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Abstract

Wireless communication is used in many di�erent situations such as mobile telephony, ra-

dio and TV broadcasting, satellite communication, and military operations. In each of these

situations a frequency assignment problem arises with application speci�c characteristics. Re-

searchers have developed di�erent modeling ideas for each of the features of the problem, such

as the handling of interference among radio signals, the availability of frequencies, and the

optimization criterion.

This survey gives an overview of the models and methods that the literature provides on the

topic. We present a broad description of the practical settings in which frequency assignment

is applied. We also present a classi�cation of the di�erent models and formulations described

in the literature, such that the common features of the models are emphasized. The solution

methods are divided in two parts. Optimization and lower bounding techniques on the one hand,

and heuristic search techniques on the other hand. The literature is classi�ed according to the

used methods. Again, we emphasize the common features, used in the di�erent papers. The

quality of the solution methods is compared, whenever possible, on publicly available benchmark

instances.
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1 Introduction

The literature on frequency assignment problems, also called channel assignment problems, has

grown quickly over the past years. This is mainly due to the fast implementation of wireless tele-

phone networks (e.g., GSM networks) and satellite communication projects. But also the renewed

interest in other applications like TV broadcasting and military communication problems inspired

new research. These applications lead to many di�erent models, and within the models to many

di�erent types of instances. However, all of them share two common features:

(i) A set of wireless communication connections (or a set of antennae) must be assigned frequen-

cies such that data transmission between the two endpoints of each connection (the receivers)

is possible. The frequencies should be selected from a given set that may di�er among connec-

tions.

(ii) The frequencies assigned to two connections may incur interference to one another, resulting

in quality loss of the signal. Two conditions must be ful�lled in order to have interference of

two signals:

(a) The two frequencies must be close on the Electromagnetic band (or harmonics|Doppler

e�ects|of one another).

(b) The connections must be geographically close to each other, so that the interfering signal

is powerful enough to disturb the original signal.

Frequency assignment problems (FAPs) �rst appeared in the 1960s [99]. The development of new

wireless services such as the �rst cellular phone networks led to scarcity of usable frequencies in the

radio spectrum. Frequencies were licensed by the government who charged operators for the usage

of each single frequency separately. This introduced the need for operators to develop frequency

plans that not only avoided high interference levels, but also minimized the licensing costs. It

turned out that it was far from obvious to �nd such a plan. At this point, operations research

techniques and graph theory were introduced. Metzger [99] usually receives the credits for pointing

out the opportunities to use mathematical optimization, especially graph coloring techniques, for

this purpose.

Until the early 1980s, most contributions on frequency assignment used heuristics based on the

related graph coloring problem. First lower bounds were derived by Gamst and Rave [57] in 1982

for the most used problem of that time (cf. Section 4). The development of the digital cellular

phone standard GSM (General System for Mobile Communication) in the late 1980s and 1990s led

to a rapidly increasing interest for frequency assignment (see Eisenbl�atter [46] for a discussion of

the typical frequency planning problems in GSM networks). But also projects on other applications

such as military wireless communication and radio/TV broadcasting contributed to the literature

on frequency assignment in recent years. So far, we only discussed Fixed Channel Assignment

(FCA), i.e., static models where the set of connections remains stable over time. Opposite to FCA,

Dynamic Channel Assignment (DCA) deals with the problem, where the demand for frequencies

at an antenna varies over time. Hybrid Channel Assignment (HCA) combines FCA and DCA: a

number of frequencies have to be assigned beforehand, but space in the spectrum has to be reserved

for the online assignment of frequencies upon request. In this survey, we concentrate on FCA. We

refer to Katzela and Naghshineh [79] for a recent survey on the topics DCA, HCA, and their relation

with FCA.

This paper is not the �rst survey on the frequency assignment problem. In 1980, Hale [61] presented

an overview of the frequency planning problems of that time, with a special focus on modeling

the problems. Hale also introduced the relation of the FAP with graph (vertex) coloring. Since

then, new applications have led to new variants of the problem. Moreover, the T -coloring problem
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introduced by Hale and other generalizations of graph coloring motivated by FAPs have received a

lot of attention, resulting in many new (graph-theoretic) results. Roberts [115] surveyed the results

on T -coloring in the early 1990s. The survey of Murphey et al. [101] also concentrates on the results

for coloring generalizations that were motivated by frequency assignment. In Jaumard et al. [75], a

brief description of several exact methods is presented. The survey in [85, Chapter 2] served as a

starting point of this overview. Finally, Eisenbl�atter et al. [47] give an overview of the evolution of

frequency planning from graph coloring and its generalizations to the models used nowadays, with

an emphasis on the GSM practice. In this survey, we also restrict ourselves to models that are

directly motivated from practice, and their solution methods.

Our focus is mainly on the practical relevance of mathematical optimization techniques for frequency

assignment. In the next section we will discuss the practical settings of frequency planning mentioned

above. Moreover, we will model this in such a way that the common features are emphasized. In

Section 3, we will categorize the models in four standard classes. These categories mainly di�er in

the objective to be optimized. For each of the models, the subsequent sections will discuss:

(i) structural properties of the models, including bounding techniques based on (combinatorial)

relaxations (Section 4),

(ii) exact optimization methods, such as branch-and-cut, branch-and-price, and combinatorial

enumeration (Section 4 as well), and

(iii) heuristic methods, such as local search (including simulated annealing and tabu search), genetic

algorithms, neural networks, constraint programming, and ant colony algorithms. (Section 5).

The paper is concluded with a discussion of the results obtained for available benchmark instances

in Appendix A. For convenience, all discussed papers are summarized in a schematic way, in Ap-

pendix B.

Although we invested much e�ort in collecting as many papers on the topic as possible, it is im-

possible to guarantee completeness. Moreover, new publications will reduce the actuality of this

survey. Therefore, updates of this survey, in particular of the digest in Appendix B, will appear at

the web-site FAP web (http://fap.zib.de) [48]. This site also serves as a platform for announcing

new papers on frequency assignment.

2 Models and Applications

The models discussed in the literature di�er in the frequency choices for connections (or antennae)

for two reasons, mainly. The available set of frequencies di�ers among applications, as well as the

ways of handling interference. We will describe the practical settings of known applications, and the

abstractions assumed in the accompanying models that lead to the models described in the litera-

ture. The models are discussed both in their common features and their di�erences. This section

starts with a description of the most important practical issues involved with frequency assignment.

Then an overview of situations in which frequency assignment problems occur is provided, including

application speci�c characteristics. In the �nal subsection, we discuss the models that are derived

from these practical situations.

2.1 Modeling the Frequency Assignment Problem: Practical Background

The availability of frequencies from the radio spectrum is regulated by the national governments,

and world-wide by the International Telecommunication Union (ITU). Operators of wireless services
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are licensed to use one or more frequency bands in speci�c parts of a country. The frequency band

[fmin; fmax] available to some provider of wireless communication is usually partitioned into a set of

channels, all with the same bandwidth � of frequencies. For this reason the channels (actually the

channels are often called frequencies) are usually numbered from 1 to a given maximum N , where

N = (fmax � fmin)=�. The available channels are denoted by F = f1; : : : ; Ng. If more than one

frequency band is available each band has its own set of consecutively numbered channels. In case

of two bands, the frequencies can be numbered by F = f1; : : : ; N1; N2 + 1; : : : ; N3g, where usually
N1 is so much smaller than N2 that the two bands do not have any in
uence on each other. For

a particular connection or antenna not all channels from F might be available. For instance, if a

connection is close to the border of a country, division rules between the countries involved may lead

to a substantial reduction in channel availability. Therefore, the channels available for a connection

or antenna v form a subset F (v) of F .

Interference of signals is measured by the signal-to-noise ratio, or interference ratio, at the receiving

end of a connection. There, the signal of the transmitting end should be clearly understandable.

The noise comes from other signals broadcasted at interfering frequencies. In general, the level of

interference rapidly decreases with the distance between the frequencies. But, the actual signal-to-

noise ratio at a receiver depends not only on the choice of frequency, but also on the strength of the

signal, the direction it is transmitted to, the shape of the environment, and even weather conditions.

It is therefore hard to obtain an accurate prediction of the signal-to-noise ratio at receivers. A

�rst simpli�cation is to ignore the environment and assume an omni-directional antenna. Now,

consider two signals, one original and some other signal transmitted at the same frequency channel.

Then the interference of the second signal at the receiver of the �rst signal is computed with the

following formula: P

d

where P is the power of the interfering transmitter and d its distance to the

disturbed receiver. 
 is a fading factor with values between 2 and 4. Its value depends on the

frequency used. For instance the 1800 MHz band frequencies fade faster than the 900 MHz band

frequencies both used in GSM networks. If the second signal is transmitted on a frequency at a

distance of n � 1 units from the original signal, then an additional �ltering factor of �15(1+ log2 n)

dB is taken into account (see [43]). There may be more than one source that transmits on the

same or a close frequency and thus contributes to the total noise experienced at the receiver. The

fact that multiple signals may disturb communication quality is ignored in most models where only

interference between pairs of connections or antennae is measured. Notable exceptions are [53], in

which constraints are developed to determine the total interference from neighboring connections,

and [44], where combinations of frequencies for more than two transmitters are forbidden. We will

generally ignore multiple interference. So it becomes a binary relation: only two connections or

antennae are involved.

In mobile telephony and radio-TV broadcasting, the receivers are spread within a certain area. The

standard approach of determining signal strength at all locations in the area is the following.

(i) A grid of squares of predetermined (small) size, the test points or pixels, is designed to overlap

the area.

(ii) For each test point, the levels of the received signals generated by the serving transmitter,

typically the one with strongest received signal (best server), and by the interfering transmitters

are predicted with a wave propagation model. Test points with same best server can be

clustered to service areas, resulting in pictures like the one in Figure 1.

(iii) For a single transmitter A, and a given interfering transmitter B, the noise generated by B

in each pixel of the service area of A is aggregated to a single value, which represents the

interference of B over A.

The way noise is predicted and aggregated strongly depends on the application considered. For

precise descriptions of wave propagation models used for this task see [33].
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Figure 1: Best-server areas in a GSM network. Provided by E-Plus Mobilfunk GmbH.

In the past, more simpli�ed prediction models were used: a standard approach was to use a grid of

hexagons overlapping the area of interest and to consider the transmitters to be located at the center

of each hexagon. The well-known Philadelphia instances (cf. Section 2.2) have this structure (see

Figure 4, page 8). In the basic model for the hexagonal grids, interference of cells is characterized

by a co-channel reuse distance d. No interference occurs if and only if the centers of two cells have

mutual distance � d. In case the mutual distance is less than d (normalized by the radius of the

cells), it is not allowed to assign the same frequency to both cells. This pure co-channel case is

generalized by replacing the reuse distance d by a series of non-increasing values d0; : : : ; dk and

corresponding forbidden sets T 0 � : : : � T k. The following relation holds:

Tvw = T j�1 whenever dj � dvw < dj�1; j 2 f1; : : : ; kg

where dvw is the distance between the cell centers and Tvw denotes the set of forbidden di�erences

for frequencies assigned to v and w, i.e., jfv � fwj 62 Tvw. For the variations of the original Philadel-

phia instance, the sets T j are taken as T j = f0; : : : ; jg. For example, the values d0; : : : ; d5 are

2
p
3;
p
3; 1; 1; 1; 0. So, frequencies assigned to the same site should be separated by at least 4 other

frequencies, whereas frequencies assigned to adjacent sites should be at a distance of at least 2, and

frequencies assigned to a second and third `ring' of cells should still di�er, see Figure 2. In case

Tvw = f0; : : : ; jg, alternatively the notation jfv � fwj � Æ(v; w) is used where Æ(v; w) = j + 1, the

minimum required di�erence.

