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Abstract

We analyze whether noncooperative collusive equilibria are harder to sustain when
individual demand levels are not fixed but are able to fluctuate. To do this, we extend
a Bertrand-type model of price competition to allow for fluctuating market shares when
prices are equal. We find that, the larger the market share fluctuations may be, the higher
the discount factor should be to sustain a collusive equilibrium in trigger strategies. The
intuition behind this is fairly straightforward. When individual demand in the collusive
state is suddenly low, the gains from collusion go down. Moreover, the firm with the
low demand can capture a larger share of the market by deviating from the collusive
strategy. The incentive to deviate therefore becomes larger when the individual market
share decreases. We also look at the existence of a specific type of semi-collusive equilibrium
when individual market shares are either common knowledge or private knowledge. We find
that there exist equilibria in which competitive periods (price wars) occur with probability
1 and on the equilibrium path.
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1 Introduction

This paper is a contribution to the longstanding debate on the stability of (tacit) collusion

among oligopolists and the existence of price wars on the equilibrium path. In particular, we

look at the effects that fluctuations in market shares of individual firms (i.e. individual demand

level) might have. We allow for exogenous influences on the respective market shares of the

firms in the market and model this using a dynamic game including a stochastic process that

determines the realization of the individual market shares in each period. Firms in this model

are typically asymmetric in individual demand within a certain period while they face the

decision to act collusively or competitively in the presence of uncertainty about future payoffs

and, possibly, about the exact situation their competitors are in.

It is well known in the industrial organization literature that (market) demand levels can play

an important role in the stability of collusion and the occurrence of price wars (see for instance

Green and Porter (1984) and Rotemberg and Saloner (1986)). In our paper however, we look

at individual demand fluctuations, keeping overall market demand constant. We find that in

our model, collusion is harder to sustain when the possibility exists that the market share of a

particular firm is relatively low. The intuition behind this effect is fairly simple. When a firm

faces low individual demand, the rewards for breaking the collusive agreement are relatively high

(since it can capture a larger portion of the market). In addition, when the firm also expects

its demand to be low in the future, the punishment ensuing the breaking of the agreement

is relatively smaller. Therefore, the incentives to terminate collusive behavior are larger in

periods of low individual demand than in periods of high individual demand. Furthermore,

when firms possess private information about their individual demand level, the market as a

whole cannot decrease these incentives in a similar manner as in Rotemberg and Saloner (1986)

- by decreasing the collusive price in periods where the incentive to deviate is high - although

they can when there is full information on market shares.

The article is organized as follows. In Section 2 we present and briefly discuss the existing

literature on tacitly collusive behavior and the occurrence of price wars on or off the equilibrium

path. Section 3 presents our model and explains the assumptions underlying this model. In

Section 4 we prove that a collusive equilibrium in trigger strategies is harder to sustain in

the presence of market share fluctuations. In Section 5 we show that firms can reduce the

temptation to deviate by cutting their price in periods in which a firm has a low market share.

In Section 6 we show that equilibria exist in which firms act collusively as long as their market

shares are above a certain threshold. Section 7 discusses the results.
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2 Literature

Although the topics of tacit collusion and price wars (in equilibrium) have enjoyed quite some

attention in the literature over the last few decades, the focus has largely been on symmetric

models in which the incentives to deviate from the collusive agreement are similar for all firms.

The existing literature on the topic can be divided into a few categories.

In the first category, firms cannot directly observe their opponents’ behavior. A drop in one’s

own performance will then be interpreted as being caused by a secret deviation from collusive

behavior by one of the opponents. In these models, a price war is seen as the reversion from

cooperative pricing to non-cooperative behavior which occurs as a reaction to such deviations

from the collusive agreement. The root of this branch of literature can be traced to Stigler

(1964). However, in his model we should not expect to see price wars ever happening in reality,

because a rational firm would avoid getting accused of deviating. The first paper that showed

that price wars can occur on an equilibrium path in these kinds of models is Green and Porter

(1984). In their model, periods of worse performance can occur as a result of deviating behavior

of one of the firms or because of low demand in the market. Since firms are unable to distinguish

between these two scenarios, they have to show retaliatory behavior in any case, to discourage

deviating behavior in the future. Price wars will thus occur with certainty in periods of low

demand, even though no deviation has taken place. Firm-optimal equilibria in this model have

been presented in Porter (1983a) and Abreu, Pearce and Stacchetti (1986). Although the Green

and Porter (1984) model provides a very good explanation for the occurrence of price wars, it

does not apply to price wars that were consciously started by a single firm. In the model’s

equilibrium, price wars only occur because of a period of low demand and never because of

deviating behavior by one of the firms in the market.

Although Green and Porter (1984) show price wars in periods of low demand (recessions), the

second category of literature focuses on price wars in periods of high demand (booms). An im-

portant contribution in the mid-80s came from Rotemberg and Saloner (1986), who show that

collusion is under greater pressure during booms since firms have more to gain from deviating

behavior in such a period. The temptation for all firms to attract an unusually high level of

demand during a boom outweighs the lower relative profit it would get during the ensuing price

war. To avoid this, we would see gradual and coordinated adjustment of the price level to the

level of demand. This can however hardly be called a price war, since these actions are taken

jointly with the competitors as part of a collusive agreement. This was concisely put by Ellison

(1994): “Rotemberg and Saloner (1986), is commonly associated with the statement that price
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wars are more likely to occur during booms, and therefore viewed as somehow in opposition

to the Green and Porter theory. The actual Rotemberg and Saloner model, however, is re-

ally about countercyclical pricing – firms have perfect information and adjust prices smoothly

in response to demand conditions.” Rotemberg and Saloner’s (1986) model of countercyclical

pricing behavior has been extended on numerous occasions to allow for more realistic business

cycle characteristics. As in Rotemberg and Saloner (1986) firms only experience i.i.d. demand

shocks, the realization of today’s demand level contains no information about tomorrow’s ex-

pected demand level. Kandori (1991) therefore introduces Markovian demand shocks into the

model, while Haltiwanger and Harrington (1991) specify a demand function that is cyclically

moving over time. Bagwell and Staiger (1997) instead assume that the level of market demand

alternates stochastically between slow- and fast-growth states. Variations of another nature

have been proposed by Athey, Bagwell and Sanchirico (2004), who assume private cost infor-

mation and by Leufkens and Peeters (2008), who use an alternating move game to confirm

Rotemberg and Saloner’s (1986) finding that countercyclical price (war) behavior can occur in

periods of high market demand.

A third branch of literature focuses on the role of capacity constraints and investments. Impor-

tant are the contributions by Klemperer (1989, 1995), Staiger and Wolak (1992), who introduce

a capacity-setting stage at the beginning of each period in a model based on that of Rotemberg

and Saloner (1986), and Wilson and Reynolds (2005).

Other analyses of price wars have been offered by Eckert (2004), who investigates a price-setting

alternating move game with differentiated products and by Slade (1989), who has focused on

price wars as opportunities for firms to learn about unknown or changed market circumstances.

Finally, Fershtman and Pakes (2000) show that non-cooperative behavior can sometimes be

caused by predatory behavior: trying to force one’s opponent out of the market.

In the empirical literature on price wars, both Green and Porter’s (1984) as Rotemberg and

Saloner’s (1986) model have been critically tested and compared. Relevant empirical papers

include Porter (1983b) and Porter (1985), in which the author provides empirical support for

the theoretical model of the Green and Porter (1984) model. Brander and Zhang (1993) also

find some support for a ‘Green and Porter’-type of quantity setting regime switching behavior

in the airline industry, as does Levenstein’s (1997) study of the bromine industry. On the other

hand, Domowitz, Hubbard and Petersen (1987) find some empirical support for the Rotemberg

and Saloner (1986) model, which however could not be agreed upon by Ellison (1994), who finds

little support for Rotemberg and Saloner (1986) in a study of the Joint Executive Committee.
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In short, no conclusive support for either of the two models has yet been given.

