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Price Manipulation in an Experimental Asset Market∗

Helena Veiga† and Marc Vorsatz‡

Abstract

We analyze in the laboratory whether an uninformed trader is able to manipulate the

price of a financial asset. To do so, we compare the results of two different experimental

treatments. In the Benchmark Treatment, twelve subjects trade a common value asset that

takes either a high or a low value. Information is distributed asymmetrically, only three

out of twelve subjects know the actual value of the asset. The Manipulation Treatment is

identical to the Benchmark Treatment apart from the fact that we introduce a computer

program as an additional trader. This manipulation program buys a fixed number of

shares in the beginning of a trading period and sells them afterwards again. Our results

show that the last contract price is significantly higher in the Manipulation Treatment

if the asset takes a low value and that there are no price differences between the two

treatments if the value of the asset is high. Moreover, this simple manipulation program

is, at least in some instances, profitable.

Keywords: Asset Market, Experiment, Price Manipulation, Rational Expectations.

JEL-Classifications: C90, G12, G14.

1 Introduction

According to the efficient market hypothesis (Hayek [11]), the price of an asset summarizes all

information available to market participants. One immediate implication of this hypothesis

is that markets are immune to price manipulations; that is, traders are not able to influence
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the price of the asset without making a substantial capital loss. It is our objective to provide

experimental evidence that the latter need not to be true in general. In fact, some financial

markets may in deed be manipulable in the sense that it is not too costly for a single trader

to distort prices significantly.

Muth [13] formalized the efficient market hypothesis in form of the rational expectations

equilibrium. Consequently, the aim of the first experimental studies on asset pricing has

been to analyze the conditions under which the price of an asset would, usually after some

learning, converge to the equilibrium prediction (see, among others, Forsythe et. al [9], Plott

and Sunder [15] and [16], Forsythe and Lundholm [8], and Sunder [17]). The main tenor

of this literature is that markets are in the majority of the times able to aggregate disperse

information and its capacity increases substantially with the existence of Arrow-Debreu state

contingent claims or other certificates (i.e. futures or options) that complete the market.

Misaligned beliefs about the state are probably the most important reason why a market

may fail, in a particular instance, to aggregate all available information correctly. For example,

in the experimental study of Camerer and Weigelt [5] it was common knowledge to all market

participants that either six out of twelve traders or no trader at all knew whether a common

value asset had a high or low value. In this situation it happens occasionally that some

uninformed traders interpret a buy offer above the expected value as a strong signal that

there are six informed traders and that the true value of the asset is high, although, effectively,

there is no private information in the market. Since these traders place then even higher bids,

the final price becomes unhinged from the equilibrium prediction, the expected value. The

authors refer to this type of misaligned beliefs as information mirages, because some market

participants see information which does not exist. In a subsequent analysis, Nöth et al. [14]

ran an experiment in which subjects traded a common value asset with a two-period lifespan.

The dividend in the first (second) period was determined by a random choice between two

(three) states. Before the opening of the market, one third of the subjects knew the dividend

that would be paid at the end of period one, while the remaining two thirds of the subjects

did know, on the aggregate, the two states that would not occur in period two. Using this

design the authors evidence that information traps -some traders have misaligned beliefs and

the traders that recognize the misaligned beliefs do not have incentives or resources to adopt

their behavior- are the underlying reason why private information may not be aggregated
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correctly through prices.

Building upon these results it is our objective to study whether a single trader is able

to manipulate the price of the asset by forcing the other market participants to fall into an

information trap and, if so, whether this strategy is profitable.1 To address this question we

compare the results of two different experimental series, the Benchmark and the Manipulation

Treatment. In the Benchmark Treatment, we consider a common value asset that takes the

values 100 and 220 with equal probability. All traders are endowed with two shares of the

asset and an interest free loan that provides enough money to buy all remaining shares.

Moreover, it is common knowledge that three out of twelve traders are informed about the

asset’s fundamental value before the opening of an electronic double auction market. Since

there is no aggregate uncertainty, the equilibrium prediction of the rational expectations

model is such that the price of the asset should converge in both states to the true value.

Convergence should be easily obtained in the Benchmark Treatment if the fundamental

value is 220. Every informed trader has sufficient money to buy all outstanding shares and

competition should therefore insure that the price of the asset rises quickly. On the other

hand, information traps may occur if the fundamental value is 100 because due to the absence

of short selling opportunities there is no competitive force that drives the price of the asset to

its actual value. Hence, uninformed traders can only infer the fundamental value by observing

that the price of the asset fails to converge to 220. This rather complicated deduction of the

state may require some learning.2

Our second treatment, the Manipulation Treatment, aims consequently at analyzing

whether one trader can cause an information trap if the fundamental value is 100. To study

this question in a systematic way we introduce a computer program, which acts as a manip-

ulator, as an additional uninformed trader into the Benchmark Treatment. The structure of

the program is as follows: Once the electronic double auction market is open for 25 seconds,

the program increases the actual highest bid price step by step until ten of the 24 outstanding

1To our best knowledge, so far there exists only one paper that analyzes price manipulations in experimental
asset markets. Hanson et al. [10] study a situation in which some traders get an additional payoff depending
on the median contract price per round. They find that manipulators place, as expected, higher bids. The
accuracy of the market remains however unaffected because the other traders offset this effect by setting lower
ask prices.