A �nal aspect to be taken into consideration is two-way traÆc. Except for radio and TV broad-

casting all traÆc is bidirectional, and one needs two channels, one for each direction. In the models

considered in the literature the second channel is almost always ignored, with a notable exception

in military applications, see Section 2.2. The reasons for ignoring this aspect of the FAP depend on

the application. In most applications two bands of N channels are available: one with the channels

f1; : : : ; Ng, and one with the channels fs+ 1; : : : ; s+Ng, where s � N . Thus, the backward con-

nection uses a channel which is shifted s channels up. The choice of s prevents any interference of

backward channels with forward channels. Moreover, the symmetry of the solution for the backward

channels, with the forward channels (plus s channels) leads to (almost) the same interference pattern

for the backward channels. If these conditions are not ful�lled, the two-way traÆc poses a problem,

since interference need not be symmetric. The next example shows that the above conditions are

not suÆcient for symmetric interference. Consider the geographic positioning of transmitters in

Figure 3. Suppose transceiver pair (a; b) transmits on frequencies f from a to b and f + s from b to
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Figure 2: Example of reuse distances in hexagonal cell networks. The values denote the minimum

separation distance in relation to the central cell.

a, and another transceiver pair (c; d) transmits on frequencies g from c to d and g + s from d to c

where f and g interfere, and f + s and g+ s interfere. Now signal strength of g at a is much higher

than signal strength of g + s at b, since the receivers have di�erent distances to c and d. Since in

most models the assignment of frequencies to the backward direction is ignored, this aspect is not

taken into account.

z

z

z z

a

b

c d

Figure 3: Example of asymmetric interference for bidirectional wireless communication

In mobile telephone networks, the backward interference is not employed for another supplementary

reason: the location of the transmitters (the mobile users) is not static but varies over time, which

makes it almost impossible to give an accurate prediction of the interference at the receiving end

(base station).

Also in mobile telephone networks, in particular in GSM networks, the technique of frequency hopping

has been introduced to reduce the in
uence of interference. Frequency hopping permits a transmitter

to change the frequency of the signal according to a sequence of assignment frequencies. By rapidly

changing the frequency for transmission, the overall interference level can be reduced. In general,

still a generalized frequency assignment problem has to be solved. For more information about

frequency hopping, we refer to [16, 56, 104].

2.2 Applications

There are various models and problem instances. The practical setting can vary enormously. This

leads not only to di�erent variants of the above model, but also to di�erent instance types, see

Hale [61]. Some of the settings are:
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Mobile telephony In this application one of the endpoints of the connection is a �xed antenna,

and the other endpoint is a mobile phone. Each antenna covers a certain area, where it can

pick up signals from mobile phones. Each antenna covers a speci�c region (cell) and can serve

several mobile units simultaneously. In particular, in TDMA (Time Division Multiple Access)

each available frequency can be used to serve n di�erent mobile units; in addition, several

frequencies can be assigned to the same antenna (by the use of multiple transmitter/receiver

units, TRXs), so that the number of di�erent mobile units that are served can be very large.

More antennae are then mounted on a same physical support (site) to cover a number of

adjacent regions. In GSM networks, typically 8 mobile units can be served simultaneous by

TDMA, whereas up to 12 TRXs can be installed at an antenna, for more details, we refer

to [46].

The frequencies assigned to each antenna must satisfy a number of requirements that depend

on (i) availability, especially at country borders; (ii) interference levels; (iii) technological

requirements; and (iv) size of the area with unacceptable interference. Four types of constraints

can be speci�ed.

co-cell separation constraint. The frequencies assigned to the same antenna v must di�er

by at least Æ(v; v) units (typically Æ(v; v) = 3).

co-site separation constraint. If u and v are co-site antennae, then typically Æ(u; v) = 2.

interference constraint. Due to interference, additional separations can be required be-

tween pairs of antennae not at the same site. Typically, such pairs u and v should have

di�erent frequencies, i.e., Æ(u; v) = 1, or frequencies at distance at least 2.

Constraints that forbid two cells to use the same frequency are often called co-channel

constraints. Constraints that forbid frequencies with distance 1, usually including distance

0, are called adjacent channel constraints.

hand-over separation constraint. As the mobile unit moves from a cell u to an adjacent

one v, control must be switched from u to v (hand-over or hand-o� ), which in turn

requires that the broadcasting frequencies used by u and v to serve the mobile, di�er by

at least one unit. Note that the actual situation, in for instance GSM networks, is more

complicated, since the control channels (BCCH) need more protection. This is in some

countries translated into a desired distance of 2.

There are several sets of instances available from the literature. The most used sets are the

following.

Philadelphia The Philadelphia instances were among the �rst discussed in the literature [8].

The Philadelphia instances are characterized by 21 hexagons denoting the cells of a cellular

phone network around Philadelphia, see Figure 4. Until recently, it was common practice

to model wireless phone networks as hexagonal cell systems. Each cell needs a high

number of frequencies, the \multiplicity" of the cell. An overview of the results can be

found in Appendix A.1 (see also [48] for the most recent results).

COST 259 In the context of the COST (COoperation europ�eenne dans le domaine de la

recherche Scienti�que et Technique) 259 project (�nancially supported by the European

Union), 32 instances for GSM network planning have been made available. The number

of antennae that have to be assigned frequencies ranges from 900 up to almost 4000.

Up to 75 frequencies are available at each vertex. The instances are available at [48]

together with an overview of the results. A summary of these results can be found in

Appendix A.3. More information on the project can be found in the �nal report [33].

CSELT The CSELT instances have been used by Fischetti et al. [53] and by Mannino and Sas-

sano [94]. These instances have co-channel constraints and adjacent channel constraints.

Besides these constraints, multiple interference of antennae is bounded from above by a

threshold value L.
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6 7 8 9 10 11 12

13 14 15 16 17 18

19 20 21

(a) network structure

8 25 8 8 8

15 18 52 77 28 13 15

31 15 36 57 28 8

10 13 8

(b) frequency demand of instance P1

Figure 4: Hexagonal grid used in the Philadelphia instances

CNET Instances from the French National Research Center for Telecommunications (CNET)

have been used in papers by Hao et al. [40{42,62,63]. The number of cells is at most 300.

To each vertex, one or two frequencies have to be assigned.

CNET 2 Another instance that was also made available by CNET [27] deals with GSM

frequency planning. The instance contains raw data about locations of antennae and

propagation of the signals.

Bell Mobility Instances provided by Bell Mobility for two Canadian urban areas are made

available at [14]. The problems di�er in size from almost 700 to more than 5000 trans-

mitters. The instances are used by Jaumard et al. [74{76].

Besides these \realistic" instances, Castelino et al. [30] discussed 6 computer generated in-

stances that have constraints with comparatively high frequency distances among neighboring

antennae, and are fairly large with respect to the number of antennae. For every antenna, 50

frequencies are available.

Most of the above mentioned sets of instances consider frequency domains that do not depend

on the vertices. The domains are usually represented by one or two sets of consecutive integers.

Depending on the objective, the size of this set may or may not vary.

Radio and Television These applications essentially resemble the mobile phone instances. The

major di�erence lies in the used frequency distances. Instances provided by a major Ital-

ian radio broadcasting company were made available at [69]. Results for these instances are

presented by Mannino and Sassano [94].

There is one set of instances available for UHF TV broadcasting in which the constraints forbid

certain di�erences in frequencies which are not consecutive. For instances, frequency distances

1; 2; 5, and 14 are forbidden. The practical cause is the frequency band itself, which includes

higher harmonics of the frequencies.

Military applications The usage of �eld phones (or air phones) in the military leads to dynamic

(in time and place) frequency assignment problems. These problems have the property that

each connection consists of two movable phones. To each connection we must therefore assign

two frequencies at a �xed distance of each other, one for each direction of communication.

Thus, all frequencies are given in pairs with this �xed distance between them.

In the context of the EUCLID CALMA (Combinatorial ALgorithms for Military Applications)

project [26], eleven static real-life instances were provided by CELAR (Centre d'ELectronique

de l'ARmement, France), whereas a second set of 14 arti�cial instances was made available by

a group at Delft University of Technology. These GRAPH (Generating Radio Link Frequency

Assignment Problems Heuristically) instances were randomly generated by Van Benthem [15],

8



and have the same characteristics as the CELAR instances. There are instances in the CALMA

project available that vary over the complete range of models as discussed later. A description

of the results achieved in the CALMA project can be found in [2] or [25]. In Appendix A.2,

the results are summarized (for updated information see [48]).

The instances of the ROADEF Challenge 2001 [114] are also made available by CELAR and

can be viewed as a follow-up of the CALMA project. The frequency assignment problem is ex-

tended with polarization constraints. For every connection, a polarization direction (horizontal

or vertical) is to be chosen. The interference depends not only on the assigned frequencies but

also on the choices for polarization.

Satellite communication In Thuve [125], a frequency planning problem in satellite communica-

tion is discussed. In this application, both the transmitters and receivers are ground terminals.

They communicate with each other with the help of one or more satellites. Each signal is �rst

transmitted via an uplink to the satellite and next transmitted by the satellite via a downlink

to the receiving terminal. The uplink and downlink frequency are separated by a �xed distance,

much larger than the bandwidth, which implies that we only have to assign frequencies to the

uplink. A set of consecutive frequencies has to be assigned to every transmitter. To avoid

interference, every frequency may be used only once. Due to the nature of these constraints

the problem does not really �t in the classi�cation presented in the next section.

3 Formulations and Classi�cation

The basic frequency assignment problem consists of assignment constraints, interference constraints

(usually packing constraints), and an objective. In this section, we �rst formulate the basic con-

straints. In the successive subsections we classify the problem variants, mainly by way of distinct

objectives.

The frequency assignment models of Section 2 generally have a prede�ned set of channels or frequen-

cies, denoted by F . For every antenna or connection v, a subset F (v) � F of available frequencies is

speci�ed, from which a subset of m(v) frequencies must be assigned to v. Generally, the multiplicity

is equal to one. Higher multiplicities arise in mobile telephony applications, where an antenna rep-

resents a cell that may contain multiple TRXs. Each such TRX should be assigned one frequency.

Thus, an antenna is to be assigned as many frequencies as there are TRXs. From a modeling per-

spective it is easy to reduce the multiplicities to one, by viewing each TRX in an antenna as a

separate unit. However, the size of a problem instance may then increase quite substantially, and

solution methods may not be able to use the special structure, induced by the TRXs, anymore. Note

that TRXs in one antenna have high interference restrictions.

Sometimes the frequencies assigned to an antenna is the union of sets belonging to a family of

prede�ned subsets of the available band. These subsets are called blocks and a frequency assignment

is obtained by assigning to each antenna one or more of such blocks. Such a solution is called a block

assignment.

A convenient representation of interference is by means of a graph G = (V;E), the interference

graph or constraint graph. Each antenna is represented by a vertex v 2 V . Two vertices v and w

for which the corresponding signals may interfere for at least one pair of transmitting frequencies,

are connected by an edge fv; wg 2 E. Multiple frequencies to be assigned to single antennas can be

represented by splitting the antenna vertices into a number of copies equal to the desired multiple.

Clearly, this may blow up the size of the interference graph, and therefore in some methods we

prefer to work with multiplicities on the antenna nodes directly. This extended graph is referred to

as the split interference graph. Note that loop edges in this graph model the distance requirements

of TRXs on the same antenna. In Figure 5, an example of an interference graph from the CALMA
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project [26] is given.