3 Basic model

In this section we present the basic model we use in our analysis. In the model, customers care

primarily about price and will therefore always prefer the lowest-priced products. However,

when there are more firms with the same lowest price, these firms do not necessarily divide the

total demand equally. The rationale behind this is that consumers, although primarily inter-

ested in price level, might be flexible in their choice of product once they are price-indifferent

between alternatives. Consequently, consumers do not necessarily buy the product from the

same producer in each period.

3.1 The one shot game

The one shot game is based on a Bertrand model in which n firms compete on price in a market

for a homogeneous good. All firms have the same constant marginal cost c. In the one shot

game each firm has three actions it could possibly take, namely to collude (C), to undercut (U),

or to choose price equal to marginal cost (M). Thus, each firm chooses an action ai ∈ {U,C, M}
without prior information on the choices of the other firms. A second ingredient of the model

is a vector ϕ = (ϕ1, . . . , ϕn) of market shares, where ϕi ≥ 0 represents the market share of firm

i. The market share vector prescribes how total profits are divided among firms that choose

the same action. Market shares divide the total market, so
∑

i ϕi = 1.

Profits are now determined as follows. Given a profile a = (ai)i∈N of chosen actions, the

resulting profit of firm i is denoted by Πi(a). When ai = C for all i, then Πi(a) = ϕiΠ, where

Π represents the monopoly profit in the market. Thus, in this case, firms act monopolistically

and profits are divided according to market share. When there is a firm k with ak = U and

ai = C for all i 6= k, then Πk(a) = Π and Πi(a) = 0 for all i 6= k. In all other cases all profits

are zero.

Remarks. Although our model is based on the model of Bertrand competition, it obviously

deviates from the standard approach in modeling Bertrand competition in two aspects.

(1) Our approach starts with the observation that, even though in the original model each firm

can choose any price, only three strategies for price setting are relevant for the dynamics of

the Bertrand model. These three choices are (a) collusive (monopoly) pricing, (b) price setting

slightly below collusive pricing to exploit collusive behavior and to capture the market, and
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(c) competitive (marginal cost) pricing. In our approach we discard other possible choices and

only focus on these three crucial price setting strategies. That way we try to keep the analysis

of the one shot game simple while we preserve the essential ingredients of the Bertrand model.

(2) Regarding our choice of the payoffs in the one shot model, it is clear that profits are zero

when at least one of the firms chooses to use marginal cost pricing. The firm that uses this

action attracts the market, but does not make any profit, while the other firms do not have

any customers. However, one might assume that firms that undercut the collusive price take

their share of the monopoly profit. For simplicity we assume that all profits are zero when more

than one firm chooses to undercut while the other firms chose to collude. When at least two

firms try to undercut the market the result is a sequence of decreases in price that converges to

marginal price setting. This “dynamic process” is captured implicitly in our choice of payoffs.

EQUILIBRIUM ANALYSIS OF THE ONE SHOT GAME The one shot game has several Nash equi-

libria. Evidently the action profile in which all firms play M is a Nash equilibrium. However,

when there are at least three firms, an action profile in which for example one firm plays C and

all other firms play M is also a Nash equilibrium. Nevertheless, the two important observations

to make here are (1) that the action profile in which all firms play C, the collusion strategy

profile, is not a Nash equilibrium, and (2) that in any symmetric Nash equilibrium (either all

firms playing M or all firms playing U) of the one shot game all firms receive zero profit.

The aim of the paper is to analyze the conditions under which collusion can be sustained as an

equilibrium in the repeated version of this game, and thus to have positive profits for all firms

in equilibrium.

3.2 The repeated game

In the repeated game the one shot game is played repeatedly, once in each period of time

t = 0, 1, 2, . . . At the start of period t the vector ϕt = (ϕ1t, . . . , ϕnt) of market shares is deter-

mined. This vector is now stochastic, and it might in general depend on both the actions taken

previously by the firms and on the realizations of market shares in earlier periods. Nevertheless,

for simplicity we only study exogenous processes where the realizations do not depend on the

actions taken by the firms.

Next, when ϕt is realized, each firm receives information hit. Typically hit is a record of all

actions taken by firms in earlier periods, the realized market shares of all firms in earlier periods,

and either a firm’s own market share in the current period (private information), or all realized
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market shares in the current period (public information).

Thus, a strategy for firm i in the repeated game is a function si that prescribes for each time

period t the action si(hit) ∈ {U,C, M} that firm i chooses given the information hit. We

require that si(hit) be specified for any conceivable history hit, not just for those that are

actually realized by previous actions of the firms. This is standard practice in game theoretic

models and functions to facilitate the definition of (subgame perfect) Nash equilibrium. A firm

should not only specify what it will do when all firms act according to agreement, but also how

it will react to conceivable deviations from the agreement (and by extension also to deviations

from deviations from the agreement, etc).

We write s(ht) = (s1(h1t), . . . , sn(hnt)) for the profile of actions that is played at time t given

the information ht = (h1t, . . . , hnt). Let st denote the map ht 7→ s(ht). Let the initial division

of market shares be given by ϕ0 = (ϕ10, . . . , ϕn0). Let h0 = (h10, . . . , hn0) be the associated

information to the firms. Let the density function fit(ϕit+1 | ϕit) denote the density of the

probability distribution of ϕit+1 conditional on the event that at time t the market share of

firm i is ϕit. Let E(Πi(st) | hi0) denote the expected value of the payoff to firm i at time t,

given the strategy profile s and the initial information hi0 of firm i.

Given the profile s = (s1, . . . , sn) of strategies, firm i evaluates the resulting stream

E(Πi(s0) | hi0), E(Πi(s1) | hi0), . . .

of expected profits via the discounted criterion

Πi(s | hi0) =
∞∑

t=0

δt · E(Πi(st) | hi0)

Given a strategy profile s and a strategy ci for firm i, let (s, ci) denote the strategy profile

where all firms j 6= i play according to the strategy sj , while firm i plays according to strategy

ci. A strategy profile s is a Bayesian Nash equilibrium when for every firm i

Πi(s | hi0) ≥ Πi((s, ci) | hi0)

holds for every strategy ci of firm i and any initial information hi0.

Analogously, let E(Πi(st+k) | hit) denote the expected value of the payoff to firm i at time t+k,

given the strategy profile s and information hit to firm i at time t. Write

Πi(s | hit) =
∞∑

k=0

δk · E(Πi(st+k) | hit)
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for the expected payoff to firm i at information set hit. A Nash equilibrium s is a perfect

Bayesian Nash equilibrium when, at every information set hit,

Πi(s | hit) ≥ Πi((s, ci) | hit)

holds for every strategy ci of firm i.

4 The effects of market share fluctuations on the sustain-
ability of collusion when information is private

In this section we assume private information. Thus, for every i and t, hit consists of ϕit

together with all realizations of market shares and all actions taken by firms from all previous

rounds. We consider the case where collusion is sustained via trigger strategies.

TRIGGER STRATEGIES The trigger strategy Ti of firm i is defined by

Ti(hit) =

{
C if all firms chose action C in all previous rounds according to hit

M otherwise

and T = (Ti)i∈N denotes the profile of trigger strategies. We want to investigate under which

conditions T constitutes a perfect Bayesian Nash equilibrium.

Let fit+1(ϕit+1 | ϕit) denote the density function of the probability distribution of ϕit+1 when

at time t the market share of firm i is ϕit. We assume that all realizations of market shares are

within an interval [ϕ, ϕ]. Specifically, we assume that fit+1(ϕit+1 | ϕit) = 0 outside the interval

[ϕ, ϕ] and that fit+1(ϕit+1 | ϕit) > 0 on the interior of the interval [ϕ, ϕ].

Further, in accordance with the intuition that a higher market share today increases one’s

chances to have a higher market share in the future, we assume for the collection of cumulative

probability distributions

Fϕit(ϕ) =
∫ ϕ

0

fit+1(ϕit+1 | ϕit) dϕit+1

that ϕit ≤ ϕ̃it implies Fϕit(ϕ) ≥ Feϕit
(ϕ) for every ϕ. In words, when ϕit ≤ ϕ̃it, the probability

distribution Feϕit
of ϕit+1 given ϕ̃it stochastically dominates the probability distribution Fϕit

of ϕit+1 given ϕit.

