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Abstract

Real-world contests are often "unfair" in the sense that outperforming all rivals may not

be enough to be the winner, because some contestants are favored by the allocation rule,

while others are handicapped. Examples of such contests can be inter alia found in the

area of litigation and procurement.

This paper analyzes discriminatory contests with a handicap for one of the partic-

ipants. We first characterize the equilibrium strategies, provide closed form solutions,

and illustrate the additional strategic issues arising through the unfairness of contests.

We then tackle the issue of the optimal degree of unfairness. From a social point of

view, the following trade-off arises: On the one hand, the prize may be awarded to an

inferior contestant. But on the other hand, unfair contests lead to a lower overall effort

of the contestants and hence reduces inefficient rent-seeking. We characterize situations

in which it is optimal for an authority to either stipulate a fair contest, an interior degree

of unfairness or even an infinitely unfair contest where the prize is directly awarded to

one of the contestants.

Keywords: All-pay auctions, contests, asymmetric allocation rule, rent-seeking games,

asymmetric information

JEL-Classification: D44, D88



1 Introduction

Motivation and results One apparently desirable feature of contests, games in

which several parties exert costly effort to compete with each other to secure a prize,

a rent, or a government contract, is that they should be fair in the sense that the one

who performs best should be the winner. In reality, however, contests are often "unfair"

because one contestant is favored as he need not outperform his competitors to be the

winner. Accordingly, other contestants may be handicapped, since outperforming their

rivals may not be enough to win.

In reality, allocation rules are often asymmetric in the sense described above. For ex-

ample, in German procurement auctions, although local authorities are in general obliged

to choose the firm with the lowest bid, there is a clause according to which it can award

the contract to a local firm when this firm’s bid is not more than 5 per cent higher than

the lowest bid. Under the realistic assumption that preparing a bid itself is costly and

that (part of) these costs cannot be recovered independent of which party is awarded

the contract, this resembles an unfair contest as described above. As a second example,

consider litigation where it is costly for the plaintiff and the defendant to prevail, inde-

pendent of the actual outcome of the trial (e.g. by searching for favorable evidence and/or

by hiring a lawyer). Under the ”in dubio pro reo”-rule in criminal law, a defendant will

only be convicted if the evidence against him is ”abundant”, i.e. if his lawyer presents

considerably less or worse evidence than the prosecutor. Again, our model can be used

to analyze such situations. Furthermore, assume that an enterprise wishes to hire a con-

sulting firm, and suppose that firm A has done some excellent in-house consulting before.

Then, we often observe in reality that a potential entrant B is awarded the contract only

if the quality of its proposal is considerably above the quality of A’s proposal. As long

as preparing a proposal is itself costly, this can again be interpreted as an unfair contest

in our sense. Finally, when deciding on job promotion, firms often apply some sort of

seniority rule which implies that a junior candidate might not get the job although he

has performed better than his senior counterpart.

In the first part of the paper, we fully characterize the equilibrium strategies of an

unfair two−player discriminatory contest (all-pay auction) using a framework where con-
testants have private information concerning the value of the prize to them. We show

that there exists a unique pure strategy Bayesian Nash Equilibrium and provide a closed
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form solution of the respective set of first order conditions. With respect to efficiency,

it is generally possible that the handicapped contestant exerts more effort than the fa-

vored contestant if their valuations are identical, we show that it is not possible for

the handicapped contestant to win the contest when his valuation is lower than the fa-

vored contestant’s valuation. Hence, an inefficient allocation of the prize can only result

when the favored contestant is the winner although he has the lower valuation. We then

illustrate the additional strategic aspects which arise through the introduction of the

asymmetry for uniformly distributed valuations.

In the second part of the paper, we go one step further by asking "What is the optimal

degree of unfairness?". Of course, unfair contests may lead to welfare losses whenever a

first best requires the prize to be awarded to the ”best” contestant. In the procurement

example, it will generally be socially optimal to award the contract to the firm with the

lowest (marginal) costs. A similar reasoning holds for the other examples mentioned

above. The higher the degree of unfairness, the higher the chances of awarding the prize

to an inferior contestant and so one obvious drawback from unfair contests is allocative

inefficiency.

But on the other hand, there may also be reasons in favor of an unfair contest design.

Personal relationships may offer stochastic signals on a contestant’s capabilities besides

the quality of his proposal, and supporting local firms may be reasonable at least from

the local authority’s point of view. In our paper, we neglect these aspects by assuming

that contestants are ex ante symmetric. But even then, an unfair contest can be superior

because of the well-known fact that the private incentive to exert effort in a contest is often

far beyond the social value of effort.1 For instance, the effort exerted for the preparation

of proposals in procurement contests may simply be waste from a social point of view.2

1In fact, it has been argued that the total prize in a rent-seeking contest may be dissipated in the
contestants’ attempt of securing the prize (see Tullock (1980)). Baye, Kovenock, and de Vries (1999) have
shown, that this result can only occur for some realizations of strategies in a mixed strategy equilibrium
but not in expectation.

2Although this is the assumption we maintain throughout the paper, we are of course aware of the
fact that there are also examples of contests where more effort is, at least partly, socially valuable. For
example, in the case of R&D races, it is often argued that duplication of effort may be socially desirable
as it may lead to innovation and technological progress. Furthermore, in sports contests, more aggregate
effort is generally considered a desirable feature as it increases suspense as well as the overall quality
of the contest (see e.g. Szymanski (2003)). Accordingly, alternative objective functions of the contest
designer have been considered in the literature, including maximizing i) total expected effort and ii) the
expected value of the highest effort level (see e.g. Gavious, Moldovanu, and Sela (2002) and Moldovanu
and Sela (2002)).
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In our paper, total expected effort may decrease in the degree of unfairness, which is the

potential advantage of unfair contests so that a trade-off arises between ex-post efficiency

and the waste of resources. Given this trade-off, we illustrate that it may be optimal for

the contest designer to stipulate a fair contest, an infinitely unfair contest or a contest

with an interior degree of unfairness.

Literature It is well-known that discriminatory contests are strategically equivalent

to all-pay auctions. In all-pay auctions, each bidder has to pay his bid regardless of

whether he wins the auction or not, and in discriminatory contests, each contestant

bears his effort costs no matter if he wins or not. Baye, Kovenock, and de Vries (1996)

provide a complete analysis of the all-pay auction under complete information. In a

framework of asymmetric information, Krishna and Morgan (1997) extend the classic

model by Milgrom and Weber (1982) with affiliated signals to first- and second price

all-pay auctions. Lizzeri and Persico (2000) analyze under which conditions there exist

unique pure strategy equilibria in general auction games, including the all-pay auction.3

Amann and Leininger (1996) and Maskin and Riley (2000) consider auctions in which

contestants are asymmetric in the sense that the valuations of each bidder are drawn from

different distributions. This also implies that the bidder with the highest valuation does

no longer win the object with certainty. While Maskin and Riley (2000) confine attention

to winner-pay auctions, our paper is more related to Amann and Leininger (1996) as

they analyze the all-pay auction. Moreover, we adopt and extend their approach for

determining the equilibrium bidding strategies from a system of differential equations.