Figure 5: Interference graph of CALMA instance CELAR [06]

For each pair of frequencies f 2 F (v) and g 2 F (w) we penalize the combined choice by a measure

depending on the interference level. This penalty is denoted by pvw(f; g) or pvwfg . In most models

this penalty has a very speci�c structure: it depends only on v and w and the distance between the

frequencies jf�gj. FAPs with this structure are called distance FAPs henceforth. Two variants occur
frequently in the literature. In the �rst variant a distance dvw is introduced such that the penalty

pvw is incurred if the choices of f and g are such that jf � gj < dvw. Note that by selecting very

high penalties pvw the distance requirements can turn into hard constraints. In the second variant

only a co-channel penalty p0 (if jf � gj = 0) and an adjacent channel penalty p1 (if jf � gj = 1) are

incurred, where p0 > p1 � 0.

In many studies the penalty matrices are not used in all detail, but a certain threshold value pmax of

interference is allowed. The threshold value corresponds to an acceptable signal-to-noise ratio. This

reduces the interference constraints to forbidding certain combinations of frequencies. Moreover, the

problem reduces to a binary Constraint Satisfaction Problem (CSP). In case pvw(f; g) only depends

on the distance jf�gj, this leads, combined with a threshold value, to a set of forbidden distances Tvw.
This problem is equivalent to the T -coloring problem, see Roberts [115], where colors are numbers

and certain di�erences between numbers are forbidden for adjacent vertices. Generally, but not

necessarily, the forbidden distances form a set of consecutive integer numbers f0; 1; : : : ; dvw � 1g. In
case they do, we will refer to the problem as distance FAP.

The mathematical programming formulation of the FAP consists of a set of variables, constraints,

and an objective function. A straightforward choice for the variables is to use binary variables

representing the choice of a frequency for a certain vertex. For every vertex v and available frequency

f 2 F (v) we de�ne:

xvf =
n
1 if frequency f 2 F (v) is assigned to vertex v 2 V

0 otherwise

10



These variables have been used by the majority of the researchers. They lead to Integer Linear

Programming (ILP) formulations that can be solved by Branch-and-Cut methods, for instance.

The disadvantage is the size of the variable set. More compact formulations are obtained by using

variables fv for the choice of frequency for vertex v 2 V . They lead to nonlinear programs which are

seldom used explicitly. Moreover, they have the disadvantage that only one frequency can be assigned

to a vertex; hence, the split interference graph is essential. Therefore, we will not consider these

formulations. On the other hand, even larger formulations used for column generation techniques

have been used. They are discussed at the end of this section.

The requirement that m(v) frequencies have to be assigned to a vertex v is modeled by the following

constraints, the so-called multiplicity constraints :

X
f2F (v)

xvf = m(v) 8v 2 V (1)

The penalty matrices pvw are often used in combination with a threshold value pmax. Pairs of

frequencies with a penalty exceeding this threshold are forbidden. This is modeled by the following

packing constraints :

xvf + xwg � 1 8fv; wg 2 E; f 2 F (v); g 2 F (w) : pvw(f; g) > pmax (2)

When there is no further objective to be optimized, we obtain the so-called feasibility frequency

assignment problem (F-FAP). Here, we simply want to �nd a feasible solution to the FAP, i.e., a

solution satisfying the constraints (1) and (2).

In the sequel we consider a variety of objectives for this model. If no feasible solution exists to

F-FAP, we can try to assign as many frequencies as possible or minimize the probability that a call

will be blocked. Other objectives aim at optimizing operating costs by minimizing the number of

frequencies used (until the 70s), or minimizing the bandwidth used (highest minus lowest frequency).

All these models use, besides the multiplicity constraints, packing constraints. In case the penalty

matrices are used directly, we generally wish to minimize the total penalty incurred. In this model,

the packing constraints are replaced by a version that incorporates penalty for certain choices of

combinations of frequencies.

3.1 The Maximum Service and Minimum Blocking Frequency Assign-

ment Problems

If feasible solutions to the F-FAP are not available or diÆcult to �nd, we can decide to �nd a partial

solution that assigns as many frequencies as possible to the vertices. This problem is known as the

Maximum Service FAP, or shortly Max-FAP. Basically, this problem is an F-FAP extended with

the objective to assign as many frequencies as possible. To model the problem we introduce the

numbers n(v) (v 2 V ), which denote the number of frequencies assigned to vertex v 2 V .

max
X
v2V

n(v) (3)

s.t.
X

f2F (v)

xvf = n(v) 8v 2 V (4)

n(v) � m(v) 8v 2 V (5)

xvf + xwg � 1 8fv; wg 2 E; f 2 F (v); g 2 F (w) : pvw(f; g) > pmax (6)

xvf 2 f0; 1g 8v 2 V; f 2 F (v) (7)

11



n(v) 2 Z+ 8v 2 V (8)

In contrast to the formulation of F-FAP, the multiplicity constraints (1) need not be satis�ed with

equality anymore. The objective (3) ensures that as many frequencies as possible are assigned.

Jaumard et al. [74, 76] observed that optimal solutions to the Max-FAP tend to assign very few

frequencies to some \diÆcult" vertices, whereas most other vertices obtain all demanded frequencies.

Such solutions are not desirable, since this incurs extremely low service in some areas. To cope with

this problem, Jaumard et al. introduce a lower bound l(v) on the number of frequencies to be assigned

to each of the vertices v to obtain a minimum service guarantee: l(v) � n(v) 8v 2 V . A more realistic

way to cope with this problem is to compute the actual blocking probabilities in the vertices as a

function of the number of assigned frequencies n(v). This approach has been modeled independently

by Mathar and Mattfeldt [95], and Chang and Kim [31], who use a weighted combination of blocking

probabilities in the objective function. This problem is known as the Minimum Blocking Frequency

Assignment Problem (MB-FAP). Here, we follow the approach taken by Chang and Kim [31]. Let

�v denote the traÆc demand in Erlang for cell v, and n(v) the number of assigned channels. Then

the blocking probability of cell v is given by the Erlang B formula as

B(�v ; n(v)) =

0
@
n(v)X
k=0

(�v)
k

k!

1
A
�1

(�v)
n(v)

n(v)!

This function describes the blocking probability for voice traÆc with negative exponential distribu-

tion of the call inter-arrival time. Note that B(�v ; n(v)) is strictly decreasing and convex in n(v).

Now, the objective function is a weighted average of the blocking probabilities of all vertices v, given

by

X
v2V

wvB(�v ; n(v)) (9)

with wv = �v=
P

u2V
�u being the traÆc weighting factor. In contrast to (3), the objective func-

tion (9) is to be minimized. Note that the objective of Max-FAP can be viewed as a simpli�cation

of this objective: wv = 1, and B(�v ; n(v)) is replaced by m(v)� n(v), a linear decreasing function.

Moreover, note that the upper bounds (5) on the number of assigned frequencies are fairly super�cial

in this model. Their only relevance may come from practical considerations such as a maximum

amount of space to install the transmitters. If space is not an issue, by removing the multiplicity

constraints one may obtain even better solutions with respect to the objective (9).

3.2 The Minimum Order FAP

If feasible solutions to the F-FAP exist, then we may look for a \cheapest" of the one. The earliest

attempt to do so (see Hale [61]), penalizes the usage of frequencies. Thus, the number of di�erent

frequencies used should be minimized. This objective dates back to the introduction of mobile

telephones in the early seventies, when frequencies were sold per unit and were very expensive. The

model is called the minimum order FAP, or shortly MO-FAP.

To formulate the objective, we need extra variables to denote whether a frequency is used or not.

yf =
n
1 if frequency f 2 F is used

0 otherwise
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Then, MO-FAP is formulated as follows

min
X
f2F

yf (10)

s.t. xvf � yf 8v 2 V; f 2 F (v) (11)
X

f2F (v)

xvf = m(v) 8v 2 V (12)

xvf + xwg � 1 8fv; wg 2 E; f 2 F (v); g 2 F (w) : pvw(f; g) > pmax (13)

xvf 2 f0; 1g 8v 2 V; f 2 F (v) (14)

yf 2 f0; 1g 8f 2 F (15)

We introduce (11) to force a y-variable to one in case the corresponding frequency is used. The

objective (10) determines the number of used frequencies. Note that constraints (11) are node

packing constraints: using the complement of the y-variables gives xvf + �yf � 1. Note that the

distance MO-FAP reduces to the standard vertex coloring problem if all distances are equal to 1,

and all vertex domains are the same set of consecutive integers (see Cozzens and Roberts [35]).

3.3 The Minimum Span Frequency Assignment Problem

In the Minimum Span Frequency Assignment Problem (MS-FAP), one is supposed to pay for the

full set of frequencies between the highest and lowest ones used. Thus, the di�erence between

the maximum and minimum used frequency, the span, determines the cost and is therefore to be

minimized. To model this problem we introduce two new integer variables, compared to MO-FAP,

which denote the largest frequency used zmax, and the smallest frequency used zmin. The MS-FAP

then reads

min zmax � zmin (16)

s.t.
X

f2F (v)

xvf = m(v) 8v 2 V (17)

xvf + xwg � 1 8fv; wg 2 E; f 2 F (v); g 2 F (w) : pvw(f; g) > pmax (18)

zmax � fyf 8f 2 F (19)

zmin � fyf + fmax(1� yf ) 8f 2 F (20)

xvf � yf 8v 2 V; f 2 F (v) (21)

xvf 2 f0; 1g 8v 2 V; f 2 F (v) (22)

yf 2 f0; 1g 8f 2 F (23)

zmin; zmax 2 Z+ (24)

where fmax = maxf2D f is the maximum available frequency. The constraints (19) and (20) guar-

antee that these variables are set to the right values. Note that the second term in the right hand

side of (20) is necessary to allow for unused frequencies in F below zmin.

An alternative formulation has been presented by Giortzis and Turner [58]. They introduce binary

variables instead of zmax and zmin. Besides the standard constraints (1) and (2) the new variables
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introduce additional constraints to set them to the right values.

uf =
n
1 if frequency f 2 F is the highest one used

0 otherwise

lf =
n
1 if frequency f 2 F is the lowest one used

0 otherwise

With these variables, MS-FAP alternatively reads

min
X
f2F

fuf �
X
f2F

flf (25)

s.t.
X

f2F (v)

xvf = m(v) 8v 2 V (26)

xvf + xwg � 1 8fv; wg 2 E; f 2 F (v); g 2 F (w) : pvw(f; g) > pmax (27)
X
f2F

uf = 1 (28)

X
f2F

lf = 1 (29)

xvf + ug � 1 8v 2 V; f 2 F (v); g 2 F : f > g (30)

xvf + lg � 1 8v 2 V; f 2 F (v); g 2 F : f < g (31)

xvf 2 f0; 1g 8v 2 V; f 2 F (v) (32)

uf 2 f0; 1g 8f 2 F (33)

lf 2 f0; 1g 8f 2 F (34)

Constraints (28) and (29) ensure that there is a unique largest and a unique smallest frequency.

Constraints (30) forbid to assign frequencies higher than the maximum, whereas (31) forbid to

assign frequencies smaller than the minimum.

In Minimum Span FAPs often a set of frequencies f1; : : : ; fmaxg is available for all vertices, i.e.,

F (v) = f1; : : : ; fmaxg 8v 2 V . This allows us to set the lower bound to 1, i.e., zmin = 1 or lf = 1,

in the above MS-FAP model. Thus, minimizing the span is equivalent to minimizing the maximum

frequency assigned. In other words, fmax is determined as the minimum frequency for which the MS-

FAP has feasible solutions. Doing so with binary search or related techniques F-FAPs or Max-FAPs

occur as subproblems.

