̂i/α̂i(1), which is a consistent estimate of the population counterpart

σi/αi(1), the long-run standard deviation of ∆yit conditional on all current and

past values of ∆xit.

The third step is to compute the panel statistics as

Pτ =
α̂

SE(α̂)
and Pα = T α̂.
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As a small-sample refinement, similar to the group mean coefficient statistic Gα,

Pα may be normalized by the cross-sectional average of the effective number of

observations per individual rather than by T .

4 Asymptotic results

In this section, we study the asymptotic properties of our new panel statistics.

In so doing, we make use of the sequential limit theory, which is a convenient

method for evaluating the limit of a double indexed process.5 For simplicity,

stochastic integrals such as
∫ 1

0
Wi(r)dr will be written

∫ 1

0
Wi with the measure

of integration omitted.

For the asymptotic null distributions of the tests, it is useful to define

Ci =

(∫ 1

0

U2
i ,

∫ 1

0

UidVi

)′

,

C̃i =

((∫ 1

0

U2
i

)−1∫ 1

0

UidVi,

(∫ 1

0

U2
i

)−1/2∫ 1

0

UidVi

)′

,

where

Ui = Vi −
(∫ 1

0

ViW
d′
i

) (∫ 1

0

W d
i W d′

i

)−1

W d
i .

Here, Vi and Wi are two scalar and K dimensional standard Brownian motions

that are independent of each other. Furthermore, in order to succinctly express

the limiting distributions of our new test statistics when dt is nonempty, it is

useful to let W d
i = (d′,W ′

i )
′, where d is the limiting trend function. In particular,

d = 0 in Case 1, d = 1 in Case 2 and d = (1, r)′ in Case 3. Note that the vector

W d
i enters Ci and C̃i through the Brownian motion functional Ui, which is the

projection of Vi onto the space orthogonal to the vector W d
i . It is also useful to

let Θ and Θ̃ denote the expected values of Ci and C̃i, respectively, and to let Σ

and Σ̃ denote their variances.

Now, define φ = (−Θ2/Θ2
1, 1/Θ1)

′ and ϕ = (−Θ2/(2Θ
3/2
1 ), 1/

√
Θ1)

′. As

indicated by the following theorem, when the test statistics are normalized by

the appropriate value N , their asymptotic distributions only depend on the

known values of Θ, Θ̃, Σ, Σ̃, φ and ϕ.

Theorem 1. (Asymptotic distribution.) Under Assumption 1 and the null

hypothesis H0, as T → ∞ and then N → ∞ sequentially

√
NGα −

√
NΘ̃1 ⇒ N(0, Σ̃11),

5Because limit arguments are taken as T → ∞ and then N → ∞, this implies that the
new tests may be justified in cases where T is substantially larger than N .

11



√
NGτ −

√
NΘ̃2 ⇒ N(0, Σ̃22),√

NPα −
√

NΘ2Θ
−1
1 ⇒ N(0, φ′Σφ),

Pτ −
√

NΘ2Θ
−1/2
1 ⇒ N(0, ϕ′Σϕ).

Remark 1. Theorem 1 is proven in the appendix but it is instructive to con-

sider briefly why it holds. The proof for the group mean statistics is particularly

simple and proceeds by showing that the intermediate limiting distribution of

the normalized statistics passing T → ∞ for a fixed N can be written entirely

in terms of the elements of the vector Brownian motion functional C̃i. There-

fore, by subsequently passing N → ∞, asymptotic normality follows by direct

application of the Lindeberg-Lévy central limit theorem (CLT) to a sum of i.i.d.

random variables. The proof for the panel statistics is similar. It proceeds by

showing that the intermediate limiting distribution of the normalized statistics

can be described in terms of differentiable functions of i.i.d. vector sequences

to which the Delta method is applicable. Hence, taking the limit as N → ∞,

we obtain a limiting normal distribution for the panel statistics too.

Remark 2. Theorem 1 indicates that each of the normalized statistics, when

standardized by the appropriate moments, converges to a standard normal dis-

tribution. Thus, to be able to make inference based on the normal distribution,

we must first obtain the moments for each statistic. This can be done by Monte

Carlo simulations. For this purpose, we make 10, 000 draws of K + 1 inde-

pendent, scaled, random walks of length T = 1, 000. By using these random

walks as simulated Brownian motions, we construct approximations of the vector

Brownian motion functionals Ci and C̃i. The means and the variances of these

simulated functionals are then used to approximate the asymptotic moments.

The results obtained from this exercise are reported for up to six regressors in

Table 1.

Remark 3. In view of Table 1, note that, although the distributions of the

statistics are free of nuisance parameters, they do depend upon the deterministic

specification of the test regression in (7), and on the number of regressors as

reflected by dependence of Ui on W d
i . Thus, the moments will also depend

on the deterministic specification and on the number of regressors. Moreover,

notice that the distributions are independent of the short-run dynamics of the

data generating process as captured by the first differences of the regressors.

Thus, the statistics are asymptotically similar with respect to the short-run

parameters in (7). In Table 1 we therefore only report simulated moments for

the different deterministic cases and for different numbers of regressors. There

is no need to tabulate separate moments for different lag orders.

Remark 4. As in the conventional unit root testing, the test regression in (7)

involves estimating redundant trend parameters under the null. For example,

in Case 2, the parameter δ1i vanishes under the restriction that αi = 0 but it
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determines the mean of the error correction term yit−1 − β′

ixit−1 when αi < 0.

This redundancy turns up in the properties of the error corrections tests, which

then depend on δ1i even under the null as seen by the dependence of W d
i on

d. Under the alternative, the tests are consistent against cointegration with

a constant but they are inconsistent against the more general alternative of

cointegration with trend as equation (7) in Case 1 does not allow for a trend

under the alternative. Thus, the tests permit for the constant term under the

alternative by introducing δ1i in (7), which is irrelevant under the null.

Remark 5. So far, we have maintained Assumption 1 (c), which requires that

xit is strictly exogenous. This is not necessary. In fact, as pointed out by

Banerjee et al. (1998), Assumption 1 (c) can be readily relaxed by making

the error correction model in (4) conditional not only on the lags but also on

the leads of the first difference of the regressors. The intuition is simple, and

follows by the familiar dynamic least squares regression arguments of Saikkonen

(1991). In particular, given that xit is weakly exogenous with respect to αi

and βi, eit must be uncorrelated with all current and past values of vit. But

this does not prevent eit from being correlated with the future values of vit,

which makes the new tests dependent on nuisance parameters reflecting this

correlation. Therefore, in order to eliminate this dependency in case Assumption

1 (c) does not hold, we augment (4), and hence equations (6) through (8), not

only with the lags but also with the leads of vit. In what follows, to be able to

accommodate different lag and lead orders, we shall use qi to denote the number

of leads for each cross-section.6

It is important that a statistical test is able to fully discriminate between

the null and alternative hypotheses in large samples. The next theorem shows

that the test statistics are consistent and that they are divergent under the

alternative hypothesis.

Theorem 2. (Test consistency.) Under Assumption 1 and the alternative

hypotheses Hg
1 and Hp

1 , then Gα, Gτ , Pα and Pτ diverges towards negative

infinity.

Remark 6. The proof of Theorem 2 is provided in the appendix. The theorem

establishes that the divergence occurs towards negative infinity, suggesting that

the tests can be constructed as one-sided using only the left tail of the normal

distribution to reject the null hypothesis. Therefore, to test the null hypothesis

of no cointegration based on the moments from Table 1, one simply computes

the value of the standardized test statistic so that it is in the form specified

6In contrast to the new tests, the t-ratio and coefficient type statistics of Pedroni (2004)
do not require any correction to account for the absence of strict exogeneity, at least not
asymptotically. Thus, in this respect, the residual-based approach is computationally more
convenient. As we will show later in Section 6, however, the price in terms of small-sample
performance of this greater convenience can be quite large.
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in Theorem 1. This value is then compared with the left tail of the normal

distribution. Large negative values imply that the null hypothesis should be

rejected.

Remark 7. The proof of Theorem 2 uses the sequential limit theory. Although

this allows for a relatively straightforward and tractable analysis, it cannot be

used to obtain the joint rate of divergence under the two alternatives Hg
1 and Hp

1 ,

which is indicative of the relative power properties of the tests. It is, however,

possible to establish the order of the statistics as T → ∞ for a fixed N . In this

case, it is shown in the appendix that Gα and Pα are Op(T ) while Gτ and Pτ

are Op(
√

T ), which is in agreement with the results obtained by Phillips and

Ouliaris (1990) for their residual-based time series tests. Given their faster rate

of divergence, it is likely that the coefficient tests Gα and Pα have higher power

than Gτ and Pτ in samples where T is substantially larger than N .

5 Cross-sectional dependence

In this section, the results of the previous sections are generalized to account

for dependence between the cross-sectional units.

As pointed out in Section 2, the our error correction tests are based on the

assumption of independence, or at least zero correlation, over the cross-sectional

units. Although the potential effects of the breakdown of this assumption is

by now well understood, the allowance of such dependence has yet to become

standard in the panel cointegration literature.