As stated above, in all these papers and contrary to our model, the winner of the auction

is the high bidder.

In contrast, there are a few papers analyzing contests with handicaps: Konrad (2002)

assumes that an incumbent needs to spend less resources than his rival to win a discrim-

inatory contest. However, he restricts attention to complete information, so that only

mixed strategy equilibria exist. In the context of bribery games, Lien (1990) and Clark

and Riis (2000) consider an all-pay auction where two players compete for a government

contract awarded by a corrupt official. In Lien (1990), the players are ex-ante symmetric

and the introduction of a handicap unambiguously reduces allocative efficiency. Clark

3The issue of existence of pure-strategy equilibria in a more general class of simultaneous games of
asymmetric information is also extensively analyzed in Athey (2001).
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and Riis (2000) extend the situation to ex-ante asymmetric bidders (with respect to their

bidding costs) and show that the official can increase his expected revenue by introducing

unfairness in our sense. Bernardo, Talley, and Welch (2000) consider a litigation game

in which each litigant’s piece of evidence is unequally weighted by the court (in the legal

jargon, the court is said to employ a ”presumption” in favor of one party). They consider

the effect of such a presumption on shirking incentives at an earlier stage of the game. In

contrast to our approach, they model this as a non-discriminatory contest (i.e. ”Tullock”

contest), where the outcome is stochastic even for given efforts levels (see also Kohli and

Singh (1999)).

Furthermore, our paper discusses an additional dimension concerning the issue of

contest design, and other choice variables so far considered in the literature include i)

the number of contestants which are invited to play the contest (Baye, Kovenock, and

de Vries (1993), Taylor (1995), Fullerton and McAfee (1999), and Che and Gale (2002)),

ii) whether there should be only one prize (for the winner), or whether several prizes

should be awarded (Moldovanu and Sela (2001), Moldovanu and Sela (2002)), and iii)

the desirability of imposing a (symmetric) bid cap (Gavious, Moldovanu, and Sela (2002)

and Che and Gale (1998)).

Finally, using a different setup, Bolton and Farrell (1990) analyze the advantages

and disadvantages of decentralization, where two firms which have private information

about their production costs in each period decide whether or not to sink costs to enter

a natural-monopoly market. The basic trade-off is similar to ours: Decentralization tends

to induce only a low cost firm end up to enter while a high cost firm prefers to stay out

and thus tends to use information efficiently. However, this process only evolves over

time, so that it comes with inefficient delay or duplication of effort as there are periods

where neither or both firms sink costs in order to enter the market. On the other hand,

centralization means that an uninformed agency grants the monopoly right to one of the

firms so that there is the chance that it will pick the high cost firm.

The remainder of the paper is organized as follows: In section 2 the basic model is

presented. In section 3 we analyze the equilibrium of the contest game and derive our

main theoretical results and in section 4 we discuss a numerical example. Section 5 is

concerned with the optimal degree of unfairness, and section 6 concludes.
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2 The Model

Basic Setup We consider a discriminatory contest (all-pay auction) where 2 risk-

neutral contestants indexed i = 1, 2 compete for a single prize to be awarded. Each

contestant has valuation vi ∈ [0, 1] for the prize which drawn from a common distribution
function F (v) ∈ C1 satisfying F (0) = 0 where the density function F 0(v) is positive valued

on (0, 1). The realization of vi (contestant i’s ”type”) is private information to contestant

i. Each contestant can influence his chances of winning the prize by exerting effort which

is denoted by bi. In what follows, we analyze equilibria in which the effort strategy of

contestant i is a function of his type, i.e. bi : [0, 1]→ <+0 .
The specific feature of this contest is the allocation rule: Denoting by W ∈ {1, 2} the

identity of the winner, we have

W = 1⇔ b1 > t · b2 and W = 2⇔ b2 >
1

t
· b1 (1)

where a coin is flipped in case that b1 = t · b2 holds so that each contestant wins with
probability 1

2
. Thus, contestant 1 wins the contest only if he exerts at least t-times as

much effort as contestant 2, while contestant 2 wins if he exerts at least 1
t
-times as much

effort as contestant 1. Without loss of generality we confine attention to the case t ≥ 1.
Therefore, contestants 1 and 2 will be referred to as the ”handicapped” and the ”favored”

contestant, respectively.4 The value of t is commonly known in the contest game and we

will refer to the case t = 1 as a ”fair” contest; in this case our model is equivalent to a

standard two-player all-pay auction with private values.

Payoffs Following the setup of the model, payoffs for given effort levels b1 and b2

are

π1(b1, b2, v1; t) =


v1 − b1 if b1 > tb2

1
2
v1 − b1 if b1 = tb2

−b1 if b1 < tb2

(2)

4Note that the asymmetry here refers to the allocation rule. This is different to ”asymmetric auctions”
in the sense of Amann and Leininger (1996) and Maskin and Riley (2000), where the valuations v1 and
v2 are drawn from different distributions.
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and

π2(b1, b2, v2; t) =


v2 − b2 if b2 > 1

t
b1

1
2
v2 − b2 if b2 = 1

t
b1

−b2 if b2 < 1
t
b1

. (3)

Finally for t given, expected payoffs are5

Π1(·) = v1 · Pr(b1 > t · b2(v2))− b1 (4)

and

Π2(·) = v2 · Pr(b2 > 1

t
· b1(v1))− b2. (5)

The timing of the game is as follows (see also figure 1 below): At stage 1, the authority

chooses t. At stage 2, each contestant’s valuation for the contract is determined by a

nature’s move and privately revealed to that contestant. At stage 3, the contest is played

where t is given and commonly known. At stage 4, after observing the effort choices, the

prize is awarded by the authority according to the allocation rule.

 

1 2 3 4 

Authority chooses t Nature 
determines 
 v1 and v2 

Effort choices  
b1 and b2  

  

Authority 
awards 
prize 

 
 

Stage 

Figure 1: Sequence of Events

5Since equilibrium effort strategies will be continuous, the probability of a tie is zero.
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3 Equilibrium Analysis

3.1 Uniqueness and existence of equilibrium at the contest stage

Since this is a static game with incomplete information, the equilibrium concept used is

Bayesian Nash Equilibrium (BNE). A vector of effort levels (b∗1(v1), b
∗
2(v2)) is a BNE if

the following set of conditions is satisfied:

Πi(b
∗
i (vi), b

∗
j(vj); t) ≥ Πi(bi, b

∗
j(vj); t) for all vi ∈ [0, 1], and bi ∈ <+0 . (6)

In equilibrium, no contestant must be able to increase his expected payoff by choosing

an effort strategy other than b∗i (vi), given that the opponent adheres to his equilibrium

strategy. The following definition proves useful for further reference:

Definition 1 Consider a set A ⊂ R and a function z : A → <. Then define: Dz :=

{a ∈ A : z(a) ∈ <+}.

The restricted domain Dz contains only those elements a ∈ A whose image z(a)

is positive. We can then state the following result concerning the properties of the

equilibrium effort strategies:

Lemma 1 (Equilibrium Effort Strategies) b∗i : Dbi → (0, bi(1)] where i = 1, 2 is an

increasing bijection between non-empty subsets of [0, 1] and differentiable almost every-

where.

