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Abstract

We analyze a principal-agent model in which a principal has two
possibilities to improve his knowledge about the quality of an invest-
ment project. First, he has access to an information technology that
provides a verifiable, unbiased signal. Second, he can hire an agent
who detects bad projects with some probability depending on his un-
observable effort, and who reports his findings opportunistically. We
analyze whether the principal should check the signal before or after
he offers a contract. The first policy has the advantage that the agent’s
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1 Introduction

Motivation and main results We analyze a model in which a principal
owns a project that can be either good or bad. The principal has two pos-
sibilities to improve his knowledge about the project’s quality. On the one
hand, he can use an information technology (IT) that is not subject to any
kind of incentive problem. We assume that the technology provides a verifi-
able signal on the project’s quality. On the other hand, the principal can hire
an agent who can detect bad projects with some probability depending on
his unobservable effort. After having detected a bad project or not, the agent
reports his findings opportunistically to the principal. Hence, engaging the
agent is not only subject to moral hazard, but also to a truth-telling (adverse
selection) problem. Furthermore, the agent is assumed to have zero wealth,
so that all payments from the principal to the agent need to be non-negative.
The main question analyzed in our paper is whether the principal should
commit himself to check the IT before or after the agent has reported his
findings. The first policy will be called ”disclosure policy (D)”, since the
outcome of the IT is known to both the principal and the agent before the
principal offers a contract. In the second policy, labelled as ”concealment
policy (C)”, the IT will be checked only after the agent has reported his
findings to the principal. Of course, the advantage of policy D is that the
agent can adjust his effort to the principal’s findings. On the other hand,
policy C allows the principal to reduce the agent’s rent caused by the truth-
telling problem by threatening to pay positive wages if and only if the agent’s
report and the signal’s outcome coincide.
Our setting seems to fit for many practically relevant instances. Originally,
the analysis has been motivated by a project concerning scoring systems for
small enterprize loans. Loan officers who are supposed to improve and to
reveal their own knowledge from relationship lending to their superiors often
seem to duplicate the scoring system’s result without working seriously, thus
motivating the issue whether committing to run the scoring system (which
provides verifiable information) only after the loan officer’s assessment might
be better. More generally, our framework fits whenever the principal has
one source of information that is not or no longer subject to a moral hazard
or truth-telling problem - for instance, a lawyer’s client, a doctor’s patient
or an editor may already have an other report waiting sealed on his desk
to be opened, and he can decide (and convey) when to open the report. In
a similar way, an investor or a CEO may consider when to undertake an
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in-house database research complementary to the (out-sourced) work of a
consulting agency.
In this contribution, we derive the optimal timing of information release
depending on the quality of the principals IT, the project characteristics
and the agent’s effort-cost function that determines the magnitude of moral
hazard and adverse selection effects.
The most surprising results under policy D itself are that the principal may
maximize profits by not using the IT at all, and that his profit may decrease
in the number of good projects. These results hold although we assume that
using the IT is costless, and are caused by the truth-telling problem. By
contrast, the principal always checks the IT under policy C, and his profit
strictly increases in the percentage of good projects.
When comparing the relative advantages of the two policies, our results are
as follows. First, policy D is superior if there is no truth-telling problem,
but only a moral hazard problem (with limited liability). Second, policy
C is superior whenever the informativeness of a good signal is sufficiently
low, or when the principal prefers not to check the signal under policy D.
Third, policy D is not necessarily superior if the signal becomes arbitrarily
informative as the principal will refuse to hire the agent at all in this case.

Relation to the literature To the best of our knowledge, Demski and
Sappington (DS 1987b) is the only paper that addresses the question of the
optimal timing of information release in a principal-agent relationship. DS
1987b is an extension of Demski and Sappington (DS 1987a) that pioneers
the literature on delegated expertise. In these models, the principal delegates
both the information acquisition and a subsequent implementation decision
(upon an investment, for instance) to the agent because communication is
prohibitively costly. In DS 1987b, the agent’s unobservable effort in acquiring
information is binary, and the optimal (non-binary) implementation decision
depends on both the agent’s and the principal’s information. Then, they
provide examples for the optimality of the different timings of information
release. However, the trade-off between rent payments and effort selection in
the optimal contract which is the focus of our paper cannot be analyzed in
their binary-effort model.
Furthermore, our analysis is related to the literature on informed principals
developed by Maskin and Tirole (MT 1990), Maskin and Tirole (MT1992)
and Beaudry (1994) where the principal may signal his private information
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through the menu of contracts he proposes. The standard result of MT1990
is that the principal strictly benefits from private information with respect to
his utility function. MT1992 show that this result does not carry over to sit-
uations where the principal’s private information directly enters the agent’s
pay-off, Chade and Silvers (2001) factor moral hazard with respect to the
production stage into these models. They show that there are beliefs sup-
porting a Perfect Bayesian Equilibrium where the principal is better off if his
technology becomes less informative. The key difference between the models
on informed principals and our paper is that the principal’s information is
non-verifiable in this literature whereas in our model the contract can be
made directly contingent on the principal’s verifiable information. Finally,
Feess and Walzl (2003) derive the optimal contract in a simple model on del-
egated expertise, but they do not consider that the principal has additional
information.