It is well known that stochastic dominance implies the following statement for monotone trans-

formations of ϕit+1.

Lemma 4.1 Let g(ϕit+1) ≥ 0 be (strictly) increasing in ϕit+1. Then

E(g | ϕit) =
∫

g(ϕit+1) · fit+1(ϕit+1 | ϕit) dϕit+1
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is (strictly) increasing in ϕit.

Now write

E(ϕit+1 | ϕit) =
∫

ϕit+1 · fit+1(ϕit+1 | ϕit) dϕit+1.

By the previous Lemma, E(ϕit+1 | ϕit) is a strictly increasing function of ϕit. Thus, iterating

the same argument, also

E(ϕit+2 | ϕit) = E(E(ϕit+2 | ϕit+1) | ϕit)

is a strictly increasing function of ϕit. This way we find the following result.

Theorem 4.2 For any k ≥ 1, E(ϕit+k | ϕit) is increasing in ϕit.

Remark. The above equation

E(ϕit+2 | ϕit) = E(E(ϕit+2 | ϕit+1) | ϕit).

that we used to derive Lemma 4.2 is not a definition, it is in fact a result. In order to see

why this result is true it is convenient to derive the above equation for a discrete process. Let

M1, M2 and M3 be three finite sets. Suppose we have transition probabilities P (m2 | m1) and

P (m3 | m2). Then

P (m3 | m1) =
∑
m2

P (m2 | m1) · P (m3 | m2).

So,

E(m3 | m1) =
∑
m3

P (m3 | m1) ·m3

=
∑
m3

∑
m2

P (m2 | m1) · P (m3 | m2) ·m3

=
∑
m2

[∑
m3

m3 · P (m3 | m2)

]
· P (m2 | m1)

=
∑
m2

E(m3 | m2) · P (m2 | m1)

= E (E(m3 | m2) | m1) .

The equation we used above to compute E(ϕit+2 | ϕit) is the continuous variant of the same

result. The formula for the continuous case can be shown using the Theorem of Radon-Nikodym

and Tonelli’s Theorem. For further information we refer to Davidson (1994).

Now we can derive the following necessary and sufficient condition for T to be a perfect Bayesian

Nash equilibrium.
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Theorem 4.3 The strategy profile T is a perfect Bayesian Nash equilibrium precisely when

∞∑

k=0

δk · E(ϕit+k | ϕit) ≥ 1

holds for all firms i, at every time t, for any possible market share ϕit ∈ [ϕ, ϕ] at time t.

Proof. Due to the one deviation property (see e.g. Hendon et al. (1996)), the trigger strategy

profile is a perfect Bayesian Nash equilibrium exactly when every firm i, at every time t, and

at every information set hit the trigger strategy renders at least the same expected payoff as

an instantaneous deviation. Thus, consider firm i, at time t, having a market share ϕit. Given

that in the punishment phase firms make zero profit, the expected loss in this phase equals the

discounted sum of expected market shares times Π

δ · E(ϕit+1 | ϕit) ·Π + δ2 · E(ϕit+2 | ϕit) ·Π + . . . =
∞∑

k=1

δk · E(ϕit+k | ϕit) ·Π.

As Π is a constant, this is equal to Π ·∑∞
k=1 δk ·E(ϕit+k | ϕit). The gain from deviation is equal

to (1− ϕit) ·Π. So the collusive strategy renders at least the same payoff when

∞∑

k=1

δk · E(ϕit+k | ϕit) ≥ 1− ϕit.

This concludes the proof.

As a direct consequence of this characterization of perfect Bayesian Nash equilibrium we find

that the smaller a firm’s market share can get, the higher the discount factor needs to be to

ensure that the trigger strategy profile is an equilibrium in all possible market share realizations.

Formally we can express this insight as follows.

Corollary 4.4 The strategy profile T is a perfect Bayesian Nash equilibrium precisely when

∞∑

k=0

δk · E(ϕit+k | ϕit = ϕ) ≥ 1

holds for every firm i at every time t.

Proof. Due to Theorem 4.3 we know that T is a perfect Bayesian Nash equilibrium precisely

when ∞∑

k=0

δk · E(ϕit+k | ϕit) ≥ 1

holds for all firms i, at every time t, for any possible market share ϕit ∈ [ϕ, ϕ] at time t.

However, by Theorem 4.2 we know that the left-hand side of the above inequality is increasing
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in ϕit. Hence, the above inequality is satisfied for all ϕit ∈ [ϕ, ϕ] precisely when it is satisfied

for ϕit = ϕ.

A second consequence of Theorem 4.3 is that, when a firm’s market share is a martingale 1,

the trigger strategy is a perfect Bayesian Nash equilibrium precisely when the discount factor

exceeds 1 minus the minimum market share. Thus, when the minimum market share is relatively

high, and hence uncertainty is relatively low, it is easy for the firms to sustain collusion.

Corollary 4.5 When the stochastic variables ϕi form a martingale, the trigger strategy profile

is a perfect Bayesian Nash equilibrium precisely when δ ≥ 1− ϕ.

Proof. When the stochastic variables ϕi form a martingale, we know that

E(ϕit+k | ϕit = ϕ) = ϕ

for all t and k 2. Thus, the equilibrium condition in Corollary 4.4 reduces to

∞∑

k=0

δk · ϕ ≥ 1,

which can be rewritten to δ ≥ 1− ϕ.

Corollary 4.6 If the trigger strategy profile is a perfect Bayesian Nash equilibrium, then δ ≥
n−1

n . Thus, collusion becomes harder to sustain when the number of firms increases.

Proof. Let ϕt = (ϕ1t, . . . , ϕnt) be a realization of market shares at time t. Summing up the

corresponding equilibrium conditions from Theorem 4.3 over all firms yields the inequality

∞∑

k=0

δk ·
n∑

i=1

E(ϕit+k | ϕit) ≥ n.

However, notice that for any realization ϕt = (ϕ1t, . . . , ϕnt) and any k necessarily

n∑

i=1

E(ϕit+k | ϕit) = 1.

Hence,
∞∑

k=0

δk ≥ n

which can be rewritten to δ ≥ n−1
n .

1For firm i, the stochastic process (ϕit)
∞
t=0 is a martingale when E(ϕit+k | ϕit) = ϕit for every t and k.

2For a martingale it even holds that ϕit+1 = ϕ with probability one when ϕit = ϕ.



Collusion and price wars 11

As a final observation in this section, consider the case in which all market shares are fixed and

equal to 1
n . By Corollary 4.5 we know that in this case for δ = n−1

n the strategy profile T is a

perfect Bayesian Nash equilibrium. However, by the Corollary 4.6 we need δ ≥ n−1
n to sustain

T as a perfect Bayesian Nash equilibrium in any case. Thus the case in which all market shares

are fixed and equal to 1
n is the most favorable setting to sustain collusion under under the above

choice of trigger strategies.

5 Collusive price cutting when a firm’s market share is
low and information is public

When firms have public information on realized market shares, the incentives to deviate for a

firm that has a low market share can be reduced by jointly choosing a lower collusive price.

That way, a deviating firm still attracts the entire market but against a lower price.

We model this phenomenon by adding an action to the one shot game. Let C∗ denote an action

that generates a lower collusive price when it is chosen by all firms, and let Π∗ < Π denote the

resulting joint collusive payoff. The action space of the one shot game becomes {C,C∗,M, U}.
Payoffs are as follows. In case no firm chooses C∗, payoffs are as before. When at least one

firm chooses M , all payoffs are zero. When no firm chooses M , and precisely one firm chooses

U , this firm gets Π when all other firms chose C, otherwise this firm gets Π∗. All other firms

receive zero payoff. When at least two firms choose U , all payoffs are zero. When at least one

firm chooses C∗, and all other firms choose either C or C∗, the total payoff is Π∗, and all firms

share the total payoff according to market shares 3.