One solution would be to use data that has been demeaned with respect to

common time effects. Thus, in this case, the statistics are calculated as before

but with x̃it = xit − 1
N

∑N
i=1 xit in place of xit and ỹit = yit − 1

N

∑N
i=1 yit

in place of yit, which does not alter their asymptotic distributions. However,

as demonstrated by Westerlund (2005b), although very convenient, subtracting

the cross-sectional average in this way may not work very well, and may in fact

result in a deterioration of the small-sample performance of the test.7 Another

disadvantage of this approach is that it do not permit for correlations that

differ between pairs of individual time series, which seem like a more realistic

assumption in many empirical applications.

One possible response to this is to employ the bootstrap approach, which

makes inference possible even under very general forms of cross-sectional depen-

dence. The particular bootstrap opted for in this section resembles that used

by Chang (2004) and proceeds as follows.

7Unreported simulation results suggest that, although the cross-sectional demeaning is able
to mitigate some effects of the dependence, the sizes of these tests can be very unreliable with
massive distortions in many cases.
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The first step is to fit the following least squares regression

∆yit =

pi∑

j=1

α̂ij∆yit−j +

pi∑

j=0

γ̂ij∆xit−j + êit. (9)

By using the residuals from this regression we then form the vector ŵt =

(ê′t,∆x′

t)
′, where êt = (ê1t, ..., êNt)

′ and ∆xt = (∆x′

1t, ...,∆x′

Nt)
′. It is this

vector that forms the basis for our bootstrap tests, and it is important that it

is obtained from equation (9) with the null hypothesis imposed. Otherwise, if

the null hypothesis is not imposed, this will render the subsequent bootstrap

tests inconsistent. Note that, in Case 3, then (9) should be augmented with a

constant to account for the trend in yit.

We then generate bootstrap samples w∗

t = (e∗′t ,∆x∗′

t )′ by sampling with

replacement the centered residual vector

w̃t = ŵt −
1

T − 1

T∑

j=1

ŵj .

Note that by resampling w̃t rather than w̃it, we can preserve not only the cross-

sectional correlation structure of eit but also any endogenous effects that may

run across the individual regressions of the system.

The next step is to generate the bootstrap sample ∆y∗

it. This is accomplished

by first constructing the bootstrap version of the composite error uit as

u∗

it =

pi∑

j=0

γ̂ij∆x∗

it−j + e∗it,

where the least squares estimate γ̂ij is obtained from the regression in (9). Given

pi initial values, we then generate ∆y∗

it recursively from u∗

it as

∆y∗

it =

pi∑

j=1

α̂ij∆y∗

it−j + u∗

it, (10)

where α̂ij is again obtained from (9). For initial values, we may use the first pi

observations of ∆yit. However, as pointed out by Chang (2004), this does not

ensure the stationarity of ∆y∗

it. As an alternative approach, we may generate a

larger number, T + n say, of ∆y∗

it and then discard the first n values. Because

this makes the initiation unimportant, we may simply use zeros to start up the

recursion.

Finally, we generate y∗

it and x∗

it with the null hypothesis imposed. This is to

ensure the spuriousness of the generated sample as claimed under the null, and

to make the resulting bootstrap tests valid. Thus, we obtain y∗

it and x∗

it as

y∗

it = y∗

i0 +

t∑

j=1

∆y∗

ij and x∗

it = x∗

i0 +

t∑

j=1

∆x∗

ij ,
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which again requites initiation through x∗

i0 and y∗

i0. The value zero will do.

Having obtained the bootstrap sample y∗

it and x∗

it, we then obtain the boot-

strapped error correction statistic of interest, which is constructed exactly as

its sample counterpart but with y∗

it and x∗

it in place of yit and xit. Denote this

initial bootstrap statistic by t∗1. If we repeat this procedure S times, say, we

obtain t∗j for j = 1, ..., S, which is the bootstrap distribution of the statistic.

For a one-sided 5% nominal level test, we then obtain the lower 5% quantile t∗C ,

say, of the bootstrap distribution. The null hypothesis is rejected if the calcu-

lated sample value of the statistic is smaller than t∗C . Also, note that in case

the regressors are assumed to be weakly but not necessarily strictly exogenous,

then the above bootstrap algorithm has to be modified to account for the leads

of ∆xit.

6 Monte Carlo simulations

In this section, we study the small-sample properties of the new tests relative to

those of some of the popular residual-based tests recently proposed by Pedroni

(2004). For this purpose, a large number of experiments were performed using

the following process to generate the data

∆yit = α(yit−1 − βixit−1) +

p∑

j=−q

γ∆xit−j + eit, (11)

∆xit = vit. (12)

For simplicity, we assume that there is a single regressor, and that there is a

common error correction parameter α. Hence, α = 0 under the null hypothesis,

while α < 0 under the alternative. The results are organized in two parts

depending on whether there is any cross-section dependence present or not.

In the first part with no cross-section dependence, we have three scenarios,

which are all based on the following moving average process

eit = uit + φuit−1.

The innovations uit and vit are both assumed to be normal variables with zero

mean and, unless otherwise stated, unit variance. The first two scenarios that

we consider are concerned with the size of the tests, while the third is concerned

with the power. The first scenario resembles the data generating process used by

Pedroni (2004), and is designed to study the effects of serial correlation. In this

case, γ = 0 and φ 6= 0. By contrast, in the second scenario, φ = 0 and γ 6= 0.

This scenario is taken from Westerlund (2005c), and the purpose is to evaluate

the performance of the tests when the regressor is not strictly exogenous. For

simplicity, p and q, the true number of lags and leads, are both set to one.

Finally, in the third scenario, we investigate the relative power of the tests, in

which case φ, p and q are all set to zero, so there is no serial correlation and only
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the contemporaneous value of ∆xit enters (11). In particular, by setting γ = 1,

we can use βi to determine whether the common factor restriction is satisfied

or not. If the restriction is satisfied, then βi = 1, whereas if it is not satisfied,

βi ∼ N(0, 1). The degree of the violation is controlled by the signal-to-noise

ratio var(vit)/var(uit), which reduces to var(vit) if we assume that var(vit) = 1.

The second part of this section is designed to study the effects of cross-

sectional dependence, and is parameterized as follows

eit = b(λi∆ft) + uit,

where b is a scale parameter, λi is a loading parameter, ft ∼ N(0, 1) and uit ∼
N(0, 1). Thus, in this setup, ft is a common factor that generates dependence

among the cross-sectional units. It enters (11) in first differences, which ensures

that the common factor to yit is stationary. For simplicity, we set γ to zero,

so the regressor is strictly exogenous. All experiments are based on generating

2, 000 panels with N individual and T + 50 time series observations, where the

first 50 observations for each series is discarded to attenuate the effect of the

initial conditions, which are all set to zero.

For comparison, four of the residual-based tests of Pedroni (2004) are also

simulated. Two are based on the group mean principle and are denoted Z̃t and

Z̃ρ, while the corresponding panel statistics are denoted Zt and Zρ. As explained

earlier, the Pedroni (2004) tests are based on the test regression in (5) and are

thus subject to the common factor critique. Analogous to the new tests, Z̃t and

Zt are constructed as t-ratios, while Z̃ρ and Zρ are coefficient statistics. All

four tests are semiparametric with respect to the heteroskedasticity and serial

correlation properties of the data.

As recommended by Newey and West (1994), all tests are constructed with

the bandwidth chosen according to the rule 4(T/100)2/9. For the number of lags

and leads, we used two different rules, one depends on the data while the other

depends on T . Specifically, for former, we used the Akaike information criterion,

while for the latter, we used 2(T/100)2/9, which gives an overall lag and lead

expansion of the usual Newey and West (1994) rate 4(T/100)2/9. Consistent

with the results of Ng and Perron (1995), the maximum number of lags and

leads for the Akaike criterion is permitted to grow with T at the same rate. The

bootstrap tests are implemented using 200 bootstrap replications.

To keep the amount of table space manageable, we present only the size-

adjusted power and the empirical size on the 5% level for Case 1 when there is

no deterministic component. The results for the other cases were similar and

did not change the conclusions. These are therefore omitted. Computational

work was performed in GAUSS.

6.1 No cross-sectional dependence

In this case, there is no cross-sectional dependence, and we only consider the

tests without the bootstrap proposal. Instead, we focus on the effects of serial
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correlation and the absence of strict exogeneity, and on the common factor issue.

Consider first the results on the size of the tests when α = 0, which are

reported in Table 2. The data in the first scenario are generated with moving

average errors, which makes φ a convenient nuisance parameter to investigate.

It has been well documented in simulation studies such as Haug (1996) that

highly persistent moving average errors may cause substantial size distortions

when testing the null of no cointegration in time series using residual-based

tests with semiparametric type serial correlation corrections. Ng and Perron

(1997) discuss the root of this problem to some length, and argue that it is the

bias of the least squares estimate for the parameters of the spurious regression,

and subsequently the autoregressive parameter of the errors, that causes these

distortions. This bias is then imported into the semiparametric serial correlation

correction, where it is further exacerbated by the difficulty inherent in long-run

variance estimation.8

In agreement with these results, Table 2 show that the Pedroni (2004) tests

tend to be severely oversized when φ is nonzero, especially when it is negative.