Proof. See Appendix A.

The Lemma simply says that each contestant’s equilibrium strategy is a well-behaved

and monotonically increasing function in his type.

Uniqueness of Equilibrium We first show that an equilibrium is unique whenever

it exists. The issue of existence is addressed below. Note that Lemma 1 also ensures

existence of the inverse mapping ρi : (0, b
∗
i (1)]→ Dbi, i.e. ρi(b) ≡ b−1i (b) is the valuation

contestant i must have in order to choose effort level b. Equipped with this result we

can now characterize the equilibrium effort strategies in more detail. The maximization

problem for contestant 1 when contestant 2 is playing some strategy b2(v2) is given by

max
b1

v1 · Pr(b1 > t · b2(v2))− b1 = max
b1

v1 · F (ρ2(
b1
t
))− b1, (7)
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while for contestant 2, when contestant 1 is playing strategy b1(v1) we have

max
b2

v2 · Pr(b2 > 1

t
· b1(v1))− b2 = max

b2
v2 · F (ρ1(t · b2))− b2. (8)

The first order conditions of these maximization problems are given by the following

system of ordinary first order differential equations:

v1 · F 0(ρ2(
b1(v1)

t
)) · ρ02(

b1(v1)

t
) · 1

t
= 1. (9)

v2 · F 0(ρ1(t · b2(v2))) · ρ01(t · b2(v2)) · t = 1. (10)

For a given set of initial conditions, this system determines a unique trajectory of effort

strategies. That there is only a single pair of initial conditions (such that a solution to

Eqns. (9) and (10) is indeed unique) follows from the subsequent results concerning the

properties of the equilibrium effort distributions Gi=1,2 := F (ρi(b
∗
i )) : DGi → (0, 1]:6

Lemma 2 (Equilibrium Effort Distributions) In any BNE, the effort distributions

G1 and G2 have the following properties:

(i) DG1 = (0, b
∗
1(1)] and DG2 = (0, b

∗
2(1)] where b

∗
1(1) = t · b∗2(1).

(ii) Gi is continuous and strictly monotone increasing ∀i = 1, 2.
(iii) If Gi(0) > 0, then Gj 6=i(0) = 0.

(iv) There is a single set of admissible initial conditions.

Proof. See Appendix B.

Part (i) of the Lemma characterizes one main difference of our model compared to the

standard model with t = 1. Clearly, it can never be optimal for (the favored) contestant

2 to exert more than 1
t
-times the maximum effort of (the handicapped) contestant 1 since

he already wins with probability one when choosing b2 = 1
t
·b1(1). Part ii) follows from the

fact that, in equilibrium, effort distributions must ensure that no contestant can increase

his expected profit by choosing a lower effort level while leaving the probability of winning

the contest unchanged. Part iii) says that only one contestant’s effort function can have

an atom at zero. Intuitively, this follows from the fact that, given that one contestant’s

effort function has an atom at zero, the other contestant would always be better of by

choosing a strictly positive effort level whenever his own valuation is positive. As one

6Similar statements for the case t = 1 have for example been derived by Amann and Leininger (1996).
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consequence, the coexistence of different sets of admissible initial conditions is ruled out

as stated in part iv).7

Existence of Equilibrium Rather than modifying equations (9) and (10) directly,

we extend the method adopted by Amann and Leininger (1996) who have analyzed the

case t = 1 for valuations v1 and v2 drawn from different distributions. The advantage

of this method is that it simplifies the problem of simultaneously solving a system of

differential equations into a sequential procedure.

Consider a bijection k(v1; t) which maps every type of contestant 1 onto that type of

contestant 2 whose equilibrium effort level is 1/t- times as much as contestant 10s so that

k(v1; t) = ρ2(
b∗1(v1)
t
). (11)

Analogously, k−1(v2; t) = ρ1(t · b∗2(v2)) gives that type of contestant 1 who will choose
t-times as much effort as contestant 2 when his type is v2. Note that due to our previous

results, Eqn. (11) defines indeed a bijection between the domains Db1 and Db2 of the two

equilibrium strategies which is differentiable almost everywhere. It turns out that rewrit-

ing the first order conditions with k(v1; t) and a separation of dependent and independent

variables provides a closed form solution for k(·):

Lemma 3 Define H(x) :=
R 1
x

F 0(y)
y

dy so that d
dx
H(·) = −F 0(x)

x
< 0. Then we have:

i) k(v1; t) = H−1(tH(v1)) satisfying d
dt
k(v1; ·) < 0 and k(v1; 1) = v1.

ii) k−1(v2; t) = H−1(1
t
H(v2)) satisfying d

dt
k(v2; ·) > 0 and k−1(v2; 1) = v2.

iii) limt→∞ k−1(v2; t) = 1 and limt→∞ k(v1; t) = 0 which implies that contestant 2’s (con-

testant 1’s) probability of winning tends to 1 (0) as t→∞.

Proof. See Appendix C.

Equipped with a closed form solution for k(·) and its inverse, a simple quadrature
provides us with the equilibrium strategies:

Theorem 1 There exists a unique pure-strategy Bayesian Nash-Equilibrium in which

7This follows from the no-crossing property of equilibrium bid functions as established by Lizzeri and
Persico (2000).
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contestant 1 (the handicapped contestant) chooses

b∗1(v1) =

v1Z
max{0,k−1(0;t)}

t · k(V ; t)F 0(V )dV (12)

and in which contestant 2 (the favored contestant) chooses

b∗2(v2) =
b∗1(k

−1(v2; t))
t

. (13)

Proof. See Appendix D.

3.2 The impact of t > 1 on ex-post efficiency

In our framework, the allocation of the prize does not only depend on who exerts more

effort but also on the identity of a contestant. Hence, we can not exclude that the

prize is awarded to a contestant whose valuation is lower than that of his competitor.

Furthermore, without further information on the distribution F (·), one can not say which
contestant will exert more effort when valuations are identical. However, we can show

that the handicapped contestant 1 will generically not win the contest if his valuation is

lower. This means that, even if being handicapped induces him to choose higher effort

levels for some realizations of v1, this can never outweigh his handicap. It follows that

an inefficient allocation of the prize can only result when (the favored) contestant 2 wins

the auction although he has a lower valuation. This is expressed in the following result,

where W ∗ ∈ {1, 2} denotes the identity of the winner in equilibrium:

Theorem 2 i) In equilibrium, there can only exist the case where v1 > v2 but W ∗ = 2,

while the case where v2 > v1 but W ∗ = 1 does not occur with positive probability.

ii) The probability of an inefficient allocation is therefore given by

p∗(t) :=

1Z
0

(F (v1)− F (k(v1; t)))F
0(v1)dv1 (14)

satisfying p∗(1) = 0, d
dt
p∗(·) > 0 and limt→∞ p∗(t) = 1

2
.