2 The model

A risk-neutral principal has a project requiring initial investment outlays of
I. The project is ”good” with probability q0 and ”bad” with probability
1 − q0. If it is good, it yields return R. If it is bad, it yields 0. We assume
that the project’s expected net return is positive, i.e. q0R− I > 0.
The principal has two possibilities to improve his knowledge about the project’s
quality. First, he has costless access to an information technology (IT) that
provides a good signal with probability g, and a bad signal with probability
1 − g. If the signal is good, the probability for a good project increases to
qg > q0. If the signal is bad, the probability is reduced to qb < q0. Bayesian
consistency requires that

gqg + (1− g) qb = q0. (1)

Define qi, i ∈ {0, g, b} as the principal’s information. We assume that there is
no incentive problem associated with the IT, and that the signal is verifiable.
Furthermore, we assume that the signal becomes common knowledge in the
very moment when the principal checks the IT. 1

1Note that this assumption is only used for simplicity. If the principal can check
and hide the signal, this leads to a signaling game where the principal may signal his
information by his contract. But since the IT is binary in our model, one can easily
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Second, the principal can hire a risk-neutral agent who exerts unobservable
effort e to detect bad projects. Let e(π) be the effort costs required to identify
a bad project with probability π. We assume that e ∈ C3, that e(0) = 0,
e′(0) = 0, e′′(0) ≥ 0, e′′′(π) > 0 ∀π ∈ [0, 1), and limπ→1 e′′′(π) = ∞.
After having detected a bad project or not, the agent sends message aj,
j ∈ {d, n}, to the principal (ad for detection, an for no detection of a bad
project). The agent’s findings are private information, and the message is
not necessarily truthful. The agent’s reservation utility is normalized to 0,
and he is protected by limited liability in the sense that his wage must be
non-negative in each state of the world. Thus, we consider a principal-agent
relationship with hidden action, hidden information and limited liability.
The expected utilities of the principal and the agent are denoted Φ and U ,
respectively.
Since the principal’s actions (acquisition of the signal and decision upon
investment) are verifiable, any contract specifies the timing of information
release and the investment decision contingent on the verifiable information.
Therefore there are three classes of contracts or policies. In the first class of
contracts, the principal may not engage the agent at all (policy N) regardless
of the signal (as the signal is costless, he will check the IT before he decides
upon investment). Second, he can check the IT before he offers a contract
to the agent (disclosure policy D). By definition of policy D, the agent
is engaged for at least one signal. And third, he can commit to checking
the IT after the agent’s report (concealment policy C). Policy D has two
advantages. The principal’s decision to hire the agent can be based on the
signal, and he can adjust his contract offer to the signal. By contrast, the
effort choice cannot depend on the signal in policy C, since the signal is not
known at this time. However, the payments to the agent will be defined
contingent on the signal. In stage 0, the principal chooses between policies
N , D and C. The extensive forms of the three policies are described in
sections 3, 4, and 5, respectively.

3 No-engagement policy

If the principal decides not to engage the agent, he will check the IT before he
decides upon investment and invests whenever his expected profit is weakly

prove that there is no separating or pooling equilibrium leading to higher profits then the
maximum of policy D and C.
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positive. Let us define φk
i , i ∈ {0, g, b}, k ∈ {I, S}, as the principal’s expected

profit if he invests (I) or stops the project (S) with information qi where
φS

i = 0 and φI
i = qiR − I ∀i. Furthermore, define Φj,h

N = gφj
g + (1 − g)φh

b ,
j, h ∈ {I, S} as the principal’s expected profit under policy N if he chooses
action j for a good signal and action h for a bad signal. Maximum profits
under policy N are given by

Proposition 1.

Φmax
N ≡ max

j,h
Φj,h

N =

{
ΦI,I

N , iff qbR > I

ΦI,S
N , otherwise

Proof. As qgR − I > 0 by assumption, the principal’s equilibrium profit

is either ΦI,S
N or ΦI,I

N . The result follows from ΦI,I
N − ΦI,S

N = (1 − g)φI
b =

(1− g)(qbR− I). ¥
Note that, if qbR ≥ I, the principal can maximize his profits under policy N
simply by not checking the signal at all.

4 Disclosure policy

By definition of policy D, the agent is engaged for at least one signal. The
following Lemma streamlines the analysis.

Lemma 1. (i) If the principal hires the agent, he invests if and only if the
agent sends message an. (ii) If the agent chooses πi > 0, he tells the truth.

Proof. Part (i). Suppose not. This means that the principal’s decision is
independent of the agent’s report. But then, hiring the agent has no benefit.
Part (ii). If the agent lies, he either sends ad or an regardless of his findings.

Define Ũ(aj) as his expected payment in this case. Then, his expected utility

is U(aj) = Ũ(aj)− e(πi) which is strictly decreasing in πi. ¥
Lemma 1 given, the feasible contracts under policy D are depicted in figure
1.
Insert figure 1 about here
In figure 1, only the subgame in which the signal is checked is explicitly shown
since the case where the signal is not checked is isomorphic. Decision nodes
are squared, and nature moves are circled. Numbers refer to the stages, ”P”
to moves by the principal, ”A” to moves by the agent and ”N” to nature
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moves. When the principal checks the signal in stage 1, nature decides upon
the signal’s outcome qi, i ∈ {g, b} in stage 2. For each signal, the principal
then chooses his investment strategy k ∈ {I, E, S} in stage 3 where he invests
directly for k = I, engages the agent for k = E, and stops the project for
k = S. If he engages the agent, the agent’s effort choice follows in stage 4,
and the agent detects a bad project with probability π in stage 5. In stage 6,
the agent sends message ad or an, and the principal decides upon investment
in stage 7. Finally, a nature’s move determines the outcome in stage 8.
Analogously to the former section we define φk

i (i ∈ {0, g, b} and k ∈ {I, E, S})
as the principal’s profit if the signal is qi, and if he invests directly (k = I) ,
engages the agent (k = E), or stops the project (k = S). The principal’s prof-
its for a specific contract are given by Φj,h

D = gφj
g +(1−g)φh

b , j, h ∈ {I, E, S}
such that the principal chooses action j for signal qg and action h for signal
qb.

2 As the agent is engaged for at least one signal,3 and since the principal
might not check the IT, we are left with 6 possible types of contracts with
expected profits ΦI,E

D , ΦE,I
D , ΦE,S

D , ΦS,E
D , ΦE,E

D , φE
0 .

To deduce profits if the agent is engaged and if the principal has information
qi, let us define the following payments from the principal to the agent: a
payment τi for message ad, a payment ωi if the investment yields R, and a
payment ω0

i if the investment fails. If he tells the truth, the agent’s utility
when deciding upon πi is

Ui = qiωi + (1− qi)
(
πiτi + (1− πi) ω0

i

)− e(πi). (2)

With probability qi, the project is good and yields R, so that the agent
gets ωi if he tells the truth. If the project is bad, the agent detects it with
probability πi and receives τi. He does not detect it with probability (1−πi),
and then he gets ω0

i . His effort is thus implicitly given by

(1− qi)
(
τi − ω0

i

)
= e′(πi) (3)

where our assumptions on e(πi) ensure an interior solution for the effort if
τi − ω0

i > 0. However, the agent also has the opportunity to choose πi = 0,4

and to send either ad or an. In the first case, his utility is Ui(ad) = τi, while we

2Recall that we know from Lemma 1 how the principal acts in the remainder of the
game for k = E.