ADAPTIVE TRIGGER STRATEGIES Let ϕ∗ ≥ ϕ be a fixed market share level. We say that

firm i plays according to plan in round t when either ϕjt ≥ ϕ∗ for all j and firm i plays C in

round t, or alternatively ϕjt < ϕ∗ for some j and firm i plays C∗ in round t.

The adaptive trigger strategy T ∗i of firm i is defined by

T ∗i (hit) =





C if, according to hit, all firms played according to plan
in all previous rounds, and ϕjt ≥ ϕ∗ for all j

C∗ if, according to hit, all firms played according to plan
in all previous rounds, and ϕjt < ϕ∗ for some j

M otherwise.

3One might argue that in this case only firms that chose C∗ receive positive payoff. Our stance in this is
though, that a collective decision to collude leads to collusion. Different choices of collusive price setting by
different firms only drives the price down to the lower collusive price C∗ in a sequence of price reductions.
However, because all firms chose to collude, this process of price reductions does not destroy collusive behavior.
Thus, as we did before in the case where more than one firm chooses U , we decided to model the process of
price reductions implicitly in the choice of payoffs for the firms.
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Note that firms need public information on market shares in order to execute this strategy. We

write T ∗ = (T ∗i )i∈N for the profile of adaptive trigger strategies. We want to investigate under

which conditions T ∗ constitutes a (perfect) Bayesian Nash equilibrium. Let pt+k(ht) be the

probability that ϕjt+k ≥ ϕ∗ for all j.

Theorem 5.1 The strategy profile T ∗ is a perfect Bayesian Nash equilibrium precisely when

for every firm i and for every information set ht at every time t, the condition

∞∑

k=1

δk · E(ϕit+k | ϕit) ·
(
pt+k(ht)Π + (1− pt+k(ht))Π∗

)
≥ (1− ϕit)Π

holds when ϕjt ≥ ϕ∗ for all j, and the condition

∞∑

k=1

δk · E(ϕit+k | ϕit) ·
(
pt+k(ht)Π + (1− pt+k(ht))Π∗

)
≥ (1− ϕit)Π∗

holds when ϕjt < ϕ∗ for some j.

Proof. The proof generally follows the same steps as the proofs of Theorem 4.3 and Corollary

4.4. Consider a firm i at time t with market share ϕit. If the firm would play U , the expected

loss from the punishment period would be

∞∑

k=1

δk · E(ϕit+k | ϕit) ·
(
pt+k(ht)Π + (1− pt+k(ht))Π∗

)
.

The expected gain when ϕjt ≥ ϕ∗ for all j is (1 − ϕit)Π. So, in this case the equilibrium

condition becomes
∞∑

k=1

δk · E(ϕit+k | ϕit) ·
(
pt+k(ht)Π + (1− pt+k(ht))Π∗

)
≥ (1− ϕit)Π.

When ϕjt < ϕ∗ for some j the expected gain is (1 − ϕit)Π∗. So, in this case the equilibrium

condition becomes
∞∑

k=1

δk · E(ϕit+k | ϕit) ·
(
pt+k(ht)Π + (1− pt+k(ht))Π∗

)
≥ (1− ϕit)Π∗.

The next corollary shows that there is indeed an appropriate choice of ϕ∗ that guarantees that

an equilibrium in adaptive trigger strategies requires a lower δ than an equilibrium in trigger

strategies.

Corollary 5.2 Suppose that the stochastic variables ϕi form a martingale. Let δ be given.

Suppose further that

ϕ∗ ≥ (1− δ)Π
δΠ∗ + (1− δ)Π

.
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Then the adaptive trigger strategy profile T ∗ is a perfect Bayesian Nash equilibrium given δ

whenever the trigger strategy profile T is a perfect Bayesian Nash equilibrium given δ.

Proof. Suppose that

ϕ∗ ≥ (1− δ)Π
δΠ∗ + (1− δ)Π

.

Rewriting yields
∞∑

k=1

δk · ϕ∗ ·Π∗ ≥ (1− ϕ∗)Π.

Since the left-hand side of the inequality is increasing in ϕ∗ and the left-hand side in decreasing,

we obtain ∞∑

k=1

δk · ϕit ·Π∗ ≥ (1− ϕit)Π

for all ϕit ≥ ϕ∗. Thus, since the stochastic variables ϕi form a martingale, we find that

∞∑

k=1

δk · E(ϕit+k | ϕit) ·Π∗ ≥ (1− ϕit)Π

for all ϕit ≥ ϕ∗. Hence, since Π∗ < Π, also

∞∑

k=1

δk · E(ϕit+k | ϕit) ·
(
pt+k(ht)Π + (1− pt+k(ht))Π∗

)
≥ (1− ϕit)Π

for all ϕit ≥ ϕ∗, which shows that the first set of inequalities of Theorem 5.1 is satisfied. In

order to obtain the second set of inequalities, notice that he strategy profile T is a perfect

Bayesian Nash equilibrium by assumption. So, by Theorem 4.3

∞∑

k=0

δk · E(ϕit+k | ϕit) ≥ 1

for all t and all market shares ϕit. Therefore also

∞∑

k=1

δk · E(ϕit+k | ϕit) ·Π∗ ≥ (1− ϕit)Π∗

for all t and all market shares ϕit. The second set of conditions now follows from the observation

that Π∗ < Π.

Finally note that the condition ϕ∗ ≥ (1−δ)Π
δΠ∗+(1−δ)Π can be satisfied for any given δ < 1 by an

appropriate choice of ϕ∗ < 1. A minimum condition to have fully collusive behavior as a

possibility under the adaptive trigger strategies is 1
n ≥ (1−δ)Π

δΠ∗+(1−δ)Π . This inequality can be

rewritten to (n−1)Π
(n−1)Π+Π∗ ≤ δ.
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6 Semi-collusive equilibria

We now turn our attention to other types of equilibrium strategies in our model. In the context

of full and private information on market shares, we look at equilibria in which firms play

collusively as long as all market shares exceed a certain threshold. In the next analysis, the

chance mechanism ϕ that generates the market share fluctuation is of the following form: ϕt =

(ϕ1t, ϕ2t, · · · , ϕnt) is drawn from a uniform and i.i.d. distribution. This implies that tomorrow’s

market share division is independent of today’s. We further assume that [ϕ, ϕ] = [0, 1].

6.1 Public information

In this subsection, we analyze the case in which firms learn the entire realization of ϕt at the

beginning of period t. That is, ϕt is included in hit for all i and t. We consider the case where

temporary collusion is sustained via so-called threshold trigger strategies.

THRESHOLD TRIGGER STRATEGIES (WITH PUBLIC INFORMATION) Let ϕ̃ ∈ [0, 1
n ] be given

(in advance chosen by the firms). The threshold trigger strategy TPUi of firm i with threshold

ϕ̃ is defined by

TPUi(hit) =





C if all firms chose action C in all previous rounds according to hit

and ϕjt ≥ ϕ̃ for all j ∈ N

M otherwise.

We write TPU = (TPUi)i∈N for the profile of threshold trigger strategies with full informa-

tion. We want to investigate under which conditions TPU constitutes a perfect Bayesian Nash

equilibrium.

Lemma 6.1 Let the market share distribution ϕt with ϕit ≥ 0 and
∑

i ϕit = 1 be drawn from a

uniform distribution. Then, the probability that all firms have at least a market share of ϕ̃ ≤ 1
n

is equal to

P[ϕit ≥ ϕ̃, ∀i ∈ N ] = (1− nϕ̃)n−1.

Proof. Consider a standard (n− 1)-dimensional simplex with vertices

(1, 0, . . . , 0); (0, 1, . . . , 0); . . . ; (0, 0, . . . , 1).

This simplex represents all possible market share realizations. The barycenter of this simplex

is ( 1
n , 1

n , . . . , 1
n ). The distance from the barycenter to a vertex equals

√
(n− 1)(

1
n

)2 + (
1− n

n
)2 =

√
n− 1

n
.
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Now consider the (n− 1)-dimensional simplex with vertices

(1− (n− 1)ϕ̃, ϕ̃, . . . , ϕ̃); (ϕ̃, 1− (n− 1)ϕ̃, . . . , ϕ̃); . . . ; (ϕ̃, ϕ̃, . . . , 1− (n− 1)ϕ̃).