In fact, with these tests, the results indicate that size can be up to 19 times

the nominal 5% level. At the other end of the scale, we have the Gτ and Pτ

statistics, which have relatively small distortions. The Gα and Pα statistics lie

somewhere in between. As expected, all tests perform well when φ = 0 and

there is no persistence. We also see that there is not much difference between

the error correction tests based on the two lag and lead rules, although the size

is generally best for the tests based on choosing the number of lags and leads

as a function of T .

Given the findings of Ng and Perron (1997), a natural interpretation if these

results is that the error correction test are less distorted because they do not

rely on getting a good first-stage estimate of the level relationship. This lessens

the bias induced not only in the estimation of the autoregressive parameter, but

also in the semiparametric serial correlation correction. In other words, it seem

likely that the error correction tests are less distorted because the bias in not

compounded in the same way as for the residual-based tests.

The results from the second scenario are reported in the two bottom panels

of Table 2. As expected, we see that the new tests are generally able to appro-

priately correct for the fact that the regressor is no longer strictly exogenous.

Among these tests, we see that Gτ and Pτ generally perform best, which is in

agreement with the results from the first scenario. Of all the tests considered,

the residual-based tests perform worst. In fact, based on the results reported

in Table 2, rejection frequencies of up to 10 times the nominal 5% level are

not uncommon, even when γ = 0.4, so the strict exogeneity assumption is only

moderately violated. Increasing γ from 0.4 to 0.8 almost uniformly result in the

8Pedroni (2004) also discusses the difficulty in handling the effects of highly persistent
moving average errors, and suggests modifying his tests along the lines of Ng and Perron
(1997), which is expected to reduce the size distortions even in the panel context.
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size of the residual-based tests going to 100%.

Although theoretically somewhat unexpected, these results are nevertheless

consistent with the poor performance of the residual-based tests in the first

scenario with serial correlation. Apparently, the problem with bias effects ex-

tends also to the case with violations of strict exogeneity. In view of this, it

seem desirable to employ some form of dynamic or fully modified least squares

correction even for the residual-based tests.

The power of the tests is evaluated next. Due to the different size properties

of the tests, all powers are adjusted for size. Moreover, to be able to isolate the

effects of the common factor restriction, both γ and φ are set equal to zero. The

results are reported in Table 3 for the case when α = −0.01, and in Table 4 for

the case when α = −0.03.

It is seen that the new tests are almost uniformly more powerful than the

residual-based tests by Pedroni (2004). In fact, the results suggest that the new

tests are the most powerful even when the common factor restriction is satisfied,

which is also what Banerjee et al. (1998) find when simulating the time series

versions of these tests. This is somewhat unexpected since the residual-based

tests should be more efficient in this case. One possible explanation for this

result is that the error correction tests are even more efficient, as they exploit

the fact that xit is weakly exogenous in this setup.

Although somewhat unexpected in the common factor case, the greater

power of the error correction tests in the no common factor case is well in

line with theory. In particular, in accordance with our discussion in Section

2, Tables 3 and 4 show that the relative power of the error correction tests in-

creases monotonically as the signal-to-noise ratio increases. This effect is further

magnified by the fact that the power of the residual-based tests appears to be

decreasing in var(vit), which is to be expected as large values of var(vit) will

tend to inflate the test regression in (5) with excess volatility.

The panel tests have the highest power, which is not surprising since they

are based on the pooled least squares estimator of the α, and pooling is efficient

under the homogenous alternative considered here. Among the panel tests, we

see that Pα has the highest power when the common factor restriction is satis-

fied, but that Pτ becomes more powerful as var(vit) increases and the restriction

is violated. Among the group mean tests, the results suggest that Gτ has the

highest power.

6.2 Cross-section dependence

In the cross-section dependent case, we use the scale parameter b to control the

dependence. If b = 0, then eit reduces to uit and there is no dependence, whereas

if b = 1, then eit = λi∆ft + uit, which implies that E(eitejt) = λ2
i if i 6= j so

the cross-sectional units are dependent. The results are reported in Table 5,

where we use the star superscript to indicate the bootstrapped versions of the

error correction statistics. Also, in this subsection, we drop the Akaike type
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error correction tests and focus on the tests based setting the number of lags

and leads as a function of T , which greatly reduces the number of computations

required.

Consider first the results on the size of the tests. As expected, we see that

all tests perform well with only small distortions when b = 0 and there is no

cross-sectional dependence. However, as b departs from zero, we see that there

is a strong tendency for the asymptotic tests to overreject the null hypothesis.

We also see that the magnitude of these distortions varies quite significantly.

At one end of the scale, we have the Gτ and Pτ tests, which actually appear

to be quite robust to the cross-section correlation. At the other end, we have

the residual-based tests, where the results suggest that the size can be very

unreliable with severe distortions in most cases. As expected, the bootstrapped

tests perform very well even under cross-sectional dependence.

Consider next the power of the tests. There are several things that are note-

worthy. First, the power of the bootstrapped error correction tests is generally

comparable with the power of their asymptotic counterparts. This result is very

interesting because it suggests that we can correct the size of the tests with little

or no cost in terms of power. Second, the residual-based tests are generally the

least powerful, which corroborates the results reported in Tables 3 and 4.

6.3 Conclusions and their robustness

The simulation results presented in this section suggest that, under the main-

tained assumption of weak exogeneity, the new tests perform well with good

size and power in most panels. In particular, we find that the error correction

tests have both better size accuracy and vastly superior power in comparison

to the residual-based tests. We also find that the bootstrapped versions of

the new tests are very effective in eliminating the effects of the cross-sectional

dependence without sacrificing power.

These findings appear to be very robust, and extend to all sample sizes

examined and to the cases with nonzero constant and trend terms. To also

examine the effects of a violation of the weak exogeneity assumption, we carried

out some simulations using the following process to generate the data

∆yit = (αy − γαx)(yit−1 − βixit−1) + γ∆xit + eit,

∆xit = αx(yit−1 − βixit−1) + vit.

Note that this is (11) and (12) with p and q set to zero, α = αy − γαx and,

perhaps most importantly, error correcting behavior for ∆xit. As before, we

assume that βi ∼ N(0, 1) and γ = 1. We further disregard all effects of cross-

section dependence and serial correlation by making both eit and vit a draw

from the standard normal distribution.

Table 6 summarizes the results regarding the size and power of the tests at

the 5% level with 10 cross-sectional units. In agreement with the discussion of
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Section 2, we see that the error correction tests continues to perform well with

good power when αx is positive, but that the power falls significantly when it

is negative. In particular, we see that in the special case when both αx and αx

are negative such that αx < αx, then the error correction tests have no power

at all. The residual-based tests are also affected but not as dramatically as the

error correction tests. Also, as expected, the size of the tests is not affected by

the absence of weak exogeneity.

Thus, even though the error correction tests continues to perform well when

αx is positive, in general we need the weak exogeneity assumption to ensure they

work properly. In spite of this, however, given their grater robustness in terms

of both size accuracy and power, the overall impression of the Monte Carlo

evidence presented is that the new tests compare favorably with the Pedroni

(2004) tests. Also, in case weak exogeneity does not hold, it is probably better

to analyze the data using the system-based approach of Larsson et al. (2001).9

7 Health care expenditures and GDP

In this section, we apply the new tests to data on health care expenditures

(HCE) and GDP to demonstrate the use of these tests and to reassess previous

empirical findings.

The relationship between HCE and GDP is the subject of a large portion of

the literature in health economics. Many early contributions employed cross-

sectional data to obtain estimates of this relationship. Without exception, it

has been found that most of the observed variation in HCE can be explained

by variation in GDP. However, many of these studies have been criticized for

the smallness of their data sets and for the assumption that HCE is homoge-

nously distributed across countries. More recent research has therefore resorted

to panel data, which offers a number of advantages over pure cross-sectional

data. For instance, using multiple years of data increases the sample size while

simultaneously allowing researchers to control for a wide range of time invariant

country characteristics through the inclusion of country specific constants and

trends. In addition, with multiple time series observations for each country,

researchers are able to exploit the presence of unit roots and cointegration in

HCE and GDP.

9It should be noted, however, that there are simple ways to reduce the problem of endo-
geneity, even for error correction based tests. For example, as pointed out by Zivot (2000),
in situations with αi positive, a natural solution would be to simply perform a reverse test.
That is, the error correction tests are implemented in a conditional model for xit rather than
for yit. Zivot (2000) also presents several reasons for why weak exogeneity may not be too
much of a problem in practice. One reason is that it can be readily tested as a restriction
on the unconditional model, which in the current panel data setting corresponds to the panel
vector error correction model studied by Larsson et al. (2001). Another reason is that there
appears to be strong support for the weak exogeneity assumption in many applications, see
Zivot (2000) and the references therein.
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This avenue is taken by Hansen and King (1996), who examine a panel

spanning the years 1960 to 1987 across 20 OECD countries. They show that, if

one examines the time series for each of the countries separately, one can only

rarely reject the unit root hypothesis for either HCE or GDP. Moreover, their

country specific tests rarely reject the hypothesis of no cointegration. McCoskey

and Selden (1998) use the same data set as Hansen and King (1996). Based on

the panel unit root proposed by Im et al. (2003), the authors are able to reject

the presence of a unit root in both HCE and GDP. Once a linear time trend has

been accommodated, however, the null hypothesis cannot be rejected.

