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Abstract

In this paper we develop an epistemic model for dynamic games in which players may
revise their beliefs about the opponents’ preferences (including the opponents’ utility func-
tions) as the game proceeds. Within this framework, we propose a rationalizability concept
that is based upon the following three principles: (1) at every instance of the game, a player
should believe that his opponents are carrying out optimal strategies, (2) a player should
only revise his belief about an opponent’s relative ranking of two strategies if he is certain
that the opponent has decided not to choose one of these strategies, and (3) the players’
initial beliefs about the opponents’ utility functions should agree on a given profile u of
utility functions. Common belief about these events leads to the concept of persistent ra-
tionalizability for the profile u of utility functions. It is shown that for a given profile u of
utility functions, every properly rationalizable strategy for “types with non-increasing type
supports” is a persistently rationalizable strategy for u. This result implies that persistently
rationalizable strategies always exist for all game trees and all profiles of utility functions.
Keywords: Rationalizability, dynamic games, belief revision.
JEL Classification: C72

1. Introduction

In this paper we are concerned with the problem of how to model rational belief and rational
behavior in dynamic games. One of the major challenges in this problem is the issue of belief
revision, that is, how players change their belief about the opponents’ behavior when they find
out that their previous belief has been contradicted by the observed play of the game. In fact,
most equilibrium and rationalizability concepts for dynamic games can be classified according to
the restrictions they impose upon the players’ belief revision policies, as these concepts usually
differ as to what players should believe at “zero-probability information sets”. In order to
illustrate the various restrictions that existing concepts impose upon belief revision, and the
impact they bear on the resulting theory of rational behavior, consider the game in Figure 1.
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Figure 1

If player 1 believes that player 2 chooses rationally at his information set, then he expects
player 2 not to choose f. If player 2, in turn, believes at the beginning that player 1 reasons in
this way, and believes at the beginning that player 1 chooses rationally, then player 2 should
believe at the beginning that player 1 chooses c. The question remains: What should player 2
do at his information set where he is faced with the fact that player 1 has not chosen c? At this
information set, player 2 is led to revise his belief about player 1’s strategy choice, and player
2’s decision at that information set crucially depends upon the way he revises this belief.

There are rationality concepts which at this stage do not impose any restrictions upon player
2’s belief revision. For instance, the concept of common certainty of rationality at the beginning
of the game (Ben-Porath (1997)) requires common belief at the beginning of the game that
players choose rationally at each of their information sets, but does not restrict the players’
belief revision policies when they find out that their initial belief has been contradicted. In the
game of Figure 1, common certainty of rationality at the beginning implies that player 1 should
believe that player 2 will not choose f, and that player 2 should believe initially that player 1
chooses c. However, if player 2 is led to revise his belief about player 1 at his information set, he
may believe that player 1 has chosen a or b, and as such player 2 may choose both d and e. A
similar reasoning holds for the concept of sequential equilibrium (Kreps and Wilson (1982)) in
this game: in every sequential equilibrium player 1 is initially believed to choose c, however the
concept does not restrict player 2’s beliefs at his information set, and hence player 2 is allowed
to choose d and e.

The concept of extensive form rationalizability (Pearce (1984), Battigalli (1997)), on the
other hand, does restrict player 2’s belief revision procedure, and eventually singles out the
choice e for player 2. In words, the concept requires a player, at each of his information sets,
to look for the “highest possible degree of interactive belief in rationality”1 that rationalizes the
event of reaching this information set, and the player should then base his current and future
beliefs upon this degree until it will be contradicted by some other event in the future. In the
game of Figure 1, this means that player 2, upon observing that player 1 has chosen a or b, should
attempt to explain this event by a theory in which player 1 is believed to choose rationally. If
this is possible, then player 2 should try to find a “more sophisticated” theory explaining this

1Battigalli and Siniscalchi (2002) call it “highest possible degree of strategic sophistication”.
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event in which player 1 is not only believed to choose rationally, but is also believed to believe
that player 2 will choose rationally at his information set. If this is not possible, then player 2
should stick to his first theory. If the more sophisticated theory is possible, then player 2 should
attempt to find a theory with an even higher degree of interactive belief in rationality, and so
on. According to this line of reasoning, player 2’s “most sophisticated” theory that explains the
event of player 1 choosing a or b is the following: player 1 is believed to rationally choose b, and
player 1 is believed to believe with high probability that player 2 will irrationally respond with
f. As such, player 2 should choose e.

The concepts of proper equilibrium (Myerson (1978)) and proper rationalizability (Schuh-
macher (1999), Asheim (2001)) implicitly impose a different restriction upon player 2’s belief
revision procedure, and single out the choice d for player 2. The key idea in both concepts is
that a player, when choosing his strategy, should not exclude any of the opponents’ strategies,
yet should deem one opponent strategy “infinitely more likely” than another if he believes the
opponent to prefer the former over the latter. Here, the notion of “infinitely more likely” can be
made explicit by the use of lexicographic probability distributions, as has been done by Blume,
Brandenburger and Dekel (1991a, 1991b) and Asheim (2001) in their characterizations of proper
equilibrium and proper rationalizability, respectively. In the game of Figure 1, the reasoning of
proper equilibrium and proper rationalizability is as follows. Since player 2 should not exclude
that player 1 chooses a or b, he strictly prefers d and e over f. Player 1, knowing this, should
thus deem d and e infinitely more likely than f, and hence should strictly prefer c over a and
strictly prefer a over b. Player 2, at the beginning of the game, should then deem c infinitely
more likely than a, and deem a infinitely more likely than b. This implies that player 2, upon
observing that player 1 has chosen a or b, should still deem a infinitely more likely than b, and
hence player 2 should choose d at his information set.

The crucial belief revision requirement in the argument above to single out the choice d is
thus that player 2, when observing that player 1 has chosen a or b, should maintain his initial
belief that a is infinitely more likely than b. Within the framework of proper equilibrium and
proper rationalizability, this belief revision principle could be stated alternatively as follows: if
player 2, at the beginning of the game, believes that player 1 strictly prefers a over b, then player
2 should maintain this belief when observing that player 1 has chosen a or b. This principle thus
reflects the idea that a player, upon reaching a new information set, should not change his
belief about the opponent’s relative ranking of two strategies that both could have led to this
information set. We shall refer to this principle as the proper belief revision principle.

The concept of extensive form rationalizability, for instance, violates the proper belief revision
principle in the game of Figure 1. We have seen that extensive form rationalizability requires
player 2 to choose e. Hence, player 2 should believe at the beginning of the game that player 1
believes that player 2 chooses e. Consequently, player 2 believes at the beginning of the game
that player 1 strictly prefers c over a, and strictly prefers a over b. However, the key argument
in the concept of extensive form rationalizability has been that player 2, upon observing that
player 1 has chosen a or b, should believe that player 1 believes that player 2 chooses f with
high probability (to be more precise, with probability at least 23). As such, player 2’s new belief
should be that player 1 prefers b over a, contradicting his initial belief about player 1’s relative
ranking of a and b.
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The main purpose of this paper will be to incorporate the proper belief revision principle
in a theory of rational behavior for dynamic games that insists on common belief of rationality
throughout the game. More precisely, we shall develop an epistemic framework for dynamic
games in which every observed move is to be interpreted as being in accordance with common
belief of rationality, while allowing the players to revise their beliefs about the opponents’ prefer-
ences (including the opponents’ utility functions) during the game. In order to achieve common
belief of rationality at every information set, it is necessary to allow players to change their
beliefs about the opponents’ utilities. In fact, Reny (1992, 1993) has shown that for the class
of games with perfect information, there are only very few games in which there is no uncer-
tainty about the players’ utilities and in which common belief of rationality can be maintained
at all decision nodes. In the game of Figure 1, it may be verified easily that common belief of
rationality at player 2’s information set is not possible if player 2 would not be able to revise
his belief about player 1’s utilities. Namely, if player 2 observes that player 1 has chosen a or b,
and believes that player 1’s utilities are as depicted at the terminal nodes, then player 2 should
either believe that player 1 has not chosen rationally, or that player 1 believes that player 2 will
not choose rationally.

We shall now enter into some details of the epistemic model upon which the concept of ratio-
nality shall be built. The basic assumption is that every player, at each of his information sets,
faces uncertainty about the opponents’ strategy choices, and that his preferences over his own
strategies are induced by a subjective probability distribution (or belief) about the opponents’
feasible strategy choices and a utility function at the terminal nodes following this information
set. That is, every player is assumed to have a preference relation of the expected utility type.
However, a player does not only have uncertainty about the opponents’ strategies, but also
about their preference relations (including their utility functions) at each of their information
sets. Consequently, every player, at each of his information sets, should hold a second-order
belief about the opponents’ feasible strategy choices and the opponents’ (first-order) preference
relations at each of their information sets. In particular, this second-order belief concerns the
possible utility functions held by the opponents at their respective information sets. These
second-order beliefs, together with the utility function, induce second-order preference relations
for each of the players. By a similar argument as above, one may then argue that a player,
at each of his information sets, does not only have uncertainty about the opponents’ strategy
choices and first-order preference relations, but also about the opponents’ second-order prefer-
ence relations at each of their information sets. This, in turn, will lead to third-order beliefs and
third-order preference relations, and so forth. Repeating this argument recursively inevitably
leads to a model in which a player, at each of his information sets, holds an infinite hierarchy of
preference relations. Within this hierarchy, the k-th order preference relation is induced by (1)
a k-th order belief about the opponents’ feasible strategy choices and the opponents’ first-order,
second-order, ..., (k− 1)-th order preference relations, and (2) a utility function at the terminal
nodes.

Our first result states that the model of infinite preference hierarchies described above is
“homeomorphic” to a Harsanyi-style model (Harsanyi (1967, 1968)) in which the possible pref-
erence hierarchies, reflecting the players’ possible assessments of all the relevant uncertain pa-
rameters in the game, may be identified with types. Every type within this model will then be
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completely characterized by specifying at each information set a utility function and a belief
about the opponents’ possible strategy choices and types. The justification for using such an
implicit type model is not only conceptually relevant, but is also important from a practical
viewpoint, as it considerably simplifies the analysis.

Subsequently, we use this epistemic model to develop a theory of rationality for dynamic
games. The theory is built upon three conditions that types should satisfy: updating consistency,
proper belief revision, and belief in sequential rationality. The first condition simply states that
types should update their beliefs according to Bayes’ rule, whenever possible. Proper belief
revision means that a type should revise his beliefs according to the proper belief revision
principle discussed above. By belief in sequential rationality we mean that a type, at each of his
information sets, should believe that every opponent is carrying out a strategy that is optimal
for him at each of his information sets. A type that, throughout the game, respects common
belief about updating consistency, proper belief revision and belief in sequential rationality, is
called persistently rationalizable.

Within our epistemic framework, the proper belief revision principle may be viewed as an
expression of minimal belief change, as it requires a player to adapt his new beliefs to the newly
observed behavior by opponents through changing his beliefs about the opponents’ preferences in
some minimal way. Suppose, for instance, that in the game of Figure 1 player 2 initially believes
that player 1 strictly prefers c over a and strictly prefers a over b. (The utilities at the terminal
nodes should be ignored at the moment.) Then, upon observing that player 1 has chosen a or
b, player 2 should change his beliefs about player 1’s preferences if he is to believe that player
1 has acted rationally. However, for player 2’s eventual strategy choice it is only relevant how
player 2 assesses the relative likelihood of the strategies a and b, and for this assessment it is
only relevant what player 2 believes about player 1’s relative ranking of a and b. The proper
belief revision principle now argues that player 2 should leave his assessment about this relative
ranking as it was, since, conditional on player 2’s belief that player 1 has rationally chosen a or
b, there is no evidence that his initial assessment about this ranking was wrong.