3Otherwise we would be back in policy N .
4Recall from Lemma 1 that choosing positive effort and lying is dominated by choosing

πi = 0 and lying.
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have Ui(an) = qiωi + (1− qi) ω0
i in the second case. Therefore, truth-telling

requires that
Ui ≥ Ui(ad) = τi (4)

and
Ui ≥ Ui(an) = qiωi + (1− qi) ω0

i . (5)

Note that Ui(an) is just the special case of Ui where πi = 0, so that Ineq. (5)
is automatically fulfilled by an interior solution for Eqn. (3). Hence, Ineq.
(5) can be neglected in the principal’s optimization problem. Furthermore,
we have

Lemma 2. (ω0
i )
∗ = 0.5

All remaining proofs are in the Appendix.
Lemma 2 expresses that the agent receives nothing if a project fails. The
reason is that the effort decreases in ω0

i (see Eqn. (3) above)), and that ω0
i

can be substituted at no cost by ωi to fulfill the truth-telling constraint (4).
In the optimal contract, Ineq. (4) will be binding since ωi is chosen as low
as possible.
We can now formalize the principal’s maximization problem if he engages
the agent. He maximizes

φE
i = qi (R− I − ωi)− (1− qi) (πiτi + (1− πi) I) (6)

subject to the agent’s effort selection given by Eqn. (3), and to the (binding)
truth-telling constraint (4) which can be rewritten as

qiωi = τi (1− πi + πiqi) + e(πi). (7)

Substituting Eqn. (3) and Eqn. (7) into φE
i , and simplifying leads to

(φE
i )∗ = qi (R− I)− (1− qi) (1− π∗i ) I − e′(π∗i )

1− qi

− e(π∗i ) (8)

where the equilibrium effort e(π∗i ) implemented by the principal is given by6

(1− qi)I = e′(π∗i ) +
e′′(π∗i )
1− qi

, (9)

5()∗ indicates optimal values for a certain contract.
6Our assumptions on e(π) ensure that d2φE

i

dπ2
i

< 0. If e′′(0) > 0, then Eqn.(9) does not
necessarily have a solution. Then, however, π∗i = 0 such that it is optimal not to engage
the agent.
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expressing that the marginal savings from detecting bad projects ((1− qi)I)

must equal the marginal payment to the agent (e′(πi)+
e′′(πi)
1−qi

). This marginal

payment exceeds the agent’s marginal effort costs e′(πi) by e′′(πi)
1−qi

, so that
e′′(πi)
1−qi

can be interpreted as the agent’s marginal rent.

For a deeper interpretation of the result, let us define e(πf
i ) as the effort

the principal would implement if there were no incentive problem at all, and
e(π̃∗i ) as the effort if the agent’s findings were observable.7 Then we get

Proposition 2. For all i ∈ {g, b, 0}, we have (i) π∗i < π̃∗i < πf
i . (ii)(

φE
i

)∗
<

(
φ̃E

i

)∗
< φf

i . (iii)
d(φf

i )∗

dqi
> 0, (iv)

d(φ̃E
i )∗

dqi
> 0, (v)

d(φE
i )∗

dqi
Q 0.

(vi)
(
ΦE,E

D

)∗
Q

(
φE

0

)∗
.

Part (i) and (ii) express that, for all qi, the agent’s equilibrium effort and
the principal’s profit are highest without incentive problem, followed by the
situation with moral hazard only. Hence, the agent’s private information
aggravates the incentive problem via Eqn. (7), which leads to lower effort
and lower profits. Parts (iii) and (iv) express that the principal strictly
benefits from a higher probability of a project beeing good if the agent has
no private information.
However, this is not necessarily the case with a truth-telling problem (Part
(v)). This surprising result is due to the following countervailing effect:
suppose the principal wants to implement some probability π̂i. Recall that
π̂i is determined by e′(π̂i) = (1− qi) τi. It follows that the detection premium
τ̂i required to implement probability π̂i strictly increases in qi (since the agent
knows that he will be paid less often, he demands a higher premium). But
the utility the agent can get when he sends message ad without working
at all is simply τi, and therefore independent of qi. Hence, for any effort
the principal wishes to implement, the right-hand side of the truth-telling
constraint (7) increases in qi, which means that the principal must also offer
a higher expected utility if he wants to ensure that the agent tells the truth.
If this rent effect dominates, the principal’s profit decreases in qi. Part (vi)
is a direct consequence of the rent effect and says that, even though the IT
is costless and certainly informative, the principal may be better off by not
checking the signal before the effort decision is made by the agent. Of course,
this means that the principal’s profit is concave in qi.

7φf
i , φ̃E

i , and (φ̃E
i )∗ are defined accordingly.
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This given, we can now analyze optimality of the specific contracts under
policy D.

Proposition 3. Φmax
D ≡ maxj,hΦ

j,h
D ∈ {(ΦE,E

D )∗, (ΦE,S
D )∗, (ΦI,E

D )∗}.

Obviously, (ΦS,E
D )∗ and (ΦE,I

D )∗ are dominated. If qg → 1, it is optimal to

invest directly so that (ΦI,E
D )∗ is maximum.8 For qb → 0, the project will be

stopped and (ΦE,S
D )∗ is maximum. Furthermore, the agent will be engaged

whenever e′′(0) is sufficiently small and qi ∈ (0, 1). This given, either (φE
0 )∗

or (ΦE,E
D )∗ may be maximum due to the counter-intuitive effects caused by

truth-telling (see Proposition 2).