For the case F (v) = f1; : : : ; fmaxg yet another formulation is possible. This formulation bases on

the formulation of the MO-FAP. Besides the constraints (11){(15), we introduce the constraints

yf+1 � yf 8f; f + 1 2 F (35)

Then minimizing the span is equivalent to

min
P

f2F
yf (36)

This formulation was proposed by Baybars [10] and was probably the �rst integer linear program-

ming formulation for MS-FAP. It is based on the formulation for graph coloring introduced by

Christo�des [32].
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In case of the distance MS-FAP (MS-FAP with hard distance constraints only), a linear ordering

of the vertices can be associated with every frequency assignment. In particular, let � be a linear

ordering on the vertices of G. Then the canonical assignment of � = fv1; : : : ; vng is a feasible

frequency assignment with the property that the frequency assigned to vj is the smallest feasible

frequency after v1; : : : ; vj�1 have been assigned. In particular, denoting by d(v; w) the minimum

distance required between a frequency assigned to v and a frequency assigned to w, then the canonical

assignment f1; : : : ; fn corresponding to the linear ordering � = fv1; : : : ; vng can be obtained by means
of the following recursive equations:

f1 = 1 (37)

fk = minff � 1 : jf � frj � Æ(vr; vk); r = 1; : : : ; k � 1g; k = 2; : : : ; n: (38)

Note that among all linear orderings, there is one for which the canonical assignment provides the

optimal solution to the MS-FAP, since each assignment gives rise to an ordering of the vertices

analogous to the ordering of the assigned frequencies.

The relation between MO-FAP and MS-FAP is fairly intimate as follows directly from their for-

mulations. Essentially, the two models only di�er by their objective function. In fact, the models

coincide under the right circumstances. If we restrict our instances to having co-channel interference

constraints only, both problems become standard (list-)coloring problems (see [52, 132]). However,

in general a minimum span optimal solution for a problem does not necessarily use a minimum

number of frequencies, and vice versa, see Hale [61] or Eissenbl�atter et al. [47] for examples.

3.4 The Minimum Interference Frequency Assignment Problem

So far, all models simpli�ed the interference data from the penalty matrices, by using them to forbid

certain choices of pairs of frequencies. A way to use the penalty data completely is to introduce an

objective that minimizes the sum of the penalties incurred by the frequency choices. This is done

in the so-called Minimum Interference Frequency Assignment Problem, MI-FAP.

min
X

fv;wg2E

X
f2F (v);g2F (w)

pvwfgxvfxwg (39)

In some instances from the CALMA project, cf. [26], this objective is extended by penalties for the

choices of certain frequencies f for v, denoted by qvf . This leads to an extra term in the objectiveP
v2V;f2F (v) qvfxvf , which will be ignored in this section.

Note that the objective contains the quadratic terms xvfxwg, resulting in a standard (non-convex)

quadratic formulation, cf. Padberg [105], and Warners et al. [135]. To linearize these terms, we

de�ne the variables zvwfg = xvfxwg, i.e.,

zvwfg =
n
1 if xvf = xwg = 1

0 otherwise

To ensure that zvwfg obtains the right value we add the following constraints to the formulation.

xvf + xwg � 1 + zvwfg 8fv; wg 2 E; f 2 F (v); g 2 F (w) (40)

and if necessary

zvwfg � xvf ; xwg 8fv; wg 2 E; f 2 F (v); g 2 F (w) (41)
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The constraints (41) are usually enforced by (40) and the objective function: if pvwfg > 0, then zvwfg
is minimized to max(0; xvf +xwg � 1). The problem with this linearization is that its LP-relaxation

is weak. For fractional x-variables, the corresponding z-variable can be small. Fortunately, by using

the multiplicity constraints we can replace (and strengthen) the inequalities (40) and (41) with

X
g2F (w)

zvwfg = m(w)xvf 8fv; wg 2 E 8f 2 F (v) (42)

These constraints are valid by the de�nition of zvwfg and the multiplicity constraints (1):

X
g2F (w)

zvwfg =
X

g2F (w)

xwgxvf =

0
@ X
g2F (w)

xwg

1
Axvf = m(w)xv;f

On the other hand they imply the de�nition of the z-variables, i.e., zvwfg = xwgxvf . If xvf = 0

or xwg = 0, then the corresponding variable zvwfg is also equal to 0. Now suppose xvf = 1. For

w, there exist m(w) frequencies g with xwg = 1. Therefore, to satisfy (42) all corresponding zvwfg
should be 1.

3.5 Additional Features

There are many more features that can be added to the models presented here, but perhaps the

most valuable issue from a practical point of view is the handling of interference caused by multiple

sources. The version that we treat here originates from Fischetti et al. [53] and is also used by

Mannino and Sassano [94].

The idea is to introduce a local threshold for the interference induced on a vertex v by its neighbors,

for each frequency f 2 F (v). If the noise produced by all neighboring vertices N(v) = fw : fv; wg 2
Eg on a frequency f for v is to be taken into account, we can do so by introducing the following

constraints where Lvf is an upper bound on the penalty for v if frequency f is chosen:

X
w2N(v)

X
g2F (w)

pvwfgxwgxvf � Lvfxvf 8v 2 V;8f 2 F (v) (43)

We can linearize this constraint by use of an upper bound on the possible interference for any vertex

and any frequency, say M .

X
w2N(v)

X
g2F (w)

pvwfgxwg � Lvf +M(1� xvf ) 8v 2 V;8f 2 F (v) (44)

Within the CSELT instances of Fischetti et al. [53] and Mannino and Sassano [94] only co-channel

and adjacent channel interference is penalized. Co-channel interference is penalized with Ivf , and

adjacent channel interference is penalized with
Ivf

NFD
, where NFD is a reduction factor called the

Net Filter Discriminator. The upper bound on allowable interference, L, is �xed for each vertex

frequency pair (v; f).

X
w2N(v)

Ivfxwf +
Ivf

NFD
(xw;f�1 + xw;f+1) � L+M(1� xvf ) 8v 2 V;8f 2 F (v) (45)

If f �1 or f +1 do not exist, e.g., in case f is on the border of the spectrum, then the corresponding

x-variables should be removed. The constraints (45) are diÆcult to handle in most optimization
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methods. Therefore, some authors use other ways to take multiple interference into account. For in-

stance, Dunkin et al. [44] introduce besides forbidden combinations for pairs, forbidden combinations

of frequencies for triples of vertices.

3.6 Formulation Variants

Alternative mathematical programming formulations have been proposed in the literature. These

formulations are �rst and for all used to specify the problem at hand. Typically, heuristics inspired by

the formulation are explored to solve the problem. In this section, we discuss two such formulations:

a column generation one, and the orientation formulation.

3.6.1 Column Generation

Jaumard et al. [76] develop two column generation formulations for the Max-FAP. They consider

co-cell distance constraints, and co-channel and adjacent channel constraints. All vertices have the

same frequency domains. As mentioned earlier, besides upper bounds, additional lower bounds on

the frequency demand (multiplicity) of cells are added to the formulation.

The �rst formulation is based on a column generation formulation for coloring, such as given in

Mehrotra and Trick [98]. The variables correspond to independent sets in the interference graph,

i.e., to vertices that may obtain the same frequency simultaneously. For each frequency f these

independent sets are denoted by Tf . Note that these sets may di�er per frequency, since the frequency

domains for the vertices may di�er. Let zt be a binary variable denoting whether or not t 2 Tf
is chosen. To model the constraints and the objective of the Max-FAP with these variables, we

use the relation xvf =
P

t2Tf :v2t
zt. To ensure that frequency f is chosen at most once we addP

t2Tf
zt � 1. Note that this formulation can also be used for the MO- and MS-FAP: for MO-FAP

the latter constraints become
P

t2Tf
zt = yf . Jaumard et al. [76] solve the LP-relaxation of this

formulation with column generation techniques (the pricing problems are weighted independent set

problems), and they describe branching strategies as well as cut generation schemes. The authors

use their method as a heuristic.

The second formulation is based on admissible sets of frequencies for separate cells. The variables

correspond to sets of frequencies that can be assigned to a certain cell. For each cell v, subsets of F

denoted by Tv that satisfy the co-cell constraints and lower and upper bounds on the multiplicity

are given. Another binary variable zt speci�es whether or not Tv is chosen. The authors show that

the LP-relaxation of the formulation based on these variables is, at best, equal to the value of the

LP-relaxation of the previous formulation. On the other hand, the pricing problems to be solved in

a column generation approach are simple constrained shortest path problems.

3.6.2 Orientation formulation

Bornd�orfer et al. [20] consider MI-FAPs with co-channel and adjacent channel interference. They

model the interference with penalties on combinations of frequencies. Moreover, they forbid com-

binations of frequencies with penalties above a certain threshold. Among the feasible assignments

they seek one with minimum penalty. For each vertex in the interference graph they introduce a

variable yv that corresponds to the frequency number assigned to v. For each pair (v; w) denote

the co-channel penalty by pvw and the adjacent-channel penalty by qvw. Now, three more binary

variables are introduced:

zvw =
n
1 if jyv � ywj = 0

0 otherwise
zvw =

n
1 if jyv � ywj = 1

0 otherwise
�vw =

n
1 if yv � yw
0 otherwise
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The variables �vw determine a partial ordering of the frequencies assigned to the vertices. With

these variables one can model all constraints and the objective linearly. The model de�ned in this

way contains much fewer variables, than the formulations given in the previous section. The price for

this is a weaker formulation. If the �vw are given, the authors show that the problem is solvable in

polynomial time, since the constraint matrix is totally unimodular. This result is used in a two-stage

heuristic, where the variables �vw are adjusted iteratively and then a solution is determined for the

new values.

4 Methods for Optimization and Lower Bounding

Since all models for FAP share an important part of their structure (assignment of frequencies

and handling of interference), many optimization ideas translate easily from one model to another.

This is speci�cally true for the most extensively used method: tree search. We, therefore, treat

this method in a general fashion. We explain the handling of the components of tree search, like

branching and subproblem processing, using the F-FAP as the descriptive generic problem type, or

Max-FAP if an objective function is needed. We do this for the two versions of tree search, one based

on the linear programming relaxation of F-FAP, and one based on combinatorial ideas. Note that

these versions latter are used for determining lower bounds on the objective function. The objective

function, however, is exactly what the models di�er in. Therefore, we treat the (combinatorial)

lower bounding techniques separately for each of the models.

The exception to the above is the MI-FAP. Here interference is modeled by using penalties. This

makes the MI-FAP much harder to solve than the other variants. This is probably the reason behind

a relatively rich set of solution methods for the problem. These methods are therefore treated in a

separate subsection.

4.1 F-FAP

In tree search algorithms we distinguish two parts:

(i) Construction of the tree. The variable (or function) choice for branching. The selection of a

subproblem from a list L of active subproblems: such as depth-�rst search, best-�rst search.

(ii) The processing of a node (or a subproblem) from the tree. This includes instance reduction

techniques, and node pruning techniques such as cutting plane algorithms, and combinatorial

lower bounding techniques.

The �rst part of the process structures the tree corresponding to the search algorithm. This part if

fairly problem independent. Thus, the ideas used in any of the variants of the FAP can generally be

applied directly to other variants. The second part is concerned with actually solving (sub)problems.

