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Abstract

To allow society to treat unequal alternatives distinctly we propose a natural exten-

sion of Approval Voting [7] by relaxing the assumption of neutrality. According to

this extension, every alternative receives ex-ante a non-negative and finite weight.

These weights may differ across alternatives. Given the voting decisions of every

individual (individuals are allowed to vote for, or approve of, as many alternatives

as they wish to), society elects all alternatives for which the product of total num-

ber of votes times exogenous weight is maximal. Our main result is an axiomatic

characterization of this voting procedure.

Keywords: Approval Voting, Neutrality.

JEL-Number: D71.

1 Introduction

Approval Voting [7] is perhaps the most well known voting procedure that has been pro-

posed as an alternative to the Plurality Rule. For example, in a recent survey Brams and

Fishburn [8] lay out that the United Nations General Assembly, several scientific institu-

tions (among others the Mathematical Association of America, the American Mathematical
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Society, the American Statistical Association), and some political parties (i.e., in Penn-

sylvania) adopted Approval Voting or had at least some experience with it. According to

this rule, every voter can vote for, or approve of, as many alternatives as s/he wishes to

and given the response profile of individual approvals, society elects the set of alternatives

with the highest amount of total votes.

Very recently, it has been looked at Approval Voting from different points of view.

First, several case studies have been carried out. For instance, Laslier [16] studies the 1999

elections of the President and the Council of the Society for Social Choice and Welfare,

where Approval Voting was the method being used but voters were also asked to submit

their rankings under the Borda count. Laslier [17] analyzes Approval Voting by means of

an experiment carried out in six places in France during the first round of the presidential

election of 2002, in which Jean-Marie Le Pen came in second, defeating the socialist can-

didate Lionel Jospin, and thus, obtained the right to compete in the second round against

Jacques Chirac. Second, wide theoretical research has also been under way. Regenwetter

and Tsetlin [19] compare Approval Voting with positional voting methods and identify

conditions under which they tend to agree. Vorsatz [23] shows that, on the domain of

dichotomous preferences, Approval Voting coincides with the Borda count. De Sinopoli

et al. [10] analyze strategic behavior in Approval Voting games. Brams and Sanver [9]

study Approval Voting under the assumption that voters do not only have preferences on

the set of alternatives but also judgements about their acceptability. Nitzan and Baharad

[18] study the consequence of modifying Approval Voting by restricting the minimal and

maximal number of alternatives that can be voted for, and, finally, Dellis and Oak [11]

compare Approval Voting with the Plurality Rule in a political competition model with

endogenous candidacy entry.

It is inherent in the definition of Approval Voting that every vote counts the same,

independently which alternative receives it. We believe that this neutrality assumption

is relevant in democratic processes where all alternatives should be treated equally (i.e.,

presidential elections), but may not be as natural for group decision making problems in

which the characteristics of the alternatives are objectively different and society agrees on
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the desirability to treat unequal alternatives distinctly (i.e., in the case when alternatives

are candidates seniority, age, education, race, gender, and others may matter). Hence, it is

our objective to propose a natural extension of Approval Voting and present an axiomatic

characterization of this new voting procedure.

The generalization we consider, Weighted Approval Voting, is simple and intuitive at the

same time: Assign ex-ante to every alternative a non-negative and finite weight. Observe

that the weights are potentially different for distinct alternatives. Given the approvals

of every voter (again voters can vote for as many alternatives as they wish to), society

elects the set of alternatives for which the product of total number of votes times weight is

maximal. This voting rule reduces to Approval Voting when the weights are identical and

strictly positive for all alternatives.

We are interested in general voting procedures that could operate in different voting

situations in which the set of voters as well as the set of alternatives might vary (for

instance, different choices have to be made over time). In particular, and given a universal

set of potential voters and a set of conceivable alternatives, a voting procedure (a family

of voting rules) should specify an outcome for every electorate (the subset of voters that

indeed vote) and every set of feasible alternatives (the subset of alternatives that are

indeed at stake). Thus, our axiomatic analysis of Weighted Approval Voting allows for

a variable electorate and a variable set of feasible alternatives. Consequently, we require

the satisfaction of two consistency conditions that link the elected outcome made by the

voting procedure at different situations; namely, they keep track on how the set of elected

alternatives changes as the electorate or the set of feasible alternatives varies. Consistency

in alternatives requires that if the set of feasible alternatives is reduced, then the set of

elected alternatives in the new situation coincides with the set of elected alternatives in the

original situation restricted to the new set of feasible alternatives (provided that this set is

not empty). This is an Independence of Irrelevant Alternatives like condition that conveys

a separability feature to the voting procedure: a general election from a set of feasible

alternatives can be reduced to choices among pairs of alternatives only. Consistency in

alternatives insures then that collecting the choices made at each of the pairs coincides with
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the general election. In our case, consistency of alternatives will guarantee additionally the

transitivity of the weights and hence, it will be possible to focus mainly on elections from

sets with only two alternatives. These are the reasons why we can define the other four

properties only with respect to two alternatives, say x and y. Consistency in voters asks

that if two disjoint electorates elect from the set {x, y} a common set of alternatives, then

exactly this set has to be elected whenever all voters within the two electorates and no voter

outside the two electorates participates in the election. According to the third property,

anonymity, the only information taken into account is how many votes x and y receive

(and not from whom the votes come). The no-support condition states that whenever x

does not receive any vote, then y has to be elected for sure (observe that it is still possible

to elect both x and y and that, like Approval Voting does, at least one alternative has to

be elected). Finally, coherence requires that if x is the unique elected alternative in an

electorate that only votes for x, then there is some other response profile (with strictly

positive support for both alternatives, x and y) at which x is elected (perhaps together

with y). In particular, coherence eliminates constant-like voting rules according to which

one alternative is the unique elected alternative on the domain where both alternatives

receive at least one vote.

Our result states that a voting procedure is consistent in alternatives and voters, anony-

mous, coherent, and satisfies the non-support condition if and only if it is a Weighted

Approval Voting.

Several authors have analyzed Approval Voting axiomatically. Fishburn [14] shows that

if the set of alternatives is fixed and the electorate is allowed to vary, then Approval Voting is

characterized by means of consistency in voters, neutrality, anonymity and disjoint equality

(if two voters approve two nonempty and disjoint subsets of feasible alternatives, then the

union of these two sets has to be elected when there is no other voter). Fishburn [13] also

characterizes Approval Voting by means of consistency in voters, neutrality, faithfulness

(if there is only one voter and this voter approves at least one alternative, the voting

procedure selects all alternatives this voter supports), and cancelation (if all alternative

receive the same number of votes, all alternatives are elected). Alós-Ferrer [2] shows that
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this last characterization is not tight since neutrality follows from consistency in voters,

faithfulness, and cancelation. Sertel [20] presents an alternative definition of Approval

Voting that differs from the original one only in the situation when no alternative receives

any vote. He assumes in this case that no alternative is elected. This, slightly different,

voting rule is then characterized by anonymity, weak unanimity (if the society consists

of only one voter, the voting procedure selects the alternatives that the voter supports),

weak consistency (this property weakens consistency in voters slightly without changing

its main idea), and strong disjoint equality (disjoint equality is also defined for the case

when some voter does not approve any alternative). A further characterization is due to

Baigent and Xu [4]. They apply the properties of neutrality, strict monotonicity (if x is

elected at a certain response profile and a second response profile is identical to the first

one apart from the fact that x receives now an additional vote, then only x is elected

at the second response profile) and independence of symmetric substitutions. The latter

condition requires that the set of elected alternatives should be the same in the following

two situations: In the first situation, some voter approves, among other alternatives, x but

not y, whereas another voter approves, among other alternatives, y but not x. The second

situation is identical to the first one with the only difference that the first voter approves

now y but not x and the second voter approves now x but not y. Goodin and List [15]

relate Approval Voting axiomatically to May’s Theorem by showing that Approval Voting

is characterized by anonymity (they define anonymity in a different way than we do, yet,

the two properties turn out to be equivalent), neutrality, and strict monotonicity. Finally,

Fishburn [13] and Vorsatz [22] study Approval Voting axiomatically under the assumption

that individuals have dichotomous preferences (voters divide alternatives into two sets, the

set of good alternatives and the set of bad alternatives; see, for instance, [5]), the context

in which Approval Voting and its extensions become social choice functions. While the first

paper concentrates on the notion of strategy-proofness (incentives to represent preferences

truthfully), the latter explores additionally the efficiency of Approval Voting. Observe that

any Weighted Approval Voting (with strictly positive weights) satisfies strategy-proofness

but only Approval Voting is efficient whenever voters have dichotomous preferences. In fact,
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if the weights are derived from some equity principle, one introduces a trade-off between

efficiency and equity because more unequal weights lead to a less efficient outcome but

stress the underlying equity principle more. Additionally, any Weighted Approval Voting

with strictly positive weights satisfies strict monotonicity and independence of symmetric

substitutions while it fails to satisfy axioms that have neutrality inherent to its definition

as disjoint equality, faithfulness, cancelation, and weak unanimity.