5 Concealment policy

By definition of policy C, the signal is checked after the agent’s report. In
contrast to policy D there is no sub-case without hiring the agent, since we
would otherwise be back in policy N . Furthermore, part (ii) of Lemma (1)
is still valid and implies that the agent reports truthfully in equilibrium such
that the principal will stop the project after receiving message ad. This given,
there are two possible contracts: the principal can always invest after an, or
he can only invest if the agent sends message an and the signal is good. In
the first case, profits are denoted as ΦR

C , while we use ΦS
C in the latter case9.

The extensive form of policy C is shown in figure 2. The key difference to
figure 1 is that the principal offers a contract at stage 1 and checks the signal
before he decides upon investment in stage 5.
Insert figure 2 here.
To derive ΦR

C , let us define τi with i ∈ {G,B} (as the detection premium if
the signal is good (i = G) or bad (i = B). Analogously, define ωG and ωB

as the wage if R is realized when the signal is good or bad. Lemma 2 carries
over to policy C as there is no benefit of paying the agent if a project fails.
Thus, the principal’s profit is

ΦR
C = g[qg(R− ωG − I)− (1− qg)(1− πR)I − (1− qg)πRτG] (10)

+(1− g)[qb(R− ωB − I)− (1− qb)(1− πR)I − (1− qb)πRτB].

8Recall that ΦI,S
D and ΦI,I

D is excluded by the definition of policy D.
9πR and πS are defined accordingly where superscripts ”R” and ”S” indicate that the

principal relies on the agent’s report or on the signal, respectively.
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The agent’s utility if he chooses effort e(πR) and reports truthfully is

UR = g [qgωG + (1− qg) πRτG]+(1− g) [qbωB + (1− qb) πRτB]−e(πR). (11)

Thus, the agent’s effort if he tells the truth is implicitly given by

g(1− qg)τG + (1− g)(1− qb)τB = e′(πR). (12)

If the agent sends message ad without working at all, his utility is (1− g) τB+
gτG, so that truth-telling requires10

UR ≥ (1− g) τB + gτG. (13)

Hence, the principal’s profit as given by Eqn. (10) must be maximized subject
to the agent’s effort selection constraint (12) and the binding truth-telling
constraint (13).
The following Lemma is crucial for understanding policy C.

Lemma 3. (i) A detection premium will only be paid if the signal is bad.
(ii) Whether the wage for successful projects is contingent on the signal or
not is irrelevant.

The advantage of policy C is that the truth-telling problem can be mitigated
by paying a detection premium only if the signal is bad. The reason is that
the signal provides a stochastic update on the honesty of the agent’s report
so that the expected wage if he sends an can be reduced. Hence, inducing
one unit of effort is cheaper if the premium is only paid if the agent’s report
matches the signal. Conversely (see Lemma 3(ii)), making ωi (i = G,B)
contingent on the signal has no impact, because the agent will never report an

without working at all. In the following, we assume without loss of generality
that ωB = 0.
Taking Lemma 3 into account, substituting Eqn. (12) and Eqn. (13) into
the principal’s profit function (10), making use of gqg + (1− g) qb = q0, and
simplifying yields equilibrium profits

(ΦR
C)∗ = q0 (R− I)− (1− π∗R) (1− q0) I − e′ (π∗R)

1− qb

− e (π∗R) (14)

where the agent’s equilibrium effort e(π∗R) solves

10Again, the second truth-telling constraint is fullfilled due to the effort selection con-
straint.
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(1− q0) I =
e
′′
R (π∗R)

1− qb

+ e′ (π∗R) . (15)

(
ΦS

C

)∗
is derived analogously in the Appendix, and the agent’s equilibrium

effort implemented by the principal is implicitly given by11

g (1− qg) I =
e
′′
(π∗S)

1− qb

+ e′ (π∗S) . (16)

The main insights on policy C are summarized in

Proposition 4. (i)
de(π∗R)

dqg
= 0, (ii)

d(ΦR
C)∗

dqg
= 0, (iii)

d(ΦR
C)∗

dqb
< 0, (iv) π∗g <

π∗R < π∗b , (v) π∗S < π∗R, (vi) (ΦR
C)∗ R (ΦS

C)∗.

Parts (i) and (ii) express that both the effort and the profit are independent
of the quality of the good signal if the principal always invests after message
an. As any change in qg leads to a change in g when the other parameters
remain unchanged, the principal’s profit function has to be independent of
both qg and g which can be seen from Eqn. (14). For an intuition, first
recall from the agent’s effort selection constraint that the marginal expected
payment required to implement a certain effort given by τB(1− g)(1− qb) is
independent of g, because it does not make any difference whether the same
expected premium is realized with high g and high τB or with low g and low
τB. Furthermore, the information rent the principal must offer to fulfill the
truth-telling constraint is also independent of qg and g, since the utility the

agent gets if he sends message ad without working at all is τB(1− g) =
e′R

1−qb
.

Part (iii) follows from the fact that the opportunity to reduce rents decreases
in qb which leads to lower profits. That e(π∗R) is in-between the efforts im-
plemented in policy D for good and bad signals is intuitive, since exert-
ing effort is more valuable if the number of bad projects is high (part(iv)).
e(π∗S) < e(π∗R) is due to the fact that detecting bad projects is less important
for (ΦS

C)∗, since the principal will never invest if the signal is bad anyway
(part (v)). Finally, (ΦR

C)∗ > (ΦS
C)∗ if the bad signal is not too informative

and R is sufficiently large; (ΦR
C)∗ = (ΦS

C)∗ if g → 1 (i.e. if the good signal
becomes uninformative); otherwise it is better to invest only with message

11As in the former section our assumptions on e(π) ensure convexity of the principal’s
profit function. If e′′(0) > 0, Eqn.(15) and (16) do not necessarily have a solution. Then,
however, π∗i = 0 (i ∈ {R, S}) such that we are back in policy N .
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an and a good signal (part (vi)). Since the equilibrium efforts for the two
alternatives are different, no simple threshold values for qb can be defined.
Analogously to policy D, we define Φmax

C as the maximum profit reachable
under policy C.

6 Comparison of the three policies

First of all, we analyze when it is superior not to engage the agent at all.