2Actually, Sunder [17] identified some (not necessary) conditions under which a market may fail to aggregate
private information. First, informed traders should have perfect information while the uninformed have none.
Second, there should be enough informed traders to achieve information aggregation in at least some states.
Third, the inactivity of a trader should not be observable by others. These conditions are met in our experiment.
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shares are bought. Afterwards, the shares are sold again by gradually decreasing the actual

lowest ask price. The simple idea behind the manipulation program is that buying the asset

at prices substantially above the expected value signals to the other market participants that

the fundamental value is high. If only one uninformed traders trusts this signal (assigns a

very high probability to the associated belief) and places in turn even higher bids, the price

of the asset will rise even more and the manipulator can possibly make a trading gain by

unwinding the position before the market closes.

Our main findings regard the price of the asset in the market, the earnings of the insiders

and uninformed traders, and the profits of the manipulation program. First, and with respect

to prices, we find that if the fundamental value is 220, the price of the asset converges in

both treatments almost always to the true value. On the other hand, if the fundamental

value is 100, learning by repetition is needed in the Benchmark Treatment for the price to

converge correctly. But, most importantly, our main hypothesis turns out to be true: If the

fundamental value is 100, the last contract price is significantly higher in the Manipulation

Treatment (Hypothesis 1). In particular, the results our empirical results reveal that the

estimated price difference is in this case larger than 50. Second, and with respect to earnings,

it should be noted that insiders make always higher profits because they have an informational

advantage and convergence is never instantaneous. Therefore, we analyze the profit difference

between the informed and uninformed traders in order to assess whether the manipulation

program influences the market statistics. We find, by means of a Wilcoxon rank-sum test,

that the payoff difference is the same across the two treatments if the fundamental value

is 220 and that the difference is significantly greater in the Manipulation Treatment if the

fundamental value is 100 (Hypothesis 2). Finally, our last result shows that although the

manipulation program is not profitable on the aggregate, there are many instances where it

makes trading gains (Hypothesis 3).

The topic of price manipulation in asset markets has been addressed theoretically from

different angles. The seminal paper of Gale and Allen [1] shows in a simple rational expecta-

tions model that it is possible for an uniformed trader to make profits by buying and selling

an asset if the investors attach a positive probability that the manipulator is informed (this

kind of manipulation is thus of the very same nature as the one we implement). Benabou

and Laroque [3] show in a model of strategic information transmission that an insider will
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not always disclose her/his information about the fundamental value of the asset honestly.

Kumar and Seppi [12] analyze a model with multiple risky assets and cash-settled futures and

prove that uninformed traders can manipulate the market by sequences of trades in different

markets. According to Bognoli and Lipman [2] a manipulator who acts jointly with somebody

who has the possibility to alter the value of a firm can make profits by building a position,

making a take-over bid, and liquidating the position again. Brunnermeier [4] establishes that

if an insider is also informed about future public announcements regarding the value of the

asset, then s/he has incentives to build a large position in the beginning of a trading period

and to partially unwind it later on for speculative reasons. Finally, Chakraborty and Yilmaz

[6] show that if there is uncertainty about the existence of insiders in the market and there is a

sufficiently large number of trading periods, then insiders will manipulate in every equilibrium

[buy (sell) the asset in at least one trading period although the value is low (high)].

The remainder of the paper is organized as follows: In Section 2, we discuss our experi-

mental design and describe how a typical experimental session has been organized. In Section

3 and 4, we present the competing hypotheses and results, respectively. Finally, we conclude

and indicate future research objectives. The instructions of the Manipulation Treatment, the

implemented control questions, and a discussion of some additional econometric results are

relegated to the Appendices.

2 Experimental Design and Procedures

We consider two different experimental treatments. In the Benchmark Treatment, twelve

subjects trade for ten rounds a common value asset that takes the values 100 and 220 ECU

(Experimental Currency Units) with equal probability. It is common knowledge that (1) no

subject has information about the fundamental value before the market closes for trading in

the first two rounds of the experiment (the only objective of these two rounds is to familiarize

subjects with the computer interfaces, and therefore, we discard the corresponding data) and

(2) from round three onwards, three subjects learn the fundamental value before the market

opens for trading. We opted for a balanced design meaning that in the last eight rounds, every

subject knew the fundamental value twice. Moreover, we decided to fix the fundamental value

prior to collecting data. We see in Table 1 that the fundamental value was always 100 in the

first and 220 in the second round. Additionally, in the last eight rounds of a session, the
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fundamental value equaled five times 100 and three times 220.

Every round, subjects receive two
Round

Session 1 2 3 4 5 6 7 8 9 10

1 100 220 100 100 220 220 100 220 100 100

2 100 220 100 220 100 100 220 100 100 220

3 100 220 220 100 100 100 220 100 220 100

4 100 220 220 100 100 220 100 220 100 100

5 100 220 100 220 220 100 100 100 220 100

6 100 220 220 100 220 100 100 100 100 220

Table 1: Fundamental Values

shares of the asset and an interest

free loan of 6000 ECU (this amount

of money has to be given back at

the end of a round). Using these

endowments, subjects trade the as-

set for five minutes in an electronic

double auction market by submit-

ting bid and ask prices. A trade takes place whenever a subject accepts a standing buy or

sell offer. It is not possible to trade multiple units of the asset at the same time.