An important ingredient in the concept of persistent rationalizability is the possibility for
types to revise their beliefs about the opponents’ utility functions during the game. As such,
we explicitly allow for uncertainty about the utility functions in the game. With respect to
the latter aspect, the literature on noncooperative games can roughly be divided into three
categories. The first, and largest, category contains concepts in which the players’ beliefs about
the opponents’ utility functions should at all times agree on an exogenously given profile of utility
functions. In these concepts there is thus no room for uncertainty about utilities. The second
category contains concepts where players may have uncertainty about the opponents’ utilities
during the game, but where the players’ beliefs at the beginning of the game should agree on
an exogenously given profile of utility functions. The model of games with randomly disturbed
payoffs, as proposed by Harsanyi (1973), represents such a situation: the uncertainty about the
opponents’ utilities is modeled by a sequence of utility perturbations around a fixed profile of
utilities, whereas the assumption that the perturbation vanishes in the limit guarantees that the
players’ beliefs at the beginning of the game should (approximately) agree on this particular
profile of utilities. Harsanyi’s model has subsequently been applied by Fudenberg, Kreps and
Levine (1988) and Dekel and Fudenberg (1990) for their analysis of the robustness of rationality
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concepts against infinitesemal uncertainty about the opponents’ utilities. Other applications
of Harsanyi’s model are, among others, Zauner (2002) and Stinchcombe and Zauner (2002).
The concept of preference conjecture equilibrium put forward in Perea (2002) also belongs to
this second category. The third category, finally, consists of concepts in which players have
uncertainty about the opponents’ utilities, and in which the initial beliefs do not have to agree on
one particular profile of utilities. A prominent contribution in this category is Battigalli (2003),
who refers to such situations as “games with genuine incomplete information” and studies the
concepts of weak and strong rationalizability within such situations.

This paper should be placed in the second category since we impose the additional condition
that the players’ initial beliefs about the opponents’ utilities agree on an exogenously given profile
u of utility functions. We say that a type is persistently rationalizable for u if (1) it is persistently
rationalizable, (2) has the utility function as prescribed by u, and (3) respects common belief
about the event that types initially believe that the opponents have utility functions as specified
by u. Accordingly, a strategy is called persistently rationalizable for u if there is a persistently
rationalizable type for u such that the strategy is optimal for this type at each of his information
sets.

As to illustrate this concept, consider again the game in Figure 1. Let u = (u1, u2) be the pair
of utility functions depicted at the terminal nodes. We verify that the only strategy for player
2 which is persistently rationalizable for u coincides with the unique properly rationalizable
strategy in this game, d. Suppose, namely, that type t2 for player 2 would be persistently
rationalizable for u. Since t2 initially believes that player 1 initially believes that player 2 has
utility function u2 and chooses rationally, t2 initially believes that player 1 initially believes that
player 2 will not choose f. Combining this insight with the requirement that t2 initially believes
that player 1 has utility function u1, it follows that t2 initially believes that player 1 prefers
strategy a over strategy b. By proper belief revision, t2 must still believe that player 1 prefers a
over b if he observes that player 1 has chosen a or b. Since t2 should believe at his information
set that player 1 has chosen rationally, t2 should believe at his information set that player 1
has chosen a. But then, t2 strictly prefers d at his information set, and hence player 2’s unique
persistently rationalizable strategy for u is d.

The main result in this paper shows that the relationship in the example between properly
rationalizable strategies for u on the one hand and persistently rationalizable strategies for u on
the other hand, is not a coincidence. We shall prove namely that some refinement of proper ra-
tionalizability always implies persistent rationalizability. The refinement we adopt uses Asheim’s
(2001) characterization of proper rationalizability, and imposes an additional restriction upon
the lexicographic beliefs of properly rationalizable types. The additional requirement states
that, whenever a type t in the k-th layer of his lexicographic belief assigns positive probability
to some opponent’s type, he should also have assigned positive probability to this type in his
(k− 1)-th layer. That is, the “type support” of type t should be non-increasing if we step down
one layer in his lexicographic belief. Types with this additional property are called “properly
rationalizable with non-increasing type supports”, and strategies that may be chosen optimally
by such types are referred to as “properly rationalizable strategies for types with non-increasing
type supports”. From Asheim (2001) it easily follows that such types and strategies always
exist. Our main result then states that for every game tree and every possible profile u of
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utility functions, every properly rationalizable strategy for u for types with non-increasing type
supports is persistently rationalizable for u.

This result has at least three important implications. First of all, it guarantees existence
of persistently rationalizable types and strategies for every profile of utility functions. In other
words, for every game tree and every profile u of utility functions we may formulate a non-
contradictory theory of rational behavior in which players hold utility functions as specified
by u, initially believe that the opponents have utility functions as specified by u, believe at
every instance of the game that the opponents are carrying out optimal strategies, and in which
players may revise their beliefs about the opponents’ preferences within the limits of proper
belief revision. Secondly, it shows that properly rationalizable strategies for types with non-
increasing type supports may always be motivated by persistently rationalizable types. As such,
the result offers an alternative interpretation of the concept of properly rationalizable strategies
within a framework in which common belief of rationality is required at all information sets
and in which players may revise their beliefs about the opponents’ utility functions during the
course of the game. Finally, note that the concept of properly rationalizable strategies for
types with non-increasing type supports depends solely upon the pure reduced normal form of a
dynamic game. By Thompson (1952) and Elmes and Reny (1994), this concept is thus invariant
under the application of certain “irrelevant” transformations of the game tree. Consequently,
the result implies that it is possible to find a refinement of persistent rationalizability that is
invariant under all Thompson-Elmes-Reny transformations. This property is similar in spirit
to the results by van Damme (1984) and Kohlberg and Mertens (1986) who showed that the
extensive form rationality concepts of quasi-perfect and sequential equilibrium have a refinement
that is invariant under all Thompson-Elmes-Reny transformations, namely proper equilibrium.
For a study of the relationships between persistent rationalizability and rationality concepts
other than proper rationalizability, the reader is referred to Perea (2003).

The outline of this paper is as follows. In Section 2 we first present some preliminary
definitions and notation in extensive form games. Section 3 lays out the epistemic model we use,
and contains the above mentioned representation result for preference hierarchies. The concept
of persistent rationalizability is introduced in Section 4. Finally, in Section 5, we prove our main
result concerning the relationship between proper and persistent rationalizability. The more
technical proofs are contained in the appendix.

2. Extensive Form Structures

In this section we present the notation and some basic definitions in extensive form games that
will be employed throughout this paper. The rules of the game are represented by an extensive
form structure S consisting of a finite game tree, a finite set of players I, a finite collection Hi
of information sets for each player i and at each information set hi ∈ Hi a finite collection A(hi)
of actions for the player. The set of terminal nodes in S is denoted by Z, whereas H = ∪i∈IHi
denotes the collection of all information sets. We assume throughout that the extensive form
structure satisfies perfect recall and that no chance moves occur. The latter assumption is not
crucial for our analysis, but simplifies the presentation.

The concept of strategy we use in this paper is different from the usual one since it does not
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require a player to specify actions at information sets that are avoided by the same strategy.
It thus coincides with the concept of plan of action in Rubinstein (1991). The use of this
alternative definition is not really relevant for the analysis, but rather avoids the inclusion of
redundant information in the definition of a strategy. Formally, let H̃i ⊆ Hi be some collection
of information sets for player i, not necessarily containing all player i information sets, and let
si be a mapping that assigns to every hi ∈ H̃i some available action si(hi) ∈ A(hi). We say
that some information set h∗ ∈ H is avoided by the mapping si if for every profile of actions
(a(h))h∈H with a(h) ∈ A(h) for all h and a(hi) = si(hi) for all hi ∈ H̃i, it holds that (a(h))h∈H
avoids the information set h∗. We say that si is a strategy if its domain H̃i is equal to the
collection of player i information sets that are not avoided by si. Obviously, every strategy si
can be obtained by first prescribing some action at all player i information sets (that is, defining
a strategy in the usual sense) and then deleting those player i information sets that are avoided
by it. Let Si denote the set of player i strategies, and let S = ×i∈ISi be the set of all strategy
profiles.

Throughout the paper, we shall make the assumption that the extensive form structure
is with observable deviators (see Battigalli (1996), among others). In order to formalize this
condition, we need the following definitions. For a given information set h, let S(h) be the set
of strategy profiles that reach h. For a given player i, not necessarily the player who moves at
h, let Si(h) be the set of strategies si that do not avoid h. We say that S is with observable
deviators if S(h) = ×i∈ISi(h) for every information set h. That is, an information set h can only
be avoided if there is at least one player who chooses a strategy that already avoids h by itself.

3. Epistemic Framework

In this section we formally model the players in an extensive form structure as decision makers
under uncertainty. In order to do so, we first introduce some preliminary decision theoretic and
epistemic concepts upon which this model shall be built.

3.1. Preference Hierarchies

The decision theoretic framework to be presented here is based on the models by Savage (1954)
and Anscombe and Aumann (1963) for decision making under uncertainty. Let X be a compact
metric space provided with some topology, and Y some finite set. Let ∆(Y ) denote the space
of probability distributions on Y, endowed with the natural topology. By F(X,Y ) we denote
the set of all measurable functions f : X → ∆(Y ) to which we shall refer as acts2. The set
X is to be interpreted as the space of relevant variables about which the decision maker has
uncertainty, whereas Y represents the set of possible consequences. As such, ∆(Y ) contains
all objective lotteries on the possible consequences. For a given act f in F(X,Y ) and x ∈ X,
let f(x) ∈ ∆(Y ) be the objective lottery induced by x on Y, and let f(x)(y) be the objective
probability that f(x) assigns to consequence y. By Peu(X,Y ) we denote the set of all nontrivial
preference relations on F(X,Y ) that are of the expected utility type, that is, for which is there is

2The definition of an act as we use it coincides with the notion of compound horse lottery in Anscombe and
Aumann (1963).
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some probability distribution µ on X and some nonconstant von Neumann-Morgenstern utility
function u : Y → R such that act f is weakly preferred over act g if and only ifZ

X
u(f(x)) dµ ≥

Z
X
u(g(x)) dµ.

Here,

u(f(x)) =
X
y∈Y

f(x)(y) u(y)

denotes the expected utility induced by the objective lottery f(x) ∈ ∆(Y ) and the utility
function u.

Since for a given preference relation p ∈ Peu(X,Y ), the probability distribution µ is unique
and the utility function u is unique up to some positive affine transformation, we may uniquely
identify every p ∈ Peu(X,Y ) with a pair (µ, u) where µ is a subjective probability distribution
on X and u : Y → R with miny∈Y u(y) = 0 and maxy∈Y u(y) = 1. Let U(Y ) be the set of all
utility functions u : Y → R with the latter property, and let ∆(X) be the set of probability
distributions on X. Hence, we may identify Peu(X,Y ) with the set ∆(X)×U(Y ). Let τ1 be the
weak topology on ∆(X), let τ2 be the natural topology on U(Y ) and τ the product topology
on Peu(X,Y ) induced by τ1 and τ2. Then, the topological space (Peu(X,Y ), τ) is a compact
metric space.

Having established the model for individual decision making under uncertainty, we may now
formalize an epistemic model for extensive form games in which players, at each of their in-
formation sets, have uncertainty about the opponents’ strategy choices, uncertainty about the
opponents’ first-order preference relations (including their utility functions), uncertainty about
the opponents’ second-order preference relations, and so forth. This will eventually lead to the
concept of preference hierarchies for players. The epistemic model combines elements from Ep-
stein and Wang (1996) and Battigalli and Siniscalchi (1999). Epstein and Wang (1996) propose
a model for static games in which players have uncertainty about the opponents’ preference
relations (possibly including the opponents’ utility functions) and players may hold preference
relations that do not conform to expected utility. Battigalli and Siniscalchi (1999), in turn, pro-
pose a model for dynamic games in which players hold expected utility preferences, players have
no doubts about the opponents’ utility functions but have uncertainty about the opponents’
subjective probability distributions.