Hansen and King (1998) question the preference of McCoskey and Selden

(1998) for omitting the time trend from their main results, and argue that this

may lead to misleading inference. Indeed, using a panel covering 24 OECD coun-

tries between 1960 and 1991, Blomqvist and Carter (1997) challenge the findings

of McCoskey and Selden (1998). Drawing on a battery of tests, including the

panel unit root test of Levin et al. (2002), the authors conclude that HCE and

GDP appear to be nonstationary and cointegrated. Gerdtham and Löthgren

(2000) present confirmatory evidence using a panel of 21 OECD countries be-

tween 1960 and 1997. Similarly, using a panel of 10 OECD member countries

over the period 1960 to 1993, Roberts (2000) found clear evidence suggesting

that HCE and GDP are nonstationary variables. The results of cointegration

were, however, not conclusive.

Apparently, although the evidence seems to support the unit root hypothesis

for HCE and GDP, it is less conclusive on the cointegration hypothesis. One

possible explanation for these differences may be the common factor restriction

implicitly imposed when testing the null hypothesis of no cointegration using

residual-based procedures as in Hansen and King (1996).10

In this section, we verify this conjuncture by using a panel consisting of 20

OECD countries and covering the period 1970 to 2001. For this purpose, data

on annual frequency has been acquired through the OECD Health Data 2003

database. Both HCE and GDP are measured in per capita terms at constant

1995 prices and are transformed in logarithms. Moreover, since both variables

are clearly trending, we follow the earlier literature and model HCE and GDP

with a linear time trend in their levels. An obvious interpretation of such a

trend is that it accounts, in part, for the impact of technological change.

The basic model we postulate between HCE and GDP, denoted Hit and Yit,

respectively, is the following simple log-linear relationship

ln(Hit) = µi + τit + βi ln(Yit) + eit. (13)

The first step in our analysis of this relationship is to test whether the variables

are nonstationary or not. To this effect, we employ a battery of unit root tests,

which can be classified into two groups depending on whether they allow for

10Since the data sets used in the previous studies are nearly identical, any differences in
test results are not likely to be due to differences in the process generating the data.
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cross-sectional correlation or not. The first group consists of the Zt test of Im

et al. (2003) and the Harris and Tzavalis (1999) ϕ̂lsdv test, which are both based

on the assumption of no cross-sectional dependence.

However, like many other macroeconomic variables, HCE and GDP usually

exhibit strong comovements across countries. The second group of tests allows

for such cross-sectional dependence by assuming that the variables admit to a

common factor representation. It includes the G++
ols , Pm and Z tests of Phillip

and Sul (2003), the ta and tb tests of Moon and Perron (2004) and the Bai and

Ng (2004) P c
e test.

All tests are normally distributed under the common null hypothesis of non-

stationarity, and all tests except ϕ̂lsdv, ta and tb permit the individual autore-

gressive roots to differ across the cross-sectional units. The direction of the

divergence under the alternative hypothesis determines whether we should use

the right or left tail of the normal distribution to reject the null. The Zt, ϕ̂lsdv,

G++
ols , Pm, ta and tb statistics diverge to negative infinity and are compared to

the left tail, whereas the Z and P c
e statistics diverge to positive infinity, and are

thus compared to the right tail.

For the implementation of the tests, we use the Bartlett kernel, and all band-

widths and lag lengths are chosen according to 4(T/100)2/9. The number of lags

and leads are chosen by the Akaike criterion. To determine the number of com-

mon factors, we use the Bai and Ng (2004) IC1 criterion with a maximum of five

factors. The test results reported in Table 7 indicate that in only three out of the

16 cases do we end up with a rejection of the null at the 1% level of significance.

We therefore conclude that the variables appear to be nonstationary.

The second step in our empirical analysis is to test whether HCE and GDP

are cointegrated. One way to do this is to use the residual-based approach,

and to subject the regression residuals from (13) to a unit root test. The results

presented in Table 7 based on using this procedure suggest that we cannot reject

the null hypothesis of no cointegration at the 1% level for any of the residual-

based tests. In fact, even if we look at the most liberal 10% level, we end up

rejecting the null for three out of the four tests. As pointed out earlier, however,

the prospect of imposing an invalid common factor restriction may well result

in this procedure having very low power in samples as small as ours. In that

case, the error correction tests may be able to produce more powerful tests.

Our results confirm this conjuncture. In particular, unreported estimation

results show that the standard errors of the individual test regressions for the

residual-based tests are much larger in comparison to those of the corresponding

error correction test regressions, which is indicative of an invalid common factor

restriction. To tests whether this is in fact the case, we performed a series of

individual Wald tests, which all resulted in a strong rejection of the common

factor restriction.

The implication of these results is that the new tests may be more powerful.

The calculated values of the error correction statistics are presented along with
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both asymptotic and bootstrapped p-values in Table 7. When using the asymp-

totic p-values, we see that all four tests lead to a clear rejection of the null, even

at the most conservative 1% level, which we take as strong evidence in favor of

cointegration. There is no difference depending on whether αi is restricted to be

equal for all i or not. Based on the bootstrapped p-values, we end up with one

rejection, for Pτ , at the 5% level. However, since this rejection is only marginal,

and since the homogenous alternative hypothesis considered for this particular

test may be overly restrictive, we choose to interpret these results as evidence

in favor of cointegration between HCE and GDP.

8 Conclusions

In this chapter, we propose four new panel cointegration tests that are designed

to test the null hypothesis of no cointegration by testing whether the error

correction term in a conditional error correction model is equal to zero. If the

null hypothesis of no error correction is rejected, then the null hypothesis of

no cointegration is also rejected. Each test is able to accommodate individual

specific short-run dynamics, including serially correlated error terms and non-

strictly exogenous exogenous regressors, individual specific intercept and trend

terms, as well as individual specific slope parameters. A bootstrap procedure is

also proposed to handle applications with cross-sectionally dependent data.

Using sequential limit arguments, we show that the new tests have limiting

normal distributions, and that they are consistent. These results are verified

in small samples using Monte Carlo simulations. In particular, given that the

regressors are weakly exogenous with respect to the parameters of interest, we

find that the new tests show both better size accuracy and higher power than

the residual-based tests recently developed by Pedroni (2004). We further show

that this difference in power arise mainly because the residual-based tests ignore

potentially valuable information by imposing a possibly invalid common factor

restriction. On the other hand, we also find that the power of the new tests can

be quite adversely affected if weak exogeneity fails, in which case the system-

based approach of Larsson et al. (2001) is recommended.

In our empirical application, we provide evidence suggesting that HCE and

GDP are cointegrated once the difference between the short- and long-run rela-

tionships has been accounted for.
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Appendix: Mathematical proofs

This appendix proves the asymptotic results for the new test statistics. For

convenience, we shall prove the results for Case 1 with no deterministic compo-

nents. For brevity, the notations introduced in the main text are taken as given

and are thus not repeated. Moreover, for any variable zit, we use z∗it to indicate

the error from projecting zit onto onto xit−1, and (zit)p to indicate the error

from projecting zit onto wit = (∆yit−1, ...,∆yit−pi
,∆x′

it, ...,∆x′

it−pi
)′. Thus,

(zit)p = zit − w′

itai, where ai is a vector of projection parameters.

Lemma A.1. (Preliminaries for Theorem 1.) Under Assumption 1 and the

null hypothesis, as T → ∞

(a) T−1/2yit ⇒ 1

αi(1)
(γi(1)′B2i + B1i);

(b) T−2
∑T

t=2(y
∗

it−1)
2
p ⇒ 1

αi(1)2
σ2

i

∫ 1

0

U2
i ;

(c) T−1
∑T

t=2(y
∗

it−1)p(e
∗

it)p ⇒ 1

αi(1)
σ2

i

∫ 1

0

UidVi.

Proof of Lemma A.1

Consider (a). The model (4) in Case 1 can be written as

αi(L)∆yit = αi(yit−1 − β′

ixit−1) + uit, (A1)

where uit = γi(L)′vit + eit. By using the Beveridge-Nelson (BN) decomposition

of γi(L) as γi(L) = γi(1) + γ∗

i (L)(1 − L), we obtain

uit = γi(L)′vit + eit = γi(1)′vit + γ∗

i (L)′∆vit + eit.

Therefore, as T → ∞ we get

T−1/2
t∑

j=2

uij = γi(1)′T−1/2
t∑

j=2

vij + γ∗

i (L)′T−1/2vit + T−1/2
t∑

j=2

eij

= γi(1)′T−1/2
t∑

j=2

vij + T−1/2
t∑

j=2

eij + op(1)

⇒ γi(1)′B2i + B1i. (A2)

Next, we use the BN decomposition αi(L) = αi(1) + α∗

i (L)(1−L) of αi(L),

which implies that

αi(L)∆yit = αi(1)∆yit + α∗

i (L)∆2yit = αi(yit−1 − β′

ixit−1) + uit,
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which, under the null, can be rewritten as

∆yit = − α∗

i (L)

αi(1)
∆2yit +

1

αi(1)
uit.

This implies (a) as can be seen by writing

T−1/2
t∑

j=2

∆yij = −α∗

i (L)

αi(1)
T−1/2∆yit +

1

αi(1)
T−1/2

t∑

j=2

uij

=
1

αi(1)
T−1/2

t∑

j=2

uij + op(1)

⇒ 1

αi(1)
(γi(1)′B2i + B1i),

where the last result follows from (A2).