This simplex represents all possible market share realizations in which each firm has at least

a market share of ϕ̃ and has the barycenter at ( 1
n , 1

n , . . . , 1
n ) as well. The distance from the

barycenter to a vertex of this simplex is
√

(n− 1)(
1
n
− ϕ̃)2 + (

1
n
− (1− (n− 1)ϕ̃))2 = (1− nϕ̃)

√
n− 1

n
.

As the simplex has (n− 1) dimensions, the volume of the second simplex is (1− nϕ̃)n−1 times

the volume of the first one.

Theorem 6.2 The strategy profile TPU is a perfect Bayesian Nash equilibrium precisely when

ϕ̃ +
δ(1− nϕ̃)n−1

1− δ(1− nϕ̃)n−1
· 1
n
≥ 1.

Proof. Let Φ denote the set of market share realizations with ϕi ≥ ϕ̃ for all firms i ∈ N . Due

to the one deviation property, the trigger strategy profile is a perfect Bayesian Nash equilibrium

exactly when every firm i, at every time t, and at every information set hit the trigger strategy

renders at least the same expected payoff as an instantaneous deviation. Thus, consider firm

i, at time t, at information set hit. Let E[TPU | hit] denote the expected payoff of following

the threshold trigger strategy, and E[D | hit] the expected payoff of an instantaneous optimal

deviation, both given market share vector ϕt and given that the opponents play according to

TPU . We need to analyze two separate situations.

A. When ϕt /∈ Φ. Given that the opponents play M forever according to TPU , firm i will

get an expected payoff of 0, no matter what its strategy is. The equilibrium condition

E[TPU | hit] ≥ E[D | hit]

is therefore trivially satisfied in this case.

B. When ϕt ∈ Φ. Deviation from TPU will render a one-period monopoly payoff after which

profits will be equal to 0. Therefore E[D | ϕt ∈ Φ] = Π. On the other hand the expected payoff

of following TPU is equal to

E[TPU | ϕt ∈ Φ] = ϕitΠ + δP[ϕt+1 /∈ Φ] · E[TPU | ϕt+1 /∈ Φ]

+ δP[ϕt+1 ∈ Φ] · E[TPU | ϕt+1 ∈ Φ].
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According to Lemma 6.1, P[ϕt+1 ∈ Φ] = (1 − nϕ̃)n−1. Furthermore, E[TPU | ϕt+1 /∈ Φ] =

0. Since the expectation of future market shares and payoff is independent from the current

situation, E[TPU | ϕt+k ∈ Φ]) is constant for any k ≥ 1 and equal to

1
n
· Π
1− δ(1− nϕ̃)n−1

.

Substitution and rewriting yields

E[TPU | ϕt ∈ Φ] = (ϕit +
δ(1− nϕ̃)n−1

1− δ(1− nϕ̃)n−1
· 1
n

)Π.

The equilibrium condition E[TPU | ϕt ∈ Φ] ≥ E[D | ϕt ∈ Φ] is thus satisfied when

(ϕit +
δ(1− nϕ̃)n−1

1− δ(1− nϕ̃)n−1
· 1
n

) ≥ 1.

Finally notice that the left-hand side of the above inequality is increasing in ϕit. Since the

condition should hold for all possible ϕit with ϕt ∈ Φ, it suffices to require that the inequality

holds for ϕit = ϕ̃.

Corollary 6.3 Permanent collusive behavior in the threshold trigger strategy profile with public

information requires a higher discount factor than permanent collusive behavior when demand

fluctuations are impossible and demand is equally divided.

Proof. In a model without demand fluctuation and with equal demand division, firms will

not deviate from the trigger strategy profile when 1
1−δ

1
nΠ ≥ Π. This is equivalent to δ ≥ n−1

n .

If ϕ̃ = 0, the equilibrium condition in Theorem 6.2 becomes δ
n−nδ ≥ 1. This is equivalent to

δ ≥ n
n+1 .

The following corollary states for which discount factors there exists a strategy profile TPU

that forms a perfect Bayesian Nash equilibrium.

Corollary 6.4 When δ < n
n+1 , there exists no ϕ̃ ≤ 1

n for which the strategy profile TPU forms

a perfect Bayesian Nash equilibrium. When δ = n
n+1 , TPU forms a perfect Bayesian Nash

equilibrium precisely when ϕ̃ = 0. When δ > n
n+1 , there exists a ϕ∗ ∈ [0, 1

n ] such that TPU

forms a perfect Bayesian Nash equilibrium precisely when ϕ̃ ∈ [0, ϕ∗] .

Proof. Consider the function

f(ϕ) = 1− δ(1− nϕ)n−1

1− δ(1− nϕ)n−1
· 1
n

on the domain [0, 1
n ]. From Theorem 6.2 we know that TPU is an equilibrium precisely when

ϕ̃ ≥ f(ϕ̃). We check when this condition is satisfied.
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Since f is strictly increasing and concave on its domain, and since f( 1
n ) > 1

n , we know that, if

f(ϕ̃) ≥ ϕ̃, then f(ϕ) > ϕ for all ϕ ∈ (ϕ̃, 1
n ]. Thus, the set of ϕ with ϕ ≥ f(ϕ) is of the form

[0, ϕ∗] (possibly empty) for some ϕ∗.

When δ < n
n+1 . Then f(0) > 0. Thus there are no ϕ with ϕ ≥ f(ϕ).

When δ = n
n+1 . Then f(0) = 0, and ϕ ≥ f(ϕ) only holds for ϕ = 0.

When δ > n
n+1 , f(0) < 0. Then by the Theorem of Brouwer there exists a point ϕ∗ with

f(ϕ∗) = ϕ∗. By the argument we gave above this point ϕ∗ is unique, and the set [0, ϕ∗] is

exactly the set of solutions ϕ of the inequality ϕ ≥ f(ϕ).

Remark. The equilibrium in which ϕ̃ = 0 is Pareto-optimal among the possible equilibria in

threshold trigger strategies with full information. However, also higher choices for the threshold

ϕ̃ are sustainable in equilibrium. Nevertheless, in such equilibria, with probability 1 firms

switch to marginal cost pricing (playing M) at some moment in time. This feature makes these

strategies harder to recognize as being collusive.

6.2 Private Information

In this subsection, we analyze the case in which firms learn only their own market share ϕit at

the beginning of period t. I.e. ϕit is part of hit for all i ∈ N , but ϕt is not. Threshold trigger

strategies in this setting are defined as follows.

THRESHOLD TRIGGER STRATEGIES (WITH PRIVATE INFORMATION) We assume n ≥ 3 4.

Again, let the threshold ϕ̃ ≤ 1
n be chosen in advance by the firms. The threshold trigger

strategy TPRi of firm i is defined by

TPRi(hit) =





C if all firms chose C in all previous rounds according to hit, and ϕit ≥ ϕ̃

U if all firms chose C in all previous rounds according to hit, and ϕit < ϕ̃

M otherwise.

We write TPR = (TPRi)i∈N for the profile of threshold trigger strategies with private infor-

mation. We want to investigate under which conditions TPR constitutes a perfect Bayesian

Nash equilibrium.

We use the following notation. Let ϕ̂ = 1− (n−1)ϕ̃. Further, write Pit for the probability that

ϕjt ≥ ϕ̃ for all j 6= i given ϕit. Note that, when ϕit > ϕ̂, we have at least one firm j 6= i with

ϕjt < ϕ̃. Hence, Pit = 0 in that case.

4Note that, when n = 2, we have ϕ1t + ϕ2t = 1 for all t, so that private information regarding own market
share is equivalent to public information. This case is treated in the previous subsection.
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Lemma 6.5 Let the market share distribution ϕt be drawn from the uniform distribution. Sup-

pose that ϕit ≤ ϕ̂. Then, given ϕit,

Pit =
(

1− (n− 1)ϕ̃
1− ϕit

)n−2

.