Consider some player i in an extensive form structure. Let h0 be the information set that
coincides with the beginning of the game, and let H∗i = Hi ∪ {h0}. The primary source of
uncertainty faced by player i at information set hi ∈ H∗i concerns the strategy choices by his
opponents. We may thus define the first-order space of uncertainty X1

i (hi) by

X1
i (hi) = S−i(hi),

where S−i(hi) = ×j 6=iSj(hi). If hi = h0, we set Sj(hi) = Sj for all players j. Let Z(hi) be the
set of terminal nodes that follow hi. Every player i strategy si ∈ Si(hi) may now be identified
with an act fsi : X

1
i (hi) → ∆(Z(hi)) assigning to every s−i ∈ X1

i (hi) the lottery that assigns
probability one to the terminal node z ∈ Z(hi) reached by the strategy profile (si, s−i). Hence,
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every strategy si ∈ Si(hi) corresponds to an act in F(X1
i (hi), Z(hi)). We assume that player i

holds a nontrivial preference relation of the expected utility type p1i (hi) ∈ Peu(X1
i (hi), Z(hi)).

We refer to Peu(X1
i (hi), Z(hi)) as the set of first-order preference relations for player i at hi.

At information set hi, player i does not only have uncertainty about the strategies chosen by
the opponents, but also about the first-order preference relations held by his opponents at each
of their information sets. The second-order space of uncertainty for player i at hi is therefore
given by

X2
i (hi) = S−i(hi)× (×j 6=i ×hj∈H∗j Peu(X1

j (hj), Z(hj)))

= X1
i (hi)× (×j 6=i ×hj∈H∗j Peu(X1

j (hj), Z(hj))),

which, together with the product topology induced by the topologies onX1
i (hi) and Peu(X1

j (hj), Z(hj)),
is a compact metric space.

By the same argument as above, player i at hi is assumed to hold a second-order preference
relation p2i (hi) ∈ Peu(X2

i (hi), Z(hi)). Since player i has uncertainty about the second-order
preference relations held by the other players at each of their information sets, the third-order
space of uncertainty at hi becomes

X3
i (hi) = X

2
i (hi)× (×j 6=i ×hj∈H∗j Peu(X2

j (hj), Z(hj))),

which, together with the induced product topology, is again a compact metric space. By repeat-
ing this construction, we obtain an infinite sequence of “succesively richer” spaces of uncertainty,
defined by

Xk
i (hi) = X

k−1
i (hi)× (×j 6=i ×hj∈H∗j Peu(Xk−1

j (hj), Z(hj)))

for k ≥ 2, which are all compact metric spaces.
A preference hierachy for player i at hi is a sequence pi(hi) = (pki (hi))k∈N where p

k
i (hi) ∈

Peu(Xk
i (hi), Z(hi)) for all k. Hence, it specifies an infinite hierarchy of expected utility preference

relations over succesively richer spaces of uncertainty. A vector pi = (pi(hi))hi∈H∗i , specifying a
preference hierarchy at each of player i information sets, is simply called a preference hierarchy
for player i. Let Pi be the set of all preference hierarchies for player i.

3.2. Coherence

Let F(Xk
i (hi), Z(hi)| Xk−1

i (hi)) be the set of acts from Xk
i (hi) to ∆(Z(hi)) which only depend

upon the argument in Xk−1
i (hi). For a given preference relation p

k
i (hi) ∈ Peu(Xk

i (hi), Z(hi)), let
mrg(pki (hi)| Xk−1

i (hi)) be the marginal induced by p
k
i (hi) on the set of acts F(Xk

i (hi), Z(hi)|
Xk−1
i (hi)). In the obvious way, mrg(p

k
i (hi)| Xk−1

i (hi)) may be identified with a preference rela-
tion on the set of acts F(Xk−1

i (hi), Z(hi)). We say that a preference hierarchy pi is coherent if
for every information set hi ∈ H∗i and every k ≥ 2 it holds that

mrg(pki (hi)| Xk−1
i (hi)) = p

k−1
i (hi).

In other words, a coherent preference hierarchy always exhibits a sequence of preference relations
that do not contradict one another at overlapping layers. Let P ci be the set of coherent preference
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hierarchies for player i, and let P−i = ×j 6=iPj be the set of all opponents’ preference hierarchies.
Below, we shall prove that the set P ci is homeomorphic to ×hi∈H∗i Peu(S−i(hi)× P−i, Z(hi)). In
order to do so, we use the following version of Kolmogorov’s Existence Theorem, which can be
found in Dellacherie and Meyer (1978).

Lemma 3.1. Let (Zk)k∈N be a sequence of compact metric spaces, and (µk)k∈N a sequence of
probability measures µk ∈ ∆(Z1 × ...×Zk) with mrg(µk| Z1 × ...×Zk−1) = pk−1 for all k ≥ 2.
Then, there is a unique probability measure µ ∈ ∆(×k∈NZk) such thatmrg(µ| Z1×...×Zk) = µk
for every k.

Here, bymrg(µk| Z1×...×Zk−1) we denote the marginal induced by probability distribution
µk on Z1 × ...× Zk−1. We are now able to derive the following result.

Lemma 3.2. For every player i, the space P ci of coherent preference hierarchies is homeomor-
phic to the space ×hi∈H∗i Peu(S−i(hi)× P−i, Z(hi)).

Proof. Let pi ∈ P ci . Then, pi = (pi(hi))hi∈H∗i where pi(hi) = (pki (hi))k∈N and pki (hi) ∈
Peu(Xk

i (hi), Z(hi)) for all k.Hence, every p
k
i (hi) can be uniquely identified with a pair (µ

k
i (hi), u

k
i (hi))

where µki (hi) ∈ ∆(Xk
i (hi)) and u

k
i (hi) ∈ U(Z(hi)). Since mrg(pki (hi)| Xk−1

i (hi)) = p
k−1
i (hi), it

follows that uki (hi) = u
k−1
i (hi) and mrg(µ

k
i (hi)| Xk−1

i (hi)) = µ
k−1
i (hi) for all k ≥ 2. Let Mi(hi)

be the set of infinite hierarchies of probability measures (µki (hi))k∈N with µ
k
i (hi) ∈ ∆(Xk

i (hi))
for all k and mrg(µki (hi)| Xk−1

i (hi)) = µ
k−1
i (hi) for all k ≥ 2. From the above, it follows that

P ci is homeomorphic to the space ×hi∈H∗i (Mi(hi)× U(Z(hi))). Since Peu(S−i(hi)× P−i, Z(hi))
is homeomorphic to ∆(S−i(hi) × P−i) × U(Z(hi)) for every hi ∈ H∗i , it suffices to show that
Mi(hi) is homeomorphic to ∆(S−i(hi)× P−i) for every hi ∈ H∗i .

Let hi ∈ H∗i be fixed. Define Z1 = S−i(hi) and Zk = ×j 6=i ×hj∈H∗j Peu(Xk−1
j (hj), Z(hj))

for k ≥ 2. Then, by construction, Xk
i (hi) = Z

1 × ... × Zk for all k. Hence Mi(hi) is the set of
all hierarchies µi(hi) = (µki (hi))k∈N with µ

k
i (hi) ∈ ∆(Z1 × ... × Zk) for all k and mrg(µki (hi)|

Z1 × ... × Zk−1) = µk−1i (hi) for all k ≥ 2. Since every Zk is a compact metric space, we
know by Lemma 3.1 that for each (µki (hi))k∈N ∈ Mi(hi) there is a unique probability measure
µi(hi) ∈ ∆(×k∈NZk) such thatmrg(µi(hi)| Z1×...×Zk) = µki (hi) for all k. Let f be the function
which assigns to every (µki (hi))k∈N ∈Mi(hi) this particular µi(hi) ∈ ∆(×k∈NZk). Then, it may
be verified that f is a homeomorphism with f(Mi(hi)) = ∆(×k∈NZk), and hence Mi(hi) is
homeomorphic to ∆(×k∈NZk). By definition,

×k∈NZk = S−i(hi)× (×k≥2(×j 6=i ×hj∈H∗j Peu(Xk−1
j (hj), Z(hj)))

which is homeomorphic to the space

S−i(hi)× (×j 6=i ×hj∈H∗j ×k≥2Peu(Xk−1
j (hj), Z(hj)))

= S−i(hi)× (×j 6=iPj) = S−i(hi)× P−i.

This implies that ∆(×k∈NZk) is homeomorphic to ∆(S−i(hi)×P−i), and hence Mi(hi) is home-
omorphic to ∆(S−i(hi)× P−i), which completes the proof. ¥
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Hence, there is a homeomorphism fi from P ci to ×hi∈H∗i Peu(S−i(hi)× P−i, Z(hi)) for every
player i. Hence, every preference hierarchy pi ∈ P ci can be identified with the vector

fi(pi) = (µi(pi, hi), ui(pi, hi))hi∈H∗i
where µi(pi, hi) ∈ ∆(S−i(hi) × P−i) and ui(pi, hi) ∈ U(Z(hi)). A subset E ⊆ S−i(hi) × P−i is
called an event at information set hi. We say that preference hierarchy pi ∈ P ci believes the
event E at information set hi if

supp µi(pi, hi) ⊆ E.
We do not only require that every preference hierarchy is coherent, but also that there be
common belief among the players that all preference hierarchies are coherent. This may be
formalized as follows. Let P c−i = ×j 6=iP cj . Define the sets P c,1i , P c,2i , ... by

P c,1i = {pi ∈ P ci | pi believes S−i(hi)× P c−i at every hi ∈ H∗i },
P c,ki = {pi ∈ P c,k−1i | pi believes S−i(hi)× P c,k−1−i at every hi ∈ H∗i }

for k ≥ 2. Define P c,∞i = ∩k∈NP c,ki for all players i. We say that P c,∞i is the set of preference
hierarchies for player i that respect common belief of coherence. We now obtain the following
representation result for infinite preference hierarchies respecting common belief of coherence.
The result is similar in spirit to results in Armbruster and Böge (1979), Böge and Eisele (1979),
Mertens and Zamir (1985) and Epstein and Wang (1996). The proof for this result can be found
in the appendix.

Lemma 3.3. For every player i, the space of preference hierarchies P c,∞i respecting common
belief of coherence is homeomorphic to the space ×hi∈H∗i Peu(S−i(hi)× P

c,∞
−i , Z(hi)).

3.3. Types and Common Belief

In view of Lemma 3.3, we may identify each preference hierarchy pi ∈ P c,∞i with a vector specify-
ing at each information set hi ∈ H∗i an expected utility preference relation (µi(pi, hi), ui(pi, hi))
where µi(pi, hi) is a probability measure on S−i(hi) × P c,∞−i and ui(pi, hi) is a utility function
from Z(hi) to the real numbers. A preference hierarchy pi ∈ P c,∞i is called a type for player i,
and by Ti = P

c,∞
i we denote the set of all player i types. Hence, every type ti ∈ Ti corresponds to

a vector (µi(ti, hi), ui(ti, hi))hi∈H∗i where µi(ti, hi) is a probability distribution on S−i(hi)× T−i
and ui(ti, hi) is a utility function on Z(hi) for every information set hi ∈ H∗i . Using Lemma 3.3,
we thus obtain the following representation result for types.

Corollary 3.4. For every player i, the space Ti of player i types is homeomorphic to the space
×hi∈H∗i Peu(S−i(hi)× T−i, Z(hi)).

We now formalize what it means that a type respects common belief about the event that
types have certain properties. In order to do so, we use the following definitions. For a given type
ti, information set hi ∈ H∗i , and opponent j, let µi(ti, hi| Tj) be the marginal of the probability
distribution µi(ti, hi) on the set of player j types. By

T 1j (ti, hi) = supp µi(ti, hi| Tj)

12



we denote the set of player j types that ti attaches positive probability to at hi, whereas

T 1j (ti) = ∪hi∈H∗i T 1j (ti, hi)
is the set of player j types that ti attaches positive probability to somewhere in the game. For
j = i, we define T 1i (ti) = {ti}. Let

T 1(ti) = ∪j∈IT 1j (ti).
By

T 2(ti) =
[

t∈T 1(ti)
T 1(t)

we denote the set of types that (1) are attached positive probability by ti, or (2) are attached
positive probability by some type that is attached positive probability by ti. In other words,
T 2(ti) contains all those types to which ti, directly or first-order-indirectly, assigns positive
probability. By repeating this argument recursively, we obtain that

T k(ti) =
[

t∈Tk−1(ti)
T 1(t)

for k ≥ 2 represents the set of types to which ti, directly or k-th-order-indirectly, assigns positive
probability. By T∞(ti) = ∪k∈NT k(ti) we denote the set of all types to which ti, directly or
indirectly, assigns positive probability.