Proposition 5. Sufficient conditions for Policy N being optimal are (i)
e′′(0)
(1−qb)

> (1− qb)I and (ii) qg = 1 and qb = 0.

Intuitively, part (i) refers to the case where it is too costly to implement any
positive effort. Part (ii) is straightforward as the agent can not provide useful
information if the signal is perfect anyway. For the following comparison of
policy C and D, it is assumed that policy N is inferior12.
We start with the cases where the specific advantages of policy C and D
disappear, so that clear results can be established.

Proposition 6. (i) Suppose there is no truth-telling problem. Then, policy
D is superior.
(ii) If the principal prefers not to check the IT under policy D, then policy
C is superior.

Since the only advantage of policy C compared to policy D is that the truth-
telling problem can be mitigated, C must be inferior without truth-telling
problem. For part (ii), recall from Proposition 2 that it may be optimal under
policy D to engage the agent without checking the IT (i.e. Φmax

D = (φE
0 )∗).

This implies that the principal does not want to implement different efforts,
so the signal is worthless in D. But with policy C, the principal can still
reduce the agent’s rent, so that policy D is inferior and not using the IT can
never be optimal.
Next, we turn to the case where the agent is engaged for both signals under
policy D (which yields profits (ΦE,E

D )∗). All partial derivatives of ∆ ≡ Φmax
C −

Φmax
D are ambiguous in sign. For instance, ∂∆/∂qg and ∂∆/∂qb both vary

in sign, depending on the explicit form of e(π), so that there is no generally
valid connection between the IT’s informativeness and the ranking of the
policies. However, there is a clear result as to the superiority of policy C:

12A sufficient condition for policy N being inferior is e′′(0) = 0 together with qi ∈ (0, 1).
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Proposition 7. Suppose Φmax
D = (ΦE,E

D )∗. Then there is an ε > 0 such that
policy C is optimal as long as qg ∈ (q0, q0 + ε).

First note that ΦR
C → ΦS

C if qg → q (and g → 1), since the two contracts
under policy C are identical if the probability for a bad signal converges to
zero. Hence, Proposition 7 holds for ΦR

C and for ΦS
C . Proposition 7 then says

that policy C is superior when the good signal is sufficiently uninformative.
For an intuition, first recall from Proposition 4 that the equilibrium profit in
policy C is independent of qg. In policy D, however, the good signal is of little
value if qg → q. Furthermore, since (1− g) → 0 for qg → q, profits when
the signal is bad are almost negligible. Hence, uninformative ITs strongly
support policy C.
Conversely, there are no comparably simple constellations where policy D is
superior. To show that ∆ > 0, we only had to consider situations where the
benefit of implementing different efforts under policy D (almost) disappears.
These kinds of constellations do not exist for ∆ < 0, because the IT can
always be exploited to reduce the rent in policy C. Hence, the comparison
depends on the shape of the e(π)-function and on all other variables such
that we are restricted to instructive examples that illustrate the superiority
of policy D.

Proposition 8. (i) There is a set of parameter values (R, I, q0) and a cost
function e(π) such that policy D is superior if (qg − qb) is sufficiently large.

(ii) Suppose Φj,h
D = Φmax

D , then there exists a set of parameter values and a
cost function such that Φmax

C > Φmax
D for all (j, h).

For part (i), note that a highly informative IT works in favor of policy D since
the contract can be adjusted to the different signals. Furthermore, we know
from Proposition 7 that an informative IT is required to generate ∆ < 0.
However, there are no values of qg and qb leading to ∆ < 0 regardless of all
other parameters for two reasons: first, if the IT becomes too informative, it
is better not to engage the agent at all, so that policy N is optimal. Second,
if the agent is not engaged for one signal under policy D, the reduction in the
information rent may dominate. This holds for all feasible contracts under
policy D (part (ii)).
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7 Discussion

We have analyzed optimal contracts in a principal-agent model with hidden
action, limited liability and truth-telling constraints under the assumption
that the principal has access to additional verifiable information. The main
question was whether the principal should commit himself to check the IT
before (policy D) or after (policy C) the agent’s effort decision. We have
shown that policy D is superior if there is no truth-telling problem, so that
the parameter constellations do not matter in the pure moral hazard setting.
However, as soon as truth-telling becomes a problem, we found strong sup-
port for concealment (policy C) as the optimal timing. First, policy C is
better if the signal is sufficiently uninformative (i.e. if the IT is almost
worthless as an update of the project’s characteristics, but can still be ex-
ploited as a statistics of the agent’s behavior). Second, the principal’s profit
in policy D can be decreasing in the percentage of good projects (qi), because
higher qi’s aggravate the truth-telling problem. Then, policy C is superior as
it makes (efficient) use of the (costless) IT while the principal may prefer not
to check the technology under policy D. Third, we have shown that the rent-
reduction effect of policy C is quite robust with respect to the project and
IT characteristics such that concealment should be considered as a valuable
option in reality.
If a scoring system for a bank loan is known to be not very informative for
the case at hand, it is indeed optimal for the bank to run the IT after the
loan officer has submitted his report. In cases without a pronounced truth-
telling problem (like journal-refereeing), however, an immediate disclosure
of existing information proves useful. Most problems of delegated expertise
(like investigations by doctors or lawyers etc.) lie between these benchmark
cases and the commitment of the principal to remain uninformed should at
least be considered as a worthy alternative.
Let us now discuss robustness in light of our assumptions. In one of our
motivating examples with a loan officer, risk-aversion seems to be a natural
extension. Under policy C, the detection premium would still be higher for
a bad signal, but the principal would also pay positive wages if the signal
and the report do not coincide to improve risk-sharing. Hence, risk aversion
reduces the benefits from policy C. On the other hand, depending on the
quality of qb and qg, the wages for the two subgames under policy D may be
quite different, and this is a drawback of policy D with risk-aversion. The
trade-off analyzed in the paper would still exist with risk-aversion, but the
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analysis would become less transparent.
The assumption that the agent has zero wealth is strong. Instead, one could
assume that the agent has some wealth W > 0, but not enough to buy the
project. Then, the principal can reduce the agent’s rent under policy D by
charging the agent’s wealth as an up-front payment. Under policy C, the
principal would punish the agent if the signal and the agent’s report differ.
Again, the model becomes less clear, but the trade-off would persist.
Our assumption that the agent detects bad projects with some probability
can be interpreted in the sense that the project is certainly bad if the agent
gets a bad signal. On the other hand, if he does not detect a bad project, the
probability for a good project is not equal to one. Hence, one might think
about removing this asymmetry by introducing a positive probability for a
good project if the agent gets a bad signal. However, this results in a more
cumbersome analysis without further insights.
Also, one might question that the signal is costlessly available - running a
computer-based scoring system or sending a public agent may not come at no
cost. However, the comparison between the three policies could then hardly
be handled in this general form, and the surprising result that it may be
superior under policy D not to check the IT even without costs would be less
clear.
Finally, the principal-agent relationship considered in our paper may be a
repeated one. In an (infinitely) repeated game the following should be an
equilibrium: with some (arbitrarily small) probability the principal invests
even if the agent reports ad, and threatens to end the contractual relationship
if the project yields R (which means that the agent has lied with probability
one). This should almost eliminate the truth-telling problem, since the agent
loses all of his future rents. However, investing even with signal ad may not
be renegotiation-proof, so that additional questions arise that are beyond the
objective of our model.
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Appendix A: Proofs