To see why this market may be prone to price manipulation suppose that the fundamental

value of the asset is 220. Since all informed traders are sufficiently liquid to buy all remaining

shares, competition should insure that the price of the asset converges rather quickly to its

true value. This is different if the fundamental value of the asset is 100. Informed traders are

now willing to sell their stock endowment at any price above 100 and since they cannot use

their privileged situation extensively (i.e. we do not allow for short selling), the other market

participants can only learn the actual value of the asset by observing that the price does not

converge to 220. A market participant who is aware of this learning procedure can thus try

to manipulate the market by buying a lot of shares at prices above the expected value in the

beginning of a trading period. In this way, s/he signals that s/he is an informed trader and

that the fundamental value is high. If at least one uninformed trader believes the signal and

reacts by setting even higher bid prices, the manipulator can possibly make profits by selling

the shares after some time again.

The objective of the second treatment, the Manipulation Treatment, is consequently to

analyze whether the price of the asset can be manipulated using the argument presented

above. To do so, we introduce a computer program as an additional uninformed trader

(i.e. the program is not conditioned on the fundamental value) into the Benchmark Game.

From round three on this manipulation program places, once the market is open for trading

for 25 seconds, additional random bids in the following way: Ten ECU are added to the

current highest bid price to obtain a hypothetical price the manipulator would bid at most.
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After deleting all standing buy offers of the program (this is done in order to insure that

the manipulation program has at most one standing buy offer), a random bid between the

current highest bid price and the hypothetical price calculated before is placed. The computer

program increases therefore the current highest bid price and buys eventually one additional

share of the asset. After a random delay time between three and seven seconds, this procedure

is repeated until the program succeeds to buy ten of the outstanding 24 shares. Finally, the

manipulation program sells the shares in a similar way. The only difference to the buying

algorithm above stems from the fact that the computer program decreases now the current

lowest ask price by eight ECU in order to calculate the lowest hypothetical ask price. The

program stops 50 seconds before the end of the trading period allowing us to analyze whether

a structural break occurs if the manipulator leaves the market.

We conducted our experimental sessions in the computer laboratory at Maastricht Univer-

sity between February and April 2006. Since all students from the Faculty of Economics and

Business Administration have an E-mail account associated to their matriculation number,

we promoted the experiment mainly via electronic newsletters and gave students the oppor-

tunity to register online for their preferred session. As a result, 144 undergraduate students

participated in one of the twelve experimental sessions (six on the Benchmark and six on the

Manipulation Treatment). No student took part in more than one session and within a given

session, subjects did not know each other.

To perform the experiment we employed the computer software Z-Tree developed by

Fischbacher [7]. At the beginning of a session, students met in front of the laboratory. We

prepared cards with the numbers from one to twelve and let each student draw one card.

If more than twelve students showed up for a particular session, we offered three Euros in

case somebody was willing to register for a different session. If an insufficient number of

students decided to leave, we put additional empty cards into the stack and determined the

participating students randomly (students with bad luck received a compensation of three

Euros). We also reminded everybody that any kind of unauthorized communication inside

the laboratory would lead to an immediate cancellation of the session. Afterwards, students

entered the laboratory and took seat in front of the computer with the number corresponding

to their card (the computers were placed in such a way that subjects could not see each

other). We placed next to each computer an envelope containing the instructions of the

7



experiment, an official payment receipt, and a set of control questions (see the Appendix A for

the instructions and control questions corresponding to the Manipulation Treatment). Once

the students finished to read the instructions, we asked them to answer the control questions.

The experiment would only start if everybody answered all control questions correctly (in a

typical session the whole process took roughly 30 minutes). At the end of a session, we called

students one by one to step forward to the control desk for payment. We paid one Euro

for every 300 ECU obtained in the experiment. As a result, the average payment in the 90

minutes session was approximately equal to 10 Euros in the Benchmark and 11 Euros in the

Manipulation Treatment, with the difference being caused by the losses of the manipulator.

3 Hypotheses

Our main aim is to analyze the influence of the manipulation program on the market statistics.

According to our first null hypothesis the manipulator is not successful, or, said differently,

the price of the asset at the end of a trading period is, on average and independently of the

fundamental value, the same for both treatments. The corresponding alternative hypothesis

states instead that the computer program is able to induce misaligned beliefs about the state

and cause thereby higher prices. In particular, we ask that if the fundamental value of the

asset is equal to 100, the last contract price should be significantly higher in the Manipulation

Treatment. Observe that we do not expect in this case that the price converges always to the

true value in the Benchmark Game, because it may require some learning for the uninformed

traders to be able to infer the state correctly. Moreover, as it has already been explained in

the former Section, if the fundamental value is equal to 220, competition should drive the

price of the asset to its true value in both treatments.

HYPOTHESIS 1: If the fundamental value of the asset is 100, the last contract price in

the Manipulation Treatment is higher than the one in the Benchmark Treatment. If the

fundamental value of the asset is 220, the contract price converges in both treatments to the

fundamental value.

If the price of the asset converges instantaneously to the rational expectations equilibrium,

the profits of the insiders are equal to the ones of the uninformed traders. But in experiments

it takes usually some time before the price settles down, and therefore, it is rather natural
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to expect that insiders can make some additional profits on behalf of the uninformed traders

during the convergence process. So, if the manipulation program does not have any influence

on the price development, the average payoff difference between informed and uniformed

traders should be the same across the two treatments for both fundamental values. This

constitutes our second null hypothesis. If, on the other hand, Hypothesis 1 turns out to

be correct and the price of asset is higher in the Manipulation Treatment whenever the

fundamental value is 100, it follows immediately that insiders are able to sell their shares

in this treatment at higher prices. Hence, the relative position of the insiders improves

with respect to the Benchmark Treatment leading to a greater payoff difference. Moreover,

according to Hypothesis 1 the price of the asset is the same across the two treatments if the

fundamental value is 220, and therefore, we expect in this case that the payoff difference is

also the same for both treatments. Hypothesis 2 summarizes these ideas.