The remainder of the paper is organized as follows. In the next Section, we introduce

our notation and main definitions. In Section 3, we present the five axioms that characterize

Weighted Approval Voting. Afterwards, we prove our theorem. Finally, we establish the

independence of the axioms and conclude with some remarks.

2 Preliminaries

We consider elections in which the set of alternatives and the set of voters may vary. First,

let K be the universal set of conceivable alternatives for election. Generic alternatives will

be denoted by x, y and z. The cardinality of K, κ, is finite and greater or equal to 3

(if the set of universal alternatives contains only two alternatives, then the first axiom,

consistency in alternatives, is superfluous in Theorem 1 as it will become clear later on).

Since it may happen that not all conceivable alternatives are eligible, we restrict the set

of feasible alternatives to be equal to K ⊆ K. Alternatively, we will denote subsets of

alternatives by the capital letters S or T . Second, we represent the universal set of voters

by the set of natural numbers N. We will consider situations in which the set of voters

actually participating in the election, the electorate N , is a finite subset of the natural

numbers. Often we will also use the capital letters A and B to denote electorates. The

cardinalities of N and K are equal to n ≥ 1 and k ≥ 2, respectively.

For any voter i ∈ N, let Mi ∈ 2K be the set of alternatives i votes for. A profile

M = (Mi)i∈N ∈ (2K)N is a list of all votes. Given a profile M and an electorate N , a response

profile MN = (Mi)i∈N ∈ (2K)N is the n-tuple of votes coming from the electorate N at

profile M . We say that the response profiles MA and MB, corresponding to the electorates
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A and B of equal size, are isomorphic if there exists a one-to-one mapping π : A → B such

that for all i ∈ A, Mi = Mπ(i). Given two disjoint electorates A and B and two response

profiles MA and MB, denote by MA +MB the response profile (Mi)i∈A∪B ∈ (2K)A∪B. Given

the response profile MN and alternative x ∈ K, let Gx(MN) = |{i ∈ N : x ∈ Mi}| be the

support of x at MN .

Given a set of feasible alternatives K and an electorate N , a voting rule vK,N : (2K)N →

2K\{∅} selects, for all profiles M , a nonempty set of feasible alternatives vK,N(M) with

the property that for all M,M ′ ∈ (2K)N such that MN = M ′
N , vK,N(M) = vK,N(M ′).

This is the reason why, with a slight abuse of notation, we will write vK(MN) instead

of vK,N(M). Observe first that, although the empty set can be a component of response

profiles, the images of a given voting rule are nonempty subsets of feasible alternatives.

We exclude the possibility to elect no alternative (even when all feasible alternatives get

zero support), because we want to include the interpretation of the image as the set of

pre-selected alternatives from which an ultimate winning alternative has still to be deter-

mined in a yet to be specified way (i.e., a lottery). Additionally, we aim at generalizing

Approval Voting which, for each response profile, elects the (always nonempty) subset of

feasible alternatives with maximal support. Second, response profiles may include votes

for unfeasible alternatives. These votes are redundant but this formulation simplifies later

on the definition of consistency in alternatives.

A family of voting rules {vK,N : (2K)N → 2K\{∅}}K,N is a set of voting rules, one for

every set of feasible alternatives K and electorate N . It is denoted by v. Given the family

of voting rules v and a particular set of feasible alternatives K, we denote the subfamily

of voting rules {vK,N : (2K)N → 2K\{∅}}N by vK .

As we have already argued in the Introduction, there are meaningful situations in

which not all alternatives are equally important. Thus, it is our objective to eliminate

the neutrality assumption underlying Approval Voting by allowing for the possibility to

discriminate among alternatives keeping the impact of a vote for a given alternative the

same for all voters.1 For instance, in some elections alternatives may be candidates with

1An alternative approach aims at allowing for different weights for distinct voters maintaining neutrality.
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different characteristics like seniority, sex, age, degree of qualification, field of specialization,

etc. In these elections society may not find it desirable to treat all candidates alike. To

define the natural non-neutral extension of Approval Voting, let R+ be the set of non-

negative real numbers and let R++ be the set of strictly positive real numbers.

Definition 1 The family of voting rules v is a Weighted Approval Voting if there exists a

vector of weights p = (px)x∈K, with px ∈ R+ for all x ∈ K, such that for all sets of feasible

alternatives K, all profiles M ∈ (2K)N, and all electorates N ,

x ∈ vK(MN) if and only if px · Gx(MN) ≥ py · Gy(MN) for all y ∈ K. (1)

The family of Weighted Approval Voting with the vector of weights p is denoted by vp.

Approval Voting, denoted vA, is the special case of a Weighted Approval Voting when for all

x, y ∈ K, px = py ∈ R++. Observe first that the constant rule, which elects always the set

of feasible alternatives, is a Weighted Approval Voting with weight zero for all alternatives.

Second, the vector of weights (px)x∈K has one degree of freedom because multiplying the

weights by a strictly positive number does not have any effect on the result of the election.

Remark 1 For all weights p and all λ ∈ R++, vλ·p = vp.

Finally, given the Weighted Approval Voting vp and the set of feasible alternatives K,

the subfamily vK
p = {vK,N

p : (2K)N → 2K\{∅}}N will be called the Weighted Approval

Voting relative to pK = (px)x∈K .

3 Properties and Characterization

We present now formally the properties that characterize all Weighted Approval Voting.

Two consistency properties describe how the elected set of alternatives varies as the set of

feasible alternatives or the electorate changes.

To analyze the normative foundations of this generalization of Approval Voting is also very prospective
because one can identify a variety situations where this rule is applied. Examples include voting in the EU
Member Council (the weight of a country is determined by its population size) and management boards (a
vote from the CEO counts usually more than a weight from other board members). To our best knowledge,
this rule has not been studied axiomatically so far.
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Consistency in Alternatives: The family of voting rules v is consistent in alternatives

if for all sets of feasible alternatives S ⊂ T ⊆ K, all profiles M ∈ (2K)N, and all electorates

N such that vT (MN) ∩ S 6= ∅,

vS(MN) = vT (MN) ∩ S.

This property means the following. Assume first that a particular set of alternatives

is feasible and society elects a subset of them. If it turns out afterwards that fewer alter-

natives are feasible, then the set of elected alternatives is restricted accordingly (see [3]).

Consistency in alternatives plays a crucial role in the proof of our characterization because

it establishes the transitivity of the weights and allows us to extend the two alternatives

case to any set of alternatives. For the latter reason we only have to state the other four

properties with respect to two alternatives.

The second consistency property requires that if two disjoint electorates elect some

common alternatives, then exactly these alternatives are elected when the two electorates

are assembled (see [21]). This property insures the additivity of the votes.

Consistency in Voters: The family of voting rules v is consistent in voters if for all

alternatives x, y ∈ K, all profiles M ∈ (2K)N, and all disjoint electorates A,B ⊆ N such

that v{x,y}(MA) ∩ v{x,y}(MB) 6= ∅,

v{x,y}(MA + MB) = v{x,y}(MA) ∩ v{x,y}(MB).