This part partially depends on the problem at hand, the type of instances, and also on the used

technique. The generic ideas with respect to instance reduction, cutting planes, and lower bounds

are treated here. The problem speci�c ideas are treated separately in later subsections.

The F-FAP that we consider in the sequel is, purely for explanatory reasons, restricted to satisfy the

following conditions. The frequency domains are equal for all vertices, and consist of a consecutive set

of integers f1; 2; : : : ; fmaxg, where fmax is a given parameter (F-FAP, Max-FAP,MB-FAP, MO-FAP),

or a variable to be minimized (MS-FAP). The interference constraints are of the type jf(v)�f(w)j �
Æ(v; w), where f(v) and f(w) are frequencies assigned to v and w respectively. These restrictions are

the ones that are most frequently encountered in the literature. So, most techniques are developed

for problems with these characteristics. Moreover, the ideas described in the sequel often allow for

straightforward generalization to other characteristics.
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4.1.1 Branching rules

The standard branching rule used in combinatorial optimization is to divide the domain of a variable

into two (or more) disjoint subsets. For binary variables this rule reduces to setting the variable

to either zero or one. In frequency assignment, this implies that a vertex and a frequency have to

be chosen. Most branching rules are only occupied with selecting a vertex. The majority of them

is based on the relation between FAP and graph coloring (Æ(v; w) = 1 for all fv; wg 2 E) and on

Constraint Logic Programming (CLP). Vertex selection is done either statically or dynamically. A

selection mechanism is a static ordering if the ordering is independent of the actual tree search.

Such an ordering can be computed at the start. A popular one is the highest degree �rst ordering,

which orders the vertices according to their degree (including multiplicities) in the constraint graph.

A related ordering that is applied frequently is to iteratively select the highest degree vertex, simul-

taneously removing it from G. This ordering can also be applied backward, selecting and removing

the smallest degree vertices, i.e., smallest degree latest ordering.

The CLP approach of Kolen et al. [84] and the branch-and-cut approach of Aardal et al. [1] solve

the MO-FAPs from the CALMA project. Both consider the smallest degree latest ordering as the

most successful one. Kolen et al. [84] also specify the choice of a new frequency as the one with the

highest distance to the already chosen frequencies. Though static, the above orderings all aim at

isolating the possibly present hard part of an instance. Mannino and Sassano [94] carry the idea of

selecting the diÆcult part of the interference graph a little further by identifying a hard subgraph

(called the core in [94]) for the Max-FAP instances of CSELT. After solving the partial problem

restricted to the core they hope that the remainder can be solved without in
uencing the objective

function.

Dynamic orderings depend on the subproblem at hand. A simple example of dynamic ordering

is saturation degree vertex selection. It is attributed to Brelaz [24] who described the idea for

graph coloring problems. During the tree search process the number of available frequencies for

the vertices decreases due to previously made choices. Assignment of frequencies to a vertex v

generally becomes harder if this number is smaller. Brelaz' rule therefore selects the vertex with

a minimum number of frequencies available. Clearly, the multiplicity of v, and the multiplicity

of its neighbors, also in
uences the level of diÆculty of assigning frequencies to v. Moreover, the

distances play a role. The higher the distances the more combinations are forbidden. Giortzis and

Turner [58], who consider the Max-FAP and the MS-FAP, devised a branching rule that uses the

latter two observations. They dynamically select vertices v for which m(v) �
P

w2N(v)m(w)Æ(v; w)

is maximum. Many variants of these ideas are, of course, possible. An overview of many ordering

ideas can be found in Hurley et al. [68].

The choice of variable on which to branch in LP-based methods is fairly standard. One can take

variables that have values closest to 0.5 or closest to 0 or 1. In Fischetti et al. [53] branching is done

with three such rules used randomly: 1: variables with value in the interval [0.4, 0.6], where the

actual choice is determined by the largest degree (number of interfering cells) of the corresponding

vertex; 2: variables with value smaller than 0.05, where again the actual choice is determined by

the largest number of interfering cells; 3: variables with value closest to 0.5 are chosen. Thus, the

standard branching rules for binary variables are mixed randomly. In Aardal et al. [1] standard

LP-based branching is combined with a partial ordering of the variables: the frequency variables

yf are considered �rst. Strangely enough, none of the studies on LP-based methods for FAP uses

constraints for branching, although SOS constraints make up a signi�cant part of the formulation.

4.1.2 Subproblem choices

The standard strategies for subproblem selection are depth-�rst search (DFS) and best-�rst search

(BFS). In applying DFS one attempts to �nd good solutions quickly. DFS involves little implemen-
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tation overhead, since the stored part of the search tree resembles a path. Among others, Giortzis

and Turner [58], and Kolen et al. [84] use DFS. If a lower bounding method is available, one may

select a subproblem with a small lower bound to be processed �rst, anticipating better solutions to

be available, and quicker increase of the overall lower bound. Implementations of BFS are found in

Aardal et al. [1] and Fischetti et al. [53]. Mannino and Sassano [94] incorporate a backtracking idea

from CLP in their tree search, called back-jumping, which attempts moving back multiple levels at

once in the search tree, once an inconsistency is found that that can be traced back.

4.1.3 Reduction techniques

Instance reduction techniques attempt to remove frequencies from the domains of vertices or even

complete vertices. The ideas to do so are based on similar ideas in CLP (arc-consistency) and color-

ing. Consider, for instance a vertex v with neighbors N(v). In the process of assigning frequencies to

the neighbors of v, a certain number of frequencies from v will be blocked. If the maximum number

of blocked frequencies still leaves enough space (free frequencies) to assign all necessary frequencies

to v, then we can remove v from the constraint graph. For example, in the standard instances we

consider here, for each vertex w 2 N(v) a frequency chosen for w can only block 2Æ(v; w) � 1 fre-

quencies. Thus, in total at most
P

w2N(v)m(w)(2Æ(v; w)�1) frequencies can become unavailable for

usage by v. If the number of remaining available frequencies for v is at least m(v) � (Æ(v; v)� 1) + 1,

we can always select enough frequencies for v. This idea is applied dynamically to the MO-FAP

in [1] and [84], and to the MS-FAP in [94].

One way that remains to remove frequencies from domains is by consistency checking. In its simplest

form we check whether, for a particular frequency f 2 F (v), there is a feasible choice of frequencies

for the neighbors of v. If not, we can remove f from F (v). This idea is used in [84] and [94].

4.1.4 Cutting planes

Techniques using the LP-relaxation of the formulation from F-FAP generally strengthen the relax-

ation by using additional constraints, so-called valid inequalities. The inequalities that are used are

typically derived from the relaxation of FAP obtained by considering the packing constraints (2).

These constraints can be illustrated by a graph H = (W;F ) of the binary variables xvf known as

the con
ict graph. For each variable we introduce a node (v; f). Two nodes (v; f) and (w; g) are

connected by an edge if at most one of the variables may obtain value 1. Now, consider a clique (a

complete subgraph) in H with vertex set S. Then clearly, no two of the variables of S may have

value 1, and therefore
P

(v;f)2S xvf � 1 is valid. In general, the most powerful such constraints

come from maximal cliques, e.g., cliques that cannot be extended with other vertices. Finding such

cliques in H is usually a tremendous task due to the size of H , and therefore most researchers resort

to �nding certain cliques in H , that are easier to �nd. Such cliques can, for instance, be found by

considering cliques in the interference graph. Consider a clique �V � V in the interference graph G

and let Æ = minv;w2 �V Æ(v; w). Then the following valid inequality can be formulated:

X
v2S

X
f2fk+1;:::;k+Æg

xvf � 1 (46)

where k = 0; : : : ; fmax � Æ. Rouskas et al. [116] consider the MB-FAP with co-channel constraints.

Their formulation includes all clique constraints (46) from the start. Fischetti et al. [53] consider

a subclass of the clique constraints (46), with Æ = 1; 2; 3, for the Max-FAP. They add them to the

formulation with a separation algorithm, in a Branch-and-cut framework.

Aardal et al. [1] consider cliques from the con
ict graph that can be viewed as lifted versions of (46).

Consider, for example, the clique in Figure 6. This clique induces the following valid inequality
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Figure 6: Example 3-clique with Æ = 2

(u; v; w are nodes and f; g; h are frequencies).

xuf + xug + xuh + xuf + xvg + xvh + xwf + xwg � 1

Finally, in Kazantzakis et al. [80] the linear programming relaxation of the Max-FAP is tightened

by using cuts derived from rounding the objective function during the (complete) tree search.

4.2 Max-FAP and MB-FAP

4.2.1 Cutting planes

The Max-FAP of Fischetti et al. [53] includes multiple interference constraints (45). These con-

straints allow for generation of cutting planes based on knapsack covers (see [102]), which are used

in their branch-and-cut scheme as well.

4.3 MO-FAP

4.3.1 Instance reduction

The CALMA instances contain nonadjacent pairs of vertices v, w, such that for any neighbor u of

v we have Æ(uv) � Æ(uw). Moreover F (v) � F (w). Then the choice made for w is also available for

v. Thus, vertices such as v can be removed. Though rare in general, this situation does occur in the

CALMA instances.

4.3.2 Valid inequalities

For any clique �V in the constraint graph G, the following inequality is valid with respect to MO-FAP.

X
v2S

xvf � yf

These are used in [1].

4.3.3 Lower bounds

Clearly, the clique and coloring number of the constraint graph are lower bounds of the MO-FAP. If

the domains (available frequencies) di�er among the vertices, sometimes a list coloring bound may
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improve upon such bounds. This occurs in some of the CALMA instances. For an overview of these

bounds see [2].

4.4 MS-FAP

4.4.1 Valid inequalities

The variables introduced in the model of Giortzis and Turner [58] for MS-FAP give rise to special

cliques:

X
f2F (v):f�g

xvf +
X

f2F (v):f>g

lf � 18v 2 V; g 2 F (v)

X
f2F (v):f�g

xvf +
X

f2F (v):f<g

uf � 18v 2 V; g 2 F (v)

The use of such cliques has not been reported on, so far.

4.4.2 Lower bounds

The fairly direct relation between MS-FAP and MO-FAP allows some lower bounding techniques to

be used for both models. This applies for instance to the simplest lower bound: the clique bound.

Each subgraph of G induced by W � V that forms a clique determines a lower bound jW j for
MO-FAP and jW j�1 for MS-FAP. This bound, though applicable to MS-FAP, is especially suitable

for MO-FAPs. There are, however, more general and more powerful lower bounds available for

MS-FAP. The standard clique bound can be generalized as was �rst observed by Gamst [55]. Let all

multiplicities of the vertices be equal to one. If a clique of size k in the interference graph contains

edges with minimum distance d only, then the range of frequencies must be at least (k � 1)d + 1.

Over the years, lower bounds for more and more complex structures have been derived (cf. [101] for

an overview). Recently, Janssen and Wentzell [73] showed that many of these bounds can be derived

within a general theoretical framework called tile covers.

The clique bound has been further generalized by Raychaudhuri [112]. They consider a subgraph

of the (splitted) interference graph. For an assignment, the vertices can be ordered such that the

assigned frequencies form a non-decreasing sequence. If we extend the subgraph to a complete

graph by the introduction of edges with distance zero, this order forms a path with length less than

or equal to the span of the assignment. Hence, the minimum Hamiltonian path in an arbitrary

subgraph (completed by zero-value edges) provides a lower bound on the minimum span for the

MS-FAP de�ned on that subgraph, and thus, on the minimum span for the MS-FAP de�ned on

the whole graph. Note that this bound indeed generalizes the clique bound of Gamst [55]: in a

clique of size k with minimum distance d the shortest Hamiltonian path has length (k � 1)d. Note

that the Hamiltonian path bound can also be shown to be a lower bound by use of the canonical

assignment, generated by an optimal solution. The Hamiltonian path bound is obtained by using

the recursion (38), where we relax the minimization by taking the distance to the last vertex in the

ordering.