Proof. See Appendix E.
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For each v1, contestant 1 has the higher valuation with probability F (v1) but will

be the winner only when v2 < k(v1; t) which occurs with probability F (k(v1; t)). It

is well known that the case t = 1 (the standard all-pay auction) allocates the prize

efficiently since equilibrium effort strategies are strictly increasing in the valuations so

that the contestant with the highest valuation will choose the highest effort level. When t

increases, exerting the highest effort level does not guarantee victory so that the allocation

will be distorted. As the handicap goes to infinity, contestant 2 becomes the winner with

probability 1, while he has the higher valuation only with probability 1
2
since F (·) is the

same for both contestants.

4 An example: Uniform distribution

Equilibrium Strategies To illustrate our main results, we consider the case where

the vi are uniformly distributed, i.e. F (v) = v. Applying Lemma 3, we get H(x) =R 1
x
1
y
dy = − lnx, so that k(·) is then implicitly given by − ln k = − ln vt1 which leads to

k(v1; t) = vt1. Substituting in Eqn. (45) yields

b∗1(v1; t) =
Z v1

0

t · V tdV =
t

t+ 1
vt+11 (15)

and, by definition of k(v1; t),

b∗2(v2; t) =
b∗1(k

−1(v2))
t

=
1

t+ 1
v
(t+1)/t
2 . (16)

The equilibrium effort distributions are G1(b
∗
1; t) = ρ1(b

∗
1; t) = ((

1+t
t
)b∗1)

1
t+1and G2(b

∗
2; t) =

ρ2(b
∗
2; t) = ((1 + t)b∗2)

t
t+1 which both satisfy Gi(0) = 0 (and hence are atomless) and

Gi(b
∗(1)) = 1. Clearly, b∗i (vi; t) is increasing in vi, also satisfying b∗i (0) = 0. Moreover,

the equilibrium effort strategies satisfy the support constraint b∗1(1) =
t

t+1
= t·b∗2(1) = 1

1+t

as required by Lemma 2.

For the comparative statics with respect to t, let us first consider two polar cases: For

t = 1, we have b∗i (vi; 1) =
1
2
v2i for i = 1, 2 which is simply the standard symmetric equilib-

rium of the two player all-pay auction with private values. If t becomes large, equilibrium

bids converge to zero, i.e. limt→∞ t
t+1

vt+11 = limt→∞ 1
t+1

v
(t+1)/t
2 = 0. Intuitively, when the

handicap becomes infinitely strong, then there is no point for the handicapped contestant

11



to exert effort at all as he will never be the winner of the contest. Analogously for the

favored contestant, an arbitrarily small amount of effort ensures winning the object with

certainty.

Interestingly, the results for intermediate values of t are not as clear-cut. As an

illustration, figure 1 shows contestant 2’s equilibrium strategy b∗2(v2; t) as a function of t

(where t ≥ 1) for v2 = 1
3
:

107.552.5

0.06

0.05

0.04

0.03

tt

Figure 2: b∗2(v2 =
1
3
) as a function of t.

As the marginal cost from increasing bi is always equal to 1, the intuition behind this

non-monotonicity result can best be explained by looking at the marginal benefit, which

is denoted by MBi. We confine attention to an illustration for contestant 2; the case is

analogous for contestant 1. Generally, when t increases by ∆t, there are two effects which

will be analyzed subsequently:

1. contestant 2 wins the contest not only when b2 > 1
t
b1 but already when b2 > 1

t+∆t
b1

(the ”direct effect”).

2. as t changes, also b∗1(v1; t) changes by
d
dt
b∗1(v1; ·)·∆t and this changes the distribution

of effort G1(·) which contestant 2 faces (the ”indirect effect”).

Direct effect By setting t = et, we fix b∗1(v1;et) and look how a change in t affects

the marginal benefit from increasing b2. In this case, we can write expected benefit as

v2 · Pr(b2 > 1
t
b∗1(v1;et)) = v2 · ρ1(tb2;et) so that MB2(tb2;et) at the equilibrium level b∗2 is

MB2(tb
∗
2;et) = d

db2
(v2 · ρ1(tb∗2;et)). Taking the derivative w.r.t. t and then substituting

back et = t we get

d

dt
MB2(·) = 1

(t+ 1) t
> 0 for all v2 ∈ [0, 1] and t ≥ 1. (17)
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The direct effect unambiguously increases contestant 2’s marginal benefit and thus ceteris

paribus also increase equilibrium effort, because he wins for more realizations of v1 due

to the more advantageous allocation rule.

Indirect effect For the indirect effect, we fix the allocation rule at t = et and analyze
the effect of a change of t on b∗1(·) and thus on the distribution of equilibrium effort levels
G1(·) which contestant 2 faces. For this case we can write expected benefit as v2 ·Pr(b2 >
1
t
b∗1(v1; t)) = v2 · ρ1(etb2; t) so that MB2(etb2; t) at b∗2 is MB2(etb∗2; t) = d

db2
(v2 · ρ1(etb∗2; t)).

Taking the derivative w.r.t. t and then substituting back et = t, we get

d

dt
MB2(·) = −(ln v2) t+ ln v2 + 1 + t2 + t

t (t+ 1)2
≶ 0 (18)

which is positive (negative) for v2 < (>)e
− t+1+t2

t+1 where 0 < e−
t+1+t2

t+1 < 1 all t > 1.

In order to understand the intuition behind this effect, we have to check how different

types of contestant 1 react to a change in t: Define tmaxi (vi) ∈ argmaxt b∗i (vi, t) which
leads to

tmax1 (v1) =
1

2 ln v1

µ
− ln v1 −

q¡
ln2 v1 − 4 ln v1

¢¶
(19)

which is increasing in v1 as

d

dv1
tmax1 (v1) = − 1

(ln v1) v1
p
((ln v1) (ln v1 − 4))

> 0. (20)

Moreover, tmax1 (v1) = 1 ⇔ v1 = e−
1
2 . Finally, limv1→1 t

max
1 (v1) = ∞, so that b∗1(v1; t) is

monotone decreasing in t for 0 < v1 ≤ e−
1
2 , and concave in t with an interior maximum

at tmax1 (v1) for e−
1
2 < v1 < 1.

Thus, for all v1, at some point the handicap becomes too strong, so that it is optimal

to ”give up” and exert less effort. But those types with v1 > e−
1
2 are at least willing to

”fight” against the stronger handicap by increasing b1 as long as t is not yet too large.

How does this impact on the indirect effect on MB2 in Eqn. (18)? From the definition

of k(·) it follows that in equilibrium, contestant 2 wins whenever v1 < k−1(v2) = v
1
t
2 . It

follows that when v2 is high, contestant 2 will be the winner for most realizations of v1

and so when t increases, his incentive to increase b2 to win for even more realizations

of v1 is relatively low. Therefore, the expression in (18) is negative. On the other hand
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when v2 is low, contestant 2 has an incentive to exert more effort as this allows to win

against some of those types of contestant 1 for which d
dt
b∗1(·) < 0 holds.