According to the third property the set of elected alternatives depends only on the

support of the alternatives (and hence, the weights will be independent of the identity of

the voters). Formally,

Anonymity: The family of voting rules v is anonymous if for all alternatives x, y ∈ K,

all profiles M,M ′ ∈ (2K)N, and all electorates A and B such that Gx(MA) = Gx(M
′
B) and

Gy(MA) = Gy(M
′
B),

v{x,y}(MA) = v{x,y}(M ′
B).

The fourth axiom refers to response profiles with the property that the support of at

least one of the two feasible alternatives is zero.
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No-Support: The family of voting rules v satisfies the no-support condition if for all

alternatives x, y ∈ K, all profiles M ∈ (2K)N, and all electorates N such that Gx(MN) = 0,

y ∈ v{x,y}(MN).

The last property, coherence, requires basically that for both alternatives x and y

there is some electorate and some response profile (with strictly positive support for both

alternatives) such that the considered alternative is elected.

Coherence: The family of voting rules v is coherent if for all alternatives x, y ∈ K,

all profiles M ∈ (2K)N, and all electorates A such that Gx(MA) > 0 and Gy(MA) = 0,

if v{x,y}(MA) = {x} then there exist a profile M ′ ∈ (2K)N and an electorate N with

Gx(M
′
N) > 0 and Gy(M

′
N) > 0, such that

x ∈ v{x,y}(M ′
N).

In Theorem 1 we state an axiomatic characterization of all Weighted Approval Voting

based on these five properties.

Theorem 1 The family of voting rules v is consistent in alternatives and voters, anony-

mous, coherent and satisfies the no-support condition if and only if v is a Weighted Approval

Voting.

4 Proof of the Characterization

We start by proving that in the case of two feasible alternatives the only relevant infor-

mation is not the support of the alternatives (as it follows directly from anonymity) but

rather the fractions of the supports. Afterwards, we prove a monotonicity like property.

Lemma 1 Assume that the family of voting rules v is consistent in voters and anonymous.

Then, for all alternatives x, y ∈ K, all profiles M,M ′ ∈ (2K)N, and all electorates A and

B such that Gy(MA) > 0, Gy(M
′
B) > 0, and

Gx(MA)
Gy(MA)

=
Gx(M ′

B)

Gy(M ′

B
)
,

v{x,y}(MA) = v{x,y}(M ′
B).
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Proof: Let {x, y} be the set of feasible alternatives and take any two response profiles

MA and M ′
B that satisfy the hypothesis of Lemma 1. Consider two electorates Ā and B̄

of sizes |A| · Gy(M
′
B) and |B| · Gy(MA), respectively. Let M̄Ā and M̄ ′

B̄
be two response

profiles obtained by replicating Gy(M
′
B)-times the response profile MA and Gy(MA)-times

the response profile M ′
B, respectively. Namely, the response profile M̄Ā is the union of

Gy(M
′
B)-isomorphic copies of MA (denoted by MA1 , ...,MAGy(M′

B
)
) and the response profile

M̄ ′
B̄

is the union of Gy(MA)-isomorphic copies of M ′
B (denoted by M ′

B1
, ...,M ′

BGy(MA)
), where

all electorates At, t = 1, ..., Gy(M
′
B) and all Br, r = 1, ..., Gx(MA) are disjoint. Observe

that Gx(M̄Ā) = Gx(MA) · Gy(M
′
B) and Gx(M̄

′
B̄
) = Gx(M

′
B) · Gy(MA). By assumption,

Gx(M̄Ā) = Gx(M̄
′
B̄). (2)

Moreover, Gy(M̄Ā) = Gy(MA) · Gy(M
′
B) and Gy(M̄

′
B̄
) = Gy(M

′
B) · Gy(MA). Thus,

Gy(M̄Ā) = Gy(M̄
′
B̄). (3)

By anonymity, (2) and (3) imply

v{x,y}(M̄Ā) = v{x,y}(M̄ ′
B̄). (4)

Also, by anonymity, for all t = 1, ..., Gy(M
′
B) and all r = 1, ..., Gy(MA), v{x,y}(MAt

) =

v{x,y}(MA) and v{x,y}(M ′
Br

) = v{x,y}(M ′
B). Then, by iterating on the properties of consis-

tency in voters and anonymity,

v{x,y}(M̄Ā) = v{x,y}

(

∑Gy(M ′

B)

t=1
MAt

)

=

Gy(M ′

B)
⋂

t=1

v{x,y}(MAt
) = v{x,y}(MA)

and

v{x,y}(M̄ ′
B̄) = v{x,y}

(

∑Gy(MA)

r=1
M ′

Br

)

=

Gy(MA)
⋂

r=1

v{x,y}(M ′
Br

) = v{x,y}(M ′
B).

By (4), v{x,y}(MA) = v{x,y}(M ′
B). �

Lemma 2 Assume that the family of voting rules v is consistent in voters, anonymous, and

satisfies the no-support condition. Then, for all alternatives x, y ∈ K, all profiles M,M ′ ∈

(2K)N, and all electorates A and B such that Gy(MA) > 0, Gy(M
′
B) > 0, Gx(MA)

Gy(MA)
>

Gx(M ′

B)

Gy(MB)
,

and x ∈ v{x,y}(M ′
B),

x ∈ v{x,y}(MA).
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Proof: Let {x, y} be the set of feasible alternatives and take any two response profiles

MA and M ′
B that satisfy the hypothesis of Lemma 2. Consider two electorates Ā and B̄

of sizes |A| ·Gy(M
′
B) and |B| ·Gy(MA), respectively. Let M̄Ā and M̄ ′

B̄
be the two response

profiles obtained by replicating Gy(M
′
B)-times the response profile MA and Gy(MA)-times

the response profile M ′
B, respectively. Namely, the response profile M̄Ā is the union of

Gy(M
′
B)-isomorphic copies of MA and the response profile M̄ ′

B̄
is the union of Gy(MA)-

isomorphic copies of M ′
B. By consistency in voters and anonymity,

v{x,y}(M̄Ā) = v{x,y}(MA) and v{x,y}(M̄ ′
B̄) = v{x,y}(M ′

B). (5)

Observe that Gy(M̄Ā) = Gy(MA)·Gy(M
′
B) = Gy(M̄

′
B̄
). Moreover, by hypothesis, Gx(M̄Ā) =

Gx(MA) · Gy(M
′
B) > Gy(MA) · Gx(M

′
B) = Gx(M̄

′
B̄
).

Now, take two response profiles M̂C and M̂D corresponding to the disjoint electorates

C and D, with the properties that Gy(M̂D) = Gy(M̄
′
B̄
), Gx(M̂D) = Gx(M̄

′
B̄
), Gy(M̂C) = 0,

and Gx(M̂C) = Gx(M̄Ā) − Gx(M̄
′
B̄
). By anonymity,

v{x,y}(M̂D) = v{x,y}(M̄ ′
B̄). (6)

Since Gx(M̄Ā) = Gx(M̂C)+Gx(M̄
′
B̄
) = Gx(M̂C)+Gx(M̂D), Gy(M̄Ā) = Gy(M̂C)+Gy(M̂D),

and the electorates C and D are disjoint, Gx(M̄Ā) = Gx(M̂C + M̂D) and Gy(M̄Ā) =

Gy(M̂C + M̂D). By anonymity,

v{x,y}(M̄Ā) = v{x,y}(M̂C + M̂D). (7)

By the no-support condition,

x ∈ v{x,y}(M̂C).

Since, by hypothesis, x ∈ v{x,y}(M ′
B), conditions (5) and (6) imply x ∈ v{x,y}(M̂D). There-

fore,

x ∈ v{x,y}(M̂C) ∩ v{x,y}(M̂D) 6= ∅. (8)

By consistency in voters,

v{x,y}(M̂C + M̂D) = v{x,y}(M̂C) ∩ v{x,y}(M̂D). (9)

Conditions (7), (8), and (9) imply that x ∈ v{x,y}(M̄Ā). Finally, it follows from (5) that

x ∈ v{x,y}(MA). �
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Given a family of voting rules v we will now construct, for every set {x, y} of feasible

alternatives, two weights, p
{x,y}
x ∈ R+ and p

{x,y}
y ∈ R+, for which the subfamily of voting

rules v{x,y} is the Weighted Approval Voting relative to p{x,y} = (p
{x,y}
x , p

{x,y}
y ).