Next, consider (b). By using the rules for projections, the sum
∑T

t=2(y
∗

it−1)
2
p

can be written as

T∑

t=2

(y∗

it−1)
2
p =

T∑

t=2

y∗2
it−1 −

T∑

t=2

y∗

it−1w
∗′

it

(
T∑

t=2

w∗

itw
∗′

it

)−1 T∑

t=2

w∗

ity
∗

it−1, (A3)

where

T∑

t=2

y∗

it−1w
∗′

it =

T∑

t=2

yit−1w
′

it −
T∑

t=2

yit−1x
′

it−1

·
(

T∑

t=2

xit−1x
′

it−1

)−1 T∑

t=2

xit−1w
′

it. (A4)

By Lemma 2.1 of Park and Phillips (1989), we have that
∑T

t=2 yit−1w
′

it = Op(T ),∑T
t=2 yit−1x

′

it−1 = Op(T
2),

∑T
t=2 xit−1x

′

it−1 = Op(T
2) and

∑T
t=2 xit−1w

′

it =

Op(T ). Therefore,
∑T

t=2 y∗

it−1w
∗′

it = Op(T ).

Similarly,
∑T

t=2 w∗

itw
∗′

it in (A3) may be expanded as

T∑

t=2

w∗

itw
∗′

it =
T∑

t=2

witw
′

it −
T∑

t=2

witx
′

it−1

(
T∑

t=2

xit−1x
′

it−1

)−1 T∑

t=2

xit−1w
′

it

= Op(T ) + Op(T )Op(T
−2)Op(T )

= Op(T ). (A5)

Thus, by using (A3) to (A5), we can show that

T∑

t=2

(y∗

it−1)
2
p =

T∑

t=2

y∗2
it−1 + Op(T )Op(T

−1)Op(T )
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=

T∑

t=2

y∗2
it−1 + Op(T ), (A6)

For the remaining term in (A6) we use (a), which implies

T−1/2y∗

it−1 = T−1/2yit−1 − T−2
T∑

t=2

yit−1x
′

it−1

·
(

T−2
T∑

t=2

xit−1x
′

it−1

)−1

T−1/2xit−1

⇒ 1

αi(1)
(γi(1)′B2i + B1i) −

1

αi(1)

∫ 1

0

(γi(1)′B2i + B1i)B
′

2i

·
(∫ 1

0

B2iB
′

2i

)−1

B2i,

where the last expression can be manipulated to obtain

1

αi(1)
B1i −

1

αi(1)

∫ 1

0

B1iB
′

2i

(∫ 1

0

B2iB
′

2i

)−1

B2i

=
1

αi(1)
σiVi −

1

αi(1)
σi

∫ 1

0

ViW
′

i

(∫ 1

0

WiW
′

i

)−1

Wi

=
1

αi(1)
σiUi.

Putting everything together, we get

T−2
T∑

t=2

(y∗

it−1)
2
p = T−2

T∑

t=2

y∗2
it−1 + op(1) ⇒ 1

αi(1)2
σ2

i

∫ 1

0

U2
i ,

which establishes (b).

Finally, consider (c). We have

T∑

t=2

(y∗

it−1)p(e
∗

it)p =
T∑

t=2

y∗

it−1e
∗

it −
T∑

t=2

y∗

it−1w
∗′

it

·
(

T∑

t=2

w∗

itw
∗′

it

)−1 T∑

t=2

w∗

ite
∗

it. (A7)

By using the same arguments as before, it is clear that

T∑

t=2

w∗

ite
∗

it =

T∑

t=2

witeit −
T∑

t=2

witx
′

it−1

(
T∑

t=2

xit−1x
′

it−1

)−1 T∑

t=2

xit−1eit

= Op(
√

T ) + Op(T )Op(T
−2)Op(T )
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= Op(
√

T ),

which, together with (A4), (A5) and (A7), implies that

T∑

t=2

(y∗

it−1)p(e
∗

it)p =

T∑

t=2

y∗

it−1e
∗

it + Op(T )Op(T
−1)Op(

√
T )

=

T∑

t=2

y∗

it−1e
∗

it + Op(
√

T ).

By using (a), the limit of the remaining term becomes

T−1
T∑

t=2

y∗

it−1e
∗

it = T−1
T∑

t=2

yit−1eit − T−2
T∑

t=2

yit−1x
′

it−1

·
(

T−2
T∑

t=2

xit−1x
′

it−1

)−1

T−1
T∑

t=2

xit−1eit

⇒ 1

αi(1)

∫ 1

0

(γi(1)′B2i + B1i)dB1i

− 1

αi(1)

∫ 1

0

(γi(1)′B2i + B1i)B
′

2i

(∫ 1

0

B2iB
′

2i

)−1

·
∫ 1

0

B2idB1i,

where the last expression is

1

αi(1)

∫ 1

0

B1idB1i −
1

αi(1)

∫ 1

0

B1iB
′

2i

(∫ 1

0

B2iB
′

2i

)−1 ∫ 1

0

B2idB1i

=
1

αi(1)
σ2

i

∫ 1

0

VidVi

− 1

αi(1)
σ2

i

∫ 1

0

ViW
′

i

(∫ 1

0

WiW
′

i

)−1 ∫ 1

0

WidVi

=
1

αi(1)
σ2

i

∫ 1

0

UidVi.

This proves (c). ¥

Proof of Theorem 1

Consider first the group mean statistics. Note that α̂i may be written as

α̂i =

(
T∑

t=2

(y∗

it−1)p

)−1 T∑

t=2

(y∗

it−1)p(∆y∗

it)p. (A8)
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Define E1i = T−2
∑T

t=2(y
∗

it−1)
2
p and E2i = T−1

∑T
t=2(y

∗

it−1)p(∆y∗

it)p. By

imposing the null, and by using Lemma A.1 (b) and (c), we can show that

T α̂i = E−1
1i E2i

⇒
(

1

αi(1)2
σ2

i

∫ 1

0

U2
i

)−1
1

αi(1)
σ2

i

∫ 1

0

UidVi

= αi(1)

(∫ 1

0

U2
i

)−1 ∫ 1

0

UidVi.

Hence, since α̂i(1) →p αi(1) as T → ∞, where →p signifies convergence in

probability, it follows that

Gα =
1

N

N∑

i=1

T α̂i

α̂i(1)
⇒ 1

N

N∑

i=1

(∫ 1

0

U2
i

)−1 ∫ 1

0

UidVi. (A9)

To obtain the corresponding intermediate limit as T → ∞ for Gτ , we need

to evaluate SE(α̂i), which may be written as

SE(α̂i) = σ̂i

(
T∑

t=2

(y∗

it−1)
2
p

)−1/2

.

Consider σ̂2
i , which, by using the results of Lemma A.1, can be written as

σ̂2
i = T−1

T∑

t=2

(e∗it)
2
p

= T−1
T∑

t=2

e∗2it − T−1
T∑

t=2

e∗itw
∗′

it

(
T∑

t=2

w∗

itw
∗′

it

)−1 T∑

t=2

w∗

ite
∗

it

= T−1
T∑

t=2

e∗2it + T−1Op(
√

T )Op(T
−1)Op(

√
T )

= T−1
T∑

t=2

e∗2it + op(1), (A10)

where

T∑

t=2

e∗2it =

T∑

t=2

e2
it −

T∑

t=2

eitx
′

it−1

(
T∑

t=2

xit−1x
′

it−1

)−1 T∑

t=2

xit−1eit

=

T∑

t=2

e2
it + Op(T )Op(T

−2)Op(T )

=

T∑

t=2

e2
it + Op(1).
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We can therefore show that

σ̂2
i = T−1

T∑

t=2

e2
it + op(1) →p σ2

i . (A11)

Hence, by using this result, (A11) and Lemma A.1 (b), we get

T 2SE(α̂i)
2 = σ̂2

i E−1
1i

⇒ σ2
i

(
1

αi(1)2
σ2

i

∫ 1

0

U2
i

)−1

= αi(1)2
(∫ 1

0

U2
i

)−1

,

which implies that

Gτ =
1

N

N∑

i=1

α̂i

SE(α̂i)

=
1

N

N∑

i=1

σ̂−1
i E

−1/2
1i E2i

⇒ 1

N

N∑

i=1

(∫ 1

0

U2
i

)−1/2 ∫ 1

0

UidVi. (A12)

Now, note that the limits in (A9) and (A12) are i.i.d. over the cross-section.

Hence, E(C̃i) = Θ̃ for all i, which makes it useful to expand Gα and Gτ as

√
NGα −

√
NΘ̃1 =

√
N

(
N−1

N∑

i=1

E−1
1i E2i − Θ̃1

)
,

√
NGτ −

√
NΘ̃2 =

√
N

(
N−1

N∑

i=1

σ̂−1
i E

−1/2
1i E2i − Θ̃2

)
.

If we assume that var(C̃i) = Σ̃ exists and is finite, then
√

NTGα −
√

NΘ̃1 ⇒
N(0, Σ̃11) and

√
NGτ −

√
NΘ̃2 ⇒ N(0, Σ̃22) as T → ∞ and then N → ∞

by the Lindeberg-Lévy CLT. This establishes the limiting distributions of the

group mean statistics.