Clearly, the total effect is just the sum of the direct and the indirect effect the following

figure illustrates them for v2 = 1
3
(direct effect = dotted line, the indirect effect = dashed

line, total effect = solid line):

Allocation Ex Post Concerning the allocation of the object, recall that for the

uniform distribution case we have k(v1; t) = vt1 so that from Theorem 2, the probability

of misallocation is given by

p∗(t) ≡
1Z
0

¡
v1 − vt1

¢
dv1 =

t− 1
2(t+ 1)

(21)

yielding p∗(1) = 0, d
dt
p∗(·) = 1

(t+1)2
> 0 and limt→∞ p∗(t) = 1

2
. For each v1, contestant

1 has the higher valuation with Pr(v2 < v1) = v1, but is the winner only with Pr(v2 <

k(v1; t) = vt1.

5 The optimal degree of unfairness

After having analyzed the equilibrium of the continuation game in which contestants

choose their effort levels for a given level of unfairness, t, we now determine the level

of t which an authority should set in trying to minimize social costs. To make things

concrete, let’s assume that the prize is a contract for a public service which grants some

monopoly power to the winner and firms can spend resources to be awarded this contract.

From a social point of view, these resources spent are a pure waste as their use is not

productive. The overall value of this monopoly right to each contestant will generally

depend on (privately known) marginal costs of production. In such a setting, it seems

reasonable to assume that the value of the contract to a contestant is the higher, the

lower his marginal costs.

5.1 The benefits and costs of unfair contests

Given the properties of the stage game equilibrium at the continuation stage, the author-

ity’s goal is to minimize expected social costs associated with the allocation of the prize.
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As explained in the introduction, there are two types of social costs - the contestants’

(socially useless) efforts spent in competing for the monopoly right, and potential ex-post

inefficiencies as this monopoly right might be awarded to the contestant with the higher

marginal cost. The introduction of a handicap might well reduce wasteful effort spending

(we will refer to this as the benefits of unfairness) while we already saw in Theorem 2

that any handicap induces allocative inefficiencies (we will refer to this as the costs of

unfairness).

Benefits The total effort spending in the contest is given by

Σ(t) ≡ E[b∗1(v1; t)] +E[b∗2(v2; t)] (22)

Although it is clearly plausible that there is a positive relationship between the con-

testants’ effort costs and the social costs of the rent seeking activity, they do not neces-

sarily have to be identical. For our specific example, private effort costs may simply be

the disutility of effort, while the social costs might also include forgone benefits from other

potential activities which were not carried out as each contestant spends his resources

in competing for the contract. Therefore, we will assume that the total effort enters the

objective function of the authority via some function Ψ(Σ(t)) satisfying Ψ0(·) > 0 and

Ψ(0) = 0.

Costs As we have seen above in Theorem 2, the disadvantage of choosing an unfair

contest design is that the monopoly right is not necessarily awarded efficiently. Whenever

the favored contestant is awarded the contract although he has the lower valuation, this

reduces the private surplus by v ≡ |v2 − v1|. There is also a social loss as it is in the
authority’s interest to award the contract to the contestant with the lower marginal cost

(for example, in the simplest monopoly model with linear demand, the monopoly price

is increasing in his marginal costs of production, see e.g. Tirole (1988, p. 66)). However,

following the reasoning above, private and social loss need not necessarily to be identical

as also consumer surplus may have to be taken into account.

We therefore assume that v enters the objective function of the social planner via a

function φ(v) satisfying φ0(·) > 0 and φ(0) = 0. It then follows that the expected welfare
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loss resulting from an inefficient allocation of the prize is given by

Π(t) ≡
Z 1

0

v1Z
k(v1;t)

φ(v)F 0(v2)dv2F 0(v1)dv1. (23)

The lower bound of the inner integral is k(v1; t) which, recall, gives that type of (the

favored) contestant 2 who chooses 1
t
-times of the effort level which contestant 1 would

choose if his type were v1. Thus, contestant 1 loses the contest whenever contestants 2’s

type is larger than k(v1; t). However, this is only socially undesirable as long as v2 < v1

which explains the upper bound of the inner integral. As for the outer integral, the

authority has to take expectations over v1.

Social costs Given our previous discussion, the authority’s objective is to minimize

the following social cost function

SC(t) = Ψ(t) +Π(t). (24)

by choice of t. In general, the optimal level of unfairness denoted by t∗ will depend on the

nature of Ψ(·) and φ(·). The properties of the social cost function (and its constituents)
can be summarized as follows:

Lemma 4 (i) dΠ(t)
dt

> 0 ∀t ∈ (1,∞). (ii) limt→1 dSC
dt
= 0. (iii) limt→∞ dSC

dt
= 0.

Proof. See Appendix F.

Part (i) simply says that the social loss due to an inefficient allocation of the contest

strictly increases in t for any t bounded away from 1 or infinity. But as both, marginal

costs (dΠ
dt
) and marginal benefits (dΨ

dt
) vanish at the boundary (see part (ii)), it follows that

corner solutions with either t∗ = 1 or t∗ = ∞ may well emerge. In the first case, social

costs from inefficient allocation are so high that the authority prefers a fair contest. In

the second case, the rent-seeking effect of wasting socially valuable effort dominates, and

the authority actually awards the project to one contestant without procuring a contest

at all. In all other cases, an interior solution with 1 < t∗ <∞ arises. In the following we

return to the example of uniformly distributed types (F (v) = v) to provide examples for

Ψ and Φ that exhibit both corner solutions interior optimal degrees of unfairness.
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5.2 Example revisited: Uniform distribution

Given the equilibrium efforts as in (15) and (16), expected equilibrium efforts are now

given by

E[b∗1(v1; t)] =

1Z
0

t

t+ 1
vt+11 dv1 =

t

(t+ 1)(t+ 2)
(25)

E[b∗1(v1; t)] =

1Z
0

1

t+ 1
v
(t+1)/t
2 dv2 =

t

(t+ 1)(2t+ 1)
(26)

Linear Case Assume first that Ψ(Σ(t)) = x · Σ(t) where x > 0 and φ(v) = v. Thus,

social costs of excessive effort and inefficient allocation are linear in the private costs,

where x can be interpreted as the relative weight put on the loss from excessive effort.

In this case, we have

SC(t) = x · 3t

(2t+ 1) (t+ 2)
+

t2 − 2t+ 1
3 (2t+ 1) (t+ 2)

=
9xt− 2t+ t2 + 1

3 (2t+ 1) (t+ 2)
. (27)

as

Π(t) =

¯̄̄̄
¯̄̄ 1Z
0

v1Z
vt1

(v2 − v1)dv2dv1

¯̄̄̄
¯̄̄ =

¯̄̄̄
¯̄
1Z
0

(−1
2
v21 −

1

2

¡
v21
¢t
+ vt+11 )dv1

¯̄̄̄
¯̄

=
t2 − 2t+ 1

3 (2t+ 1) (t+ 2)
. (28)

Taking the derivative with respect to t and simplifying yields

d

dt
SC(t) = −3 (t− 1) (t+ 1) (2x− 1)

(2t+ 1)2 (t+ 2)2
(29)

which is weakly positive (negative) for x < (>)1
2
. Thus in the linear case, the objective

function is monotone which leads to corner solutions. If the social loss from wasting effort

is small compared to the loss from inefficiently awarding the prize, then the authority

optimally stipulates a fair contest with t = 1 (see figure 3a). Hence, there is no allocation

inefficiency at all. On the other hand, when the social loss from effort is high, then the

authority will make the contest arbitrarily unfair which is equivalent to either randomly

awarding the prize to one of the contestants, or to completely forestalling entry for the

17



handicapped contestant (see figure 3b). As a consequence, the authority will choose the

”false” contestant with probability 1
2
.