Now, let T̃ ⊆ ×j∈ITj be some set of profiles of types, or, simply, and event. We say that
type ti respects common belief about T̃ if T

∞(ti) ⊆ T̃ . That is, ti believes that all opponents’
types belong to T̃ , believes that all opponents’ types believe that all the other players’ types
belong to T̃ , and so forth.

4. Persistent Rationalizability

In the concept of persistent rationalizability we impose three conditions on types, to which we
refer as common belief about updating consistency, proper belief revision and belief in sequen-
tial rationality. Types that satisfy these requirements are called persistently rationalizable, and
strategies that are sequentially optimal for a persistently rationalizable type are called persis-
tently rationalizable strategies.

In the previous section, we have seen that every type ti ∈ Ti corresponds to a vector
(µi(ti, hi), ui(ti, hi))hi∈H∗i , where µi(ti, hi) is a probability measure on S−i(hi)×T−i and ui(ti, hi)
is a utility function on Z(hi) for every information set hi ∈ H∗i . Updating consistency states that,
whenever the game moves from a player i information set h1i to another player i information
set h2i , player i should derive his new belief µi(ti, h

2
i ) from his old belief µi(ti, h

1
i ) by Bayesian

updating, if possible.

Definition 4.1. A type ti is said to be updating consistent if for all information sets h
1
i , h

2
i ∈ H∗i ,

where h2i follows h
1
i , it holds that

µi(ti, h
2
i )(E) =

µi(ti, h
1
i )(E)

µi(ti, h
1
i )(S−i(h2i )× T−i)
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for all events E ⊆ S−i(h2i )× T−i, whenever µi(ti, h1i )(S−i(h2i )× T−i) > 0.
While updating consistency states how to change the belief when the observed behavior is

still in accordance with the previously held beliefs, proper belief revision imposes a condition
upon the players’ belief revision policies when the observed behavior contradicts the previous
beliefs. In words, the condition states that, whenever player i at some information set hi is
led to revise his beliefs about opponent j’s preference relation, then he should not change his
belief about j’s relative ranking of two strategies sj and s

0
j unless i is absolutely certain that

j has decided not to choose one of these strategies. More precisely, if player i finds himself at
information set hi, then he is certain that player j has chosen some strategy in Sj(hi), without
knowing for sure which strategy in Sj(hi) has been chosen. As such, proper belief revision states
that player i should not revise his belief concerning player j’s preferences over strategies in
Sj(hi).

Definition 4.2. A type ti is said to satisfy proper belief revision if for every two information
sets h1i , h

2
i in H

∗
i such that h

2
i follows h

1
i the following holds: if t

2
j ∈ supp µi(ti, h2i | Tj) then

there exists some t1j ∈ supp µi(ti, h1i | Tj) such that t1j and t2j hold the same preference relation
over strategies in Sj(hj) ∩ Sj(h2i ) at every hj ∈ H∗j .

Here, µi(ti, h
2
i | Tj) denotes the marginal of the probability distribution µi(ti, h2i ) ∈ ∆(S−i(h2i )×

T−i) on Tj .
We finally define belief in sequential rationality. For a given strategy si, let H

∗
i (si) be the

set of information sets in H∗i that are not avoided by si. A strategy-type pair (si, ti) ∈ Si × Ti
is called sequentially rational if at every information set hi ∈ H∗i (si), we have that

ui(si, ti| hi) = max
s0i∈Si(hi)

ui(s
0
i, ti| hi).

Here, ui(si, ti| hi) denotes the expected utility induced by strategy si with respect to the prob-
ability distribution mrg(µi(ti, hi)| S−i(hi)) ∈ ∆(S−i(hi)) and the utility function ui(ti, hi).
Let (Si × Ti)sr be the set of sequentially rational strategy-type pairs for player i, and let
(S−i × T−i)sr = ×j 6=i(Sj × Tj)sr.
Definition 4.3. A type ti is said to believe in sequential rationality if supp µi(ti, hi) ⊆ (S−i ×
T−i)sr for every hi ∈ H∗i .
Definition 4.4. A type ti is called persistently rationalizable if it respects common belief about
the events that (1) types are updating consistent, (2) types satisfy proper belief revision, and
(3) types believe in sequential rationality. A strategy si ∈ Si is called persistently rationalizable
if there is some persistently rationalizable type ti such that (si, ti) is sequentially rational.

We finally impose an exogenous restriction upon the players’ utility functions, and the play-
ers’ initial beliefs about the opponents’ utility functions. Let S be an extensive form structure
and u = (ui)i∈I an exogenously given profile of utility functions. We say that a type ti initially
believes u if µi(ti, h0) assigns probability one to the event that every opponent j has some type
tj with uj(tj , hj) = uj |Z(hj) for all hj ∈ H∗j . Here, uj |Z(hj) denotes the restriction of the utility
function uj to the terminal nodes following hj .
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Definition 4.5. We say that a type ti is persistently rationalizable for (S, u) if (1) ti is persis-
tently rationalizable, (2) ui(ti, hi) = ui|Z(hi) for all hi ∈ H∗i , and (3) ti respects common belief
about the event that types initially believe u.

5. Relation to Proper Rationalizability

Schuhmacher (1999) introduced the concept of proper rationalizabily as a rationalizability-type
analogue to proper equilibrium, and showed that it uniquely selects the backward induction
strategies in generic games with perfect information. Subsequently, Asheim (2001) provided
a characterization of proper rationalizability in terms of lexicographic beliefs for the case of
two players. In this section, we introduce a refinement of properly rationalizable strategies
to which we shall refer as “properly rationalizable strategies for types with non-increasing type
supports”. We show that for a given extensive form structure S and profile u of utility functions,
every properly rationalizable strategy for (S, u) for types with non-increasing type supports
is persistently rationalizable for (S, u). Since properly rationalizable strategies for types with
non-increasing type supports always exist for every (S, u), this result implies the existence of
persistently rationalizable strategies for every (S, u). For the definition of properly rationalizable
strategies for types with non-increasing type supports, we use Asheim’s characterization of
proper rationalizability and extend it to games with more than two players.

5.1. Proper Rationalizability

Instead of iteratively constructing the type space of each player, as we have done in Section
3, we now assume the existence of some type space Ri for every player i with the property
that every type ri can be identified with some preference relation qi(ri) on the set of acts
F(S−i ×R−i, Z).3 Hence, the exhaustive set of relevant variables about which player i may be
uncertain is given by the opponents’ strategy choices and types. From these preference relations
we may actually derive a first-order preference relation, second-order preference relation, and so
on, similar to Section 3. In Asheim’s model, it is assumed that every preference relation qi(ri) on
F(S−i×R−i, Z) is of the lexicographic expected utility type, that is, there is some lexicographic
probability distribution λi(ri) on S−i×R−i, and some utility function ui(ri) from Z to the real
numbers which together represent qi(ri). By a lexicographic probability distribution we mean a
vector λi = (λ1i ,λ

2
i , ...,λ

K
i ) of probability distributions on S−i × R−i, and we call λki the k-th

order belief in λi. The interpretation is that player i assigns “infinitely more importance” to his
k-th order beliefs than to his (k + 1)-th order beliefs, without completely discarding the latter
beliefs when reaching a decision. For every (s−i, r−i) ∈ S−i ×R−i, let k(s−i, r−i) be the first k
for which (s−i, r−i) lies in the support of λki .We say that (s−i, r−i) is infinitely more likely than
(s0−i, r

0
−i) in λi if k(s−i, r−i) < k(s0−i, r

0
−i).

Such a lexicographic probability distribution λi and a utility function ui induce the preference
relation qi on F(S−i×R−i, Z) defined as follows: act f is weakly preferred to act g if and only if
for every k ∈ {1, ...,K} with ui(f,λki ) < ui(g,λki ) there is some l < k with ui(f,λli) > ui(g,λli).

3Here, we use different symbols for types and preferences, as to distinguish them from the types and preferences
introduced in Section 3.
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Here, ui(f,λ
k
i ) denotes the expected utility of choosing act f while holding utility function ui

and subjective probability distribution λki .
Since the preference relation qi(ri) can be represented by a pair (λi(ri), ui(ri)), we may as

well identify each type ri ∈ Ri with such a pair (λi(ri), ui(ri)). If λi(ri) = (λ1i , ...,λ
K
i ), we

define supp(λi(ri)) = ∪ksupp(λki ). Let R−i(ri) be the projection of supp(λi(ri)) on R−i, that is,
R−i(ri) is the set of opponents’ types that ri deems possible. We say that type ri is cautious if
supp(λi(ri)) = S−i ×R−i(ri). Hence, a cautious type does not exclude any opponent’s strategy.

For every player i and player j, let F(S−i×R−i, Z| Sj × Tj) be the set of acts on S−i×R−i
which only depend upon the argument in Sj×Rj . Bymrg(qi(ri)| Sj×Rj) we denote the marginal
of the preference relation qi(ri) on the set of acts F(S−i×R−i, Z| Sj×Rj). As such, mrg(qi(ri)|
Sj×Rj) can be identified with a preference relation on the set of acts F(Sj×Rj , Z). Since qi(ri)
is given by a lexicographic probability distribution λi(ri) on S−i×R−i and some utility function
ui, it follows that mrg(qi(ri)| Sj × Rj) is given by some lexicographic probability distribution
λij(ri) on Sj × Rj and the same utility function ui. Let λij(ri| Rj) be the marginal of λij on
Rj , and let Rj(ri) = supp(λij(ri| Rj)) be the set of player j types that ri deems possible. We
say that type ri respects the opponents’ preferences if for every player j, every type rj ∈ Rj(ri)
and all strategies sj , s

0
j such that rj strictly prefers sj over s

0
j , it holds that (sj , rj) is infinitely

more likely than (s0j , rj) in λij(ri). Hence, player i should deem superior strategies infinitely
more likely than inferior strategies.

Let ri be some type for player i. For every opponent j, let

R1j (ri) = Rj(ri)

be the set of player j types that ti directly attaches positive probability to. For j = i, we define
R1i (ri) = {ri}. Let

R1(ri) = ∪j∈IR1j (ri)
For every k ≥ 2, let Rk(ri) be defined recursively by

Rk(ri) =
[

r∈Rk−1(ri)
R1(r).

By R∞(ri) = ∪k∈NRk(ri) we denote the set of types that ri, directly or indirectly, attaches
positive probability to. The cardinality of R∞(ri) is called the complexity of type ri.Let R̃ ⊆
×j∈IRj be an event. We say that ri respects common belief about R̃ if R∞(ri) ⊆ R̃.

Definition 5.1. Let S be an extensive form structure and u a profile of utility functions. A
type ri ∈ Ri is called properly rationalizable for (S, u) if ri respects common belief about (1) the
event that types have utility functions as specified by u, (2) the event that types are cautious,
(3) the event that types respect the opponents’ preferences, and (4) the event that types have
finite complexity4. A strategy si is called properly rationalizable for (S, u) if there is a properly
rationalizable type ri for (S, u) such that si is optimal for ri.

4Asheim (2001) assumes from the beginning that the set of possible types for every player is finite, and hence
the complexity of every type is always finite within his framework.
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We shall now introduce a refinement of proper rationalizability, based on the additional
requirement that types should have non-increasing type supports. By the latter, we mean the
property that type ri’s k-th order belief should only assign positive probability to opponents’
types that have already been assigned positive probability in his (k−1)-th order belief. Formally,
let λki (ri) ∈ ∆(S−i × R−i) be the k-th order belief held by type ri, and let λki (ri| R−i) be the
marginal of λki (ri) on the set of opponents’ types.