HYPOTHESIS 2: If the fundamental value of the asset is 100, the average payoff difference

between informed and uninformed traders in Manipulation Treatment is greater than the one

in the Benchmark Treatment. If the fundamental value of the asset is 220, the average payoff

difference between informed and uninformed traders is the same for both treatments.

Finally, we analyze the profitability of the computer program. In particular, if the intended

manipulation is not successful, the price of the asset in the Manipulation Treatment remains

unaffected with respect to the Benchmark Treatment and the computer program will ulti-

mately incur into losses. We test this null hypothesis against the alternative hypothesis that

the computer program is able to make some trading gains; that is, it is profitable.

HYPOTHESIS 3: The manipulation program is profitable.

4 Results

In this Section, we present the results of our experiments. Figures 1 and 2 below show

the sequences of contract prices. In every of the twelve panels, the rational expectations

equilibrium for a given round -the expected value if there is no private information and the

fundamental value if three subjects are informed- is indicated by a thick straight line. With

respect to the Benchmark Treatment we obtain that if the fundamental value of the asset is
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220, the contract price converges almost always to the fundamental value (only in session 2

convergence constitutes a slight problem). Hence, we can conclude that the available private

information is in this case very well disseminated by the market. On the other hand, if the

fundamental value is 100, the results are somehow different. The price of the asset is often

much too high and may even converge to the high fundamental value, a clear indication of

misaligned beliefs and information traps. Examples include round 5 and 6 of session 2, round

4 of session 3, round 5 and 6 of session 4, and round 6 of session 5. Since we could not find

any sign that these results are caused by some kind of manipulative strategy, there is some

evidence in favor of our conjecture that it is far more difficult for the uninformed traders

to infer the correct state when the fundamental value is low. Nevertheless, we also see that

subjects learn how to interpret the market price later on in a session, because the price drops

sharply and converges nearly instantaneously to the fundamental value (i.e. round 7,9, and

10 of session 1 and 4; round 5, 8 and 10 of session 3; round 7, 8, and 10 of session 5; and

rounds 6 to 9 of session 6). Again, session 2 is the only outlier.
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Figure 1: Price Development in the Benchmark Treatment

Looking at the price development in the Manipulation Treatment in Figure 2 we recognize

some similarities and differences. If the fundamental value of the asset is 220, the contract

price converges almost always, a result we have already encountered before in the Benchmark

Treatment (only in session 1 convergence is not assured). On the other hand, if the funda-

mental value is 100, the price of the asset does not necessarily converge even in later rounds

of a session. In fact, the last contract price coincides with the fundamental value only in four
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rounds (never in the sessions 4 to 6) and lies 12 times above 200. This is already a very clear

indication that the computer program succeeds to manipulate prices.
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Figure 2: Price Development in the Manipulation Treatment

Results on Hypothesis 1: Price of the Asset

To quantify our main conjecture, we specify an econometric model with random effects for

the last contract price P . The introduction of random effects helps us to account for the

heterogeneity of the groups (see Hanson et al. [10] for an application in a similar setting).

Let Pij be the last contract price in round i of session j (the six sessions corresponding to the

Benchmark Game are indicated by j = 1, ..., 6, whereas the six sessions of the Manipulation

Treatment are associated to the indices j = 7, ..., 12). As independent variables we consider a

constant, the fundamental value of the asset V , a dummy variable M that takes the value 1 if

a session corresponds to the Manipulation Treatment and 0 otherwise, and the variable M ·V

which measures the additional effect of the fundamental value on the last contract price when

a round belongs to the Manipulation Treatment. Additionally, we include in our specification

a variable (denoted L) whose aim is to capture the effect that convergence, in the low value

case, becomes better in later rounds. This variable takes the value zero if the fundamental

value of round i in session j is 220 (Lij = 0) and k, k = 1, ..., 5, if the fundamental value in

round i of session j is for the k’th time 100 (Lij = k).3 Finally, γj denotes the random effect

for session j and εij is the standard idiosyncratic error for round i of session j. The random

3It turned out that the variable M · L, which measures whether the learning pattern differs across the two
treatments, is statistically insignificant. Therefore, we dropped it from our final specification.
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effects and idiosyncratic errors are assumed to be distributed normally and independently

with mean zero. Formally, we have then that

Pij = (β0 + γj) + β1 · Mj + β2 · Vij + β3 · Mj · Vij + β4 · Lij + εij . (1)

If β2 = 1 and βi = 0 for all i 6= 2, the estimated price is equal to the fundamental value and

the rational expectations model explains the data perfectly. On the other hand, if β1 and

β3 are statistically insignificant, we do not reject the null hypothesis that the manipulation

program does not have any effect on the price. On the other hand, Hypothesis 1 turns out

to be correct if only if the estimated price for a given round in the Manipulation Treatment

is significantly higher than the corresponding estimated price in the Benchmark Treatment.

A particular interesting case occurs if Hypothesis 1 is true and the estimated price in the

Manipulation Treatment is the same for both fundamental values, because in this situation

the manipulation is successful and the price does not reveal any information about the state.