Proof. Consider an (n− 1)-dimensional simplex with vertices

(ϕit, 1− ϕit, 0, . . . , 0); (ϕit, 0, 1− ϕit, . . . , 0); . . . ; (ϕit, 0, 0, . . . , 1− ϕit).

This simplex represents all possible market share realizations in which the first firm has a market

share of ϕit. The barycenter of this simplex is (ϕit,
1−ϕit

n−1 , . . . , 1−ϕit

n−1 ). The distance from the

barycenter to a vertex is
√

(n− 2)(
1− ϕit

n− 1
)2 + (

1− ϕit

n− 1
− (1− ϕit))2 =

√
(n− 2)(ϕit − 1)2

n− 1
.

Now consider the (n− 1)-dimensional simplex with vertices

(ϕit, 1− ϕit − (n− 2)ϕ̃, ϕ̃, . . . , ϕ̃); . . . . . . ; (ϕit, ϕ̃, ϕ̃, . . . , 1− ϕit − (n− 2)ϕ̃).

This simplex represents all possible market share realizations in which the first firm has market

share ϕit and all other firms have at least a market share of ϕ̃. The barycenter of this simplex

is also at (ϕit,
1−ϕit

n−1 , . . . , 1−ϕit

n−1 ). Straightforward calculation shows that the distance from the

barycenter to a vertex of this simplex is

(
1− (n− 1)ϕ̃

1− ϕit

) √
(n− 2)(ϕit − 1)2

n− 1
.

As the simplices differ in (n−2) dimensions, the volume of the second simplex is (1− (n−1)eϕ
1−ϕit

)n−2

times the volume of the first one.

Lemma 6.6 Let the market share distribution ϕt be drawn from a uniform distribution with

ϕit ≥ 0 and
∑

i ϕit = 1. Then, the cumulative distribution function of ϕit is

F (ϕit) = 1− (1− ϕit)n−1.

Proof. Consider the standard (n− 1)-dimensional simplex with vertices

(1, 0, . . . , 0); (0, 1, . . . , 0); . . . ; (0, 0, . . . , 1).

If we intersect this simplex by the halfspace ϕi ≥ ϕ∗ we get a smaller simplex of dimension

(n−1). Multiplication by a factor of 1
1−ϕ∗ using the ith unit vector as the origin transforms the
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smaller simplex into the larger one. Thus, because these simplices have (n− 1) dimensions, the

volume of the second simplex is (1− ϕ∗)n−1 times the first one. Hence, since the value F (ϕ∗)

of the cumulative distribution function evaluated at ϕi = ϕ∗ equals 1 minus the probability of

the smaller simplex, we find that F (ϕi) = 1− (1− ϕit)n−1.

Theorem 6.7 If ϕ̃ > 0, the strategy profile TPR is a perfect Bayesian Nash equilibrium pre-

cisely when

ϕ̃ + δ · n · (1− (n− 1)ϕ̃)n−1 − (n− 1) · (1− nϕ̃)n−1

n ·
(
1− δ · (1− nϕ̃)n−1

) = 1.

If ϕ̃ = 0, TPR is a perfect Bayesian Nash equilibrium precisely when δ ≥ n
n+1 .

Proof. Due to the one deviation property, the trigger strategy profile is a perfect Bayesian

Nash equilibrium exactly when every firm i, at every time t, and at every information set hit the

trigger strategy renders at least the same expected payoff as an instantaneous deviation. Thus,

consider firm i, at time t, having a market share ϕit. Let E[TPR | ϕit] denote the expected

payoff of following the threshold trigger strategy, and E[D | ϕit] the expected payoff of an

instantaneous optimal deviation, both given information set hit and given that the opponents

play according to TPR. We analyze three separate situations.

A. If ϕit > ϕ̂. In this case, according to TPR, there will be at least one opponent playing

U in the next period, after which M will be played forever. Thus, firm i will get an expected

payoff of 0, no matter what its strategy is. Hence in this case, E[TPR | ϕit] = 0 = E[D | ϕit],

and the equilibrium condition E[TPR | ϕit] ≥ E[D | ϕit] is trivially satisfied.

The other two cases require more attention. We start with deriving expressions for both ex-

pected payoffs E[D | ϕit] and E[TPR | ϕit] for the other two cases.

B. If ϕ̃ ≤ ϕit ≤ ϕ̂. In this situation, deviation from TPR will render a one-period payoff of

Π, provided there is no firm with a market share less than ϕ̃, after which the firm will receive

a payoff of 0 infinitely. Thus we find that

E[D | ϕit] = Pit ·Π.

Following TPR yields an expected payoff E[TPR | ϕit] equal to

Pit · ϕit ·Π + δ · Pit · P[ϕit+1 < ϕ̃] · E[TPR | ϕit+1 < ϕ̃]

+ δ · Pit · P[ϕ̃ ≤ ϕit+1 ≤ ϕ̂] · E[TPR | ϕ̃ ≤ ϕit+1 ≤ ϕ̂].

Now notice that this can be rewritten to

E[TPR | ϕit] = Pit · (ϕit ·Π + Q)
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where

Q = δ · P[ϕit+1 < ϕ̃] · E[TPR | ϕit+1 < ϕ̃] + δ · P[ϕ̃ ≤ ϕit+1 ≤ ϕ̂] · E[TPR | ϕ̃ ≤ ϕit+1 ≤ ϕ̂].

C. If ϕit < ϕ̃. The optimal deviation from TPR in this case is playing C. Playing C ensures

continuation of collusion, provided no other firm plays U in the next period. Therefore, using

the same reasoning as above, we find that in this case

E[D | ϕit] = Pit · (ϕit ·Π + Q) .

Following TPR in this case, and thereby attracting the entire market for one period unless

there is also another deviator, yields, as it does for E[D | ϕit] in case A,

E[TPR | ϕit] = Pit ·Π.

We have derived expressions for E[D | ϕit] and E[TPR | ϕit] for both cases. Notice that the

expression Pit ·Π equals both E[D | ϕit] in case B and E[TPR | ϕit] in case C. The expression

Pit · (ϕit ·Π + Q) equals both E[D | ϕit] in case C and E[TPR | ϕit]. Moreover, Π is a constant,

while ϕit ·Π+Q is linearly increasing in ϕit. Therefore, since Pit is non-negative and continuous

in ϕit, we can deduce that the equilibrium condition

E[TPR | ϕit] ≥ E[D | ϕit] for all ϕit

is equivalent to the requirement that

E[TPR | ϕit = ϕ̃] = E[D | ϕit = ϕ̃].

This equality boils down to the equation

ϕ̃ ·Π + Q = Π.

We compute Q as follows. Write V = E[TPR | ϕ̃ ≤ ϕit ≤ ϕ̂] and P1 = P[ϕ̃ ≤ ϕit+1 ≤ ϕ̂].

Then, using the fact that ϕ̂ = 1− (n− 1)ϕ̃,

P1 · V =
∫ 1−(n−1)eϕ
eϕ E[TPR | ϕit] · F ′(ϕit) dϕit,

where E[TPR | ϕit] is given by the expression in case B, and

F ′(ϕit) = (n− 1) · (1− ϕit)
n−2

is the density of the cumulative probability distribution in Lemma 6.6. Using the formula from

Lemma 6.5 for Pit we find that the integrand is

E[TPR | ϕit] · F ′(ϕit) = (n− 1) · (1− (n− 1)ϕ̃− ϕit)
n−2 · (ϕit ·Π + Q) .
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Thus, computing the integral, we find that

P1 · V = (1− nϕ̃)n−1 ·
(

Π
n

+ Q

)
.

We compute Q, using its definition in B. To do so, write P2 = P[ϕit+1 < ϕ̃]. Further, since V

does not depend on time, we can also write V = E[TPR | ϕ̃ ≤ ϕit+1 ≤ ϕ̂]. Using this notation,

we have

Q = δ · P2 · E[TPR | ϕit+1 < ϕ̃] + δ · P1 · V.