Jansen and Kilakos [72] compute a lower bound of the Hamiltonian path bound, by considering a

limited, but carefully chosen set of subgraphs. For each subgraph they use the following procedure.

First, they reformulate the problem into a minimum Hamiltonian cycle problem (TSP). Then, they

solve the LP-relaxation of the TSP. Their procedure is powerful enough to prove optimality of some

of the Philadelphia problems. Tcha et al. [124] solve the 2-matching relaxation of the TSP to obtain

lower bounds.
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The above procedure has one serious drawback, namely, that it is diÆcult to select the right sub-

graphs. Note that considering the whole constraint graph may give a very short Hamiltonian path

due to the existence of many short edges.
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Figure 7: Example bad walk

For example, if edges fu; vg, and fv; wg have distance 1, and fu;wg has distance 3, the path (u; v; w)
leads to a bound of 2 (its length), whereas the span is equal 3. We will refer to such paths as bad

paths. The edge fu;wg is not used in the bound.

Allen et al. [7] add excess variables evw to the edges, and force these variables to positive values

when appropriate, by adding the constraints

[Æ(uw)� (Æ(uv) + Æ(v; w))](xuv + xvw � 1) � euv + evw (47)

for all paths (u; v; w) of length 2.

The excess variables euv and evw cause the objective function to increase. The authors develop

inequalities for larger paths that in principle would allow for exact solution of the MS-FAP. However,

these have not been used in their approach. They proceed by solving their problem using Lagrangean

relaxation, where constraints (47) are relaxed and added , with a multiplier, to the objective function.

The above bounds have only been used in a stand-alone fashion, i.e., to compute a single lower

bound on problem instances. It should be said, though, that the lower bounds are, in general, very

close to the optimal span.

Recently, Avenali et al. [9] have devised an optimization algorithm using techniques that are compa-

rable to the Allen et al. [7] method. Here, path variables are used to forbid certain concatenations

of paths. A bad path, like for example (u; v; w) in the example above, is avoided by forbidding the

concatenation of edge fu; vg with edge fv; wg; when necessary, a new binary variable is introduced

to represent the forbidden path P and its weight is set equal to the span of P . This idea is the basis

of a column generation approach.

The MS-FAP has initiated a lot of research on the T -coloring problem, where a prespeci�ed set

of distances is forbidden between frequencies of neighboring vertices. Roberts and Cozzens [115]

develop a theory on lower bounds for special graphs using T -coloring arguments. An overview of

the most important lower bounds is given in Murphey et al. [101]. These lower bounds, however,

are hardly used in practice since MS-FAP with speci�c T -coloring type interference constraints are

rare.

4.5 The MI-FAP

The MI-FAP model is much more diÆcult than the previously mentioned variants of the FAP. This

is due to the fact that hard interference constraints are turned into soft constraints by the use of

penalties. This hardness has caused a large diversity in solution methods. For instance, there are
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only two papers, to our knowledge, that use some sort of tree search. Other methods are based

on dynamic programming, the structure of the interference graph, and (in case of lower bounding)

combinatorial relaxations.

The earliest attempt to solve the MI-FAP is from Verfailly et al. [131] who developed a procedure

called the Russian doll algorithm. This algorithm is perhaps best described as a backward tree search

in combination with lower bounds. For a certain static ordering of the vertices of the interference

graph, say from 1 to n, we consider n iterations. In a backward fashion, in each iteration all

assignments of vertices fk + 1; : : : ; ng are considered. Lower bounds and upper bounds on the

penalties are computed for all subsets fl; : : : ; ng (l > k) of vertices, which are used in subsequent

iterations. Thus, in the iteration of vertex k we do a complete tree search with the vertices fk; : : : ; ng,
using the produced lower bounds for the subsets fl; : : : ; ng (l > k). Although the paper says little

about the choice of the ordering of the vertices, it probably uses rules similar to the branching rules

of subsection 4.1.1, such as \smallest degree last". The Russian-doll procedure has been used to

solve CELAR 06 (an instance from CALMA) to optimality.

Koster et al. [86] combine tree search with the linear programming relaxation of the MI-FAP. They

solve the problem, formulated as a Partial Constraint Satisfaction Problem (PCSP), with branch-

and-cut, using standard branching rules and variable selection mechanisms, and valid inequalities

based on the boolean quadric polytope (cf. Padberg [105]). The valid inequalities are derived from

structures in the interference graph, such as cycles and cliques. In a cycle C (or clique), the set F (v)

for v 2 C is partitioned into two sets Av and Bv. For cycles the following inequalities are valid.

k�1X
i=1

�
z(vi; Avi ; vi+1; Avi+1) + z(vi; Bvi ; vi+1; Bvi+1)

�

+z(v0; Av0 ; vk; Bvk
) + z(v0; Bv0 ; vk; Avk

) � k � 1

(48)

where z(v;Av; w;Aw) =
P

f2Av

P
g2Aw

zvwfg. Figure 8 shows a 3-cycle inequality and a 4-cycle
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Figure 8: Cycle Inequalities

inequality. A line between two dots indicates that the coeÆcient corresponding to the indicated

subsets is equal to one.

For cliques, we take a coeÆcient 1 � 
 � k � 1, where k is the size of the clique, and we get the

following (
; k)-clique inequalities.



X
v2C

x(v;Av) +
X

fv;wg2E[C]

z(v;Bv; w;Bw) � 
k � 1
2

(
 + 1) (49)

where x(v;Av) =
P

f2Av
xvf . See Figure 9 for examples of 3-clique and 4-inequalities.
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Figure 9: (
; k)-Clique-Cycle Inequalities

The Branch-and-Cut method using these inequalities solves the problem well for instances with

domain sizes up to 6 frequencies, especially with dominance criteria and reduction methods incorpo-

rated. It has been used as a subroutine (with domain sizes 2) in a genetic algorithm by Kolen [83].

For larger domain sizes the method returns fairly poor lower bounds.

In Koster et al. [87] make use of the structure of the interference graph G = (V;E). They observe

that assigning frequencies to a cut-set of G decomposes the problem into two (or more) independent

problems. They generate a sequence of small cut-sets by using a tree decomposition (see Bodlaen-

der [17]) of the interference graph. Note that a small cut-set induces a relatively small number of

assignments to the vertices of the cut-set.

A series of reduction methods were developed to limit the number of assignments. These ideas led

to the solution of some quite large MI-FAP from the CALMA project. For some remaining instances

Koster et al. [87] improved the known lower bounds by introducing a relaxation where the vertex

domains are partitioned in a small number of subsets. Each such subset is then treated as a single

frequency. By considering a sequence of relaxations, better and better lower bounds could be derived

for the CALMA instances. The relaxations are solved with the above described tree decomposition

approach. Alternatively, the cutting plane algorithm of [86] can be applied (cf. [88]).

4.5.1 Lower bounds for MI-FAP

Lower bounding for MI-FAP has started with the work of Hurkens et al. [126] who use a quadratic

programming relaxation that can be solved by clever enumeration. Non-trivial bounds are reported

on a limited set of CALMA instances, namely those where next to the interference penalties, also

single frequency penalties are used to favor certain frequencies for vertices.

Another lower bound is derived by Eisenbl�atter [46] using semide�nite programming. He studies the

semide�nite programming relaxation of the minimum k-partition problem. MI-FAP reduces to a

min k-partition problem in case only the co-channel interference is considered. Like the related max

cut problem, the min k-partition problem can be modeled as a semide�nite program. The relaxation

of this semide�nite program can be solved in polynomial time. For GSM networks of the COST 259

project (cf. Section 2.2), the �rst lower bounds were computed in this way.

In Maniezzo and Montemanni [92], the MI-FAP formulation forms the starting-point for deriving

lower bounds. These bounds are inspired by similar bounds for the quadratic assignment problem.

In addition, reduction and dominance rules are presented. A tree search algorithm is based on these

bounds and rules. The algorithm is tested on the CALMA and Philadelphia instances (taking a

�xed spectrum) as well as on some graph coloring benchmarks.

In Montemanni et al. [100], a re�nement of the orientation formulation (cf. Section 3.6.2) by

Koster [85] is used. Valid inequalities are derived that bound the interference in subgraphs from
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below. A cutting plane algorithm is exploited on realistic GSM network instances and some Philadel-

phia instances (by limiting the spectrum).

5 Heuristic Methods

Due to the diÆculty of the diverse FAPs, the majority of research papers have been on heuristic

approaches. In this section, we discuss these approaches in the form of an annotated bibliography.

This section is organized as follows. We start in Section 5.1 with constructive algorithms that build

a solution in a greedy manner. In the subsequent subsections we consider local search methods

(cf. Section 5.2), that start with a given solution and, with iteratively doing small changes (moves),

try to �nd good solutions. Standard local search methods only allow improving moves (downhill).

To increase the chances for improving solutions also worsening moves uphill may be allowed. Tabu

search (cf. Section 5.3) allows worsening moves under certain conditions (neighborhood restriction

with tabu list) and simulated annealing (cf. Section 5.4) allows worsening with a probability that

typically depends on the size of the worsening, and generally decreasing in time. Genetic algorithms

(cf. Section 5.5) start with a whole set of solutions, called generation, and iteratively builds new

generations by recombination of solutions from the previous generation. Arti�cial Neural Networks

(cf. Section 5.6) generate new solutions by emulating the behavior of a grid of neurons, where each

neuron represents a \piece" of solution and its state is dynamically determined by the states of its

neighboring neurons. Ant Colony Optimization (cf. Section 5.7) is a meta-heuristic that is inspired

by the behavior of ants.

Finally, the section is closed with application speci�c heuristics. In Section 5.8, heuristics based on

mathematical programming formulations are discussed, whereas heuristics based on graph theory

and constraint programming are the topic of Section 5.9. Throughout the section, we assume that

the reader is familiar with the classical meta-heuristic algorithms mentioned above. Still, in the

beginning of each subsection we brie
y recall the main components of the described class. The

various implementations of a speci�c scheme mainly di�er in the way these components are handled.

5.1 Greedy Algorithms

A greedy algorithm constructs a frequency assignment by iteratively selecting a vertex (an antenna),

and then assigning a feasible frequency to it. The selection and assignment follow some rule based

on local characteristics that has the aim to optimize the global objective function. An important

feature of this (greedy) algorithm is the irrevocable nature of the greedy choice which is performed at

each iteration. Many versions of the greedy algorithm have been proposed in the literature to solve

FAP, often in conjunction with more sophisticated local search methods. Several greedy heuristics

are described and compared in the early work of Zoellner and Beall [138]. The model is MS-FAP.

First, an ordering of the vertices of the interference graph is performed: then the frequencies are

assigned to the vertices following this ordering. In particular, three di�erent orders are considered:

(i) highest degree �rst : the vertices are ordered by non-increasing degree;

(ii) smallest degree last : the vertices are ordered so that the degree of vj in the graph induced by

the set fv1; v2; : : : ; vjg is (one of) the smallest;

(iii) random order.

Two types of assignments are compared: frequency exhaustive, which corresponds to the canonical

assignment, and uniform where the current vertex is assigned the least used available and feasible

frequency.
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Sivarajan et al. [119] propose a slight modi�cation of the above de�ned highest degree �rst order,

taking into account multiple demands and distance requirements. In particular, the degree of a

vertex v 2 V is de�ned as the quantity
P

u=1;:::;jV jm(v)Æ(u; v) � Æ(v; v). Frequencies are again

assigned by canonical assignment. Tests were performed on the Philadelphia instances.