Proof of Lemma 2 For any effort π̂i > 0 the principal wants to implement,
he has to fulfill the agent’s truth-telling constraint

qiωi + (1− qi)
(
π̂iτi + (1− π̂i) ω0

i

)− e(π̂i) ≥ τi (17)

and the effort selection constraint

(1− qi)
(
τi − ω0

i

)
= e′(π̂i). (18)

ωi is chosen such that Eqn.(17) is binding because ωi has no impact on the
agent’s effort. Substituting the binding constraints into the principal’s profit
function

φE
i = qi (R− I − ωi)− (1− qi)

(
π̂iτi + (1− π̂i)

(
I + ω0

i

))
(19)

yields after simplifying

φE
i = qiR− I + (1− qi)π̂iI − e′(π̂i)

1− qi

− e(π̂i)− ω0
i (20)

and hence
dφE

i

dω0
i

= −1 < 0. (21)

Since this holds for any e(π̂i) the principal wants to implement, it must also
hold for the optimal effort. ¥

Proof of Proposition 2 Part (i). The first-best effort e(πf
i ) is implicitly

given by (1 − qi)I = e′(πf
i ). For the principal’s profit in the pure moral

hazard case (φ̃E
i ), we insert Eqn.(3) and ωi = 0 into Eqn.(6). This yields

(φ̃E
i )∗ = qi (R− I)− (1− qi) (1− π̃∗i ) I − π̃∗i (e′(π̃∗i )) (22)

with the optimal effort e(π̃∗i ) implicitly given by

(1− qi) I = e′(π̃∗i ) + π̃∗i e
′′(π̃∗i ). (23)

From 1
1−qi

> 1 > π̃i, it follows that π∗i < π̃∗i < πf . Part(ii). To prove

(φ̃E
i )∗ − (φE

i )∗ > 0, suppose the principal implements π∗i even without a
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truth-telling problem13, which does not maximize his profits. But even then,

φ̃E
i (π∗i ) − (φE

i )∗ > 0 as πi < 1
1−qi

. Hence,
(
φ̃E

i

)∗
> φ̃E

i (π∗i ) > (φE
i )∗ where

the first inequality follows from the definition of optimality. φf
i > (φ̃E

i )∗ can

be proven analogously14. Part(iii).
d(φf

i )∗

dqi
= R > 0. Part(iv).

d(φ̃E
i )∗

dqi
=

R − π̃∗i I > 0. Part(v). From
d(φE

i )∗

dqi
= R − π∗i I − e′(π∗i )

(1−qi)2
, it follows that

profits are monotonically increasing in qi if R is sufficiently large, but can
be monotonically decreasing for low values of R as shown in Example 2
in Appendix B. Part(vi). In Example 3(2) in Appendix B we provide a
specification of e(π) that implies that

(
φE

i

)∗
is concave (convex) in qi such

that
(
ΦE,E

D

)∗
< (>)

(
φE

0

)∗
. ¥

Proof of Proposition 3 Since q0R − I > 0 by assumption, and since

qg > q0, we have φI
i > φS

i , for i ∈ {0, g} which excludes
(
ΦS,E

D

)∗
as maximum.

Optimality of
(
ΦE,I

D

)∗
requires that φI

g < φE
g and φI

b > φE
b hold simultane-

ously. But this is impossible due to
(dφI

i )
∗

dqi
= R >

(dφE
i )

∗

dqi
= R− π∗i I − e(π∗i )

(1−qi)2
.

To see that each of the remaining contracts can be optimal, note that a
sufficient condition to engage the agent is e′′(0) = 0 together with qi ∈ (0, 1).
On the other hand, sufficient conditions not to engage the agent are e′′(0) ≥
(1− qi)

2I, qb = 0 or qg = 1. Hence,

•
(
ΦE,S

D

)∗
is maximum if e.g. e′′(0) = 0, qb = 0, and qg < 1.

•
(
ΦI,E

D

)∗
is maximum if e.g. e′′(0) = 0, qb > 0, and qg = 1.

That
(
φE

0

)∗
and

(
ΦE,E

D

)∗
can be maximum is proven by Examples 2 and 3,

respectively. ¥

Proof of Lemma 3 We prove the Lemma only for ΦR
C . The proof for ΦS

C

proceeds analogously and is available on request.

13Note that U ′′
i < 0∀πi > 0 and Ui = 0 if πi = 0 such that the agent’s effort selection

constraint Eqn. (3) guarentees Ui > 0 for all πi ∈ (0, π̃∗i ]. This implies that the agent’s
participation constraint is fulfilled.