Variable Coefficient Std. Error t-Statistic p-Value

C 119.4931 16.6868 7.1609 0.0000

M 97.9678 16.5689 5.8584 0.0000

V 0.4445 0.0868 5.1231 0.0000

M · V -0.4450 0.0987 -4.5068 0.0000

L -10.5027 2.2377 -4.4737 0.0000

R2 = 0.6121; adjusted R2 = 0.5950

Table 2: Panel-EGLS Regression Results

Table 2 reports the parameter estimates of the Efficient-GLS estimation procedure (we

employed the computer software E-Views 5 for this purpose). It can be observed that all

parameters are statistically different from zero (all p-values are equal to zero) and that the

estimated model explains more than 59 percent of the price variation. Moreover, the param-

eter of the dummy variable M takes a very high value, convergence for the low fundamental

value becomes better in later rounds of a session (the sign of β3 is negative), and we do not

reject the null hypothesis that β2 + β3 = 0 (the p-value of the t-statistic is almost 1). In Ta-

ble 3 below, where we summarize the estimated prices, we finally see that the manipulation

program has a big impact on the price when the fundamental value is 100, but for the high

fundamental value there is virtually no difference between the treatments.4

4We refer to Appendix B for more details of our estimation results.
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Benchmark Manipulation

1st Time 100 153.44 206.95

5th Time 100 111.43 164.94

Fund. Value 220 217.28 217.45

Table 3: Estimated Prices

Finally, we perform a non-parametric test on the average last contract price per session

to provide further evidence in favor of Hypothesis 1. Table 4 already indicates clearly that

average prices are significantly higher in the Manipulation Treatment if the fundamental value

is 100. Since the p-value of the corresponding one-tailed Wilcoxon rank-sum test is smaller

than 0.005 (the test statistic is 22.5), we reject the null hypothesis that prices are the same in

the Manipulation Treatment and the Benchmark Treatment in favor of Hypothesis 1. On the

other hand, Table 4 only reveals minor differences in the average last contract price between

the two treatments if the fundamental value of the asset is 220. Since the p-value of the

associated two-tailed Wilcoxon rank-sum test is bigger than 0.1 (the test statistic is 32), the

difference is not statistically significant.

Fundamental Value 100 Fundamental Value 220

Session Benchmark Manipulation

1 107 150

2 176 194

3 125 176

4 140 194

5 140 180

6 106 202

Average 132 183

Session Benchmark Manipulation

1 220 206

2 210 218

3 219 219

4 219 219

5 219 219

6 219 218

Average 218 217

Table 4: Average Last Contract Price Per Session

Results on Hypothesis 2: Earnings of the Traders

According to our second null hypothesis the payoff difference between the informed and un-

informed traders is for both fundamental values the same in the Benchmark and the Manip-

ulation Treatment. To test this hypothesis we calculate for every session the difference in

the average payoff over all rounds. In this way we obtain six independent observations, one

observation for every session. The values, which are presented in Table 5, reveal that if the

fundamental value of the asset is equal to 100, all but one observations in the Manipulation

Treatment are greater than 100. Contrarily, only one observation is greater than 100 in the
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Benchmark Treatment. If the fundamental value of the asset is 220, the observations for

the Manipulation Treatment show only a small variance whereas the ones for the Benchmark

Treatment seem to be rather distinct from each other. The payoff difference is particularly

high in the second session of the Benchmark Treatment, one of the two sessions without

convergence in the high value scenario.

Fundamental Value 100 Fundamental Value 220

Session Benchmark Manipulation

1 63 110

2 74 194

3 64 192

4 137 130

5 98 93

6 23 146

Average 77 145

Session Benchmark Manipulation

1 7 63

2 141 23

3 68 47

4 45 23

5 77 21

6 21 32

Average 38 35

Table 5: Difference of Average Payoffs

Table 5 supports Hypothesis 2, but the data is not clear-cut enough to reject the second null

hypothesis straight away. Nevertheless, we obtain by means of a Wilcoxon rank-sum test that

the payoff difference is significantly greater in the Manipulation Treatment if the fundamental

value is 100 (the test-statistic is 25 and the corresponding p-value is smaller than 0.025) and

that there is no difference between the two treatments if the fundamental value is 220 (the

test-statistic is 34.5 and the corresponding p-value is greater than 0.2). Hence, we reject the

second null hypothesis in favor of Hypothesis 2.

Results on Hypothesis 3: Profitability of the Manipulator

So far we have established that the manipulation program is able to distort the dissemination

of information in the market. Our final analysis regards the question whether this kind of

strategy is also profitable from the manipulator’s points of view. We can see in Table 6, where

we present the payoff of the manipulation program for every round, that large losses can occur

(i.e. in round 10 of session 1, in round 6 and 9 of session 2, and in round 4 of session 3).

Nevertheless, it also turns out that the manipulation program is profitable five out of 30 times

when the fundamental value is 100 (these rounds are indicated by the bold font style). Since

the average loss per share of the asset bought with respect to the risky investment -even in the

worst state the asset pays 100 ECU, and therefore, the price paid minus 100 corresponds to a

14



risky investment- is 16.37%, we do not reject the third null hypothesis that the manipulation

program is not profitable.