Definition 5.2. A type ri in Ri is said to be with non-increasing type supports if supp λki (ri|
R−i) ⊆ supp λk−1i (ri| R−i) for all k ≥ 2. A type ri in Ri is said to be properly rationalizable for
(S, u) with non-increasing type suuports if it is properly rationalizable for (S, u) and respects
common belief about the event that types are with non-increasing type supports. A strategy si is
said to be properly rationalizable for (S, u) for types with non-increasing type supports if it can
be chosen optimally by some type that is properly rationalizable for (S, u) with non-increasing
type supports.

Following Asheim (2001), it can be shown that every strategy si assigned positive probability
in some mixed strategy proper equilibrium for (S, u) is properly rationalizable for (S, u) for
types with non-increasing type supports. In fact, such strategies may be supported by properly
rationalizable types that respect common belief about the event that all types assign positive
probability to only one type for each opponent. Such types trivially respect common belief
about the event that types are with non-increasing type supports. Therefore, we may conclude
that properly rationalizable strategies with non-increasing type supports always exist for every
(S, u).

5.2. The Main Result

We now prove that every properly rationalizable strategy for (S, u) for types with non-increasing
type supports is persistently rationalizable for (S, u). In order to establish this result we need
the following two technical lemmas. The first lemma provides a useful technical property of
extensive form structures with observable deviators. For this lemma we need some additional
notation. Let i and j be different players, hi ∈ H∗i and hj ∈ Hj . If hj precedes hi, let A(hj , hi)
be the set of actions at hj which lead to the information set hi, that is, a ∈ A(hj , hi) if and
only if there is some path from the root to hi at which a is chosen at hj . If hj does not precede
hi, then define A(hj , hi) = A(hj). Recall that Sj(hi) is the set of player j strategies that do
not avoid hi. Let Zj(hi) be the set of terminal nodes that can be reached if player j chooses a
strategy in Sj(hi). For a given strategy sj , let Hj(sj) be the collection of player j information
sets that are not avoided by sj .

Lemma 5.3. Let S be an extensive form structure with observable deviators. Let i and j be
different players, hi ∈ H∗i and hj ∈ Hj . Then, the following holds:
(a) sj ∈ Sj(hi) if and only if sj(hj) ∈ A(hj , hi) for every hj ∈ Hj(sj),
(b) z ∈ Zj(hi) if and only if for every information set hj ∈ Hj on the path to z, the unique
action at hj leading to z belongs to A(hj , hi).
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The proof can be found in the appendix. The second lemma deals with the problem of
transforming a type from the “proper rationalizability type space ” to a type from the “persistent
rationalizability type space ” while preserving its “relevant properties”. Such transformations are
relevant for the problem at hand since, in order to prove that properly rationalizable strategies
for types with non-increasing type supports are persistently rationalizable, we shall show that
every properly rationalizable type can be transformed into a persistently rationalizable type,
while preserving its “relevant properties”.

The following lemma formalizes what we mean by “relevant properties” and states that such
“property preserving” transformations can always be carried out. Before stating the lemma, we
need some additional definitions. Let Ri and Ti denote the set of player i types in the proper
rationalizability model and persistent rationalizability model, respectively. In order to facilitate
the exposition, we assume that Ri only contains types that respect common belief about the
events that types are cautious and have finite complexity. For every two players i and j and
information set hi ∈ H∗i , recall that Zj(hi) denotes the set of terminal nodes that can be reached
by some strategy in Sj(hi). Let the utility functions (ui)i∈I be given. Define for every player i,
every hi ∈ H∗i and every opponent j the player j utility function ũj(hi) : Z → R by

ũj(hi)(z) =

½
uj(z), if z ∈ Zj(hi),

uj(z)−Kj(hi), if z /∈ Zj(hi), (5.1)

where the constant Kj(hi) > 0 is chosen such that uj(z1) > uj(z2)−Kj(hi) for all z1 ∈ Zj(hi)
and all z2 /∈ Zj(hi). In the proof of the main result, ũj(hi) shall represent player i’s belief about
player j’s utility function once information hi has been reached.

For every type ri ∈ Ri and every information set hi ∈ H∗i , let λi(ri, hi) be the marginal of
the lexicographic probability distribution λi on S−i(hi)×R−i, and let µi(ri, hi) ∈ ∆(S−i(hi)×
R−i) be the first-order belief of λi(ri, hi). Recall that µi(ti, hi) is a probability distribution on
S−i(hi)× T−i for all ti ∈ Ti and hi.

Lemma 5.4. There is a transformation mapping t∗ which to every type ri ∈ Ri and every
opponent’s information set hl assigns some type t

∗(ri, hl) in Ti such that
(a) t∗(ri, hl) has utility function ũi(hl) for all ri and hl,
(b) µi(t

∗(ri, hl), hi)((sj , tj)j 6=i) = µi(ri, hi)({(s0j , r0j)j 6=i| s0j = sj and t∗(r0j , hi) = tj for all j 6= i})
for all ri, hl and hi, and all (sj , tj)j 6=i in S−i(hi)× T−i.

Here, µi(t
∗(ri, hl), hi)((sj , tj)j 6=i) denotes the probability that type t∗(ri, hl) assigns at infor-

mation set hi to the profile (sj , tj)j 6=i of opponents’ strategy-type pairs. The proof can be found
in the appendix. We are now ready to prove the announced result.

Theorem 5.5. Let S be an extensive form structure with observable deviators and u = (ui)i∈I
a profile of utility functions. Then, every properly rationalizable strategy for (S, u) for types
with non-increasing type supports is persistently rationalizable for (S, u).

Proof. Lemma 5.4 guarantees that there is some transformation mapping t∗ which to every
type ri ∈ Ri with finite complexity and information set hl assigns some type t∗(ri, hl) satisfying
the properties (1) and (2) above. As a preliminary step, we first show that for every player i,

18



every properly rationalizable type r∗i ∈ Ri with non-increasing type supports, every player l 6= i,
every hl ∈ H∗l , the type t∗(r∗i , hl) has the following properties: (a) it is updating consistent,
(b) it satisfies proper belief revision, (c) it initially believes u and (d) it believes in sequential
rationality.

(a) Fix a type t∗(r∗i , hl), induced by a properly rationalizable type r
∗
i with non-increasing

type supports. First of all, it is easily verified that t∗(r∗i , hl) is updating consistent since the vec-
tor of probability distributions (µi(t

∗(r∗i , hl), hi))hi∈H∗i is induced by the cautious lexicographic
probability distribution λi(r

∗
i ) on S−i ×R−i.

(b) We now show that t∗(r∗i , hl) satisfies proper belief revision. Let h
1
i , h

2
i ∈ H∗i be such that

h2i follows h
1
i . Let t

2
j ∈ suppµi(t∗(r∗i , hl), h2i | Tj). By Lemma 5.4 (b), it follows that t2j = t∗(rj , h2i )

for some rj to which µi(r
∗
i , h

2
i ) assigns positive probability. Recall that µi(r

∗
i , h

2
i ) is the first-order

probability distribution of the marginal of the lexicographic probability distribution λi(r
∗
i ) on

S−i(h2i )×R−i. Similarly, µi(r∗i , h1i ) is the first-order probability distribution of the marginal of
the lexicographic probability distribution λi(r

∗
i ) on S−i(h

1
i )×R−i. Since S−i(h2i ) ⊆ S−i(h1i ), and

since r∗i is with non-increasing type supports, it follows that µi(r
∗
i , h

1
i ) assigns positive probability

to rj also. Let t
1
j = t

∗(rj , h1i ). Then, by Lemma 5.4 (b), we know that µi(t
∗(r∗i , hl), h

1
i ) assigns

positive probability to t1j . Now, choose some arbitrary information set hj ∈ H∗j . We prove that
t1j and t

2
j at hj hold the same preference relation on strategies in Sj(hj) ∩ Sj(h2i ), which would

imply that t∗(r∗i , hl) satisfies proper belief revision.
By definition we have that t1j = t∗(rj , h1i ) and t

2
j = t∗(rj , h2i ). It then follows from Lemma

5.4 (a) that t1j has utility function ũj(h
1
i ) at hj and t

2
j has utility function ũj(h

2
i ) at hj . Since

Zj(h
2
i ) ⊆ Zj(h1i ) we know, by definition, that ũj(h1i ) and ũj(h2i ) coincide at terminal nodes in

Zj(h
2
i ). Hence, at information set hj , the types t

1
j and t

2
j hold the same utilities at Z(hj)∩Zj(h2i ).

Since t1j = t
∗(rj , h1i ) and t

2
j = t

∗(rj , h2i ), we may deduce from Lemma 5.4 (b) that t1j and t
2
j at

information set hj hold the same marginal probability distribution on the opponents’ strategies
in S−j(hj). Together with the fact that t1j and t

2
j hold the same utilities at Z(hj)∩Zj(h2i ), and

the definition that Zj(h
2
i ) is the set of terminal nodes that are possible if player j chooses a

strategy in Sj(h
2
i ), it follows that t

1
j and t

2
j hold the same preference relation on strategies in

Sj(hj) ∩ Sj(h2i ). Hence, t∗(r∗i , hl) satisfies proper belief revision.
(c) By Lemma 5.4 (b), we may conclude that µi(t

∗(r∗i , hl), h0) assigns positive probability
only to types tj such that tj = t

∗(r0j , h0) for some r
0
j . By Lemma 5.4 (a), every type t

∗(r0j , h0)
has utility function ũj(h0) = uj . Hence, t

∗(r∗i , hl) believes at h0 that all opponents j hold utility
function uj , and hence t

∗(r∗i , hl) initially believes u.
(d) We finally show that t∗(r∗i , hl) believes in sequential rationality. Hence, we must prove

that µi(t
∗(r∗i , hl), hi) assigns probability one to the set of sequentially rational strategy-type

pairs (sj , tj) for all players j and at all information sets hi ∈ H∗i . Let t∗i = t∗(r∗i , hl). Since r∗i is
properly rationalizable, we know r∗i has finite complexity, and hence the probability distributions
µi(r

∗
i , hi) on S−i(hi)×R−i are discrete for all hi. By property (b) in Lemma 5.4 we know that

the probability distribution µi(t
∗
i , hi) on S−i(hi)×T−i will be discrete as well for all hi. Hence, it

suffices to show that µi(t
∗
i , hi) assigns positive probability only to sequentially rational strategy-

type pairs (sj , tj).
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Fix an information set h∗i . Suppose that (sj , tj) is a strategy-type pair in Sj(h∗i )×Tj that is
not sequentially rational. We prove that µi(t

∗
i , h

∗
i ) puts probability zero on (sj , tj).

Suppose, on the contrary, that µi(t
∗
i , h

∗
i ) assigns positive probability to (sj , tj). Since, by

properties (a) and (b) in Lemma 5.4, t∗i believes at h
∗
i that player j holds utility function ũj(h

∗
i ),

we know that uj(tj) = ũj(h
∗
i ). By property (b) in Lemma 5.4, we also know that tj can be written

as t∗(rj , h∗i ) for some rj ∈ Rj(r∗i ). Take now an arbitrary rj ∈ Rj(r∗i ) such that t∗(rj , h∗i ) = tj .
Since (sj , tj) is not sequentially rational, there exists some information set h

∗
j ∈ H∗j (sj) such

that sj is not optimal given the probability distribution µj(tj , h
∗
j ) on S−j(h

∗
j ) × T−j and the

utility function ũj(h
∗
i ). Let Eũj(h∗i )(sj , µj(tj , h

∗
j )) be the expected utility for player j by choosing

strategy sj when having the subjective probability distribution µj(tj , h
∗
j ) and utility function

ũj(h
∗
i ). Since sj is not optimal at h

∗
j , there is some other strategy s̃j ∈ Sj(h∗j ) such that

Eũj(h∗i )(sj , µj(tj , h
∗
j )) < Eũj(h∗i )(s̃j , µj(tj , h

∗
j )). (5.2)

Let H∗j (h
∗
j ) be the collection of player j information sets hj ∈ H∗j that weakly precede or

weakly follow h∗j , and let ŝj be the strategy which coincides with s̃j at all information sets in
H∗j (s̃j)∩H∗j (h∗j ), and coincides with sj at all information sets in H∗j (sj)\H∗j (h∗j ). Since both sj
and ŝj are in Sj(h

∗
j ), it follows, by perfect recall, that sj and ŝj coincide on player j information

sets preceding h∗j . Hence, sj and ŝj only differ at player j information sets following h
∗
j . Since the

extensive form structure is with observable deviators, we have that S(h∗j ) = Sj(h
∗
j) × S−j(h∗j ).