Lemma 3 Assume that the family of voting rules v is consistent in voters, anonymous,

coherent and satisfies the no-support condition. Then, for all alternatives x, y ∈ K there

exist two weights p
{x,y}
x , p

{x,y}
y ∈ R+ such that v{x,y} is the Weighted Approval Voting relative

to p{x,y} = (p
{x,y}
x , p

{x,y}
y ).

Proof: Let {x, y} be the set of feasible alternatives and take any v that satisfies the

hypothesis of Lemma 3. We will show that there exist two weights p
{x,y}
x ∈ R+ and

p
{x,y}
y ∈ R+ with the property that for all profiles M , all electorates N , and all z ∈ {x, y},

z ∈ v{x,y}(MN) ⇔ p{x,y}
z · Gz(MN) ≥ p{x,y}

w · Gw(MN) for all w ∈ {x, y}. (10)

To insure that condition (10) holds, we investigate the restrictions that response profiles

impose on the weights. Consider any electorate N and let the response profile MN be

such that Gx(MN) = 0 and Gy(MN) = 0. Since v satisfies the no-support condition,

v{x,y}(MN) = {x, y}. Then, given MN , condition (10) holds for any p
{x,y}
x ∈ R+ and

p
{x,y}
y ∈ R+. So, for all electorates N , response profiles with the property that Gx(MN) =

Gy(MN) = 0 do not impose any restriction on the weights.

In the next step, we focus on two response profiles that give one vote to one alternative

and zero votes to the other. Formally, given any electorate N , let MN and M ′
N be such that

Gx(MN) = 1, Gy(MN) = 0, Gx(M
′
N) = 0 and Gy(M

′
N) = 1. By the no-support condition,

x ∈ v{x,y}(MN) and y ∈ v{x,y}(M ′
N). The latter two conditions restrict the two images to

be v{x,y}(MN) ∈ {{x}, {x, y}} and v{x,y}(M ′
N) ∈ {{y}, {x, y}}. We consider the four cases

separately.

1. Suppose that v{x,y}(MN) = v{x,y}(M ′
N) = {x, y}. By consistency in voters, for all

M ′′
N ∈ (2K)N , v{x,y}(M ′′

N) = {x, y}. Thus, condition (10) holds if and only if p
{x,y}
x =

p
{x,y}
y = 0.

13



2. Suppose that v{x,y}(MN) = {x} and v{x,y}(M ′
N) = {x, y}. Assume M ′′

N is such that

Gx(M
′′
N) = 0. Then, by consistency in voters (if Gy(M

′′
N) > 0) or by the no-support

condition (if Gy(M
′′
N) = 0), v{x,y}(M ′′

N) = {x, y}. We observe that condition (10)

holds for any p
{x,y}
x ∈ R++ and p

{x,y}
y = 0. Assume M ′′

N is such that Gx(M
′′
N) >

0. If Gy(M
′′
N) = 0, the assumption v{x,y}(MN) = {x} and consistency in voters

imply that v{x,y}(M ′′
N) = {x}. If Gy(M

′′
N) > 0, define the response profiles M̂A and

M̂ ′
B as Gy(M

′′
N)-isomorphic copies of M ′

N and Gx(M
′′
N)-isomorphic copies of MN ,

respectively. By consistency in voters, v{x,y}(M̂A) = {x, y} and v{x,y}(M̂ ′
B) = {x}.

Since M ′′
N = M̂A + M̂ ′

B, consistency in voters implies that v{x,y}(M ′′
N) = v{x,y}(M̂A +

M̂ ′
B) = v{x,y}(M̂A) ∩ v{x,y}(M̂ ′

B) = {x}. Thus, condition (10) holds for any p
{x,y}
x ∈

R++ and p
{x,y}
y = 0.

3. Suppose that v{x,y}(MN) = {x, y} and v{x,y}(M ′
N) = {y}. A symmetric argument as

the one already used for the former case shows that condition (10) holds for p
{x,y}
x = 0

and any p
{x,y}
y ∈ R++.

4. Suppose that v{x,y}(MN) = {x} and v{x,y}(M ′
N) = {y}. Then, condition (10) holds

only if p
{x,y}
x > 0 and p

{x,y}
y > 0. To further restrict the weights in this case, we have

to consider the response profiles in which both alternatives get at least one vote.

Formally, define MN = {M̄N ∈ (2K)N : Gx(M̄N) > 0 and Gy(M̄N) > 0}. We divide

the analysis of this case into four subcases.

4.1 Assume that for all electorates B and all M̃B ∈ MB, v{x,y}(M̃B) = {x}. This

contradicts coherence, and therefore, this case cannot be.

4.2 Assume that for all electorates B and all M̃B ∈ MB, v{x,y}(M̃B) = {y}. This

contradicts coherence, and therefore, this case cannot be.

4.3 Assume that there exists an electorate B and a response profile M̃B ∈ MB such

that v{x,y}(M̃B) = {x, y}. Consider any electorate A 6= B and any response

profile M̂A ∈ MA. Assume at first that

Gx(M̂A)

Gy(M̂A)
>

Gx(M̃B)

Gy(M̃B)
. (11)
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Since x ∈ v{x,y}(M̃B) by assumption, Lemma 2 implies

x ∈ v{x,y}(M̂A). (12)

Define the response profile M̄B̄ as Gy(M̂A)-isomorphic copies of M̃B. Since

v{x,y}(M̃B) = {x, y}, consistency in voters implies v{x,y}(M̄B̄) = {x, y}. Define

also the response profile M̄ ′
Ā

as Gy(M̃B)-isomorphic copies of M̂A. By (12),

consistency in voters implies x ∈ v{x,y}(M̄ ′
Ā
). Observe that Gx(M̄

′
Ā
) = Gy(M̃B) ·

Gx(M̂A), Gx(M̄B̄) = Gy(M̂A) · Gx(M̃B), and Gy(M̄
′
Ā
) = Gy(M̂A) · Gy(M̃B) =

Gy(M̄B̄). Let t = Gx(M̄
′
Ā
) − Gx(M̄B̄). By (11), t is a strictly positive integer.

Let M̌C be a response profile obtained from t-isomorphic copies of MN . Then,

M̄ ′
Ā

= M̄B̄ + M̌C . Since v{x,y}(MN) = {x} by assumption and x ∈ v{x,y}(M̄B̄),

consistency in voters implies v{x,y}(M̄ ′
Ā
) = {x}. Since

Gx(M̄ ′

Ā
)

Gy(M̄ ′

Ā
)

= Gy(M̃B)·Gx(M̂A)

Gy(M̃B)·Gy(M̂A)
=

Gx(M̂A)

Gy(M̂A)
, Lemma 1 implies finally that v{x,y}(M̂A) = v{x,y}(M̄ ′

Ā
) = {x}. Therefore,

if
Gx(M̂A)

Gy(M̂A)
>

Gx(M̃B)

Gy(M̃B)
, then v{x,y}(M̂A) = {x}. (13)

Assume now that v{x,y}(M̂A) = {x}. Since v{x,y}(M̃B) = {x, y}, Lemma 1 implies

that Gx(M̂A)

Gy(M̂A)
6= Gx(M̃B)

Gy(M̃B)
. Assume at first that Gx(M̂A)

Gy(M̂A)
< Gx(M̃B)

Gy(M̃B)
. Then, since y ∈

v{x,y}(M̃B) by assumption, we obtain from Lemma 2 that y ∈ v{x,y}(M̂A) = {x}.