Session Round

3 4 5 6 7 8 9 10

1 -51 -33 75 25 -28 -8 4 -855

2 -7 48 15 -992 4 -587 -811 42

3 22 -1066 -36 -27 18 -33 23 -991

4 194 34 -286 162 -306 55 -539 -190

5 34 120 11 -151 -42 -560 33 -474

6 84 306 -23 -48 -389 -257 -411 147

Table 6: Absolute Payoffs of the Manipulator

The reasons for the losses of the manipulation program lie presumably in its simple struc-

ture. In particular, there are two situations in which the program may fail to liquidate its

position and incur into large losses. The first occurs when the price of the asset converges to

220 before the manipulation program finishes to buy ten shares of the asset (i.e. in round 4

of session 3). Since in this case often no trader is any more willing to sell her/his shares, the

manipulation program does never switch to the selling algorithm in order to cash in trading

gains. Consequently, the program looses the maximal amount of money possible if the fun-

damental value is 100 although the manipulation attempt was successful. The second occurs

because the manipulation program stops fifty seconds before the end of a trading period. We

opted for this procedure in order to be able to test whether there is a structural break in

the price once the manipulator leaves the market. We could not find any sign of such break,

but valuable time, in which a human trader would have tried to liquidate her/his specula-

tive position, is lost. These are obviously not the only shortcomings of the manipulation

program (i.e. the program could simultaneously post bid and ask prices instead of using a

sequential strategy), yet it has also to be mentioned that the simple program structure is very

advantageous: It allows us to associate the price distortions uniquely to the manipulation of

beliefs about the fundamental value, simply because the program does not exhibit any other

feature that may influence the price development. To have an idea how the two shortcomings

mentioned above affect the profitability of the manipulator, we recalculate profits under the

assumption that the manipulation program is able to sell all shares it possesses at the end of

a trading period at the last highest bid price.
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Session Round

3 4 5 6 7 8 9 10

1 -5.3 -3.7 8.0 -5.7 -2.9 -0.9 0.4 -100

2 -0.9 25.3 2.2 2.5 1.7 -9.8 -70.4 4.0

3 3.1 -14.7 -3.1 -2.3 1.9 -2.8 2.0 -90.5

4 19.3 3.6 -10.9 20.3 -6.6 4.8 -9.0 -2.7

5 3.8 11.1 0.9 -9.3 -4.2 10.2 2.9 -24.6

6 7.9 34.6 -2.1 -4.1 -7.9 -7.3 -8.3 14.2

Table 7: Modified Profits (in % of the Risky Investment)

Table 7 presents the modified profits per round. As before, bold numbers indicate that the

manipulation program is profitable given a fundamental value of 100. The underlined numbers

represent those rounds in which the losses decline thanks to the additional assumption that

the manipulation program is able to sell all shares immediately before the market closes. The

losses would be lower in 13 rounds and, moreover, the manipulation program would have

made trading gains instead of incurring into important losses in round 6 of session 2 and

round 8 of session 5. Finally, since the average loss per share bought (or per trade made)

would decrease from 16.37% to 6.19%, we conclude that there is a lot of room in order to

improve the performance of the manipulator.

5 Final Remarks

In this paper, we studied the manipulability of an experimental asset market by comparing

the results of two different experimental treatments. With respect to the baseline treatment

we obtained that information is very well disseminated in the double auction market, only in

the low value state subjects need learning by repetition in order to infer the fundamental value

correctly. In the next step of our analysis we introduced a manipulator (a computer program

that buys ten of shares of the asset in the beginning of a trading period and liquidates this po-

sition afterwards) as an additional uninformed trader into the baseline treatment and showed

that this manipulation programs distorts prices seriously. In particular, if the fundamental

value of the common value asset is low, the last contract price is now substantially higher as

the one corresponding to the baseline treatment. As a consequence, insiders have also the

possibility to make some additional profits on behalf of the uninformed traders.

Our results raise some serious questions with respect to the organization of markets. First,
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since we consider a common value asset, efficiency is not an issue. Prices reflect only transfers

between individuals and under the assumption of risk neutrality all allocations are efficient.

But if price manipulations are also possible for assets whose value is distinct for different

types of traders, the asset may finally end up in the hands of the wrong type of traders.

The efficiency of the double auction market for private value assets in the presence of a

manipulator is therefore one question that remains to be investigated in the future. Second,

it is far from clear to what extend our results can be transferred to other market forms.

Possible ways how to analyze the dimension of our findings are to allow subjects to short-sell

the asset or to complete the market with the help of Arrow-Debreu state contingent claims,

futures, options, etc. It is our first guess that these measures can reduce the manipulability of

the market, but it remains doubtful whether they eliminate the problem completely. Finally,

we found only in one round of a pilot session corresponding to the baseline treatment a

subject that tried (successfully) to manipulate the market in the way the computer program

does. One possible reason for this low level of manipulation attempts is that this strategy

cannot be supported in equilibrium. Although this explanation coincides with our finding

that the manipulator is not profitable, we rather believe that the manipulation strategy is

too complicated for student subjects. Therefore, it would certainly be interesting to see how

a human manipulator performs in a market with experienced traders.
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Appendix A: Instructions and Control Questions

Welcome

Thank you for taking part in this experiment. The purpose of this session is to study how
people behave in stock exchange markets. You will be paid for your participation in the way
as explained at the end of this document. If you have any doubts, feel free to raise your
hand and your question will be answered to you in private. From now on until the end of the
session, unauthorized communication of any nature with any other participant is prohibited.
The experiment will be conducted through computers and all interactions between you will
take place through them.

This session consists of a total of ten rounds. The first two rounds differ from the last eight
rounds in the way as explained below. We will now go over a brief instruction period so that
you get used to the computer interfaces.