Since sj , s̃j and ŝj are all in Sj(h
∗
j ), and the marginal of µj(tj , h

∗
j ) on the space of opponents’

strategies is a probability distribution on S−j(h∗j ), it follows that µj(tj , h∗j) together with each
of the strategies sj , s̃j and ŝj induces a probability distribution on the terminal nodes which
assigns all weight to Z(h∗j). Since s̃j and ŝj coincide on all player j information sets that precede
Z(h∗j), it follows from (5.2) that

Eũj(h∗i )(sj , µj(tj , h
∗
j )) < Eũj(h∗i )(ŝj , µj(tj , h

∗
j )). (5.3)

Since sj ∈ Sj(h
∗
i ), we know that sj can only lead to terminal nodes in Zj(h

∗
i ), and hence

(sj , µj(tj , h
∗
j )) induces a probability distribution on Zj(h

∗
i ). By (5.1), we know that ũj(h

∗
i ) co-

incides with uj on Zj(h
∗
i ), and hence

Eũj(h∗i )(sj , µj(tj , h
∗
j )) = Euj (sj , µj(tj , h

∗
j )). (5.4)

Now, let
Ĥj = {hj ∈ H∗j (ŝj)| ŝj(hj) /∈ A(hj , h∗i )}.

By definition of A(hj , h
∗
i ), we have that a ∈ A(hj)\A(hj , h∗i ) if and only if hj precedes h∗i and

a avoids h∗i . Hence, if a ∈ A(hj)\A(hj , h∗i ) and h̃j follows hj and a, then h̃j cannot precede
hi, and hence A(h̃j , h

∗
i ) = A(h̃j). Consequently, if hj and h̃j are both in Ĥj , then hj cannot

precede nor follow h̃j . Note that every hj in Ĥj follows h
∗
j . Namely, we have seen that sj and

ŝj can only differ at information sets following h
∗
j . Since sj ∈ Sj(h∗i ), we have, by Lemma

5.3 (a), that sj(hj) ∈ A(hj , h∗i ) for all hj . In particular, sj(hj) ∈ A(hj , h∗i ) at all information
sets hj not following h

∗
j . Since ŝj coincides with sj on these information sets, it follows that

ŝj(hj) ∈ A(hj , h∗i ) at all information sets hj not following h∗j . Hence, Ĥj can only contain
information sets following h∗j .
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Let s∗j be some strategy which coincides with ŝj on all information sets in H∗j (ŝj)\Ĥj , and
chooses some action in A(hj , h

∗
i ) at all information sets hj ∈ H∗j (ŝj)∩Ĥj . Then, by construction,

s∗j (hj) ∈ A(hj , h∗i ) at all information sets hj ∈ H∗j (s∗j ). By Lemma 5.3 (a), it then follows that
s∗j ∈ Sj(h∗i ). By construction, s∗j only differs from ŝj at information sets hj ∈ H∗j (s∗j ) ∩ Ĥj . At
these information sets hj , the strategy s

∗
j chooses some a ∈ A(hj , h∗i ), which eventually leads to

Zj(h
∗
i ). At such information sets hj ∈ Ĥj , the strategy ŝj chooses some action a /∈ A(hj , h∗i ),

eventually leading to Z\Zj(h∗i ). The latter follows from Lemma 5.3 (b), stating that Zj(h
∗
i ) is

exactly the set of terminal nodes z such that at every player j information set hj preceding z it
holds that the unique action at hj leading to z belongs to A(hj , h

∗
i ). By (5.1), we know that

ũj(h
∗
i )(z1) > ũj(h

∗
i )(z2)

for all z1 ∈ Zj(h∗i ) and all z2 ∈ Z\Zj(h∗i ), which, together with the observations above, implies
that

Eũj(h∗i )(ŝj , µj(tj , h
∗
j )) ≤ Eũj(h∗i )(s∗j , µj(tj , h∗j )). (5.5)

Moreover, since s∗j ∈ Sj(h∗i ), we may conclude, similarly to (5.4), that

Eũj(h∗i )(s
∗
j , µj(tj , h

∗
j )) = Euj (s

∗
j , µj(tj , h

∗
j )). (5.6)

By combining (5.3), (5.4), (5.5) and (5.6), we obtain that

Euj (sj , µj(tj , h
∗
j )) < Euj (s

∗
j , µj(tj , h

∗
j )). (5.7)

Note that s∗j and sj only differ at information sets following h
∗
j .We have seen namely, that ŝj

only differs from sj at information sets following h
∗
j , while s

∗
j only differs from ŝj at information

sets in Ĥj . Since Ĥj only contains information sets following h
∗
j , it follows that s

∗
j and sj only

differ at information sets following h∗j .
Let µj(tj , h

∗
j | S−j(h∗j )) be the marginal of µj(tj , h∗j ) on S−j(h∗j ). Since the expected utility

Euj (sj , µj(tj , h
∗
j)) only depends upon µj(tj , h

∗
j | S−j(h∗j )), it follows that

Euj (sj , µj(tj , h
∗
j | S−j(h∗j ))) < Euj (s∗j , µj(tj , h∗j | S−j(h∗j ))). (5.8)

Recall that tj = t∗(rj , h∗i ). By property (b) in Lemma 5.4 it follows that tj and rj induce, at
every hj , the same marginal probability distribution on the space of opponents’ strategies, hence

µj(rj , hj | S−j(hj)) = µj(tj , hj | S−j(hj)) (5.9)

for all hj ∈ H∗j . Hence, by (5.8) and (5.9) it follows that

Euj (sj , µj(rj , h
∗
j | S−j(h∗j ))) < Euj (s∗j , µj(rj , h∗j | S−j(h∗j ))). (5.10)

Let rj be given by a lexicographic probability distribution λj on S−j ×R−j . Let λj(rj | S−j)
be the marginal of λj on S−j . Suppose that λj(rj | S−j) = (λ1j (rj | S−j), ...,λLj (rj | S−j)), where
λlj(rj | S−j) is the l-th order probability distribution of λj(rj | S−j). Let l∗ be the first order
for which λl

∗
j (rj | S−j)(S−j(h∗j )) > 0. Hence, λlj(rj | S−j)(S−j(h∗j )) = 0 for all l < l∗. Since, by
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assumption, S(h∗j ) = Sj(h∗j )×S−j(h∗j ), it follows that both (sj ,λlj(rj | S−j)) and (s∗j ,λlj(rj | S−j))
reach h∗j with probability zero for all l < l

∗. We have seen above that sj and s∗j only differ at
information sets following h∗j , and hence

Euj (sj ,λ
l
j(rj | S−j)) = Euj (s∗j ,λlj(rj | S−j)) (5.11)

for all l < l∗. For l = l∗, we have that

Euj (sj ,λ
l∗
j (rj | S−j)) = λl

∗
j (rj | S−j)(S−j(h∗j )) Euj (sj , µj(rj , h∗j | S−j(h∗j))) +
+

X
z /∈Z(h∗j )

P(sj ,λl∗j (rj | S−j))(z) uj(z)

< λl
∗
j (rj | S−j)(S−j(h∗j )) Euj (s∗j , µj(rj , h∗j | S−j(h∗j ))) +
+

X
z /∈Z(h∗j )

P(sj ,λl∗j (rj | S−j))(z) uj(z)

= λl
∗
j (rj | S−j)(S−j(h∗j )) Euj (s∗j , µj(rj , h∗j | S−j(h∗j ))) +
+

X
z /∈Z(h∗j )

P(s∗j ,λl
∗
j (rj | S−j))(z) uj(z)

= Euj (s
∗
j ,λ

l∗
j (rj | S−j)). (5.12)

Here, P(sj ,λl∗j (rj | S−j))(z) denotes the probability of reaching terminal node z under (sj ,λ
l∗
j (rj |

S−j)). The first equality in (5.12) follows from the observation that (1) (sj , s−j) leads to a
terminal node in Z(h∗j ) if and only if s−j ∈ S−j(h∗j ), and (2) µj(rj , h∗j | S−j(h∗j)) is the marginal
of λl

∗
j (rj | S−j) on S−j(h∗j ). The inequality follows from (5.10) and the assumption that λl

∗
j (rj |

S−j)(S−j(h∗j )) > 0. The second equality follows from the fact that sj and s
∗
j only differ at

information sets following h∗j , and hence P(sj ,λl∗j (rj | S−j))(z) = P(s∗j ,λl
∗
j (rj | S−j))(z) for all z /∈

Z(h∗j). The last equality follows from the same argument as used for the first equality.
By (5.11) and (5.12), we may conclude that type rj strictly prefers strategy s

∗
j above sj .

By assumption, r∗i is properly rationalizable, and hence respects opponents’ preferences. Since,
by assumption, rj ∈ Rj(r∗i ), it follows that r∗i deems (s∗j , rj) infinitely more likely that (sj , rj).
Since both sj and s

∗
j are in Sj(h

∗
i ), it follows that µi(r

∗
i , h

∗
i ) assigns probability zero to (sj , rj).

By property (b) in Lemma 5.4, we have that

µi(t
∗
i , h

∗
i | Sj(h∗i )× Tj)(sj , tj)

= µi(r
∗
i , h

∗
i | Sj(h∗i )×Rj)({(s0j , rj) | s0j = sj and t∗(rj , h∗i ) = tj}), (5.13)

where µi(t
∗
i , h

∗
i | Sj(h∗i ) × Tj) and µi(r∗i , h∗i | Sj(h∗i ) × Rj) denote the marginals on Sj(h∗i ) × Tj

and Sj(h
∗
i )×Rj , respectively. We have shown above that for all rj ∈ Rj(r∗i ) with t∗(rj , h∗i ) = tj

it holds that µi(r
∗
i , h

∗
i ) assigns probability zero to (sj , rj). For all rj ∈ Rj\Rj(r∗i ) we have, by

definition, that µi(r
∗
i , h

∗
i ) assigns probability zero to rj , and hence to (sj , rj). Consequently, we

have shown that for all rj ∈ Rj with t∗(rj , h∗i ) = tj it holds that µi(r∗i , h∗i ) assigns probability
zero to (sj , rj). But then, (5.13) implies that µi(t

∗
i , h

∗
i | Sj(h∗i )× Tj)(sj , tj) = 0. Hence, we may
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conclude that µi(t
∗
i , h

∗
i ) assigns probability zero to all strategy-type pairs (sj , tj) in Sj(h

∗
i )× Tj

that are not sequentially rational. This implies that t∗i believes in sequential rationality.
We thus have shown that for every properly rationalizable type ri for (S, u) with non-

increasing type supports, and every information set hl, the induced type t
∗(ri, hl) (a) is updating

consistent, (b) satisfies proper belief revision, (c) initially believes u and (d) believes in sequential
rationality.

By construction, every properly rationalizable type ri for (S, u) with non-increasing type
supports is such that, at every information set hi, the probability distribution µi(ri, hi) on
S−i(hi) × R−i assigns positive probability only to properly rationalizable types for (S, u) with
non-increasing type supports. Combining this insight with property (b) in Lemma 5.4 leads to
the observation that for every properly rationalizable type ri for (S, u) with non-increasing type
supports, and information set hl, the induced type t

∗(ri, hl) assigns, at every information set hi,
only positive probability to opponents’ types tj that can be written as tj = t

∗(rj , hi) for some
properly rationalizable type rj for (S, u) with non-increasing type supports. Since every such
t∗(rj , hi) satisfies the properties (a) to (d) above, we have that every type t∗(ri, hl) believes, at
every hi, that opponent types satisfy properties (a) to (d). By applying this argument recursively,
it follows that type t∗(ri, hl) respects common belief about the event that types satisfy properties
(a) to (d). However, this implies that every type t∗(ri, hl) induced by a properly rationalizable
type ri for (S, u) with non-increasing type supports, is persistently rationalizable and respects
common belief about the event that types initially believe u.