This is a contradiction, and therefore, Gx(M̂A)

Gy(M̂A)
> Gx(M̃B)

Gy(M̃B)
. Hence,

if v{x,y}(M̂A) = {x}, then
Gx(M̂A)

Gy(M̂A)
>

Gx(M̃B)

Gy(M̃B)
. (14)

We conclude from (13) and (14) that

v{x,y}(M̂A) = {x} if and only if
Gx(M̂A)

Gy(M̂A)
>

Gx(M̃B)

Gy(M̃B)
. (15)

Symmetrically, we can obtain that

v{x,y}(M̂A) = {y} if and only if
Gx(M̂A)

Gy(M̂A)
<

Gx(M̃B)

Gy(M̃B)
. (16)

It follows from (15) and (16) that condition (10) holds if and only if p
{x,y}
x =

Gy(M̃B) and p
{x,y}
y = Gx(M̃B).
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4.4 Assume that for all electorates B and all M̃B ∈ MB, v{x,y}(M̃B) 6= {x, y}

and neither case (4.1) nor case (4.2) holds. Consider the electorate N and a

response profile M̂N with the property that Gx(M̂N) = Gy(M̂N) = 1. Suppose

without loss of generality that v{x,y}(M̂N) = {x}. Moreover, set p
{x,y}
y ≡ 1. It

remains to be shown that there exists a weight p
{x,y}
x ∈ (1, +∞) such that for

all electorates B and all response profiles M̃B such that Gy(M̃B) > Gx(M̃B),

(a) if v{x,y}(M̃B) = {x}, then p
{x,y}
x > Gy(M̃B)

Gx(M̃B)
and (b) if v{x,y}(M̃B) = {y},

then p
{x,y}
x < Gy(M̃B)

Gx(M̃B)
. Suppose otherwise; that is, there is no such weight p

{x,y}
x .

Then, there exists an electorate A and two response profiles MA and M ′
A such

that v{x,y}(MA) = {x}, v{x,y}(M ′
A) = {y} and Gy(MA)

Gx(MA)
>

Gy(M ′

A)

Gx(M ′

A
)
. But, since

Gy(MA)

Gx(MA)
>

Gy(M ′

A)

Gx(M ′

A
)

and v{x,y}(M ′
A) = {y}, it follows from Lemma 2 that y ∈

v{x,y}(MA) = {x}. This is a contradiction. �

We have shown that for any pair of alternatives x, y ∈ K, there are two non-negative

weights, p
{x,y}
x and p

{x,y}
y , such that the subfamily of voting rules v{x,y} is the Weighted

Approval Voting relative to these weights (observe that the proof of Lemma 3 is constructive

apart from part 4.4; in the final Section, we explain how the weights can be obtained in

this case). Hence, for every alternative x ∈ K there are κ− 1 weights, one weight that can

be applied in combination with each alternative y 6= x. In the next two Lemmata we show

that it is possible to construct a single weight for every alternative.

Lemma 4 Assume that the family of voting rules v is consistent in alternatives and voters,

anonymous, coherent and satisfies the no-support condition. Given alternative x ∈ K, if

v{x,y} is the Weighted Approval Voting relative to p{x,y} = (0, p
{x,y}
y ) for some y 6= x, then

for all z ∈ K\{x, y}, v{x,z} is the Weighted Approval Voting relative to p{x,z} = (0, p
{x,z}
z ).

Proof: Suppose otherwise; that is, p{x,y} = (0, p
{x,y}
y ) and for some z ∈ K\{x, y},

p
{x,z}
x > 0. Consider any electorate N of size n ≥ 1 and let the response profile MN be such

that Gy(MN) = Gz(MN) = 0 and Gx(MN) = 1. Since p
{x,z}
x > 0 and v{x,z} is by Lemma 3

the Weighted Approval Voting relative to p{x,z} = (p
{x,z}
x , p

{x,z}
z ), v{x,z}(MN) = {x}. Thus,
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by consistency in alternatives, z 6∈ v{x,y,z}(MN). Moreover, since by assumption v{x,y} is

the Weighted Approval Voting relative to p{x,y} = (0, p
{x,y}
y ), v{x,y}(MN) = {x, y}. Thus,

by consistency in alternatives, v{x,y,z}(MN) 6∈ {{x}, {y}}. Observe that v{x,y,z}(MN) 6∈

{{x}, {y}} and z 6∈ v{x,y,z}(MN) imply that v{x,y,z}(MN) = {x, y}. By consistency in

alternatives, v{y,z}(MN) = v{x,y,z}(MN) ∩ {y, z} = {y}. By the no-support condition,

v{y,z}(MN) = {y, z}, which is a contradiction. �

Lemma 5 Assume that the family of voting rules v is consistent in alternatives and voters,

anonymous, coherent and satisfies the no-support condition. Then, there exists a κ-tuple of

weights (pz)z∈K ∈ R
κ
+ such that for all alternatives x, y ∈ K, v{x,y} is the Weighted Approval

Voting relative to p{x,y} = (px, py).

Proof: The proof is done by induction on the set of feasible alternatives K ⊂ K. Take

any K ⊂ K of cardinality two. By Lemma 3, there are two weights (pK
x )x∈K ∈ R

2
+ such

that vK is the Weighted Approval Voting relative to pK .

Induction Hypothesis: Suppose that given the set of feasible alternatives K ⊂ K of

cardinality k ≥ 3, there exists a k-tuple of weights
(

pK
x

)

x∈K
∈ R

k
+ such that for all x, y ∈ K,

v{x,y} is the Weighted Approval Voting relative to p{x,y} = (pK
x , pK

y ).

We have to prove that if the set of feasible alternatives is equal to K ∪ {z}, z 6∈ K, then

there exists a k+1-tuple of weights (p
K∪{z}
x )x∈K∪{z} ∈ R

k+1
+ such that for all x, y ∈ K∪{z},

v{x,y} is the Weighted Approval Voting relative to p{x,y} = (p
K∪{z}
x , p

K∪{z}
y ).

For all alternatives x ∈ K, let p
K∪{z}
x = pK

x . Then, for all x, y ∈ K, v{x,y} is the

Weighted Approval Voting relative to p{x,y} = (p
K∪{z}
x , p

K∪{z}
y ) by the induction hypothesis.

It remains to determine the weight p
K∪{z}
z . To do so, we divide our analysis in two cases,

but first, by Lemma 3, we know that for all x ∈ K, there exist two weights p
{x,z}
x and p

{x,z}
z

such that v{x,z} is the Weighted Approval Voting relative to these weights.

1. Suppose that for all x ∈ K, p
{x,z}
x = 0. By Lemma 4, for all y 6= x, p

{x,y}
x = 0.

Hence, p
K∪{z}
x = 0 for all x ∈ K, because if it was the case that for some x ∈ K,

p
K∪{z}
x > 0, then there would be an alternative y ∈ K\{x} such that v{x,y} would
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not be the Weighted Approval Voting relative to pK
x and pK

y . This would contradict

the induction hypothesis. Now, if p
{x,z}
z = 0 for some x ∈ K, then, by Lemma 4,

p
{y,z}
z = 0 for all y ∈ K. In this case, we set p

K∪{z}
z = 0. If, on the other hand,

p
{x,z}
z > 0 for some x ∈ K, then it follows from the contrapositive of Lemma 4 that

p
{y,z}
z > 0 for all y ∈ K. In this case, any p

K∪{z}
z ∈ R++ will have the property that

for all x ∈ K, v{x,z} is the Weighted Approval Voting relative to p{x,z} = (0, p
K∪{z}
z ).

2. Suppose that for alternative x ∈ K, p
{x,z}
x > 0. If p

{x,z}
z = 0, then, by Lemma 4,

p
{y,z}
z = 0 for all y ∈ K. In this case, set p

K∪{z}
z = 0. Therefore, suppose from now

on that p
{x,z}
z > 0. By Remark 1, the weights p

{x,z}
x and p

{x,z}
z are determined up to

proportional changes; that is, if we multiply both by λ > 0, then the result of the

election does not change. Set λ equal to p
K∪{z}
x = λ·p

{x,z}
x , or, λ = p

K∪{z}
x /p

{x,z}
x (note

that by the contrapositive of Lemma 4, p
{x,z}
x > 0 implies that for all y 6= x, p

{x,y}
x > 0;

hence, by the induction hypothesis, the weight pK
x = p

K∪{z}
x > 0). Similarly, let

p
K∪{z}
z = λ · p

{x,z}
z = p

{x,z}
z · p

K∪{z}
x /p

{x,z}
x . Without loss of generality we can also

define p
K∪{z}
x ≡ 1. Then, p

K∪{z}
z = p

{x,z}
z /p

{x,z}
x . Since v{x,z} is the Weighted Approval

Voting relative to (p
{x,z}
x , p

{x,z}
z ) by Lemma 3, we conclude that this subfamily is also

the Weighted Approval Voting relative to p{x,z} = (p
K∪{z}
x , p

K∪{z}
z ).