14Proof available on request.
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The principal’s profit ΦR
C as given in the main body of the text must be max-

imized subject to the effort-selection-(ESC) and the truth-telling constraints
(TTC) (see Eqn. (12) and Eqn. (13) in the text). Optimization with respect
to ωG and ωB yields

∂L

∂ωB

= −(1− g)qb + λTTC(1− g)qb,

∂L

∂ωG

= −gqg + λTTCgqg,

such that λTTC = 1 (i.e. a binding TTC) solves the necessary conditions
simultaneously. Thus, all combinations of ωG and ωB that satisfy the TTC
are optimal. As to τG and τB, the set of first-order conditions is given by
λTTC = 1 and

∂L

∂τG

= λESCg(1− qg)− g = 0,

∂L

∂τB

= λESC(1− g)(1− qb)− (1− g) = 0.

This system of equations cannot be solved simultaneously. Isolating λESC in
the first equation yields λESC = 1

(1−qg)
, implying that ∂L

∂τB
> 0. This clearly

establishes a minimum. With the second equation, we get λESC = 1
(1−qb)

such

that ∂L
∂τG

< 0. Therefore, the optimal payment scheme is given by τG = 0
and any τB, ωG, ωB that satisfy ESC and TTC. ¥

Proof of Proposition 4 Part (i) and (ii). Since qg neither directly nor

indirectly (via g) enters into ΦR
C , it follows that

de(π∗R)

dqg
= 0 and

d(ΦR
C)∗

dqg
= 0.

Part(iii).
d(ΦR

C)∗

dqb
= − e′(π∗R)

(1−qb)2
< 0. Part (iv). A comparison of the FOCs Eqn.

(9) and (15) yields e(π∗g) < e(π∗R) < e(π∗b ).
Part (v). If the principal invests only with message an and with a good
signal, he maximizes

ΦS
C = g [qg (R− ωG − I)− (1− qg) (1− πS) I]− (1− g) (1− qb) πSτB (24)

subject to the same constraints (Eqn. (12) and Ineq. (13)). Using gqg +
(1− g) qb = q0, substituting into ΦS

C and simplifying yields

(ΦS
C)∗ = gqgR− gI + g (1− qg) π∗SI − e′(π∗S)

1− qb

− e(π∗S) (25)
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with π∗S given by

g (1− qg) I =
e′′(π∗S)

1− qb

+ e′(π∗S) (26)

such that e(π∗R) > e(π∗S).
Part(vi) Define T ≡ (ΦR

C)∗ − (ΦS
C)∗ to get

T = R(q0 − gqg)− I(1− g − (1− q0)π
∗
R + g(1− qg)π

∗
S)

−e′(π∗R)− e′(π∗S)

1− qb

− (e(π∗R)− e(π∗S)) (27)

where the first term is positive and the last two terms are negative due
to π∗S < π∗R. Since q0 > gqg, a sufficient condition for T > 0 is that R
is large. On the other hand, if qb → 0 this implies gqg → q0 such that
T → −I(1−g− (1− q0)π

∗
R +g(1− qg)π

∗
S)− e′(π∗R)+ e′(π∗S)− e(π∗R)−e(π∗S) as

qb → 0. Even if the principal suboptimally implements π∗R under policy S,
we have T → −I(1−g)(1−π∗R) < 0 as qb → 0. Hence, T < 0 for the optimal
π∗S. Finally, note that as g → 1 (and consequently qg → q0) π∗S → π∗R and
therefore T → 0. ¥

Proof of Proposition 5 Part(i). If e′′(0) > (1 − qb)
2I none of the first

order conditions Eqs. (9), (15), and (16) can be fulfilled such that it is always
superior not to engage the agent. Part(ii). Obvious. ¥

Proof of Proposition 6 Part(i). From Eqn.(22) in the proof of Propo-
sition 2, we know that the principal’s profit without a signal and without
truth-telling problem is

φ̃E
0 = q0 (R− I)− (1− q0) (1− π̃0)I − π̃0e

′(π̃0). (28)

To get profits under policy C without truth-telling problem, we insert ωG =
ωB = 0 and Eqn. (12) into the respective profit functions Eqn. (14) and
(25). This yields

Φ̃R
C = q0 (R− I)− (1− q0) (1− π̃R)I − π̃Re′(π̃R).

Φ̃S
C = g(qgR− I)− g(1− qg)(1− π̃S)I − π̃Se′(π̃S). (29)

First note that (Φ̃R
C)∗ = (φ̃E

0 )∗ since profits are of the same functional form
and first order conditions are therefore identical. Both profits are dominated
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by (Φ̃E,E
D )∗ = g(φ̃E

g )∗+(1−g)(φ̃E
b )∗, i.e. the profits in policy D without truth-

telling problem if the agent is engaged for both signals: as φ̃E
i is convex in

qi (
d2(φ̃E

i )∗

dq2
i

= −dπ̃∗i
dqi

I > 0), we get (Φ̃E,E
D )∗ > (φ̃E

0 )∗ = (Φ̃R
C)∗. As to Φ̃S

C , note

that g · (φ̃E
g )∗ > (Φ̃S

C)∗15.
Part(ii).

(ΦR
C)∗ − (φE

0 )∗ = (1− q0)(π
∗
R − π∗0)I −

e′(π∗R)

1− qb

+
e′(π∗0)
1− q0

− e(π∗R) + e(π∗0)

> e′(π∗0)
q0 − qb

(1− q0)(1− qb)
≥ 0 (30)

where the first inequality is due to a suboptimal implementation of π∗0 in
policy C16. ¥

Proof of Proposition 7 First, recall from the proof of Proposition 4 that
ΦS

C → ΦR
C for g → 1. Therefore, it needs to be proven that, for any arbitrarily

chosen qb, ∆ > 0 for qg → q0.
Step 1. Consider policy C, and suppose the principal implements the same
effort as without an additional signal, that is πR = π∗0. Even then, ΦR

C(π∗0) >

(φE
0 )∗ as

e′(π∗0)

1−qb − e′(π∗0)

1−q
< 0. By definition of optimality, (ΦR

C)∗ = ΦR
C(π∗R) >

ΦR
C(π∗0), hence (ΦR

C)∗ > (φE
0 )∗.