108642

0.1

0.08

0.06

0.04

x

y

x

y

Fig. 4a: Exp. Soc. Loss, x = 0.1.

108642

0.325

0.3

0.275

0.25

x

y

x

y

Fig. 4b: Exp. Soc. Loss, x = 1.

Quadratic Case In this case, we continue to assume that the social cost of inefficient

allocation is equal to the private costs, but that social costs of excessive effort is quadratic

in the private costs, i.e. φ(v) = v and Ψ(Σ(t)) = (Σ(t))2. Social costs are then

SC(t) =

µ
3t

(2t+ 1) (t+ 2)

¶2
+

t2 − 2t+ 1
3 (2t+ 1) (t+ 2)

=
21t2 + t3 + 2t4 + t+ 2

4 (2t+ 1)2 (t+ 2)2
. (30)

As is illustrated in figure 4 below, this gives rise for an interior solution at t∗ ≈ 3.1861,
so that a finite degree of unfairness is optimally chosen by the authority:

108642

0.12

0.1175

0.115

0.1125

0.11

0.1075

0.105

x

y

x

y

Figure 5: An interior solution for t∗.

We briefly summarize our results for these two examples as follows:

Result 3 i) In the linear case where Ψ(Σ(t)) = x · Σ(t) and φ(v) = v, the optimal level

t∗ chosen by the authority is given by

t∗ =

 1 for x ≤ 1
2

∞ for x ≥ 1
2

.
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ii) In the quadratic case where φ(v) = v and Ψ(Σ(t)) = (Σ(t))2, the authorities optimal

policy is an interior degree of unfairness (t∗ ≈ 3.1861).

6 Conclusion

We have analyzed a two-player discriminatory contest which is potentially unfair, as an

authority has the option of setting an asymmetric allocation rule which is favoring one

contestant while handicapping the other. We show that there exists a unique pure strategy

equilibrium and that, for a given handicap, it is never possible that the handicapped

contestant is awarded the prize when he has the lower valuation. As a result, inefficiencies

based on inefficient allocation arise only from the possibility that the favored player is

awarded the contract although his valuation is lower. This inefficiency is increasing in

the degree of unfairness (t). On the other hand, total expected effort may decrease in t,

so that there is a potential trade-off between these two types of social costs.

It may turn out that either a fair contest or no contest at all is the optimal choice for

the authority. Intuitively, the first case is likely whenever social costs are very sensitive

to allocative efficiency (e.g. if it is important to award a procurement to the low cost

firm, or to avoid errors in court). By contrast, directly awarding the contract to one

of the contestants (which may be chosen at random) makes sense whenever social costs

focus on the wasteful effort spending (e.g. because opportunity costs are high from a

social point of view as, for instance, in the application procedures for research grants).

In less extreme settings, interior solution may arise, and this may justify unfair contests

as frequently observed in reality. Coming back to the possibility that effort may also be

desirable from a social point of view, a fair contest would always be optimal because it

would lead to ex-post efficiency and to maximum effort incentives.

Of course, there may exist additional arguments in the contest designer’s objective

function. For instance, he explicitly wants to support local suppliers, or he believes that

penalizing an innocent defendant is worse than acquitting a defendant who is guilty. Since

there is one degree of freedom when deciding which party to favor, the handicap can be

set to take such issues into account.
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Appendix

A Proof of Lemma 1

To prove the several characteristics of the equilibrium effort strategies, we proceed in three

steps. First, we show that the structure of the payoff function induces non-decreasing

strategies. Together with continuity, this in turn implies strict monotonicity and therefore

differentiability and bijectivity on the restricted domain Dbi.

As a first step consider monotonicity. Under slight abuse of notation, for any v0i, vi ∈
[0, 1] with v0i > vi incentive compatibility requires

Πi(bi(vi), vi; t) ≥ Πi(bi(v
0
i), vi; t)

Πi(bi(v
0
i), v

0
i; t) ≥ Πi(bi(vi), v

0
i; t)

Taking the sum of both conditions and reordering yields:

Πi(bi(v
0
i), v

0
i; t)−Πi(bi(v

0
i), vi; t) ≥ Πi(bi(vi), v

0
i; t)−Πi(bi(vi), vi; t).

Using the explicit structure of the pay-off function, this leads to

(v01 − v1) Pr(b1(v
0
1) > t · b2) ≥ (v01 − v1) Pr(b1(v1) > t · b2)

(v02 − v2) Pr(b2(v
0
2) >

1

t
· b1) ≥ (v02 − v2) Pr(b2(v2) >

1

t
· b1)

But this only holds if bi(v0i) ≥ bi(vi) which proves monotonicity.

We will prove continuity by contradiction. Assume that b1 is not continuous at x ∈
(0, b1(1)). Stated differently b1(x) > lim →0b1(x− ) ≡ b1(x). This implies, that contestant

2 will not choose some effort level b2 ∈ (b1(x)/t, b1(x)/t) as he can always reduce costs
while the probability of winning the contest remains unchanged. Anticipating this, there

is no reason for contestant 1 to increase effort from b1(x) to b1(x). Hence, we end up with

a contradiction. Note, that the same result can be derived for the continuity of strategies

of the favored player by a permutation of indices and the appropriate modification of

probabilities of winning the contest. Furthermore, as F 0(v) 6= 0 ∀v 6= 0, this result holds
for all v1 ∈ (0, 1].
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Now assume that bi(vi) is not strictly increasing on the restricted domain Dbi. That

means, there is an interval I ⊆ (0, 1] of finite length with bi(vi) ≡ b > 0∀vi ∈ I. Given

such a strategy profile of contestant i, contestant j maximizes his expected payoff as

given by Eqn. (4) or (5). To be specific, let i = 1 and j = 2. Now assume contestant 2

chooses (b− )/t for some valuation v2. Then his pay-off is

v2 Pr(b− > b1)− (b− )/t.

Now assume contestant 2 chooses (b+ )/t instead. His expected pay-off function is then

v2 Pr(b+ > b1)− (b+ )/t

contestant 2 profits from such a deviation as can be seen when → 0

lim
→0

(v2 Pr(b1 > b+ )− (b+ )/t− (v2 Pr(b1 > b− )− (b− )/t))

= lim
→0
(v2(Pr(b1 ∈ [b− , b+ ]))− 2

t
)

= v2 Pr(b1 = b) > 0

Therefore contestant 2 will always exert effort slightly above b/t instead of slightly below,

but that contradicts continuity. Analogously, a gap in effort strategies of contestant

1 can be deduced from a plateau in contestant 2’s equilibrium strategy. This proves

strict monotonicity on the restricted domain. Therefore effort strategies are differentiable

almost everywhere and a bijection from the restricted domain Dbi onto (0, bi(1)]. Finally,

Dbi has to be non-empty, as it can never be part of an equilibrium that both contestants

or only one contestant choose an effort level of zero for the entire valuation space.