It remains to be shown that given alternative y ∈ K\{x}, v{y,z} is the Weighted

Approval Voting relative to p{y,z} = (p
K∪{z}
y , p

K∪{z}
z ). To do so, we prove that there

exists a µ > 0 such that p
K∪{z}
y = µ · p

{y,z}
y and p

K∪{z}
z = µ · p

{y,z}
z . Rewrite the

equations as p
K∪{z}
y · p

{y,z}
z = p

K∪{z}
z · p

{y,z}
y (observe that the assumption p

{x,z}
z > 0

implies that p
{y,z}
z > 0 by the contrapositive of Lemma 4) and suppose otherwise.

That is,
δ ≡ pK∪{z}

z · p{y,z}
y − pK∪{z}

y · p{y,z}
z > 0.

Note that we can deal with the case δ < 0 using a symmetric argument. Let p̄z ≡
nz

mz

and p̄y ≡ ny

my
be two rational numbers such that p̄z < p

K∪{z}
z , p̄y > p

K∪{z}
y , and

p̄z · p
{y,z}
y − p̄y · p

{y,z}
z > 0. (17)

Here, ny,my, nz and mz are strictly positive integers. Observe that p̄y and p̄z must

exist, because the set of rational numbers is dense in the set of real numbers. Rewrite
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equation (17) as
p{y,z}

y · (nz · my) > p{y,z}
z · (ny · mz). (18)

Consider now the electorate N of size n ≥ min{ny · nz, ny · mz, nz · my} and let

the response profile MN be such that Gx(MN) = nz · ny, Gy(MN) = nz · my, and

Gz(MN) = ny · mz. Since, by Lemma 3, v{y,z} is the Weighted Approval Voting

relative to p{y,z} = (p
{y,z}
y , p

{y,z}
z ), v{y,z}(MN) = {y} by equation (18). This implies,

by consistency in alternatives, that z 6∈ v{x,y,z}(MN).

In addition, Gx(MN) = p̄y ·Gy(MN) > p
K∪{z}
y ·Gy(MN). Since v{x,y} is the Weighted

Approval Voting relative to p{x,y} = (1, p
K∪{z}
y ) by construction, v{x,y}(MN) = {x}.

This implies, by consistency in alternatives, that y 6∈ v{x,y,z}(MN).

The two conditions z 6∈ v{x,y,z}(MN) and y 6∈ v{x,y,z}(MN) imply together that

v{x,y,z}(MN) = {x}. Hence, v{x,y,z}(MN) ∩ {x, z} = {x} and, by consistency in

alternatives, v{x,z}(MN) = {x}. Finally, since v{x,z} is the Weighted Approval Voting

relative to p{x,z} = (1, p
K∪{z}
z ) by construction, v{x,z}(MN) = {x} is equivalent to

p
K∪{z}
z ·Gz(MN) < 1 ·Gx(MN). But p

K∪{z}
z ·Gz(MN) > p̄z ·Gz(MN) = nz

mz
· ny ·mz =

Gx(MN). This is a contradiction.

Hence, there is a (k + 1)-tuple of non-negative and finite weights (p
K∪{z}
x )x∈K∪{z} such

that for all x, y ∈ K ∪ {z}, v{x,y} is the Weighted Approval Voting relative to p{x,y} =

(p
K∪{z}
x , p

K∪{z}
x ). The Lemma follows finally from the case K ∪ {z} = K and px ≡ pKx for

all x ∈ K. �

In the last step of the proof, we apply consistency in alternatives to generalize Lemma

5 to all sets of feasible alternatives.

Proof of Theorem 1: Any Weighted Approval Voting satisfies consistency in alterna-

tives and voters, anonymity, the no-support condition and coherence. To prove the other

implication let v be a family of voting rules that satisfies consistency in alternatives and

voters, anonymity, the no-support condition, and coherence. We show that the κ-tuple of

non-negative and finite weights (px)x∈K identified in Lemma 5 is such that for all sets of

feasible alternatives K, all profiles M , and all electorates N ,
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x ∈ vK(MN) if and only if px · Gx(MN) ≥ py · Gy(MN) for all y ∈ K.

Assume that x ∈ vK(MN). Then, by consistency in alternatives, x ∈ v{x,y}(MN)

for all y ∈ K\{x}. By Lemma 5, v{x,y} is the Weighted Approval Voting relative to

p{x,y} = (px, py). Hence, px · Gx(MN) ≥ py · Gy(MN) for all y ∈ K.

Assume that px · Gx(MN) ≥ py · Gy(MN) for all y ∈ K. Then, for all y 6= x, x ∈

v{x,y}(MN) because, by Lemma 5, v{x,y} is the Weighted Approval Voting relative to p{x,y} =

(px, py). If there is some z 6= x such that z ∈ vK(MN), then the set vK(MN) ∩ {x, z} 6= ∅.

Hence, v{x,z}(MN) = vK(MN) ∩ {x, z} by consistency in alternatives. Since, by Lemma 5,

v{x,z} is the Weighted Approval Voting relative to p{x,z} = (px, pz), x ∈ v{x,z}(MN). Hence,

x ∈ vK(MN). If there does not exist any alternative z 6= x such that z ∈ vK(MN), then

x ∈ vK(MN) because the set vK(MN) cannot be empty. �

5 Final Remarks

We show next, with the help of five examples, the independence of the properties used

in Theorem 1. Afterwards, we indicate a procedure to obtain the weights in case 4.4 of

Lemma 3, the only subcase where our proof is not constructive. We finish the paper with

two remarks. We show in Subsection 5.3 how to strengthen the no-support condition to

obtain Weighted Approval Voting with strictly positive weights and describe in Subsection

5.4 some similarities between the construction of our proof and proofs used in the literatures

of Weighted Utilitarism and Ranking of Opportunity Sets.

5.1 Independence of the Axioms

Consistency in Alternatives: Fix x ∈ K. Let the family of voting rules v be such that

for all sets of feasible alternatives K of size two, all profiles M , and all electorates N ,

vK(MN) = vK
A (MN). Otherwise, apply the Weighted Approval Voting with weights px = 2

and py = 1 for all y 6= x. This family satisfies consistency in voters, anonymity, the no-

support condition and coherence. The following example shows that it is not consistent
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in alternatives. Let K = {x, y, z} and suppose that N = {i, j}. If Mi = Mj = K, then

v{x,y}(Mi + Mj) = {x, y} and v{x,y,z}(Mi + Mj) = {x}. Consistency in alternatives would

imply that v{x,y}(Mi + Mj) = v{x,y,z}(Mi + Mj) ∩ {x, y} = {x}. Hence, v does not satisfy

consistency in alternatives.

Consistency in Voters: Let the family of voting rules v be such that for all sets of feasible

alternatives K, all profiles M , and all electorates N , if Gx(MN) > 1 for some x ∈ K, then

vK(MN) = vK
A (MN). Otherwise, apply the Weighted Approval Voting with weights px = 2

and py = 1 for all y 6= x. This family satisfies consistency in alternatives, anonymity,

the no-support condition, and coherence. The following example shows that it is not

consistent in voters. Let K = {x, y, z} and suppose that N = {i, j}. If Mi = Mj = {x, y},

then v{x,y}(Mi) = v{x,y}(Mj) = {x} and v{x,y}(Mi + Mj) = {x, y}. Consistency in voters

would imply that v{x,y}(Mi + Mj) = v{x,y}(Mi) ∩ v{x,y}(Mj) = {x}. Hence, v does not

satisfy consistency in voters.