Step 2. For policy D, recall that the fraction of profits that can be influenced
by the principal’s decision is

g

[
(1− qg)π

∗
gI −

e′(π∗g)

1− qg

− e(π∗g)
]

+ (1− g)

[
(1− qb)π

∗
bI −

e′(π∗b )
1− qb

− e(π∗b )
]

.

(31)

For any given qb, limqg→q0(1 − g)
[
(1− qb)π

∗
bI − e′(π∗b )

1−qb
− e(π∗b )

]
= 0. More-

over, limqg→q0 g
[
(1− qg)π

∗
gI − e′(π∗g)

1−qg
− e(π∗g)

]
= (1 − q0)π

∗
0I − e′(π∗0)

1−q0
− e(π∗0).

Thus, the principal’s profit under policy D converges towards
(
φE

0

)∗
. Hence,

limqg→q0 ∆ > 0. ¥
15The proof proceeds analogously to the proof of Proposition 2(ii) and is available on

request.
16Recall from Example 1 and 3 that Φmax

D = (φ∗0)
∗ is indeed feasible.
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Proof of Proposition 8 Part(i). Proven by the existence of Example 4 in
Appendix B. Part(ii). We have to give an example for every feasible contract
with profit (Φi,j

D )∗ under policy D that is not ruled out by Proposition 3 such
that Φmax

D = (Φi,j
D )∗ and Φmax

C > (Φi,j
D )∗. First, according to Proposition 6(ii)

(φE
0 )∗ is always dominated by policy C. Second, according to Proposition 7,

(ΦE,E
D )∗ can be dominated by (ΦR

C)∗ and (ΦS
C)∗. We are thus left with (ΦI,E

D )∗

and (ΦE,S
D )∗. Examples 5,6 prove the existence of parameter sets that support

each of these contracts as being optimal under policy D, and show that they
can be dominated by policy C. ¥
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Appendix B: Examples

Example 1: Assume that e(π) = (π
a
)N . The first order condition given by

Eqn. (9), can be abbreviated by

Ai = Bie
′′(πi) + e′(πi)

(with Ai > 0, Bi > 0). Then Eqn. (9) becomes

Ai =
BiN(N − 1)

a2

(πi

a

)N−2

+
N

a

(πi

a

)N−1

such that π∗i must solve

π∗i = (Ai/(
N

a2
(Bi(N − 1) + π∗i )))

1/(N−2) · a. (32)

For N →∞ the right-hand side of Eqn. (32) converges towards a17 indepen-
dent of Ai and Bi such that π∗i ↑ a ∀i ∈ {0, g, b}. From this it follows that
Φmax

D = (φE
0 )∗.

Example 2: Assume that e(π) = CI 1
2
π2 + ε(− ln (1− π)− π). As long as

ε > 0, this effort function satisfies all our standard requirements, while for ε
sufficiently small and πi ∈ [0, 1), the optimization program can be restricted
to e(πi) = CI 1

2
π2

i . Therefore, the FOC is approximated by

(1− qi)I =
e′′(πi)

1− qi

+ e′(πi)

=
CI

1− qi

+ CIπi

such that

π∗i =
1− qi

C
− 1

1− qi

.

Recall that π ∈ [0, 1) is a necessary condition for approximating e(π) =

CI 1
2
π2. This requires C ∈ (C0, C1] with C0 = (1−qi)

2

2−qi
and C1 = (1 − qi)

2.

We use this specification of e(π) to give an example for a (locally) monotone
decreasing profit function. In

d(φE
i )∗

dqi

= R− π∗i I −
e′(π∗i )

(1− qi)2

17As limN→∞(AN)−B/N = 1∀A, B ∈ R.
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we restrict ourselves to the minimum revenue R = I
q0

. Inserting the optimal
effort we get

d(φE
i )∗

dqi

= I(
1

q0

− π∗i −
Cπ∗i

(1− qi)2
)

= I(
1

q0

− 1− qi

C
+

C

(1− qi)3
). (33)

Solving
dφE

i

dqi
= 0 yields Ccrit = 1

2q0
((1 − qi)

2(qi − 1 +
√

(1− qi)2 + 4q2
0)). As

d2φE
i

dqidC
> 0,

dφE
i

dqi
< 0 if C < Ccrit. This is only feasible if Ccrit ∈ (C0, C1]. Since

C0 = Ccrit if qi = 2−3q0

1−q0
and C1 = Ckrit if qi = 1, it follows there is always a

C < Ccrit that guarantees
d(φE

i )∗

dqi
< 0 if q0 ∈ [1

2
, 2

3
] and qi ∈ (2−3q

1−q
, 1).

Furthermore, for e(π) = CI 1
2
π2 the principal’s profit is convex in qi ∈ (qb, qg),

as it can be shown that
d2φE

i

dq2
i

= I
C

+ 3C
(1−qi)4

> 0 such that (ΦE,E
D )∗ > (φE

0 )∗.

Example 3: Assume e(π) = π3 + π and R = 10, I = 3.

Result: If qi ∈ [0.3, 2
3
]

∂2(φE
i )∗

∂q2
i

< 0 18

18Note that this profit is indeed feasible, as q0R > I and π∗i ∈ (0, 1) in this case (as
e′(0) = 1, π∗i > 0 requires that (1 − qi)I > 1 and hence qi < 2/3). Detailed calculation
available on request.
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For all the following examples19, we use the effort function

e(π) =
1

1− π
− 1.

Example 4: R = 1.000.000, I = 10.000, q0 = 0.42, qg = 0.97.

Result: If qb ∈ [0.228, 0.42] then Φmax
D = ΦE,E

D > ΦR
C = Φmax

C .

Example 5: R = 1.000.000, I = 10.000, q0 = 0.8, qg = 0.98.

Result: If qb ∈ [0.1, 0.67] then Φmax
D = ΦI,E

D < ΦR
C = Φmax

C .

Example 6: R = 1.000.000, I = 10.000, q0 = 0.3, qb = 0.0001.

Result: If qg ∈ [0.3, 0.9] then Φmax
D = ΦE,S

D < ΦS
C = Φmax

C .

19Detailed calculations available on request.
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