Now, let s∗i be a properly rationalizable strategy for (S, u) for types with non-increasing type
supports. Then, there is some properly rationalizable type r∗i for (S, u) with non-increasing type
supports such that s∗i is optimal for r∗i . Let t∗i = t∗(r∗i , h0). Then, by property (b) in Lemma 5.4, t∗i
holds utility function ũi(h0) = ui. Since we have seen above that t

∗
i is persistently rationalizable

and respects common belief about the event that types initially believe u, it follows that t∗i is
persistently rationalizable for (S, u).

Since s∗i is optimal for r
∗
i , and since the lexicographic probability distribution λi(r

∗
i ) has full

support on S−i, it follows that s∗i is optimal with respect to µi(r
∗
i , hi| S−i(hi)) at every informa-

tion set hi ∈ Hi(s∗i ). Here, µi(r∗i , hi| S−i(hi)) denotes the marginal of the probability distribution
µi(r

∗
i , hi) on S−i(hi). By property (b) in Lemma 5.4, we know that µi(r

∗
i , hi| S−i(hi)) = µi(t∗i , hi|

S−i(hi)) for all hi. Hence, s∗i is optimal with respect to µi(t
∗
i , hi| S−i(hi)) for all hi ∈ Hi(s∗i ).

This implies that s∗i is sequentially rational for t
∗
i , and hence s

∗
i is persistently rationalizable for

(S, u). We thus have shown that every properly rationalizable strategy for (S, u) for types with
non-increasing type supports is persistently rationalizable for (S, u). This completes the proof
of this theorem. ¥

6. Appendix

Proof of Lemma 3.3. Let fi be the homeomorphism from P ci to ×hi∈H∗i Peu(S−i(hi) ×
P−i, Z(hi)) discussed above. Let the sets P ci (hi) be such that P ci = ×hi∈H∗i P ci (hi), and for
every hi ∈ H∗i let fi(hi) be the corresponding homeomorphism from P ci (hi) to Peu(S−i(hi) ×
P−i, Z(hi)). Let Peu(S−i(hi) × P−i, Z(hi)| S−i(hi) × P c,∞−i ) be the set of preference relations
(µi(hi), ui(hi)) ∈ Peu(S−i(hi) × P−i, Z(hi)) for which µi(hi)(S−i(hi) × P c,∞−i ) = 1. Let the sets
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P c,∞i (hi) be such that P
c,∞
i = ×hi∈H∗i P

c,∞
i (hi).We prove that fi(hi)(P

c,∞
i (hi)) = Peu(S−i(hi)×

P−i, Z(hi)| S−i(hi)×P c,∞−i ). Since Peu(S−i(hi)×P−i, Z(hi)| S−i(hi)×P c,∞−i ) is homeomorphic to
Peu(S−i(hi)×P c,∞−i , Z(hi)), this would imply that P c,∞i is homeomorphic to×hi∈H∗i Peu(S−i(hi)×
P c,∞−i , Z(hi)).

We start by showing that fi(hi)(P
c,∞
i (hi)) ⊆ Peu(S−i(hi)×P−i, Z(hi)| S−i(hi)×P c,∞−i ). Let

pi(hi) ∈ P c,∞i (hi). Then, by definition, µi(pi, hi)(S−i(hi)× P c,k−i ) = 1 for every k ∈ N and hence
µi(pi, hi)(S−i(hi) × P c,∞−i ) = 1, which implies that fi(hi)(pi(hi)) ∈ Peu(S−i(hi) × P−i, Z(hi)|
S−i(hi)× P c,∞−i ).

We next show that fi(hi)
−1(Peu(S−i(hi) × P−i, Z(hi)| S−i(hi) × P c,∞−i )) ⊆ P c,∞i (hi), which

would imply that Peu(S−i(hi) × P−i, Z(hi)| S−i(hi) × P c,∞−i ) ⊆ fi(hi)(P c,∞i (hi)). Assume now
that pi(hi) ∈ fi(hi)

−1(Peu(S−i(hi) × P−i, Z(hi)| S−i(hi) × P c,∞−i )), that is, fi(hi)(pi(hi)) ∈
Peu(S−i(hi) × P−i, Z(hi)| S−i(hi) × P c,∞−i ). This means that µi(pi, hi)(S−i(hi)× P c,∞−i ) = 1. As
such, µi(pi, hi)(S−i(hi)×P c,k−1−i ) = 1 for all k, and hence pi(hi) ∈ P c,ki (hi) for all k. Here, the sets

P c,ki (hi) are defined such that P
c,k
i = ×hi∈H∗i P

c,k
i (hi). This implies that pi(hi) ∈ ∩k∈NP c,ki (hi) =

P c,∞i (hi). Hence, fi(hi)
−1(Peu(S−i(hi) × P−i, Z(hi)| S−i(hi) × P c,∞−i )) ⊆ P c,∞i (hi), which com-

pletes the proof. ¥

Proof of Lemma 5.3. (a) Let sj ∈ Sj(hi). Suppose that there is some hj ∈ Hj(sj) with
sj(hj) /∈ A(hj , hi). Then, necessarily, hj precedes hi. Hence, by the definition of A(hj , hi), the
action sj(hj) avoids hi. On the other hand, since hj precedes hi, there is some node x ∈ hj
which leads to hi. By perfect recall, there is some strategy profile s−j such that (sj , s−j) reaches
x. Hence, there is some strategy profile (s̃j , s̃−j) such that (s̃j , s̃−j) reaches x and hi. Since
(s̃j , s̃−j) ∈ S(hi) and S(hi) = ×k∈ISk(hi), it follows that s̃−j ∈ ×k 6=jSk(hi). Since (s̃j , s̃−j)
reaches x ∈ hj , we know, by perfect recall, that s̃j coincides with sj on the player j information
sets preceding hj . Hence, (sj , s̃−j) reaches hj . Since sj(hj) avoids hi, we have that (sj , s̃−j) does
not reach hi, and hence (sj , s̃−j) /∈ S(hi). Since S(hi) = ×k∈ISk(hi) and s̃−j ∈ ×k 6=jSk(hi), it
thus follows that sj /∈ Sj(hi), which is a contradiction. We may thus conclude that sj(hj) ∈
A(hj , hi) for all hj ∈ Hj(sj).

Now, let sj be such that sj(hj) ∈ A(hj , hi) for all hj ∈ Hj(sj). We prove that sj ∈ Sj(hi).
We distinguish two cases. Suppose first that there is no player j information set preceding hi.
Then, obviously, sj ∈ Sj(hi). Suppose now that there is some player j information set preceding
hi. Let hj ∈ Hj(sj) be a player j information set preceding hi such that there is no other player
j information set in Hj(sj) between hj and hi. By assumption, sj(hj) ∈ A(hj , hi), hence there
exists a node x ∈ hj such that hi can be reached through x via action sj(hj). By perfect recall,
there is some strategy profile s̃−j for the opponents such that (sj , s̃−j) reaches x. Since there
is no h0j ∈ Hj(sj) between hj and hi, and since hi can be reached through x via sj(hj), we can
choose s̃−j such that (sj , s̃−j) reaches hi. But then, by definition, sj ∈ Sj(hi). This completes
the proof of part (a).

(b) Suppose that z ∈ Zj(hi) and that hj ∈ Hj is a player j information set on the path to
z. Then, obviously, the unique action at hj leading to z belongs to A(hj , hi). Suppose, on the
other hand, that the terminal node z is such that for every player j information set hj on the
path to z, the unique action at hj leading to z belongs to A(hj , hi). Let sj be a strategy such
that at every information set hj ∈ Hj(sj) on the path to z, the strategy sj chooses the unique
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action at hj leading to z, and at every other information set hj ∈ Hj(sj) the strategy sj chooses
some action in A(hj , hi). Then, sj(hj) ∈ A(hj , hi) for all hj ∈ Hj(sj), and hence, by part (a),
sj ∈ Sj(hi). Since z can be reached by strategy sj , it follows that z ∈ Zj(hi). This completes
the proof. ¥

Proof of Lemma 5.4. We need the following definitions. Let X−i be some set and λi a
cautious lexicographic probability distribution on S−i × X−i, that is, suppλi = S−i × X̃−i for
some X̃−i ⊆ X−i. For every information set hi, let λi(hi) be the marginal of λi on S−i(hi)×X−i
and let µi(λi, hi) ∈ ∆(S−i(hi) × X−i) be the first-order probability distribution of λi(hi). For
a given vector of probability distributions µi = (µi(hi))hi∈H∗i in ×hi∈H∗i∆(S−i(hi) × X−i), we
say that µi is consistent if there is some cautious lexicographic probability distribution λi on
S−i ×X−i such that µi(hi) = µi(λi, hi) for all hi ∈ H∗i . In this case, we say that µi is induced
by the lexicographic probability distribution λi.

By Pcleu(S−i ×X−i, ui) we denote the set of preference relations on the set of acts F(S−i ×
X−i, Z) that can be represented by a cautious lexicographic probability distribution on S−i×X−i
and the utility function ui. Let (×hi∈H∗i Peu(S−i(hi)×X−i, ui))c be the set of vectors of expected
utility preference relations on F(S−i(hi) × X−i, Z(hi)) such that (1) the corresponding vector
of probability distributions (µi(hi))hi∈H∗i in ×hi∈H∗i ∆(S−i(hi)×X−i) is consistent, and (2) the
utility function at hi is given by ui|Z(hi).

Within the proper rationalizability framework, let the uncertainty spaces Y 1i , Y
2
i , ... be given

by
Y 1i = S−i

for all players i, and
Y ki = Y

k−1
i × (×j 6=iPcleu(Y k−1j , uj))

for k ≥ 2 and all players i. Let Ỹ 1i = S−i, and for every k ≥ 2 let

Ỹ ki = ×j 6=iPcleu(Y k−1j , uj).

Then, Y ki = Ỹ
1
i × ...× Ỹ ki for all k, and S−i ×R−i is homeomorphic to ×k∈NỸ ki . Let Y ki (hi) =

S−i(hi)× Ỹ 2i × ...× Ỹ ki for all hi.
Within the persistent rationalizability framework, let the uncertainty spacesX1

i (hi),X
2
i (hi), ...

be given by
X1
i (hi) = S−i(hi)

for all players i and information sets hi ∈ H∗i , and

Xk
i (hi) = X

k−1
i (hi)× (×j 6=i(×hj∈H∗j Peu(Xk−1

j (hj), ũj(hi)))
c)

for k ≥ 2, all players i and information sets hi ∈ H∗i . Here, ũj(hi) is the utility function as
defined in (5.1). Let X̃1

i (hi) = S−i(hi), and for every k ≥ 2, let

X̃k
i (hi) = ×j 6=i(×hj∈H∗j Peu(Xk−1

j (hj), ũj(hi)))
c.

Then, Xk
i (hi) = X̃

1
i (hi)...× X̃k

i (hi) for all k.
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For every player i, information set hi, opponent l and information set hl, we define onto
mappings

fki (hi) : Y ki (hi)→ Xk
i (hi) for all k,

f̃1i (hi) : S−i(hi)→ X̃1
i (hi)

f̃ki (hi) : Ỹ ki → X̃k
i (hi) for all k ≥ 2, and

gki (hl) : Pcleu(Y ki , ui)→ (×hi∈H∗i Peu(Xk
i (hi), ũi(hl)))

c for all k.

We construct these mappings by induction on k. For k = 1 we have that Y 1i (hi) = X1
i (hi) =

X̃1
i (hi) = S−i(hi). Let f1i (hi) and f̃

1
i (hi) be the identity mapping from S−i(hi) to S−i(hi).