The Asset Market

Every round, you have the possibility to trade a financial asset. Before the market opens
for trade, the liquidation value of the asset is determined. It is either 100 or 220 ECU
(Experimental Currency Units) and both values are equally likely to occur. Observe that
the liquidation value is the same for all traders. Once the market closes, you receive the
liquidation value for every share of the asset in your portfolio. For example, if the actual
liquidation value of the asset is 220 ECU and you have a total of five shares in your portfolio,
then you receive 1100 ECU. In the beginning of a round, every trader is endowed with two
shares of the asset and 6000 ECU. Yet, you should note that the 6000 ECU are an interest
free loan from a bank; that is, you will have to pay them back at the end of the round.

Information Structure

No trader is informed about the actual liquidation value before the trading stops in the first
two rounds of the experiment, whereas three traders (which are determined randomly) are
informed about it before the trading starts in the last eight rounds of this session.

The Computer Trader

In total, there are thirteen traders participating in the market. Twelve traders are human
and one trader is a computer program. The objective of the computer trader is to maximize
its payoff. Most importantly, the computer trader is never informed about the

actual liquidation value of the asset before the market closes.

The Trading Mechanism

After the determination of the liquidation value, a market opens for 300 seconds. On the
top of the corresponding computer screen you can identify the number of the current trading
round, how long the market remains to be open and the total amount of ECU you have gained
so far. In our example, we are in the first out of ten trading rounds, the market remains to
be open for 107 seconds and the trader has not made any profit so far.

The screen is further divided into two main parts, the boxes on left hand side and the boxes
on the right hand side. The boxes on the left hand side provide different pieces of information
whereas the boxes on the right hand side are needed to trade the asset. At first, we introduce
the purposes of the boxes on the left hand side.
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1. The box on the top is entitled Information. In our example, you find the information
that no trader knows the actual liquidation value of the asset and that all traders are
aware of this fact. Remember that this is the case because the screen corresponds to
round 1. From round 3 on, three traders are informed about the actual liquidation value.
If you are randomly selected to know the liquidation value, then the corresponding value
(220 or 100) appears in the last row of this box. If you are not selected, then you will
get the message No Information.

2. The box in the middle gives you an overview about your portfolio and your cash account.
In the left part of this box, the Inventory, you find how many shares of the asset you
possess (in our example you possess 2) and how many ECU you have in your cash
account (in our example you have 6009 ECU). The right part of the box, which is
entitled Available, has the following aim:

Any sell offer you make is binding. So, if you want to sell one share of the asset, then
you must be able to deliver it at any time in the future once the offer is accepted. To
insure this, we reduce the number of shares available to you by one whenever you enter
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a new sell offer. As the number of available shares is not allowed to be negative, you
can have in total at most as many standing sell offers as shares in the inventory. In
our example, the number of available shares is equal to the number of shares in the
inventory, because the individual does not have any open sell offers.

A similar approach applies to the amount of available ECU. If you want to buy one
share of the asset, then you must be able to pay for it in the future. To insure this,
we reduce the amount of available ECU by the amount you are willing to pay. As the
number of available ECU is not allowed to be negative, the total value of your buy offers
cannot exceed the amount of ECU in the inventory. In our example, you see on the right
hand side of the screen that the trader has three open buy offers (the ones marked with
a star at the prices of 130, 132, and 149 ECU). Hence, a total of 411 ECU is subtracted
from the 6009 ECU in the inventory to come up with the remaining amount of 5598
ECU this individual can still use for additional buy offers.

3. The box at the bottom is called Own Trades. This box contains a list of your own
trades during a round. The most recent trade is on the top of the list. In our example,
the individual made so far two trades in this round. First, s/he bought a share at 155
ECU and afterwards s/he sold one share at 164 ECU.

The boxes on the right hand side of the screen are denoted Asset Market. We are going to
explain next how the asset is bought and sold using these boxes.

1. If you want to sell one unit of the asset, enter the minimum amount of ECU you want
to obtain in the field denominated Ask Price. You have to confirm your decision
by pressing the button Submit. Your offer appears immediately in the column Ask

Prices where all open sell offers are collected. The open sell offers are ordered with the
lowest ask price being on the top of the list. You can easily identify your own open sell
offers, because they are marked with the symbol *. We want to remind you that any
additional sell offer decreases the amount of available shares by one. You are allowed
to withdraw a sell offer that has not found a buyer. To do so, you only have to select
the sell offer you want to eliminate from the list and to click on the button Delete. As
a consequence, the amount of available shares rises by one.

2. If you want to buy one unit of the asset, enter the maximum amount of ECU you are
willing to pay in the field denominated Bid Price. You have to confirm your decision
by pressing the button Submit. Your offer appears immediately in the column Bid

Prices where all open buy offers are collected. The open buy offers are ordered with
the highest bid price being on the top of the list. You can easily identify your open buy
offers, because they are marked with the symbol *. We remind you that any additional
bid offer decreases the amount of available ECU by the value of your bid. You are
allowed to withdraw a buy offer that has not found a seller. To do so, you only have
to select the buy offer you want to eliminate from the list and to click on the button
Delete. As a consequence, the amount of available ECU goes up again.

3. When and how does a trade take place? A trade is possible if the lowest ask

price of all open sell offers is lower than the highest bid price of all open buy offers.
In this situation, one bidder is willing to pay more for the asset than the seller asks for
it. These situations are recognized by the system and trade takes place automatically.
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One simple example clarifies this: Suppose that in a certain situation the lowest ask
price is 170 ECU and that the highest bid price is 169 ECU. Then, no trade is possible.
If another bidder is willing to pay 177 ECU for the share, the only thing s/he needs to
do is enter a bid of 177 ECU into the system following the procedure of point (2) above.
The system recognizes that a trade is possible; that is, the seller receives 170 ECU from
the buyer’s inventory (because the buyer accepts the offer of the seller) and the buyer
receives one share of the asset from the seller’s inventory.