B Proof of Lemma 2

Part i) Clearly, bi(0) = 0 determines the lower bound of DGi. Moreover, denoting

by bmaxi the maximum effort level of contestant i, it follows from Lemma 1 that ρ(bmaxi ) =

max{vi} = 1. This implies that contestant 1 can never be better off by exerting effort
excessively, i.e. b1 ≤ t·bmax

2 has to hold. Analogously, neither will contestant 2 exert more

effort more than necessary to win the contest with probability 1, i.e. b2 ≤ 1
t
· bmax
1 has to
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hold. Of course, this must also be true for bmax1 and bmax2 , respectively, i.e. bmax1 ≤ t · bmax
2

and bmax2 ≤ 1
t
· bmax
1 must hold. Rearranging yields

bmax
2 ≤ 1

t
· bmax
1 ≤ bmax2

from which it follows that bmax
2 = 1

t
· bmax
1 or equivalently, bmax

1 = t · bmax
2 must hold. We

refer to this as the final condition.

Part ii) Follows immediately from our assumptions on F (v) and Lemma 1.

Part iii) Suppose, Gj(0) = g > 0. We show that, for all vi ∈ [0, 1], there is some
positive effort level x > 0 for contestant i such that he is strictly better off than with

choosing bi = 0: With bi = 0, contestant i’s loses whenever bj > 0 (which happens

with probability (1− g)) wins with probability 1
2
whenever bj = 0 (which happens with

probability g) so that his expected payoff is simply vi · g2 . When choosing a positive effort
level x > 0, he wins with certainty when bj = 0 and, depending on x (and t), may even

win when bj > 0. Thus we have:

Πi(x, ·) = vi ·Gj(x)− x ≥ vi · g − x > vi · g
2
= Πi(0, ·)

where the last inequality holds whenever x < g
2
· vi, so that for all vi > 0, there exist

x > 0 which satisfies this condition.

Part iv) As the first order conditions consist of two ordinary first order differential

equations which are Lipschitz continuous for vi > 0, any set of initial conditions (bi(vi) =

ci, i = 1, 2) determines unique trajectories bi(vi). In the following, we show that part (i)

and part (iii) together with the so-called no-crossing property of equilibrium effort levels

(see Lizzeri and Persico (2000)) implies, that there is only one admissible set of initial

conditions.

First note, that the final condition in part (i) reduces the freedom to choose initial

conditions by one, as for a given bi(1), bj 6=i(1) is fixed. On the other hand part (iii)

requires that at least one contestant i chooses a finite level of effort for every positive

valuation bi(vi) > 0∀vi > 0.
Consequently, for two sets of initial conditions to coexist, in at least one set one of
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the contestant’s effort-distributions has to have an atom at zero. Furthermore, one of the

two following properties of the corresponding equilibrium effort functions would have to

hold.8 (a) The atom of one contestant’s effort distribution is smaller against a tougher

strategy of his opponent. (b) At least one contestant chooses the same effort for a given

valuation against two distinct opponent’s strategies. In the following we show that none

of the two requirements can be fulfilled in equilibrium.

As to (a), consider the first order conditions for vi given by F (vi) ≡ Gi(0) (contestant

i’s type who only just exerts zero effort) and denoting contestant i’s type who only just

chooses zero effort and a second equilibrium denoted by f(·)
vi

d

db
Gj(0) = 1

evi ddb eGj(0) = 1

But (a) requires that d
db
Gj(0) >

d
db
eGj(0) and vi > evi are satisfied simultaneously which

is a contradiction to the structure of the first order conditions.

A similar argument contradicts (b). The first order conditions 9 for player 1 with

valuation v1 against two distinct strategies of player 2 (once more distinguished by f(·))
v1

d

db1
G2(b1/t) = 1

v1
d

db1
eG2(b1/t) = 1 (31)

can not be fulfilled simultaneously. Therefore coexisting sets of initial conditions are not

feasible.

C Proof of Lemma 3

Using k(v1; t), the first order conditions (9) and (10) can be transformed into a set of

differential equations expressed in a single variable v1. Substituting k(v1) for v2 in Eqn.

8To see this it suffices to plot ρi against bi for i = 1, 2 as detailed in Lizzeri and Persico (2000).
9Once again we restrict ourselves to the favored bidder without loss of generality as the argument is

independent of t.
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(10) yields

v1 · F 0(ρ2(
b1(v1)

t
)) · ρ02(

b1(v1)

t
) · 1

t
= 1 (32)

k(v1) · F 0(ρ1(t · b2(k(v1)))) · ρ01(t · b2(k(v1))) · t = 1. (33)

We can also make use of the identity of the two equations to yield

v1 · F 0(ρ2(
b1
t
)) · ρ02(

b1
t
) · 1

t
= k(v1) · F 0(ρ1(t · b2(k(v1))) · ρ01(t · b2(k(v1)) · t. (34)

Moreover, it follows from the definition of k(·) that

dk(v1; t)

dv1
= ρ02(

b1(v1)

t
) · db1(v1)

dv1
· 1
t
. (35)

Thus, we can re-write Eqn. (34) as

v1 · F 0(k(v1; t)) · dk(v1; t)
dv1

· 1
db1(v1)
dv1

=

k(v1) · F 0(ρ1(tb2(ρ2(
b1(v1)

t
))) · ρ01(tb2(ρ2(

b1(v1)

t
)) · t

⇔ v1 · F 0(k(v1; t)) · dk(v1; t)
dv1

· 1
db1(v1)
dv1

= k(v1) · F 0(ρ1(b1)) · ρ01(b1) · t

⇔ v1 · F 0(k(v1; t)) · dk(v1; t)
dv1

= k(v1) · F 0(v1) · ρ01(b1) ·
db1(v1)

dv1
· t. (36)

Finally, as ρ1(b1(v1)) = v1, it follows that ρ01(b1) =
dv1
db1
which implies that ρ01(b1) · db1(v1)dv1

=

1. Hence, we end up with a single ordinary differential equation

dk(·; t)
dv1

=
t · k(v1; t) · F 0(v1)
v1 · F 0(k(v1; t))

, (37)

where the boundary condition k(1; t) ≡ 1 and our assumptions on F (v) guarantee a

unique solution for k(·). Analogously, we get

dk−1(·; t)
dv2

=
k−1(v2; t) · F 0(v2)

t · v2 · F 0(k−1(v2; t))
. (38)
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To derive a solution in closed form, we separate dependent and independent variables of

differential equations (37) and (38) to yield

dk

k
F 0(k) = t

dv1
v1

F 0(v1) (39)

dk−1

k−1
F 0(k−1) =

dv2
v2

F 0(v2). (40)

With H(x) =
R 1
x

F 0(y)
y

dy, integration yields

H(k) = tH(v1) (41)

H(k−1) =
1

t
H(v2) (42)

which is equivalent to k(v1; t) = H−1(tH(v1)) and k−1(v2; t) = H−1(1
t
H(v2)) as stated in

the Lemma. Finally note that, by definition, H(1) = 0 so that H−1(0) = 1. As t →∞,
k−1(v2; ·)→ 1. This also implies that contestant 2 will be the winner with probability 1

when t → ∞: To see this, note that contestant 2 wins whenever v1 ≤ k−1(v2; t) which

occurs with probability F (k−1(v2; t)) and which tends to 1 as t → ∞. Analogously,
contestant 1 wins whenever v2 ≤ k(v1; t) which occurs with probability F (k(v1; t)) and

which must tend to zero as t→∞ and thus limt→∞ k(v1; t) = 0 must hold.