Combining this with the above expression for P1 · V we find that

Q = δ · P2 · E[TPR | ϕit+1 < ϕ̃] + δ · (1− nϕ̃)n−1 ·
(

Π
n

+ Q

)
.

Solving for Q yields

(
1− δ · (1− nϕ̃)n−1

)
·Q =

δ · (1− nϕ̃)n−1 ·Π
n

+ δ · P2 · E[TPR | ϕit+1 < ϕ̃].

Thus,

Q = δ · (1− nϕ̃)n−1 ·Π + n · P2 · E[TPR | ϕit+1 < ϕ̃]

n ·
(
1− δ · (1− nϕ̃)n−1

) .

Now we compute that

P2 · E[TPR | ϕit+1 < ϕ̃] =
∫ eϕ

0

E[TPR | ϕit] · F ′(ϕit) dϕit

=
∫ eϕ

0

Pit ·Π · (n− 1) · (1− ϕit)
n−2

dϕit

=
∫ eϕ

0

(
1− (n− 1)ϕ̃

1− ϕit

)n−2

·Π · (n− 1) · (1− ϕit)
n−2

dϕit

=
∫ eϕ

0

(n− 1) ·Π · (1− (n− 1)ϕ̃− ϕit)
n−2

dϕit

= Π ·
(
(1− (n− 1)ϕ̃)n−1 − (1− nϕ̃)n−1

)

Substituting and rewriting yields

Q = δ ·Π · n · (1− (n− 1)ϕ̃)n−1 − (n− 1) · (1− nϕ̃)n−1

n ·
(
1− δ · (1− nϕ̃)n−1

) .

Substituting this expression for Q into the equilibrium condition

ϕ̃ ·Π + Q = Π

yields

ϕ̃ + δ · n · (1− (n− 1)ϕ̃)n−1 − (n− 1) · (1− nϕ̃)n−1

n ·
(
1− δ · (1− nϕ̃)n−1

) = 1.
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Finally, if ϕ̃ = 0, ϕit < ϕ̃ cannot occur. Hence, the equilibrium condition boils down to

ϕ̃ ·Π + Q ≥ Π. Substitution of ϕ̃ = 0 and rewriting yields δ ≥ n
n+1 .

Corollary 6.8 When δ < n
n+1 , there exists no ϕ̃ for which the threshold trigger strategy profile

TPR with private information forms a perfect Bayesian Nash equilibrium. When δ = n
n+1 ,

TPR forms a perfect Bayesian Nash equilibrium precisely when ϕ̃ = 0. When δ > n
n+1 , there

are precisely two values of ϕ̃ for which TPR forms a perfect Bayesian Nash equilibrium, namely

ϕ̃ = 0, and a unique solution 0 < ϕ̃ < 1
n(n−1) of the equation

ϕ + δ · n · (1− (n− 1)ϕ)n−1 − (n− 1) · (1− nϕ)n−1

n ·
(
1− δ · (1− nϕ)n−1

) = 1.

Proof. From Theorem 6.7 we already know that for every δ ≥ n
n+1 the strategy profile TPR

is a Bayesian Nash equilibrium for ϕ̃ = 0. Consider the function

f(ϕ, δ) = δ · T

n ·
(
1− δ · (1− nϕ)n−1

)

where T = n · (1− (n− 1)ϕ)n−1 − (n − 1) · (1− nϕ)n−1. From the equilibrium condition in

Theorem 6.7 we know that ϕ > 0 yields a Bayesian Nash equilibrium precisely when f(ϕ, δ) =

1−ϕ. We show that this equation has a unique solution on the interior of interval [0, 1
n ] precisely

when δ > n
n+1 .

First note that f(0, δ) = δ
n(1−δ) . So, at ϕ = 0 we have f(ϕ, δ) > 1− ϕ precisely when δ > n

n+1

and f(ϕ, δ) = 1−ϕ precisely when δ = n
n+1 . Further, f( 1

n , δ) = δ
(

1
n

)n−1
< 1− 1

n . So, at ϕ = 1
n

we have f(ϕ, δ) < 1 − 1
n . Thus, by the fixed point Theorem of Brouwer, for δ ≥ n

n+1 there is

at least one point of intersection of the respective graphs of f(ϕ, δ) and 1 − ϕ on the interval

[0, 1
n ]. Moreover, when δ > n

n+1 , the point of intersection is at the interior of the interval

[0, 1
n ]. We show that the point of intersection must be unique in two steps. First we show that

f(ϕ, δ) < 1−ϕ on the interval [ 1
n(n−1) ,

1
n ]. So, there are no points of intersection on the interval

[ 1
n(n−1) ,

1
n ] and, because f(0, δ) > 1, there is at least one point of intersection on the interval

(0, 1
n(n−1) ). Then we show that ∂f

∂ϕ < −1 on the interval [0, 1
n(n−1) ], which establishes the fact

that the point of intersection on the interval (0, 1
n(n−1) ) is unique. Notice that

∂T

∂ϕ
= n · (n− 1)2 · ((1− nϕ)n−2 − (1− (n− 1)ϕ)n−2

)
.

It is easy to check that ∂T
∂ϕ < 0.

A. Consider the interval [ 1
n(n−1) ,

1
n ]. We show that

f(ϕ, δ) < 1− ϕ
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on this interval. Using the definition of f(ϕ, δ), it suffices to show that

T < n · (1− ϕ) ·
(
1− δ · (1− nϕ)n−1

)
.

Since ϕ ≥ 1
n(n−1) , we know that

δ · (1− nϕ)n−1
< (1− nϕ)n−1 ≤

(
n− 2
n− 1

)n−1

.

Thus, since also ϕ ≤ 1
n , it suffices to show that

T ≤ n · n− 1
n

·
(

1−
(

n− 2
n− 1

)n−1
)

or equivalently

T ≤ (n− 1) ·
(

1−
(

n− 2
n− 1

)n−1
)

.

Since ∂T
∂ϕ < 0 and ϕ ≥ 1

n(n−1) , we can deduce that

T ≤ n ·
(

n− 1
n

)n−1

− (n− 1) ·
(

n− 2
n− 1

)n−1

.

Thus, it suffices to check that

n ·
(

n− 1
n

)n−1

− (n− 1) ·
(

n− 2
n− 1

)n−1

≤ (n− 1) ·
(

1−
(

n− 2
n− 1

)n−1
)

which is equivalent to

n ·
(

n− 1
n

)n−1

≤ n− 1.

Since
(

n
n−1

)n−1

is increasing in n (monotonically converging to e), we know that
(

n−1
n

)n−1 ≤ 4
9

for all n ≥ 3. Hence

n ·
(

n− 1
n

)n−1

≤ 4
9
n ≤ n− 1

for all n ≥ 3, which concludes the proof of A.

B. We show that ∂f
∂ϕ < −1 on the interval [0, 1

n(n−1) ]. Notice that

∂f

∂ϕ
= δ ·

∂T
∂ϕ · n ·

(
1− δ · (1− nϕ)n−1

)
− δ · T · n2 · (n− 1) · (1− nϕ)n−2

n2 ·
(
1− δ · (1− nϕ)n−1

)2

=
δ · ∂T

∂ϕ

n ·
(
1− δ · (1− nϕ)n−1

) − δ2 · T · (n− 1) · (1− nϕ)n−2

(
1− δ · (1− nϕ)n−1

)2 .
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Since ∂T
∂ϕ < 0, the first term of this expression is negative. We show that

δ2 · T · (n− 1) · (1− nϕ)n−2

(
1− δ · (1− nϕ)n−1

)2 ≥ 1

which is equivalent to

δ2 · T · (n− 1) · (1− nϕ)n−2 ≥
(
1− δ · (1− nϕ)n−1

)2

.

Since δ ≥ n
n+1 , ϕ ≤ 1

n(n−1) , and T is a decreasing function, it suffices to show that

(
n

n + 1

)2

· (n− 1) ·
(

n− 2
n− 1

)n−2

·
(

n ·
(

n− 1
n

)n−1

− (n− 1) ·
(

n− 2
n− 1

)n−1
)

≥
(

1− n

n + 1
·
(

n− 2
n− 1

)n−1
)2

(∗)

which is equivalent to

(
n

n + 1

)2

· (n− 1) ·
(

n− 1
n− 2

)
·

(
n ·

(
n− 2

n

)n−1

− (n− 1) ·
(

n− 2
n− 1

)2(n−1)
)

≥
(

1− n

n + 1
·
(

n− 2
n− 1

)n−1
)2

.