Anonymity: Assign to each voter i ∈ N a strictly positive number qi in such a way that

qi 6= qj for some pair i, j ∈ N. Now, let the family of voting rules v be such that for all sets

of feasible alternatives K, all profiles M , and all electorates N , x ∈ vK(MN) if and only if
∑

i∈N :x∈Mi
qi ≥

∑

i∈N :y∈Mi
qi for all y ∈ K. This family satisfies consistency in alternatives

and voters, the no-support condition, and coherence. The following example shows that it

is not anonymous. Let K = {x, y, z} and suppose that N = {i, j}. Moreover, let qi = 2

and qj = 1. If Mi = M ′
j = {x} and M ′

i = Mj = {y}, then v{x,y}(Mi + Mj) = {x} and

v{x,y}(M ′
i + M ′

j) = {y}. Hence, v does not satisfy anonymity.

No-Support: Let the family of voting rules v be such that for all sets of feasible alternatives

K, all profiles M , and all electorates N , x ∈ vK(MN) if and only if Gx(MN) ≤ Gy(MN)

for all y ∈ K. This family satisfies consistency in alternatives and voters, anonymity, and

coherence. The following example shows that it does not satisfy the no-support condition.

Let K = {x, y, z} and suppose that N = {i, j}. If Mi = Mj = {x}, then v{x,y}(Mi +Mj) =

{y}. Hence, v does not satisfy the no-support condition.
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Coherence: Let η : K → {1, ..., κ} be any one-to-one mapping that assigns to every x ∈ K

a natural number between 1 and κ. Given η, let the family of voting rules v be such that

for all sets of feasible alternatives K, all profiles M , and all electorates N , vK(MN) = {y ∈

K : Gy(MN) > 0 and η(y) < η(z) for all z ∈ K s.t. Gz(MN) > 0}. If no alternative gets

any vote, then vK(MN) = K. This family satisfies consistency in alternatives and voters,

anonymity, and the no-support condition. The following example shows that it does not

satisfy coherence. Let K = {x, y, z} and define η to be such that η(x) = 1 and η(y) = 2.

Then, for all profiles M and all electorates N such that Gx(MN) > 0 and Gy(MN) > 0,

v{x,y}(MN) = {x}. Hence, v does not satisfy coherence.

An additional point which is also related to the independence of the properties regards

the question whether it is possible to obtain a similar characterization of all Weighted

Approval Voting for a given electorate (given set of feasible alternatives); that is, if the

electorate (the set of feasible alternatives) is fixed at N (K) and the corresponding consis-

tency property is dropped, is the class of all Weighted Approval Voting characterized by

the remaining four properties? The following two examples show that this is not the case.

Example 1: Suppose that the electorate is equal to N = {1, 2} and the set of alternatives

is K = {x, y, z}. Let the family of voting rules v̂ = {v̂K,N : (2K)N → 2K\{∅}}K be such

that for all sets of feasible alternatives K ⊆ K and all response profiles MN ∈ (2K)N such

that Gr(MN) > 0 for some r ∈ K, v̂K(MN) = {r ∈ K : Gr(MN) > 0}. If no alternatives

receives any vote, the set K is elected. This family of voting rules satisfies consistency in

alternatives, anonymity, coherence, and the no-support condition. Yet, v̂ is not a Weighted

Approval Voting because there does not exist a vector of finite weights p = (px, py, pz) ∈ R
3
+

such that for all K ⊆ K and all response profiles MN ∈ (2K)N ,

r ∈ v̂K(MN) if and only if pr · Gr(MN) ≥ ps · Gs(MN) for all s ∈ K. (19)

To see it, consider the set of feasible alternatives K = {x, y} and two response profiles

MN and M ′
N with the property that Gx(MN) = Gy(M

′
N) = 1 and Gx(M

′
N) = Gy(MN) = 2.

Observe that, by definition of v̂, v̂{x,y}(MN) = v̂{x,y}(M ′
N) = {x, y}. Let (px, py) ∈ R

2
+ be an

arbitrary vector of finite and non-negative weights. Condition (19) implies simultaneously
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that px = 2 · py and 2 · px = py. Hence, px = py = 0. Now take any response profile M ′′
N

which satisfies Gx(M
′′
N) > 0 and Gy(M

′′
N) = 0. Since v̂(M ′′

N) = {x} by definition, condition

(19) implies that px > 0. This contradicts px = 0.

Example 2: Suppose that the set of feasible alternatives is equal to K = {x, y, z}. Let

the family of voting rules ṽ = {ṽK,N : (2K)N → 2K\{∅}}N be such that for all profiles

M ∈ (2K)N and all electorates N , (a) if Gx(MN) = Gy(MN) > 0 and Gz(MN) = 0,

ṽK(MN) = {x}, (b) if Gy(MN) = Gz(MN) > 0 and Gx(MN) = 0, ṽK(MN) = {y}, and

(c) if Gx(MN) = Gz(MN) > 0 and Gy(MN) = 0, ṽK(MN) = {z}. Otherwise, ṽK(MN) =

vK
A (MN). This family of voting rules is consistent in voters, anonymous (it depends only

on the amount of votes every alternative receives), coherent (given an alternative, there

is a situation in which all alternatives have strictly positive support and the considered

alternative belongs to the image), and satisfies the no-support condition (if an alternative

does not get any vote it is selected if and only if all alternatives have zero support). Yet,

ṽ is not a Weighted Approval Voting because the cycle induces non-transitive weights for

pairs of alternatives. To see it, assume otherwise, and let p = (px, py, pz) ∈ R
3
+ be the

vector of weights associated to ṽ. Then, (a) implies that px > py, (b) implies that py > pz,

and (c) implies that pz > px, a contradiction.

5.2 The Weights in Case 4.4 of Lemma 3

Figure 1 below indicates the first steps of a procedure to obtain the weights p
{x,y}
x and

p
{x,y}
y in the subcase 4.4 of Lemma 3, the situation when, for response profiles in which

both alternatives receive strictly positive support, never {x, y} is elected and neither {x}

nor {y} are always elected. Since, in this case, both weights have to be strictly positive, we

can normalize them. Without loss of generality, assume that the subfamily of voting rules

v{x,y} has the property that for all response profiles MN with Gx(MN) = Gy(MN) = 1,

v{x,y}(MN) = {x}. (20)

Set p
{x,y}
y ≡ 1. To obtain p

{x,y}
x ∈ R++, we construct a tree that resembles all possible

subfamilies v{x,y} (satisfying condition (20); otherwise, a symmetric argument to obtain
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p
{x,y}
y ∈ R++ will follow with p

{x,y}
x ≡ 1). Namely, each subfamily v{x,y} satisfying condition

(20) is identified with a particular branch in the tree and, vice versa, each branch in

the tree can be identified with a unique subfamily v{x,y} satisfying condition (20). A

node in this tree corresponds to sizes of electorates. Then, we assign to the tth-node of

a particular branch (which corresponds to any electorate of at most t voters) a triple

(Gt, zt, Pt). In this triple, Gt = (Gt
x, G

t
y) corresponds to any response profile MN , where

Gx(MN) = Gt
x and Gy(MN) = Gt

y. Given Gt = (Gt
x, G

t
y), any response profile MN with

this property will be called decisive, because it restricts the weight of x for electorates

of size t. Moreover, zt = v{x,y}(MN) is equal to the alternative elected at a decisive

response profile Gt (remember, {x, y} is never elected) and Pt = (lt, ut), 0 < lt ≤ ut with

ut ∈ R++ ∪ {+∞}, is the set of weights from which p
{x,y}
x could still be selected. As we

will argue later on, the final weight assigned to x is the (irrational) number p
{x,y}
x such that

limt→∞ lt = p
{x,y}
x = limt→∞ ut.
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Figure 1: Construction of Weights

t = 1. Any decisive response profile MN is such that Gx(MN) = Gy(MN) = 1. We have

assumed, without loss of generality, that v{x,y}(MN) = {x}. Then, z1 = {x}. Since

p
{x,y}
y = 1, we obtain P1 = (1, +∞) because any p

{x,y}
x ∈ (1, +∞) could still be

selected. This case corresponds to the top node in Figure 1.
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t = 2. Observe first that, by Lemma 2, at every response profile MN such that Gx(MN) ≥