Consider next the limiting distribution of the panel statistics. We begin with

Pα, which may be written as

Pα =

(
N∑

i=1

T∑

t=2

(y∗

it−1)
2
p

)−1 N∑

i=1

T∑

t=2

1

α̂i(1)
(y∗

it−1)p(∆y∗

it)p = E−1
1 E∗

2 ,

where E1 =
∑N

i=1 E1i and E∗

2 =
∑N

i=1 E2i/α̂i(1). In order to get the sequential

limit of this statistic, assume that the limit S2
N = N−1

∑N
i=1 S2

i → S2 as N → ∞

30



exist, where S2
i = σ2

i /αi(1)2 is a nonrandom sequence. We then use the following

expansion

√
NPα −

√
NΘ2Θ

−1
1 =

√
N

(
N−1E∗

2 − S2Θ2

) (
N−1E1

)−1

− S2Θ2

√
N

((
N−1E1

)−1 −
(
S2Θ1

)−1
)

. (A13)

By Corollary 1 of Phillips and Moon (1999), since Ŝ2
i →p S2

i as T → ∞,

we have N−1E1 →p S2Θ1 and N−1E∗

2 →p S2Θ2 as T → ∞ prior to N . In

addition, given that var(Ci) = Σ exist and is finite, then
√

N(N−1E2−S2Θ2) ⇒
N(0, S2Σ22) by the Lindberg-Lévy CLT. Thus, it follows that

√
N

(
N−1E∗

2 − S2Θ2

) (
N−1E1

)−1 ⇒ N(0,Θ−2
1 Σ22).

The second term on the right hand side of (A13) involve a differentiable trans-

formation of the i.i.d. random variable E1, to which the Delta method applies.

This leads us to the following limit as T → ∞ prior to N

√
N

((
N−1E1

)−1 − (S2Θ1)
−1

)
⇒ N(0, S−4Θ−4

1 Σ11),

which implies that

S2Θ2

√
N

((
N−1E1

)−1 −
(
S2Θ1

)−1
)

⇒ N(0,Θ2
2Θ

−4
1 Σ11).

By substituting these results into (A13), we get

√
NPα −

√
NΘ2Θ

−1
1 ⇒ Θ−1

1 N(0,Σ22) − Θ2Θ
−2
1 N(0,Σ11), (A14)

which shows that
√

NPα −
√

NΘ2Θ
−1
1 is mean zero with variance Θ−2

1 Σ22 +

Θ2
2Θ

−4
1 Σ11 − 2Θ−3

1 Θ2Σ12. This completes the proof for Pα.

Next, consider Pτ . This statistic may be rewritten as

Pτ =
α̂

SE(α̂)
= (Ŝ2

N )−1/2E
−1/2
1 E∗

2 ,

which implies the following expansion

Pτ −
√

NΘ2Θ
−1/2
1 = (Ŝ2

N )−1/2
√

N
(
N−1E∗

2 − S2Θ2

) (
N−1E1

)−1/2

− (Ŝ2
N )−1/2S2Θ2

√
N

((
N−1E1

)−1/2 −
(
S2Θ1

)−1/2
)

− S2Θ2(S
2Θ1)

−1/2
√

N
(
(Ŝ2

N )−1/2 − (S2)−1/2
)

. (A15)

Now, because Ŝ2
N →p S2 as T → ∞ and then N → ∞ by a law of large

numbers (LLN), the first term on the right hand side of (A15) converges to

(Ŝ2
N )−1/2

√
N

(
N−1E∗

2 − S2Θ2

) (
N−1E1

)−1/2 ⇒ N(0,Θ−1
1 Σ22).
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To evaluate the second term, we use the Delta method, which implies that

(Ŝ2
N )−1/2S2Θ2

√
N

((
N−1E1

)−1/2 −
(
S2Θ1

)−1/2
)

⇒ N

(
0,

1

4
Θ2

2Θ
−3
1 Σ11

)
.

The third term in (A15) requires more work. We begin by taking a first

order Taylor expansion of (Ŝ2
N )−1/2 around S2, which gives

√
N

(
(Ŝ2

N )−1/2 − (S2)−1/2
)

=
√

N

(
(S2)−1/2 − 1

2
(S2)−3/2(Ŝ2

N − S2)

− (S2)−1/2

)

= −1

2
(S2)−3/2

√
N

(
Ŝ2

N − S2
)

. (A16)

Consider Ŝ2
N . Irrespectively of the estimator used, we have α̂i(1)2 = αi(1)2 +

Op(T
−1/2). Therefore, since σ̂2

i = σ2
i + Op(T

−1) by (A11), we get

Ŝ2
i = S2

i + Op(T
−1/2),

which, for some positive and finite constant bi, becomes

Ŝ2
i = S2

i + T−1/2bi + Op(T
−1).

This implies that

Ŝ2
N =

1

N

N∑

i=1

(
S2

i + T−1/2bi + Op(T
−1)

)

= S2
N + T−1/2bN + Op(T

−1), (A17)

where bN is the average bi. Moreover, since S2
N → S2 as N → ∞, for some

positive constants g and a, it must be true that

S2
N = S2 + N−ag + op(N

−a). (A18)

Equations (A17) and (A18) implies that

Ŝ2
N = S2

N + T−1/2bN + Op(T
−1)

= S2 + N−ag + T−1/2bN + op(N
−a) + Op(T

−1).

Thus, by direct substitution into (A16), we get

√
N

(
(Ŝ2

N )−1/2 − (S2)−1/2
)

= −1

2
(S2)−3/2

√
N

(
Ŝ2

N − S2
)

= −1

2
(S2)−3/2

√
N

(
S2 + N−ag + T−1/2bN
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+ op(N
−a) + Op(T

−1) − S2

)

= −1

2
(S2)−3/2

√
N

(
N−ag + T−1/2bN

)

+ op(N
−a) + Op(T

−1).

The term
√

NT−1/2bN vanishes in the first step with N held fixed, or if we

assume that N/T → 0 and bN → b < ∞ as N → ∞. Thus, if we further assume

that a > 1/2, so that
√

NN−ag → 0, then the entire expression vanishes. It

follows that the third term in (A15) converges to zero in probability. Together,

these results imply that (A15) obeys

Pτ −
√

NΘ2Θ
−1/2
1 ⇒ Θ

−1/2
1 N(0,Σ22) −

1

2
Θ2Θ

−3/2
1 N(0,Σ11). (A19)

Therefore, Pτ−
√

NΘ2Θ
−1/2
1 has zero mean and variance Θ−1

1 Σ22+
1
4Θ2

2Θ
−3
1 Σ11−

Θ−2
1 Θ2Σ12, which completes the proof. ¥

Proof of Theorem 2

Under the alternative hypothesis Hg
1 , yit − β′

ixit is stationary. Moreover, if we

let β̂i denote the least squares estimator of βi, then T (β̂i − βi) = Op(1). As

pointed out by Boswijk (1994), this implies that α̂i is asymptotically equivalent

to the least squares estimate of αi in

∆yit = αizit−1 + δ′iwit + eit,

where zit is the putative disequilibrium error yit − β′

ixit and wit is defined in

Lemma A.1. As before, all deterministic terms are suppressed.

Because zit is stationary under the alternative, we have

T∑

t=2

(zit−1)
2
p =

T∑

t=2

z2
it−1 −

T∑

t=2

zit−1w
′

it

(
T∑

t=2

witw
′

it

)−1 T∑

t=2

witzit−1

= Op(T ) + Op(T )Op(T
−1)Op(T )

= Op(T ).

By using this result, it is straightforward to show that SE(α̂i) = Op(T
−1/2)

and α̂i − αi = Op(T
−1/2). This implies that

T−1Gα =
1

N

N∑

i=1

αi

α̂i(1)
+ Op(T

−1/2) = Op(1), (A20)

which implies that Gα = Op(T ). As usual, the limit arguments are taken as

T → ∞ for a fixed N in the first step while N → ∞ in the second. The

corresponding order of Gτ is given by

T−1/2Gτ =
1

N

N∑

i=1

αi√
TSE(α̂i)

+ Op(T
−1/2) = Op(1). (A21)
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This shows that Gτ is Op(
√

T ).

Similarly, under Hp
1 , it is possible to show that α̂ − α = Op((TN)−1/2) in

the sequential limit. For SE(α̂), write

SE(α̂) = (Ŝ2
N )1/2

(
N∑

i=1

T∑

t=2

(zit−1)
2
p

)−1/2

=

(
1

N

N∑

i=1

Ŝ2
i

)1/2 (
N∑

i=1

T∑

t=2

(zit−1)
2
p

)−1/2

. (A22)

From Theorem 1, we know that Ŝi →p Si as T → ∞, which implies the following

as N → ∞
1

N

N∑

i=1

S2
i = Op (1) .

Similarly, for the second term in (A22), it is possible to show that as T → ∞
and then N → ∞

1

TN

N∑

i=1

T∑

t=2

(zit−1)
2
p = Op (1) .