Adjakpl�e and Jaumard [3] make use of block assignments (cf. Section 3) in order to solve distance

MI-FAP. At each iteration, the greedy weight of a vertex is de�ned as a function of the unsatis�ed

demand, of the size of the feasible blocks, and of the number of forbidden channels (due to several

types of interference constraints). Once a vertex is selected, it is assigned the feasible block which

maximizes the marginal variation, with respect to the cardinality of the block, of the interference

level.

Generalized Saturation Degree. This methodology generalizes the well known DSATUR pro-

cedure for graph coloring (see Brelaz [24]) to FAPs. The basic de�nition of saturation degree of a

vertex v is simply the number of blocked frequencies, i.e., the number of frequencies in the available

band which cannot be assigned to v (in consequence of the violation of some hard constraints (2)).

At each iteration, the greedy choice consists of selecting the vertex with largest saturation degree and

assigning to it the smallest non-blocked frequency. This is the scheme adopted in Costa [34] (where

the model is MO-FAP). A slight modi�cation is presented by Bornd�orfer et al. [19]: here the model

is MI-FAP; after a vertex v has been selected in the standard way, it is assigned the non-blocked

frequency which minimizes cost increase. Carlsson and Grindal [29] reinforce the basic scheme by

adding several mechanisms borrowed from constraint programming, such as propagation, lifting,

intelligent backtracking, redundancy avoidance and iterative deepening. The model is MI-FAP and

frequencies are assigned in blocks rather than singularly. Finally, a Generalized Saturation Degree

(GSD) is de�ned in Valenzuela et al. [130]. If frequency f is blocked for vertex v, then the weight

of f is the largest penalty cost pvw(f; g) for all w 2 V , g assigned to w. The GSD of v is the sum

of the weights of its blocked frequencies.

In Zhang and Yum [137] the model is MB-FAP. The vertices are clustered according to their ge-

ographical distance. In particular, each cluster is compact in the sense that the average distance

between all pairs of vertices in the cluster is minimum. There is only a limited number of such clus-

ters. At each iteration of the algorithm a new frequency is assigned to a cluster where the cluster is

chosen so as to minimize the blocking probability.

Sequential Packings

The algorithm presented in Sung and Wong [123] deals with (distance) MS-FAP. All frequency

domains are equal to Z+. Two heuristic procedures are proposed. The �rst considers only Æ(v; w) �
1, for all v; w 2 V . It �nds a family of stable sets S1; : : : ; Sq such that each vertex v is contained

in exactly m(v) stable sets in the family. All vertices in stable set Si are assigned frequency i. The

stable sets are built in sequence, i.e., the construction of Si+1 begins after Si is completed. The

�rst vertex in the current stable set Si is the one with largest unsatis�ed demand. Next, a vertex w

which maximizes jN(Si)\N(w)j is selected. Ties are broken by the weight of the maximum weight

clique (where the weights on the vertices are equal to the residual demands) in the set N(Si)\N(w).

The authors are able to prove that for a 3-stripe cellular system (a particular hexagonal network)

the assignment produced by their procedure is optimal.

The second heuristic tackles the case where Æ(v; w) = 2 for some v; w 2 V . As in the previous case,

it �nds a family of stable sets S1; : : : ; Sq such that each vertex v is contained in exactly m(v) stable

sets in the family and all vertices in stable set Si are assigned frequency i. However, now stable sets

are built in pairs, i.e., Si and Si+1 are found simultaneously. The choice of the vertex to add to the

current pair of stable sets is made according to criteria analogous to the previous case.
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5.2 Local Search (LS)

Local Search is certainly the most basic improving heuristic developed for combinatorial problems.

We refer here to the classical de�nition as described, for example, in [106]. According to this

de�nition one starts with a given solution and replaces it with a better one (improving solution)

selected from a restricted subset of the solution set. If no improving solution exists in the restricted

subset, then LS stops. Otherwise, the whole process is iterated with the old solution replaced by the

improving one. The restricted solution subset depends on the current solution and is de�ned as the

set of solutions (neighborhood) that can be obtained from the current solution by a prede�ned set of

small changes (moves). Observe that a crucial issue in LS, as well as in other neighborhood-based

methods, is the ability of eÆciently optimizing over the neighborhood space. So, on the one hand we

would like the neighborhood to be large, so as to increase the chances to �nd improving solutions,

but on the other hand, large neighborhoods correspond in general to exponentially increasing search

times. In FAP eÆciency is reached by enumerating over small cardinality neighborhoods. Observe

that a frequency assignment is a partition of the vertex set, where each class corresponds to a

frequency in the available spectrum (additional empty classes take into account still unassigned

frequencies). The 1-exchange neighborhood is the set of solutions which may be obtained from the

current one by selecting a vertex and moving it into a di�erent class. Such an operation is called

1-exchange move. If n is the number of vertices and fmax is the number of frequencies, then the

number of di�erent solutions in the 1-exchange neighborhood is simply n(fmax�1). The 2-exchange

neighborhood is the set of solutions which may be obtained from the current one by selecting two

vertices and swapping their frequencies.

Even though very few algorithms can be classi�ed as \pure local search", still LS is often used as

a building block, such as in the paper of Castelino et al. [30] devoted to the solution of distance

MI-FAP with unit penalties. An initial solution is generated at random. Then a sequence of moves

is performed (passes). Each pass consists of jV j iterations. At the i-th iteration, the i-th vertex

is selected and an improving solution is searched in the 1-exchange neighborhood restricted to vi.

This process is interrupted if a 0-cost solution is generated or a �xed number of passes has been

performed.

Another good example of an application of pure LS is the algorithm by Park and Lee [107] for

MI-FAP. Here, both the 1-exchange and the 2-exchange neighborhoods are used and applied to a

set of randomly generated instances.

Guided Local Search

Guided Local Search is a meta-heuristic technique proposed by Tsang and Voudouris [128] that

helps Local Search to escape local optima. First of all a number of features of a solution has to be

de�ned. Each feature is a mapping I(s) from the solution set S to the set f0; 1g. With the j-th

feature Ij we associate a cost cj and a penalty pj . Penalties are updated during the search. Finally,

the �tness function (to be minimized) is given by the sum of two terms, g(s) + �
P

j
pjIj(s). The

�rst term g(s) is typically the original objective function, while the second term is proportional to

the sum of the penalties associated with the features exhibited by solution s. At each step we choose

the neighbor minimizing the �tness function. When we are trapped in a local minimum s�, some of

the penalties are increased. In particular we increase by one unit those penalties whose associated

feature is exhibited by s� (in practice only a subset of such penalties are upgraded, based on the

cost of the associated feature and on the current penalty value).

In [128] this technique is applied to MI-FAP, MO-FAP and MS-FAP. The neighborhood is de�ned

by a move that consists of changing frequencies to a pair of coupled vertices in all possible ways.

Note that in some problems the frequencies assigned to particular pairs of coupled vertices must

di�er (exactly) by a speci�ed quantity. The underlying local search algorithm is the so-called Fast
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Local Search (FLS), which is simply a restricted neighborhood search. Basically, once a move is

performed, the pair of vertices involved in the move is declared tabu. The tabu status of a vertex

can be reset when speci�c conditions are veri�ed (all involving the fact that an adjacent pair has

been processed in the last move). For the Guided Local Search, three sets of features are considered.

Each feature in the �rst set is associated with a constraint of type (2): the cost of each feature is

the corresponding (interference) cost in the objective function of MI-FAP. A second set is associated

with mobility costs. When solving MO-FAP, a third set of features is associated with constraints

(15). Benchmark instances are the CALMA instances.

Canonical assignments

Here we describe local search algorithms based on neighborhood structures related to orderings

of the vertices. The corresponding frequency plan is determined by the corresponding canonical

assignment (i.e., according to the ordering, assign the smallest available frequency, cf. Section 3.3).

The basis of the heuristic method presented in Wang and Rushforth [134] to solve MS-FAP is the

canonical assignment associated with the linear orderings of the split graph introduced in Section 3.3.

The neighborhood of a solution is the set of all solutions obtained by swapping the positions of two

distinct vertices. A neighborhood restriction is obtained by �xing the �rst vertex in the pair: such

a vertex is randomly selected among the set of vertices with largest assigned frequency. The second

vertex is randomly selected. In a �rst phase, a new solution is accepted if and only if the associated

span is strictly smaller than the previous one. In a second phase, executed when a �xed maximum

number of non-decreasing tentative moves has been examined, the acceptance criterion is relaxed by

accepting non-increasing solutions. Finally, the initial solution is obtained by ordering the vertices by

non-increasing weighted degrees. When tackling large instances, the authors propose the following

decomposition scheme: �nd a vertex coloring of G, identify all vertices belonging to the same color

class to obtain a new graph G0, solve the frequency assignment problem for G0 and then extend the

solution to G.

In Rushforth and Wang [117] the above algorithm is enhanced by partitioning the network into

the minimum network and the di�erence network. Initially, the original network is partitioned into

a number of k-cell-clusters. Each cluster contains k vertices, labeled from 1 to k. All vertices

in di�erent clusters labeled by the same integer can be assigned the same frequency. Now, for

each cluster, we can de�ne a cluster frequency demand as the minimum demand of all vertices in

the cluster. The minimum network is the original network with modi�ed frequency demands: in

particular, the demand of vertex i is the demand of the cluster containing i. The di�erence network

is the original network where the demand of vertex i is the di�erence between the demand of vertex i

in the original network and the demand of vertex i in the minimum network. First an assignment is

found for the minimum network. Then, by considering a suÆciently large \guard" interval between

the largest frequency assigned to the minimum network and the smallest frequency available for the

di�erence network, a feasible assignment is also found for the di�erence network.

The paper by Box [23] makes use of the same strategy: solutions are found by associating the

canonical assignment to orderings of the vertices of the graph. The aim is to �nd a feasible assignment

using a �xed number of consecutive frequencies. The initial ordering is randomly selected. If this

ordering is associated with a feasible canonical assignment, we are done. Otherwise, some of the

vertices of the graph cannot be assigned. These vertices receive random weights (increments in the

subsequent iterations) belonging to the interval [0.15,0.45], and a new order is found according to

these weights. The procedure is repeated until a feasible solution is found (or a stopping criterion

is ful�lled). In the �nal part of the paper, the method is extended to handle additional constraints

such as distinct vertex frequency domains, pre-assignments, inter-modulation, etc.
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5.3 Tabu Search (TS)

Tabu Search is a local search method that, in contrast with standard LS, allows for non-improving

moves. At each iteration the best solution in the neighborhood is selected as the new current solution.

Notice that this solution can be worse than the current solution. In order to try to avoid cycling, the

solutions selected in the last k iterations are declared tabu solutions and cannot be selected again.

In fact, checking the tabu status of a solution may require excessive computing time. So, rather

than prohibiting solutions, it is in general preferred to avoid inverting any of the last k moves. That

is, if vertex v has been moved from class f1 to class f2 within the last k iterations, then v cannot

be moved back from class f2 to class f1. Parameter k is called the tabu list length. The algorithm

typically stops after a �xed number of non-improving moves has occurred.

In order to classify the di�erent tabu search approaches, we will consider the following basic ingre-

dients:

(i) The way the initial solution is generated.

(ii) Fitness function, i.e., the function to be minimized (maximized), which also determines the

best solution in the neighborhood. In general the original objective function of the problem

plays this role, but sometimes the objective function is adapted.