Let the preference relation q1i in Pcleu(Y 1i , ui) be given by a cautious lexicographic probabil-
ity distribution λ1i on Y

1
i . Let µ

1
i be the corresponding vector of probability distributions in

(×hi∈H∗i ∆(Y 1i (hi)) induced by λ1i , and let g
1
i (hl)(q

1
i ) be the consistent vector of expected util-

ity preference relations in (×hi∈H∗i Peu(Y 1i (hi), ũi(hl)))c induced by µ1i and the utility function
ũi(hl). SinceX

1
i (hi) = Y

1
i (hi), it follows that g

1
i (hl)(q

1
i ) belongs to (×hi∈H∗i Peu(X1

i (hi), ũi(hl)))
c.

It is easily seen that g1i (hl) is onto.
Now, assume that k ≥ 2 and suppose that the onto functions fk−1i (hi), f̃

k−1
i (hi) and g

k−1
i (hl)

have already been defined for all i, hi, j and hl. Choose a player i and information set hi. By
construction,

Ỹ ki = ×j 6=iPcleu(Y k−1j , uj)

and
X̃k
i (hi) = ×j 6=i(×hj∈H∗j Peu(Xk−1

j (hj), ũj(hi)))
c.

By assumption, gk−1j (hi) maps Pcleu(Y k−1j , uj) onto the space (×hj∈H∗j Peu(Xk−1
j (hj), ũj(hi)))

c

for every player j. Let the function f̃ki (hi) : Ỹ
k
i → X̃k

i (hi) be given by

f̃ki (hi) = ×j 6=igk−1j (hi). (6.1)

Then, f̃ki (hi) maps Ỹ
k
i onto X̃

k
i (hi).

By construction, Y ki (hi) = S−i(hi)× Ỹ 2i × ...× Ỹ ki and Xk
i (hi) = X̃

1
i (hi)× ...× X̃k

i (hi). Let
the function fki (hi) : Y

k
i (hi)→ Xk

i (hi) be given by

fki (hi) = f̃
1
i (hi)× ...× f̃ki (hi). (6.2)

Then, fki (hi) maps Y
k
i (hi) onto X

k
i (hi).

Let now the preference relation qki in Pcleu(Y ki , ui) be given, induced by a cautious lex-
icographic probability distribution λki on Y

k
i . Let µ

k
i (q

k
i ) = (µki (q

k
i , hi))hi∈H∗i be the induced

vector of probability distributions in ×hi∈H∗i ∆(Y ki (hi)). We now transform every µki (q
k
i , hi) ∈

∆(Y ki (hi)) into some probability distribution µ
k
i (hi) ∈ ∆(Xk

i (hi)) as follows. For every event
E ⊆ Xk

i (hi), define

µki (hi)(E) = µ
k
i (q

k
i , hi)({yki ∈ Y ki (hi)| fki (hi)(yki ) ∈ E}). (6.3)

Since fki (hi) is onto, we have that µ
k
i (hi) is indeed a probability distribution on X

k
i (hi). More-

over, it is easily checked that the vector (µki (hi))hi∈H∗i is consistent. Let g
k
i (hl)(q

k
i ) be the vector
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of expected utility preference relations in (×hi∈H∗i Peu(Xk
i (hi), ũi(hl)))

c given by the above con-

structed probability distributions µki (hi) on X
k
i (hi) and the utility function ũi(hl). Then, g

k
i (hl)

is onto. By induction on k, it thus follows that the mappings fki (hi), f̃
k
i (hi) and g

k
i (hl) are onto

for all k.
Recall that we assume that every type-space Ri contains only types that respect common

belief about the event that types are cautious. It then follows that every type-space Ri is
homeomorphic to Pcleu(S−i ×R−i, ui). Now, let ri ∈ Ri be a type with finite complexity. Since
S−i × R−i is homeomorphic to ×k∈NỸ ki and Y ki = Ỹ 1i × ... × Ỹ ki for all k, it follows that ri
induces a coherent preference hierarchy (qki (ri))k∈N with q

k
i ∈ Pcleu(Y ki , ui) for all k ∈ N. For

every opponent’s information set hl ∈ H∗l and every k, let
gki (hl)(q

k
i (ri)) ∈ (×hi∈H∗i Peu(Xk

i (hi), ũi(hl)))
c

be the induced vector of expected utility preference relations as defined above. Let

t∗(ri, hl) = (gki (hl)(q
k
i (ri)))k∈N (6.4)

be the corresponding preference hierarchy in ×k∈N(×hi∈H∗i Peu(Xk
i (hi), ũi(hl)))

c. By construc-
tion, we have that

×k∈N(×hi∈H∗i Peu(Xk
i (hi), ũi(hl)))

c ⊆ Ti
and hence t∗(ri, hl) is a type in Ti for all ri and hl.

Let t∗ be the mapping which assigns to every type ri ∈ Ri with finite complexity and every
hl such a type t

∗(ri, hl) ∈ Ti. We prove that t∗ satisfies properties (a) and (b) in Lemma 5.4.
Property (a) follows immediately from the construction of t∗(ri, hl). In order to prove property
(b), fix a type ri with finite complexity, an information set hl and let ti = t∗(ri, hl). Then, ri
induces for every k ∈ N a lexicographic probability distribution λki (ri) on Y

k
i which, in turn,

induces a vector (µki (ri, hi))hi∈H∗i of first-order probability distributions in ×hi∈H∗i ∆(Y ki (hi)).
Since ri has finite complexity, it follows that µ

k
i (ri, hi) is a probability distribution with finite

support for every k and hi.
We have seen above that ti is in ×k∈N(×hi∈H∗i Peu(Xk

i (hi), ũi(hl)))
c. Hence, ti induces a

consistent vector (µki (ti, hi))hi∈H∗i of probability distributions in ×hi∈H∗i ∆(Xk
i (hi)). By (6.3),

we then know that

µki (ti, hi)(E
k
i ) = µ

k
i (ri, hi)({yki ∈ Y ki (hi)| fki (hi)(yki ) ∈ Eki }) (6.5)

for all hi and events E
k
i ⊆ Xk

i (hi). We have seen that µ
k
i (ri, hi) has finite support. From (6.5)

it thus follows that µki (ti, hi) has finite support as well. Hence, in (6.5) it suffices to concentrate
on single-point events Eki = {xki }.

Since ti ∈ Ti, we have that ti induces for every information set hi some probability dis-
tribution µi(ti, hi) ∈ ∆(S−i(hi) × T−i). Let µi(ti, hi| Xk

i (hi)) denote the marginal of µi(ti, hi)
on Xk

i (hi) ⊆ S−i(hi) × T−i. By construction, we have that µi(ti, hi| Xk
i (hi)) = µki (ti, hi). Let

µi(ri, hi| Y ki (hi)) denote the marginal of µi(ri, hi) on Y ki (hi) ⊆ S−i(hi) × R−i. Then, by con-
struction, µi(ri, hi| Y ki (hi)) = µki (ri, hi). By (6.5) we then obtain that

µi(ti, hi| Xk
i (hi))(x

k
i ) = µi(ri, hi| Y ki (hi))({yki ∈ Y ki (hi)| fki (hi)(yki ) = xki }) (6.6)
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for all k and all xki ∈ Xk
i (hi).

Recall that Y ki (hi) = S−i(hi)×Ỹ 2i ×...×Ỹ ki , and thatXk
i (hi) = S−i(hi)×X̃2

i (hi)×...×X̃k
i (hi).

By (6.2) we know that the mapping fki (hi) is equal to f̃
1
i (hi)× ...× f̃ki (hi). That is,

fki (hi)(s−i, ỹ
2
i , ..., ỹ

k
i ) = (s−i, f̃

2
i (hi)(ỹ

2
i ), ..., f̃

k
i (hi)(ỹ

k
i )) (6.7)

for all (s−i, ỹ2i , ..., ỹ
k
i ) ∈ S−i(hi)×Ỹ 2i ×...×Ỹ ki = Y ki (hi).Note that (s−i, f̃2i (hi)(ỹ2i ), ..., f̃ki (hi)(ỹki )) ∈

S−i(hi)× X̃2
i (hi)× ...× X̃k

i (hi) = X
k
i (hi). By (6.6) and (6.7) it thus follows that

µi(ti, hi| Xk
i (hi))(s−i, x̃

2
i , ..., x̃

k
i ) (6.8)

= µi(ri, hi| Y ki (hi))({s0−i, ỹ2i , ..., ỹki )| s0−i = s−i, f̃2i (hi)(ỹ2i ) = x̃2i , ..., f̃ki (hi)(ỹki ) = x̃ki })

for all (s−i, x̃2i , ..., x̃
k
i ) ∈ Xk

i (hi) and all k ≥ 2.
Recall that µi(ti, hi) ∈ ∆(S−i(hi)×T−i) and µi(ri, hi) ∈ ∆(S−i(hi)×R−i). Since S−i(hi)×R−i

is homeomorphic to S−i(hi) × (×k≥2Ỹ ki ) and S−i(hi) × (×k≥2X̃k
i (hi)) is homeomorphic to a

subspace of S−i(hi)× T−i, we may conclude from (6.8) that

µi(ti, hi)(s−i, x̃
2
i , x̃

3
i , ...) (6.9)

= µi(ri, hi)({s0−i, ỹ2i , ỹ3i , ...})| s0−i = s−i, f̃2i (hi)(ỹ2i ) = x̃2i , f̃3i (hi)(ỹ3i ) = x̃3i , ...})

for all (s−i, x̃2i , x̃
3
i , ...) in S−i(hi)× (×k≥2X̃k

i ).
Now, let fi(hi) be the mapping from S−i(hi)×R−i to S−i(hi)× T−i given by

fi(hi)(s−i, ỹ2i , ỹ
3
i , ...) = (s−i, f̃

2
i (hi)(ỹ

2
i ), f̃

3
i (hi)(ỹ

3
i ), ...)

for all (s−i, ỹ2i , ỹ
3
i , ...) ∈ S−i(hi) × (×k≥2Ỹ ki ), where the latter space may be identified with

S−i(hi)×R−i. Then, from (6.9) it follows that

µi(ti, hi)(s−i, x̃
2
i , x̃

3
i , ...)

= µi(ri, hi)({s0−i, ỹ2i , ỹ3i , ...})| fi(hi)(s0−i, ỹ2i , ỹ3i , ...) = (s−i, x̃2i , x̃3i , ...)}). (6.10)

By construction, we have that

fi(hi) = id× (×k≥2f̃ki (hi)) (6.11)

where id is the identity mapping from S−i(hi) to S−i(hi). By (6.1) may then conclude that

fi(hi) = id× (×k≥2 ×j 6=i gk−1j (hi)) = id× (×j 6=i ×k≥2 gk−1j (hi))

= id× (×j 6=i ×k∈N gkj (hi)). (6.12)

By definition,

×k∈Ngkj (hi) : ×k∈NPcleu(Y kj , uj)→ ×k∈N(×hj∈H∗j Peu(Xk
j (hj), ũj(hi)))

c

with
(×k∈Ngkj (hi))((qkj (rj))k∈N) = ((gkj (hi)(qkj (rj)))k∈N = t∗(rj , hi)
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for all rj ∈ Rj . Hence, the function ×k∈Ngkj (hi) maps every rj ∈ Rj to t∗(rj , hi) ∈ Tj . Combining
this insight with (6.12) leads to the conclusion that fi(hi) is a mapping from S−i(hi) ×R−i to
S−i(hi)× T−i with

fi(hi)((sj , rj)j 6=i) = ((sj , t∗(rj , hi)j 6=i) (6.13)

for all (sj , rj)j 6=i in S−i(hi) × T−i. Substituting (6.13) in (6.10), and letting ti = t∗(ri, hl), we
obtain that

µi(t
∗(ri, hl), hi)((sj , tj)j 6=i)

= µi(ri, hi)({(s0j , r0j)j 6=i| s0j = sj and t∗(r0j , hi) = tj for all j 6= i}).

Here, we used the fact that S−i(hi) × R−i may be identified with S−i(hi) × (×k≥2Ỹ ki ), and
that S−i(hi)× (×k≥2X̃k

i (hi)) is homeomorphic to a subspace of S−i(hi)× T−i. This establishes
property (b) in Lemma 5.4 and hence the proof is complete. ¥
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