The panel statistics Pα and Pτ therefore have the following orders

T−1Pα = α + Op((TN)−1/2) = Op(1), (A23)

and

(TN)−1/2Pτ =
α√

TNSE(α̂)
+ Op((TN)−1/2) = Op(1). (A24)

Therefore, as N is kept fixed in the first step as T → ∞, Pα = Op(T ) and

Pτ = Op(
√

T ). It follows that each of the statistics diverges as T → ∞ and

then N → ∞. Moreover, as αi < 0 and α < 0 under our two alternatives, the

divergence occurs towards negative infinity. ¥
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Table 1: Simulated asymptotic moments.

Expected value Variance

Case K Θ̃2 Θ̃1 Θ2Θ
−1/2

1 Θ2Θ
−1

1 Σ̃22 Σ̃11 ϕ′Σϕ φ′Σφ

1 1 −0.9763 −3.8022 −0.5105 −1.0263 1.0823 20.6868 1.3624 8.3827

2 −1.3816 −5.8239 −0.9370 −2.4988 1.0981 29.9016 1.7657 24.0223

3 −1.7093 −7.8108 −1.3169 −4.2699 1.0489 39.0109 1.7177 39.8827

4 −1.9789 −9.8791 −1.6167 −6.1141 1.0576 50.5741 1.6051 53.4518

5 −2.1985 −11.7239 −1.8815 −8.0317 1.0351 58.9595 1.4935 63.2406

6 −2.4262 −13.8581 −2.1256 −10.0074 1.0409 69.5967 1.4244 76.6757

2 1 −1.7776 −7.1423 −1.4476 −4.2303 0.8071 29.6336 0.9885 19.7090

2 −2.0349 −9.1249 −1.7131 −5.8650 0.8481 39.3428 1.0663 31.2637

3 −2.2332 −10.9667 −1.9206 −7.4599 0.8886 49.4880 1.1168 42.9975

4 −2.4453 −12.9561 −2.1484 −9.3057 0.9119 58.7035 1.1735 57.4844

5 −2.6462 −14.9752 −2.3730 −11.3152 0.9083 67.9499 1.1684 69.4374

6 −2.8358 −17.0673 −2.5765 −13.3180 0.9236 79.1093 1.1589 81.0384

3 1 −2.3664 −12.0116 −2.1124 −8.9326 0.6603 46.2420 0.7649 37.5948

2 −2.5284 −13.6324 −2.2876 −10.4874 0.7070 53.7428 0.8137 45.6890

3 −2.7040 −15.5262 −2.4633 −12.1672 0.7586 64.5591 0.8857 57.9985

4 −2.8639 −17.3648 −2.6275 −13.8889 0.8228 74.7403 0.9985 74.1258

5 −3.0146 −19.2533 −2.7858 −15.6815 0.8477 84.7990 0.9918 81.3934

6 −3.1710 −21.2479 −2.9537 −17.6515 0.8599 94.0024 0.9898 91.2392

Notes: Case 1 refers to the regression with no deterministic terms, Case 2 refers to the regression with

a constant term, and Case 3 refers to the regression with both constant and trend terms. The value K

refers to the number of regressors excluding any deterministic terms.
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Table 2: Size at the 5% level.

Group mean statistics Panel statistics

φ γ N T Ga
τ Gb

τ Z̃t Ga
α Gb

α Z̃ρ P a
τ P b

τ Zt P a
α P b

α Zρ

0 0 10 100 9.8 6.6 6.8 8.6 7.1 2.2 7.9 9.8 6.0 13.1 14.4 11.1

10 200 7.7 6.9 6.4 8.7 6.8 2.4 7.2 8.7 5.8 13.8 13.9 9.3

20 100 10.8 6.8 8.0 9.4 7.2 1.7 7.3 9.3 7.9 11.3 11.7 10.3

20 200 7.5 5.0 5.6 7.0 5.3 1.1 7.0 6.8 5.6 9.5 11.2 8.0

−0.4 0 10 100 16.3 14.6 79.5 28.9 28.1 72.5 14.3 14.4 47.7 26.5 29.9 54.9

10 200 12.5 14.2 66.9 24.9 27.8 61.3 11.6 13.4 35.6 25.2 29.3 44.1

20 100 20.7 21.2 94.8 36.4 42.4 90.5 17.8 19.8 68.9 31.6 34.8 71.6

20 200 14.1 21.1 88.6 34.4 41.8 81.9 15.6 17.3 50.4 31.4 33.9 56.4

0.4 0 10 100 8.3 3.9 2.2 5.4 3.1 0.4 6.3 6.5 2.6 9.3 9.8 5.8

10 200 6.7 3.4 2.3 5.3 3.6 1.1 6.3 5.7 2.8 10.2 7.2 6.3

20 100 12.2 4.2 2.0 5.7 2.2 0.0 6.9 6.0 4.5 7.9 7.5 6.2

20 200 7.3 3.2 0.9 4.9 1.5 0.1 5.5 4.8 3.9 7.0 6.2 5.7

0 0.4 10 100 10.6 5.6 39.6 10.0 8.0 32.3 10.4 8.3 21.7 15.6 13.3 29.4

10 200 8.4 6.0 28.7 9.1 7.5 21.9 8.8 7.4 16.5 14.3 12.8 24.5

20 100 11.7 6.9 54.6 12.0 7.7 42.9 7.3 9.7 27.7 11.0 12.5 33.5

20 200 7.7 5.7 40.6 8.4 6.3 28.9 7.4 7.9 20.9 11.8 12.0 27.6

0 0.8 10 100 9.2 6.7 94.0 10.9 7.6 93.9 8.5 9.8 74.3 13.4 16.2 79.3

10 200 8.1 7.7 89.3 8.1 11.2 89.9 8.0 8.3 66.0 13.5 15.8 73.0

20 100 9.7 5.5 99.8 10.2 7.0 99.4 7.0 10.2 93.6 10.2 12.9 94.1

20 200 8.8 5.0 98.3 9.5 5.9 98.6 9.1 7.4 82.9 12.6 11.1 85.6

Notes: The value φ refers to the moving average parameter and γ refers to the parameter of the first difference of

the regressor.
aThe test is based on choosing the number of lags and leads according to the Akaike information criterion.
bThe test is based on choosing the number of lags and leads as a function of T .
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Table 3: Power at the 5% level when α = −0.01.

Group mean statistics Panel statistics

Comfac var(vit) N T Ga
τ Gb

τ Z̃t Ga
α Gb

α Z̃ρ P a
τ P b

τ Zt P a
α P b

α Zρ

Yes 1 10 100 14.2 15.2 14.6 14.2 14.2 10.9 17.0 17.5 10.6 20.2 20.5 10.5

10 200 45.5 37.0 23.0 38.9 30.3 18.0 50.9 42.8 14.8 54.5 49.6 14.4

20 100 31.9 27.7 19.0 21.7 23.4 14.9 36.9 35.9 17.6 46.0 40.3 16.5

20 200 72.1 77.3 48.6 58.4 62.2 34.7 81.8 88.5 39.7 86.0 92.1 39.0

No 1 10 100 14.0 14.7 10.2 9.7 9.6 9.0 19.2 17.9 7.8 17.6 15.8 7.7

10 200 49.9 39.1 11.7 20.9 15.3 9.1 59.4 47.8 7.9 39.6 32.9 7.6

20 100 26.7 23.8 9.5 11.4 11.6 8.0 32.2 34.8 9.2 35.7 31.0 9.1

20 200 71.7 74.9 17.9 28.3 28.2 16.4 87.1 88.6 16.0 75.0 85.2 17.3

No 2 10 100 12.0 11.0 5.3 5.0 6.5 4.9 18.0 15.8 4.7 10.9 10.1 4.9

10 200 50.0 42.3 6.7 15.6 10.5 6.6 62.6 52.1 4.6 28.9 23.8 4.6

20 100 24.7 18.1 5.6 7.1 6.6 5.7 34.9 31.2 5.5 28.8 23.2 5.1

20 200 72.9 77.8 11.9 20.2 18.6 9.4 89.5 93.3 8.9 61.3 76.1 9.3

No 4 10 100 8.8 11.2 4.9 2.6 4.0 4.8 16.6 14.2 4.2 6.2 6.7 4.7

10 200 59.0 51.2 4.1 7.7 6.1 4.7 74.1 65.9 1.8 15.7 13.1 2.4

20 100 19.8 17.5 1.4 3.4 3.5 1.0 30.5 32.5 2.5 15.4 15.4 2.5

20 200 80.6 84.8 4.2 9.1 7.4 3.8 95.5 96.3 2.3 45.7 59.6 3.6

Notes: The first column indicates whether the common factor restriction is satisfied or not. The value var(vit) refers to

the signal-to-noise ratio and α refers to the error correction parameter.
aThe test is based on choosing the number of lags and leads according to the Akaike information criterion.
bThe test is based on choosing the number of lags and leads as a function of T .
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Table 4: Power at the 5% level when α = −0.03.