Gy(MN), v{x,y}(MN) = {x}. Thus, we restrict our attention to response profiles MN

with the property that Gx(MN) < Gy(MN). Hence, any response profile M ′
N where

Gx(M
′
N) = 1 and Gy(M

′
N) = 2 is decisive. If v{x,y}(M ′

N) = {x}, then set P2 =

(2, +∞) because all weights below 2 have to be excluded and any p
{x,y}
x ∈ (2, +∞)

could still be selected. On the other hand, if v{x,y}(M ′
N) = {y}, then set P2 ∈ (1, 2)

because all weights above 2 have to be excluded and any p
{x,y}
x ∈ (1, 2) could still

be selected. These two cases correspond to either node (G2 = (1, 2), z2 = {x}, P2 =

(2, +∞)) or node (G2 = (1, 2), z2 = {y}, P2 = (1, 2)) in Figure 1.

t = 3. If {x} has been elected at the decisive response profile for t = 2 (the former case

above), then any decisive response profile MN for t = 3 is such that Gx(MN) = 1 and

Gy(MN) = 3. If v{x,y}(MN) = {x} then set P3 = (3, +∞) and if v{x,y}(MN) = {y}

then set P3 = (2, 3). On the other hand, if {y} has been elected instead (the latter case

above), then any response profile MN , where Gx(MN) = 2 and Gy(MN) = 3, becomes

decisive for t = 3. If v{x,y}(MN) = {x} then set P3 = (1.5, 2) and if v{x,y}(MN) = {y}

then set P3 = (1, 1.5).

Observe that for some t’s (for instance, for t = 4), there exist subfamilies of voting rules

v{x,y} with the property that their images are fully determined by the analysis of smaller

electorates and Lemma 2. In these cases, the set of possible weights is not adjusted. We

conclude our description by presenting a recursive algorithm that calculates, for a given

v{x,y}, the weight p
{x,y}
x . Suppose that the triple (Gt, zt, Pt) has already been calculated.

Solve the program: Given (Gt, zt, Pt) choose (Gt+1
x , Gt+1

y ) to

min Gt+1
x + Gt+1

y s.t. if zt = {x} ⇒ t + 1 ≥ Gt+1
y > Gt

y and t + 1 ≥ Gt+1
x ≥ Gt

x,

if zt = {y} ⇒ t + 1 ≥ Gt+1
y ≥ Gt

y and t + 1 ≥ Gt+1
x > Gt

x,

Gt+1
x < Gt+1

y , and

Gt+1
y

Gt+1
x

∈ Pt.

If this program has a unique solution, then any response profile MN with Gx(MN) =

Gt+1
x and Gy(MN) = Gt+1

y is decisive for t + 1. Now, update the set Pt as follows: If
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v{x,y}(MN) = {x}, then lt+1 =
Gt+1

y

Gt+1
x

and ut+1 = ut. Similarly, if v{x,y}(MN) = {y}, then

lt+1 = lt and ut+1 =
Gt+1

y

Gt+1
x

. Set Pt+1 = (lt+1, ut+1). Moreover, let zt+1 = v{x,y}(MN). On

the other hand, if this program does not have a solution, then set (Gt+1, zt+1, Pt+1) =

(Gt, zt, Pt). This iterative process yields, for a given v{x,y}, two sequences, {lt}
∞
t=1 and

{ut}
∞
t=1. First, and since v{x,y} is such that there exists a response profile MN ∈ MN at

which v{x,y}(MN) 6= {x} (i.e., we are not in case 4.1 of Lemma 3), there must exist a

T > 1 with the property that uT = T and lT = T − 1. Moreover, {ut}
∞
t=T is a decreasing

sequence in the compact set [T − 1, T ], {lt}
∞
t=T is increasing in [T − 1, T ], and for all

t ≥ 1, lt < ut. Hence, both sequences converge and limt→∞ lt ≡ l ≤ u ≡ limt→∞ ut.

To see that l = u suppose otherwise; that is, u > l. Then, there is a rational number

q ≡ n
m

∈ (l, u), because the rational numbers are dense in the set of real numbers. Take

now any response profile MN which is such that Gx(MN) = m and Gy(MN) = n. In this

case, q · Gx(MN) = Gy(MN). Since the subfamily v{x,y} does never elect the set {x, y},

v{x,y} cannot be a Weighted Approval Voting relative to p{x,y} = (q, 1). Hence, q cannot

belong to the set (l, u), and therefore, u = l. Observe finally that p
{x,y}
x = u = l must be

an irrational number, because otherwise there would again be a response profile for which

the set {x, y} is elected.

5.3 No-Support Condition

According to Theorem 1, the weights are non-negative. If we strengthen the no-support

condition, then we obtain a similar result in which the weights have to be strictly positive.

Strong No-Support: The family of voting rules v satisfies the strong no-support con-

dition if for all x, y ∈ K, all profiles M,M ′ ∈ (2K)N, and all electorates N such that

Gx(MN) = Gy(MN) = Gx(M
′
N) = 0 and Gy(M

′
N) > 0,

v{x,y}(MN) = {x, y} and v{x,y}(M ′
N) = {y}.

Corollary 1 The family of voting rules v is consistent in alternatives and voters, anony-

mous, coherent and satisfies the strong no-support condition if and only if v is a Weighted

Approval Voting relative to (px)x∈K, where px ∈ R++ for all x ∈ K.
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If we now add neutrality to these properties, then we obtain Approval Voting. Formally,

given a one-to-one mapping µ : K → K, called a permutation µ of K, and given a response

profile MN , let µ(MN) and µ(K) be the response profile and the set of alternatives obtained

by permuting alternatives according to µ.

Neutrality: The family of voting rules v is neutral if for all x, y ∈ K, all profiles M , all

electorates N , and all permutations µ of K,

vµ({x,y})(µ(MN)) = µ
(

v{x,y}(MN)
)

.

Corollary 2 The family of voting rules v is consistent in alternatives and voters, anony-

mous, neutral, coherent, and satisfies the strong no-support condition if and only if v is

Approval Voting.

Observe that Corollary 2 is not tight, because there is no v that violates coherence

but satisfies consistency in alternatives and voters, anonymity, neutrality and the strong

no-support condition.

5.4 Weighted Utilitarianism and Ranking of Opportunity Sets

Our proof uses a construction that has some similarities with arguments already used in the

weighted utility theory as well as in the literature on the ranking of opportunity sets. In the

first case (see Bossert and Weymark [6]), consider an individual with utility u : R
2
+ → R

over consumption bundles of two goods. Under a set of axioms it is shown that the utility

function u is weighted utilitarian; i.e., there exist two weights q1 ≥ 0 and q2 ≥ 0 such that

for all (x1, x2), (y1, y2) ∈ R
2
+, u(x1, x2) > u(y1, y2) if and only if q1x1 + q2x2 > q1y1 + q2y2.

Then, using a separability condition, the utility function is extended from the two-goods

case to the n-goods case. In the second literature, the aim is to order the family of all

non-empty subsets of a given set of alternatives according to two principles related to

the opportunities they convey: indirect utility (maximal element) and freedom of choice

(cardinality of the set). Dutta and Sen [12] and Alcalde-Unzu and Ballester [1] show that

generalized utilitarian rules (additive aggregation of the two criteria) are the unique ones
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that satisfy a desirable set of axioms. The construction is also based on identifying the

two weights for every pair of subsets and then extend them in a consistent manner to the

full power set.

References

[1] J. Alcalde-Unzu and M. Ballester, Some Remarks on Ranking Opportunity Sets and

Arrow Impossibility Theorems: Correspondence Results, Journal of Economic Theory

124 (2005), 116–123.

[2] C. Alós-Ferrer, A Simple Characterization of Approval Voting, forthcoming Social

Choice and Welfare.

[3] K. Arrow, Rational Choice Functions and Orderings, Economica 26 (1959), 121–127.

[4] N. Baigent and Y. Xu, Independent Necessary and Sufficient Conditions for Approval

Voting, Mathematical Social Sciences 21 (1991), 21–29.

[5] A. Bogomolnaia, H. Moulin, and R. Stong, Collective Choice under Dichotomous

Preferences, Journal of Economic Theory 122 (2005), 165–184.

[6] W. Bossert and J. Weymark, Utiliy in Social Choice, in “Handbook of Utiliy Theory
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