Since n−2
n ≥

(
n−2
n−1

)2

, we have

n ·
(

n− 2
n

)n−1

− (n− 1) ·
(

n− 2
n− 1

)2(n−1)

≥
(

n− 2
n− 1

)2(n−1)

.

Thus, it suffices to show that

(
n

n + 1

)2

· (n− 1) ·
(

n− 1
n− 2

)
·
(

n− 2
n− 1

)2(n−1)

≥
(

1− n

n + 1
·
(

n− 2
n− 1

)n−1
)2

which can be rewritten to

n2 · (n− 1)2 ≥ (n− 2) ·
(

(n + 1) ·
(

n− 1
n− 2

)n−1

− n

)2

Now, since
(

n−1
n−2

)n−1

↑ e as n →∞, it suffices to show that

n2 · (n− 1)2 ≥ (n− 2) · ((e− 1) · n + e)2

It is straightforward to verify that this inequality holds for all n ≥ 5. Since the inequality (∗)
also holds for n = 4, the only remaining case is n = 3. For this case we directly compute that
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on the interval on the interval [0, 1
3 ] the equation f(δ, ϕ) = 1−ϕ has a unique solution ϕ∗, and

that ϕ∗ ≤ 1
6 .

The equation f(ϕ, δ) = 1− ϕ can be rewritten to g(ϕ, δ) = 0 with

g(ϕ, δ) = 27δϕ3 − 39δϕ2 + (21δ − 3)ϕ + 3− 4δ.

Thus ∂g
∂ϕ = 81δϕ2−78δϕ+21δ−3, which for δ > 3

4 is a strictly positive function on the interval

[0, 1
3 ]. So, for δ > 3

4 , g(ϕ, δ) is strictly increasing in ϕ on the interval [0, 1
3 ]. This implies

that the equation g(ϕ, δ) = 0 has at most one solution on the interval [0, 1
3 ]. It is moreover

straightforward to check that g(0, δ) = 3 − 4δ < 0. Hence, by A, the equation has a unique

solution ϕ∗ < 1
6 .

7 Discussion

The results presented in the previous sections lead to the following insights. In Section 4,

we show that in the presence of possible market share fluctuations a higher discount factor is

required to sustain a collusive equilibrium in trigger strategies than in the absence of such fluc-

tuations. In particular, we show that the larger the fluctuations can be, the higher the discount

factor needs to be to ensure the stability of the collusive price under all circumstances. As

some sort of fluctuation, albeit small, can hardly ever be denied, we should conclude that tacit

collusion using trigger strategies is harder to sustain than previously accepted. In particular,

it implies that in unstable markets, where for instance consumer loyalty is low, it is especially

hard to sustain such a collusive equilibrium. For the same reason, collusion could break down

in stable markets in which a drastic shock has occurred because of which the market shares

have become unequal. The firm that has suffered most from the shock might find continuing

collusive behavior unappealing because expected profits have gone down. When the discount

factor is not high enough to still ensure that the overall expected value of continuing collusively

outweighs the expected value of a deviation, this means that what was an equilibrium before the

shock ceases to be one afterwards. This effect is possible whenever exogenous factors play a role.

When firms have full information about the realized market shares in a certain period, the

market can reduce the temptation to deviate by reducing their collusive price when the firms

observe that one firm’s market share is (too) low. This way, an otherwise unstable collusive

agreement can be kept stable, although firms enjoy lower collusive profits in some periods.

However, when firms have private information about their market shares, it is unobservable to
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the other firms when this is necessary to keep collusion stable. In Section 6 it is shown that

when market shares are fully observable, a range of (quasi-)collusive trigger strategy equilibria is

possible. However, when firms have private information on their market share at the beginning

of the period, there exist only two types of trigger strategy equilibria: the fully collusive one

and one where firms play collusively as long as their market shares are above a certain bound,

but deviate and start to play competitively when their market share falls below this bound.

As in the latter type the competitive period will occur with probability 1, this contributes to

the explanation of price wars on the equilibrium path. Furthermore, exactly these competitive

periods will make the firms’ strategies harder to recognize as being part of collusive behavior.

One might think that a stable division of market shares is the result of collusive behavior by

the firms in a market of homogenous goods. These results show that it is not necessarily a

result of collusion but rather a stimulant of collusion. When market shares are stable and

equally divided, collusion is most likely. When they are unstable or when there are firms in

the market with clearly lower market shares, collusion is less likely since there is not enough to

gain individually from the collusion.

Using a Bertrand type of model, we should admit that there are elements in the model which

might be more extreme than we would observe in reality. In particular, in our model, the firm

with the lowest price captures the entire market, even if this price is only very slightly lower

than the price of its opponents. We have still chosen for this kind of model, because it is a

generally accepted method to analyze tacit collusion in oligopolies and in this way we are able

to show the direct effect that fluctuating market shares have on the equilibrium strategies of

the competing firms. Still, it would be interesting to see what results we would get if a similar

approach is taken within, for instance, a Hotelling type of model.

A point of criticism can be made at the chance mechanism used in Section 6, which creates an

independence of demand across periods. In reality we would expect that a low market share

today is likely to be followed by a low market share tomorrow, which could for instance be re-

alized by a Martingale process. We have chosen for market share realizations to be drawn from

a uniform distribution, for this simplifies computations considerably while still contributes to a

better understanding of the effects of fluctuating demand on the stability of collusion. In future

research the model could definitely be made more realistic by choosing a chance mechanism that
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ensures a certain level of dependence of market share realizations between periods. Yet, it can

be expected that the results we have found in this paper are qualitatively quite robust against

this change. As said before, the main intuition behind the finding that collusion is harder to

sustain when fluctuations in market share are possible is that the expected payoff from collusion

goes down while the expected payoff from deviation goes up. Although this is already true with

the chance mechanism we have used in this paper, this will only be strengthened when we use a

chance mechanism by which a low market share today is likely to be followed by a low market

share tomorrow. In that case, the expected payoff of continued collusion is even lower while

the relative loss of the punishment period following a deviation is lower as well, and therefore,

it is even more attractive to deviate from the collusive strategy.

Clearly there exist more equilibria in our model than the ones we have presented in this article.

Some types of equilibria are certainly worth researching further if we want to investigate the

consequences of fluctuating demand. An interesting type of equilibrium that could be inves-

tigated further is the possibility of firms to return to collusion after a period of competitive

behavior. When there is full information on market shares this could be done by agreeing

that collusion will be resumed whenever all firms have a market share above a certain level φ

after at least T periods of competitive play. With private information it could be agreed that

instead of having an infinite punishment period, the period of competitive play is restricted to

T periods, as for instance is done in Green and Porter (1984). Also “optimal” punishments like

presented in Abreu, Pierce and Stacchetti (1986) can be incorporated. Finding equilibria of this

type could give further aid to the research into temporary price wars along the equilibrium path.

In reality, we never see market shares that are completely equal and fixed over time. There are

stronger and weaker firms, and their individual demand levels may fluctuate to a smaller or

larger extent. Why this happens is often not so easy to identify when market conditions and

firm characteristics appear to be stable and products seem to be homogeneous. The approach

we have adopted is a step towards a model that is applicable to analyze markets in which

its characteristics are not fixed and where endogenous as well as exogenous factors influence

the division of demand while firms compete in prices. In all strategic situations, firms have

to decide which action to take, depending on the state they find themselves in. When we

acknowledge that also exogenous factors can influence which state will arise, we should indeed

strive for a model that incorporates the effects of these exogenous factors in order to enhance
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our understanding of the strategic situation. It is quite likely that results that are based on

static models as the original Bertrand model will change when we incorporate more dynamics

and uncertainty. Our results are an indication of that.
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