Group mean statistics Panel statistics

Comfac var(vit) N T Ga
τ Gb

τ Z̃t Ga
α Gb

α Z̃ρ P a
τ P b

τ Zt P a
α P b

α Zρ

Yes 1 10 100 60.6 65.3 55.5 56.3 60.4 40.4 78.8 76.6 51.2 86.3 82.6 49.6

10 200 99.1 98.9 95.1 98.4 98.1 86.5 99.9 99.9 95.2 100.0 100.0 95.1

20 100 89.5 90.0 71.1 80.7 82.9 55.4 98.3 97.1 77.0 99.4 99.0 75.6

20 200 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

No 1 10 100 67.7 72.2 27.3 28.2 28.6 21.8 87.6 87.1 22.6 74.3 67.9 23.1

10 200 100.0 100.0 80.4 95.3 93.0 65.8 100.0 100.0 72.4 100.0 100.0 73.1

20 100 95.5 93.2 35.5 47.6 48.3 25.9 99.6 99.3 33.9 99.6 98.7 35.0

20 200 100.0 100.0 98.4 99.8 100.0 92.4 100.0 100.0 96.4 100.0 100.0 96.9

No 2 10 100 76.8 74.6 18.5 18.8 19.2 13.7 93.5 89.5 16.6 67.0 53.6 17.9

10 200 100.0 100.0 67.1 94.2 89.2 54.1 100.0 100.0 59.1 100.0 100.0 59.6

20 100 97.8 97.2 19.7 32.3 33.6 13.3 99.8 99.5 17.7 98.9 97.0 18.6

20 200 100.0 100.0 96.4 99.7 99.9 88.6 100.0 100.0 90.5 100.0 100.0 93.2

No 4 10 100 88.3 88.7 13.0 12.5 13.5 8.9 97.6 96.3 10.3 57.5 47.8 11.5

10 200 100.0 100.0 60.1 92.4 87.0 47.8 100.0 100.0 49.7 100.0 100.0 51.7

20 100 99.1 99.1 10.8 20.2 20.9 8.0 100.0 99.9 8.9 98.8 97.5 10.6

20 200 100.0 100.0 90.0 99.8 100.0 79.8 100.0 100.0 81.9 100.0 100.0 85.0

Notes: See Table 3 for an explanation of the various features of the table.
aThe test is based on choosing the number of lags and leads according to the Akaike information criterion.
bThe test is based on choosing the number of lags and leads as a function of T .
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Table 5: Size and power at the 5% level with cross-sectional dependence.

Group mean statistics Panel statistics

α b N T Gτ G∗
τ Z̃t Gα G∗

α Z̃ρ Pτ P ∗
τ Zt Pα P ∗

α Zρ

0 0 10 100 6.0 4.0 5.7 6.7 3.7 1.3 10.0 6.3 6.0 16.7 7.7 9.3

10 200 5.3 3.0 5.3 5.7 3.3 1.0 6.3 4.7 5.7 12.0 6.0 9.0

20 100 7.0 4.7 9.3 6.7 5.0 2.3 11.3 7.0 6.7 14.3 7.7 11.7

20 200 7.0 5.7 9.7 8.0 4.3 1.7 8.7 7.3 9.0 12.7 9.0 12.7

1 10 100 26.3 8.0 87.0 48.3 12.3 86.3 27.7 7.0 76.7 48.3 10.0 79.3

10 200 32.0 12.7 84.0 56.3 20.3 83.0 30.0 8.7 71.3 55.0 13.0 78.7

20 100 40.7 6.0 96.7 65.0 8.3 96.7 43.3 5.0 92.3 60.7 8.7 92.3

20 200 44.3 9.3 95.7 72.7 22.7 94.0 40.3 4.7 86.7 59.3 7.7 88.3

−0.01 0 10 100 18.3 15.7 11.7 16.3 12.7 13.0 19.0 21.7 6.3 24.7 29.0 8.3

10 200 47.7 44.0 28.3 42.3 36.7 25.0 52.7 55.0 28.3 62.0 67.7 28.7

20 100 25.0 26.7 12.7 20.3 17.3 9.7 28.3 33.3 14.3 29.7 40.3 13.7

20 200 68.3 68.7 45.7 55.0 57.0 28.0 72.7 83.3 35.7 80.0 90.3 34.7

1 10 100 20.7 27.3 12.0 19.7 29.0 8.3 17.3 25.7 16.0 17.7 34.3 15.0

10 200 40.7 64.0 26.0 26.0 69.7 22.0 50.7 63.7 40.7 51.7 79.3 34.0

20 100 24.0 34.3 15.7 21.0 32.7 12.3 24.3 27.7 27.7 29.0 35.3 26.0

20 200 57.7 77.0 34.7 30.3 79.0 19.7 78.0 81.3 59.0 72.0 88.3 59.7

−0.03 0 10 100 64.7 59.3 56.7 56.7 50.0 47.0 73.7 75.0 48.7 81.7 84.0 48.3

10 200 99.7 99.3 96.0 99.0 98.0 90.3 100.0 99.3 97.7 100.0 100.0 97.7

20 100 85.3 87.3 67.7 79.0 73.7 47.0 97.7 96.7 76.3 98.7 99.0 73.3

20 200 100.0 100.0 99.7 100.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0 100.0

1 10 100 72.7 80.0 44.3 58.7 73.0 33.7 68.3 82.7 57.0 70.0 89.7 56.0

10 200 98.0 100.0 79.0 90.0 100.0 64.7 100.0 100.0 91.3 100.0 100.0 91.0

20 100 86.0 93.0 72.3 78.0 87.0 58.3 92.7 96.0 87.0 96.0 98.0 85.0

20 200 99.3 100.0 94.7 98.7 100.0 81.0 100.0 100.0 99.3 100.0 100.0 99.3

Notes: The value α refers to the error correction parameter and b refers to the factor scale parameter. If b = 0, then there is

no common factor, whereas if b = 1, then there is a common factor. The star superscript is used to denote the bootstrapped

test statistics.
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Table 6: Size and power at the 5% level with endogenous regressors.

Group mean statistics Panel statistics

αy αx T Gτ Z̃t Gα Z̃ρ Pτ Zt Pα Zρ

0 0 100 6.7 8.0 6.5 3.0 8.5 6.4 13.6 11.1

200 5.1 6.7 5.6 2.7 7.4 4.9 12.6 10.6

−0.01 −0.01 100 2.7 3.7 4.8 3.6 2.6 4.6 2.8 5.0

200 1.2 4.8 2.0 4.7 1.9 8.6 1.9 7.9

−0.03 100 0.0 0.9 0.0 0.5 0.0 2.0 0.0 2.2

200 0.0 8.6 0.0 8.8 0.0 16.1 0.0 14.4

−0.03 −0.01 100 31.3 18.1 19.0 13.4 47.7 19.0 39.3 22.2

200 91.7 68.3 66.7 59.7 97.1 79.3 96.1 79.3

−0.03 100 1.1 11.0 4.1 8.3 1.6 13.5 3.5 14.9

200 0.7 51.7 3.3 49.8 2.1 62.9 6.5 61.2

−0.01 0.01 100 37.3 4.7 12.5 4.7 53.6 3.2 25.7 3.9

200 98.2 9.2 47.3 9.8 99.7 5.5 96.2 5.6

0.03 100 96.8 6.5 23.1 6.5 97.0 3.5 53.8 4.3

200 100.0 22.6 85.8 28.0 97.8 7.6 97.5 7.3

−0.03 0.01 100 94.5 22.4 45.1 15.8 98.4 15.8 93.5 19.2

200 100.0 78.8 99.9 72.0 100.0 61.0 100.0 61.3

0.03 100 99.9 25.6 78.4 22.0 100.0 11.3 100.0 13.2

200 100.0 74.1 100.0 78.6 99.9 27.8 99.9 26.9

Notes: The values αx and αy refer to the error correction parameters in the model for xit

and yit, respectively.
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Table 7: Panel unit root and cointegration tests.

Unit root testing Cointegration testing

Study Test ln(Hit) p-vala ln(Yit) p-vala Study Test Value p-vala p-valb

Im et al. (2003) Zt −0.367 0.357 0.189 0.575 This study Gτ −9.613 0.000 0.000

Harris and Tzavalis (1999) ϕ̂lsdv 1.704 0.956 2.037 0.979 Gα −10.626 0.000 0.000

Bai and Ng (2004) P c
e 1.153 0.124 4.482 0.000 Pτ −4.100 0.000 0.048

Phillips and Sul (2003) G++

ols 0.068 0.527 2.176 0.985 Pα −10.119 0.000 0.000

Z −2.531 0.006 −0.263 0.396 Pedroni (2004) Z̃t −0.401 0.344 −

Pm 2.869 0.002 0.162 0.435 Z̃ρ 2.001 0.977 −

Moon and Perron (2004) ta 0.311 0.622 0.173 0.569 Zt −1.878 0.030 −

tc 9.590 1.000 13.518 1.000 Zρ 0.190 0.575 −

Notes: All tests are implemented with a constant and trend in the test regression. For semiparametric corrections, the Bartlett kernel is

employed. The lags and leads in the error correction test are chosen according to the Akaike criterion. All other bandwidth and lag orders

are set according to the rule 4(T/100)2/9. The number of common factors is estimated using the IC1 criterion of Bai and Ng (2004) with the

maximum number of factors set equal to five. All unit root tests take a unit root as the null hypothesis while the cointegration tests take no

cointegration as the null.
aThe p-values are for a one-sided test based on the normal distribution.
bThe p-values are for a one-sided test based on the bootstrapped distribution. We use 500 boostrap replications.
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