An important box on the right hand side is called Traded Prices. In it, you find a list
of all prices at which a trade took place. The most recent trade price is on the top of
the list. In our example, the most recent price is 170 ECU.

Summary of the Round

Once the market closes, the asset is liquidated. In the corresponding computer screen you
find different pieces of information. In the left hand side of the screen you find (1) how many
traders have been informed beforehand about the liquidation value of the asset and your
particular information, (2) your inventory, and (3) a history of your trades.
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On the right hand side you find the summary statistics of this round. We inform you about the
actual liquidation value of the asset (in our example it is 220 ECU). This value is multiplied
with the number of shares in your inventory to determine the liquidation value of your portfolio
(since the trader has two shares in her/his portfolio, the value of the portfolio in our example
is equal to 440 ECU). Afterwards, we add the amount of ECU in your inventory to it (the
sum is in our example equal to 6449 ECU). Finally, we subtract the 6000 ECU that have been
given to you in the beginning of the round as an interest free loan. As a result, we obtain the
final payoff of the round (in our example it is 449 ECU).

Click on the button OK to proceed to the next trading round. Note that every trader starts
again with 6000 ECU from an interest free loan and two shares of the asset. At the end of the
last round, you will get a short electronic questionnaire regarding your personal background.
This data will only be used for statistical purposes.

Payment

The points you accumulate during the course of the session will determine your payment.
The exchange rate ECU/Euros is such that every 300 ECU in the experiment are equal to 1
Euro; that is, if your total payoff after 10 rounds is equal to 3000 ECU, then you get 10 Euros
for your participation. Please, do not fill in your final payment into the official receipt. This

will be done by us!!! Leave the instructions and the pen at your desk. Once you are paid, you
may leave.

Control Questions

1. This question corresponds to the first figure of the instructions. Suppose that the market
is still open for trading. Suppose that you bought two shares at a price of 150 ECU
and sold one share at a price of 160 ECU. Moreover, you have two open sell offers (at a
price of 170 ECU) and two open buy offers (at a price of 160 ECU) that have not been
accepted so far by any other trader.

(a) How many ECU do you have in your Inventory?

(b) How many shares do you have in your Inventory?

(c) How many ECU do you have available for buying additional shares?

(d) How many shares do have available for additional sell offers?

2. How many traders (including the computer trader) know the liquidation value of the
asset while the market is open for trading?

3. This question corresponds to the second figure of the instructions. Suppose that market
has closed. During the trading activity you bought two shares (at a price of 180 ECU)
and sold two shares (one at a price of 170 ECU and another at a price of 160 ECU).
Moreover, you learn that the actual value of the stock is 100 ECU.

(a) What is the total liquidation value of your portfolio in this round?

(b) What is your total amount of ECU in this round?

(c) What is your total payoff in ECU after subtracting costs in this round?

4. Consider a different situation in which the liquidation value of the asset is either 200
or 300 ECU (the probability of the first value is 0.4 and the probability of the second
value is 0.6). What is the expected liquidation value of the asset?
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Appendix C: Econometric Analysis

The estimated model incorporates random effects such that

Pij = (β0 + γj) + β1 · Mj + β2 · Vij + β3 · Mj · Vij + β4 · Lij + εij .

If we calculate E (Pij) and E (Pij |γj) we obtain that

E (Pij) = β0 + β1 · Mj + β2 · Vij + β3 · Mj · Vij + β4 · Lij .

and

E (Pij |γj) = (β0 + γj) + β1 · Mj + β2 · Vij + β3 · Mj · Vij + β4 · Lij

The difference E (Pij |γj) − E (Pij) = γj is called the effect of session j. In Table 8, which

reports the actual effects of our estimation procedure, we observe that the extreme values

correspond to the first session of the Manipulation Treatment and to the second session of

the Benchmark Treatment. Looking at Figures 1 and 2 we see that these are the only sessions

in which the convergence in the high value scenario fails. Consequently, these are the sessions

with most noise, which is correctly captured with the help of the random effects. Moreover,

the average actual effect is -0.058, and therefore, it is very close to the expected value of 0.

Session Benchmark Manipulation

1 -8.07 -13.65

2 12.83 3.15

3 -1.98 -2.47

4 2.84 3.48

5 2.84 3.48

6 -8.47 6.00

Table 8: Cross-Section Random Effects

The next point regards the question whether the estimated model is correctly specified in

the sense that the residuals are normal i.i.d. with mean zero. If we look at the autocorrelation

and the partial autocorrelation functions of the residuals in Figure 4, we observe that they

present a behavior similar to the one of a white noise process (all autocorrelations have an

absolute value smaller than 0.2 and are individually insignificant). Moreover, since the null

hypothesis of the Ljung-Box test that the autocorrelations are jointly insignificant (ρ1 = ρ2 =

... = ρr = 0) is not rejected, we conclude that that the residuals do not exhibit any kind of

autocorrelation.
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Figure 3: Residuals
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Figure 4: Autocorrelation (a) and Partial Autocorrelation Functions (b)

Finally, it remains to be analyzed if the residuals are distributed normally with mean zero.

Since we do not reject the null hypothesis of the Jarque-Bera test that the residuals follow a

normal distribution and the mean of the residuals is very close to zero (see Figure 5), we can

finally conclude that the model is correctly specified.
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Figure 5: Histogram of the Standardized Residuals
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