D Proof of Theorem 1

Recall that the derivative of the equilibrium effort strategy with respect to v1 must satisfy
db1(v1)
dv1

= 1
ρ01(b1)

. Moreover, using the definition of k(·), we have ρ01(b1) = ρ01(t · b2(k(v1; t)))
such that db1(v1)

dv1
= 1

ρ01(t·b2(k(v1;t))) holds. From Eqn. (33) it also follows that

1

ρ01(t · b2(k(v1; t))
= t · k(v1; t) · F 0(v1) (43)

must hold in equilibrium so that we have

db1(v1)

dv1
= t · k(v1; t) · F 0(v1). (44)

25



Together with b1(max{0, k−1(0; t)}) = 0 and the definition of k(v1; t), closed form solu-

tions for the equilibrium effort strategies are given by

b∗1(v1) =

v1Z
max{0,k−1(0)}

t · k(V ; t) · dF (V ) (45)

b∗2(v2) =
b∗1(k

−1(v2))
t

(46)

as stated in the Theorem.

E Proof of Theorem 2

Part i) As for the first case, in any BNE, contestant 1 loses the contest whenever

b∗1(v1) < t · b∗2(v2) ⇔ v2 > k(v1; t) which simply follows from the definition of k(v1; t):

Since k(v1; t) gives that type of contestant 2 who bids 1
t
−times as much as contestant 1

(which would result in a tie), contestant 1 loses the contest whenever v2 > k(v1; t). To

have an inefficient allocation, also v1 > v2 must hold. As we have seen for the symmetric

case with t = 1, H−1(H(v1)) = v1 leads to k(v1; 1) = v1. Since it has been shown in

Lemma 3 that k(v1; t) is decreasing in t, it follows that for all t > 1 there exist v1, v2 such

that v2 > k(v1; t) even when v1 > v2. Therefore the joint event {v2 > k(v1; t)}∧{v1 > v2}
has positive probability.

Contrary to that consider the second case: contestant 2 loses whenever b∗2(v2) <

1
t
· b∗1(v1)⇔ k−1(v2; t) < v1. Again, for this outcome to be inefficient, we must also have

v2 > v1. For t = 1 we get k−1(v2; 1) = v2. However, contrary to the first case, since

k−1(v2; t) is increasing in t (see Lemma 3 again). Therefore, for all t > 1 the joint event

{k−1(v2; t) < v1} ∧ {v2 > v1} has probability measure zero.

Part ii) Note that for all v1, k(v1; t) ≤ v1 holds as for t = 1, we have k(v1; 1) = v1,

and k(v1; t) was shown to be decreasing in t (see Lemma 3). In Eqn. (14) for each v1,

F (v1) is the probability that contestant 1 has the higher valuation, while the probability

that contestant 1 is the winner is only F (k(v1; t)) ≤ F (v1) so that by integrating over all

v1, the result follows. Moreover, for t = 1, we have k(v1; t) = v1 so that the integrand in

Eqn. (14) is zero. For the derivative w.r.t. t, we have d
dt
p∗(·) =

1R
0

−F 0(k(v1; t)
dk(·)
dt

dv1 > 0

as we have shown in Lemma (3) that k(·) is decreasing in t. Finally, we know from Lemma
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3, part iii) that contestant 2’s probability of winning tends to 1 as t → ∞. It remains
to show that contestant 2 has the lower valuation with probability 1

2
: Since for each v1,

Pr(v2 ≤ v1) is F (v1), taking expectations over v1 yields
R 1
0
F (v1)F

0(v1)dv1. Integration

by parts then gives

Z 1

0

F (v1)F
0(v1)dv1 = F (v1)

2
¯̄1
0
−
Z 1

0

F (v1)F
0(v1)dv1

= 1−
Z 1

0

F (v1)F
0(v1)dv1 ⇔

2

Z 1

0

F (v1)F
0(v1)dv1 = 1⇔

Z 1

0

F (v1)F
0(v1)dv1 =

1

2
.

F Proof of Lemma 4

Part (i) As we already saw in Lemma 3 that dk(v1;t)
dt

< 0, Part (i) follows directly

from

dΠ

dt
=

d

dt

Z 1

0

Z v1

k(v1;t)

φ(v)F 0(v2)dv2F 0(v1)dv1

= −
Z 1

0

µ
φ(|k(v1; t)− v1|)F 0(k(v1; t))

dk(v1; t)

dt

¶
F 0(v1)dv1 (47)

which is strictly positive as long as t ∈ (0,∞) (as k(v1; t) < v1 in this case and, further-

more F 0(.) > 0 for v ∈ (0, 1) by assumption). dΠ
dt
= 0 if t = 1 as v = 0 in this case.

Furthermore limt→∞ dΠ
dt
= 0 as we already saw in Lemma 3 that limt→∞ k(v1; t) = 0 which

implies that limt→∞
dk(v1;t)

dt
= 0.

Part(ii) and (iii) This given, we are left with the proof that dΨ
dt
vanishes if t = 1

or t →∞. Note that we can restrict ourselves to an investigation of dΣ
dt
as Ψ0(.) > 0 by

assumption. It will prove useful to rewrite b2(v2) as follows. Analogously to the proof of

Theorem 1, we can extract the slope of b2(v2) through

db2(v2)

dv2
=

1

ρ02(b2)
=

1

ρ02(b1(k−1(v2; t))/t)

=
1

t
k−1(v2; t)F 0(ρ2(b1(k

−1(v2; t))/t))

=
1

t
k−1(v2; t)F 0(v2) (48)
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where the first row follows from the definition of k−1(.) and the consecutive step uses

Eqn. (9). The last row is an application of the definition of k−1(v2; t). Then, b2(v2) is

given by

b2(v2) =

Z v2

max{k(0;t),0}

1

t
k−1(V ; t)F 0(V )dV (49)

With an index permutation dΣ
dt
can be rewritten as10

dΣ

dt
=

Z 1

0

Z v1

0

µ
k(v2; t)− 1

t2
k−1(v2; t) + t

dk(v2; t)

dt
+
1

t

dk−1(v2; t)
dt

¶
F 0(v2)dv2F 0(v1)dv1.

(50)

This expression, however, vanishes at t = 1 and for t → ∞. To see this recall that
k(v; 1) = k−1(v; 1) = v, dk(v;t)

dt
|t=1 = −dk−1(v;t)

dt
|t=1, limt→∞ k(v; t) = 0, and limt→∞ k−1(v; t) =

1 (see Lemma 3).

10For the ease of exposition, we neglect the max{k−1(0; t), 0} term and its analogue for b2(v2) in the
equilibrium bid functions, as it is easy to show that this is without impact on the t-dependence.
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