(iii) Neighborhood de�nition. Most of the algorithms presented in the literature adopted the 1-

exchange neighborhood. Unless otherwise speci�ed, this is the default neighborhood.

(iv) Neighborhood restriction. Additional mechanisms introduced to reduce the size of the neigh-

borhood.

Other parameters, such as tabu list length or number of iterations to termination will not be discussed

here, since they do not really lead to di�erent algorithms.

MS-FAP Costa [34] deals with (distance) MS-FAP. However, MS-FAP is solved by solving a se-

quence of (distance) F-FAPs, where at each iteration the size of available band is reduced. The

�tness function is the interference cost of the current solution (expressed as the sum of distance

violations). The initial solution is found by generalized DSATUR (see Section 5.1). The neighbor-

hood is restricted by �xing the maximum number of tentative moves. The vertices with largest local

violation, the sum of the terms in the objective function involving v, are chosen �rst. Finally, the

test instances are randomly generated.

In Hao and Perrier [64], the model is MS-FAP, which is solved (as in [34]) by solving a sequence

of (distance) F-FAPs. The initial solution is generated by applying standard local search to a

random assignment. The �tness function is the standard objective of MI-FAP. The 1-exchange

neighborhood is restricted by randomly selecting a small subset. Finally, the tabu status of a move

depends on how recent and how often it is preformed. Test instances are 45 randomly generated

mobile telephony instances provided by French CNET. In Hao et al. [63] the authors enhance the

quality of the algorithm presented in [64] by implementing the following improvements: 1) an eÆcient

data structure to quickly compute best moves; 2) the neighborhood is restricted by only considering

moves involving vertices with positive local violation; 3) co-cell constraints are treated separately

from other type of interference constraints, i.e., only solutions which are feasible with respect to co-

cell constraints are considered; 4) the algorithm solves a sequence of problems in order to minimize

the span. At each iteration the best solution of the previous iteration is used to initialize the

tabu-search rather than producing a new random solution.
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MI-FAP In Bouju et al. [21] the model is distance MI-FAP with two alternative de�nitions of

penalties: either unit penalties or penalties proportional to the distance requirement. The ini-

tial solution is randomly generated, the �tness function is the number of violated constraints, the

neighborhood restriction is performed by selecting the k vertices with largest local violation, where

parameter k is increased during the search. Before the tabu search is started, an arc consistency

preprocessing is performed to reduce the size of the instances, see Section 4. A subset of the CALMA

data set is adopted to test the algorithm.

In Castelino et al. [30] the model is distance MI-FAP with unit penalties. The �tness function is

the objective of MI-FAP. No restriction is applied to the neighborhood. The tabu state of a move

is determined both by how recent a move has been performed and by the number of times a move

has been performed. Test problems are six arti�cial instances.

Block assignment is proposed in Adjakpl�e and Jaumard [3] to solve distance MI-FAP, where penalty

costs are integers ranging from 0 to a maximum of 10. The initial solution is found by a greedy

block assignment, see Section 5.1. The �tness function is the standard objective of MI-FAP. The

neighborhood of a block assignment is de�ned by means of two di�erent moves. The �rst move

consists of changing exactly one block assigned to a vertex, replacing it with one or more available

blocks (observe that blocks are not equally sized). The neighborhood is restricted by �xing the

maximum number of tentative moves; blocks with largest local violation are chosen �rst, where the

local violation of a block B with respect to a given solution is the sum of the terms involving B in the

�tness function. In order to diversify the search, a second type of move is periodically performed.

That is, a vertex with largest local violation is selected and all of its frequencies are reassigned from

scratch by a greedy block assignment heuristic. Test instances are real-life instances provided by the

Canadian Bell Mobility [14].

A more sophisticated de�nition of move is proposed in the work by Borgne [18]. Frequencies are

assigned in blocks and besides the standard move consisting of changing exactly one block assigned

to a vertex, Borgne proposes an adaption of the so called Kempe Chains Interchange. In terms of

graph coloring, a Kempe Chain is simply a connected component of the subgraph induced by two

color classes, say C1 and C2 corresponding to colors c1 and c2. A Kempe interchange consists of

interchanging the colors of the vertices in the two color classes, i.e., assigning color c2 to the vertices

in C1 and color c1 to the vertices in C2. The extension to frequency assignment with only co-

channel constraints is straightforward. The idea is to �rst select two adjacent vertices u and v that

are assigned a same frequency, say f1, and that have strong co-channel interference. Select another

frequency f2 and suppose that no vertex assigned to f2 is adjacent to u. Then we can assign f1 to all

vertices which are assigned to f2 and assign f2 to all vertices which are assigned to f1 but u. In this

new assignment, u and v have di�erent frequencies and no other edge violation is created. This leads

to a reduction of the overall interference cost. This de�nition of move can be generalized by taking

into account other types of interference constraints such as adjacent channel constraints, and by

allowing the interchange of three or more frequencies. Experiments on two real-life cellular network

problems provided by Ericsson show the e�ectiveness of generalized Kempe chain interchanges.

Finally, Capone and Trubian [28] solve MI-FAP by minimizing the interference level directly evalu-

ated on the grid of test points introduced in Subsection 2.1 (rather than on the interference graph).

They use the standard neighborhood, i.e., the exchange of a frequency to a single vertex. However,

exploring and evaluating all the solutions in the standard neighborhood can be too expensive due

to the large number of test points in an average sized instance. So, once a vertex v is chosen, the

neighborhood is restricted by �rst evaluating a simpli�ed objective function which makes it possible

to remove some of the frequencies available for v. Ad hoc generated test instances have been used

to test the algorithm.
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5.4 Simulated Annealing (SA)

Analogous to TS, also Simulated Annealing allows for non-improving moves. However, the anti-

cycling strategy consists of a randomized selection mechanism. Speci�cally, the best solution in the

neighborhood is accepted as a new current solution either if it is better then the old one, or with

a probability which depends on its value. This probability increases as the di�erence between the

current value and the new value decreases. In addition, the acceptance probability is controlled by

another parameter, the temperature. This parameter decreases as the number of iterations increases

(cooling). Ceteris paribus, lower temperatures correspond to lower acceptance probabilities. When

the temperature is very low, non-improving solutions will not be accepted anymore and the algorithm

terminates (freezes).

The main ingredients of SA are:

(i) initial solution,

(ii) neighborhood structure,

(iii) �tness function, and

(iv) cooling strategy.

The last parameter is determined by the initial temperature and the cooling rate.

In most algorithms, the neighborhood is de�ned by 1-exchange moves. Typically a single vertex is

chosen at random, and moved into the least costly alternative frequency class. In some cases, the

new frequency is randomly assigned.

The initial temperature is chosen so as to ensure that a given percentage of tentative moves is

accepted (recall that the acceptance rate grows with the temperature).

Finally, the temperature decreases only after a speci�ed number of iterations has been performed at

constant temperature. In the following we denote by an L-loop the inner loop of SA, i.e., a block of

iterations performed at constant temperature.

MS-FAP In Costa [34] the model is (distance) MS-FAP. The initial solution is found by generalized

DSATUR (see subsection 5.1). The �tness function is the sum of the distance violations. The vertex

is chosen among those involved in some positive local violations. The number of iterations of the

L-loop is increased at each temperature update. The cooling rate is linear. Test instances are

randomly generated.

MI-FAP In Duque-Ant�on et al. [45] the model is distance MI-FAP. A dummy frequency is in-

troduced to represent (partially) unsatis�ed demand. Substituting a dummy frequency with an

available one or vice versa (single 
ip) corresponds to increasing or decreasing the violation of traÆc

demand. Both the vertex as well its new frequency are randomly chosen. In order to increase the

performance of the algorithm the new frequency is chosen now and then as the most frequently as-

signed to close (with respect to their actual geographical location) non-interfering vertices. Another

technique used to extend the neighborhood consists of performing a sequence of moves before the

acceptance test. The cooling rate is chosen so that the di�erence between the average solution cost

of two consecutive L-loops at temperature t1 and t2 is no more than the standard deviation of the

solution costs at temperature t1. The system is frozen when the current solution does not change

during the last L-loop. Ad hoc test instances are proposed.
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In Kn�almann et al. [82, 110] the model is distance MI-FAP. The move is performed by randomly

selecting one vertex and by randomly changing its frequency. No hard constraints are consid-

ered. Experiments are performed on a 10 transmitter FM network from the German broadcaster

S�udwestfunk.

In Beckmann and Killat [11] neighborhood restriction is obtained by selecting one vertex v at random

and replacing the frequency assigned to v causing the largest amount of interference by a frequency

in the domain of v causing the smallest amount of interference. An initial solution satisfying all

hard constraints is obtained by applying the genetic algorithm presented by the same authors in [12]

(described in Section 5.5). The algorithm was applied to large real-life instances of the COST 259

test-bed.

An interesting variant of SA is presented in Zerovnik [136]. The algorithm is inspired by the graph

coloring algorithm of Petford and Welsh [109]. The model is distance MI-FAP with all penalties

being unit penalties. To handle multiple demands the split interference graph is used. An initial

solution is found by a uniform random assignment. The main di�erence with a standard SA approach

is that the initial temperature T is never changed. At each iteration a vertex v involved in a large

number of violated constraints is selected. Then a new frequency f is assigned with probability

e�Sf=T , where Sf amounts to the number of constraints that will be violated by assigning f to v.

Benchmark instances are 7-cluster hexagonal torus [45] and triangular lattice graphs with random

demand.

A second variant of SA, called threshold accepting is applied by Heller and Hellebrandt [65]. The

minimal di�erences between this technique and SA are not discussed here. The initial solution is

found so as to ful�ll all of the hard constraints. The initial temperature is chosen such that the

acceptance rate is between 0.8 and 0.9. The move is the standard one, i.e., exchange of a frequency

for a single vertex, but the neighborhood is restricted by only considering moves that do not violate

hard constraints. An important feature of the algorithm is one-cell optimization, which is performed

at the end of every L-loop. The authors show that, by a simple dynamic program, it is possible

to eÆciently optimize over the neighborhood of the current solution obtained by letting all of the

frequencies assigned to a vertex be changed simultaneously. In fact, it is possible to show that

this corresponds to looking for a minimum cost k-cardinality stable set in interval graphs, where

k is the demand of the vertex. Benchmark instances are taken from the COST 259 test-bed. The

authors propose to extend this idea to clusters of vertices, but they are not able to describe eÆcient

search algorithms - here they propose to use a greedy search. Finally, Mannino et al. [93] describe

a generalization to cliques of vertices of the dynamic programming approach presented in [65].

In particular, they show that �nding an optimum assignment for a clique of vertices with multiple

demands can be reduced to �nding �xed cardinality stable sets in a generalization of interval graphs,

and this task can be performed in polynomial time.

MB-FAP In Mathar and Mattfeldt [95] the model is (distance) MB-FAP with only hard co-

channel constraints. The authors propose a non standard de�nition of a neighborhood in order

to guarantee convergency of the method. A solution is represented by m distinct orderings of the

vertices, where m is the number of available frequencies. A frequency assignment is then generated

as follows. If � = �1; : : : ; �m is a solution (where �i is the ordering of the vertices associated

with the i-th frequency) then the corresponding assignment is obtained by assigning frequency i to

vertex v if and only if none of the vertices adjacent to v precedes v in �i. The move is de�ned by

suitable permutations of the current solution. Namely, it consists of randomly selecting an available

frequency r, and a permutation � from a set 	 of pre-de�ned feasible permutations. 	 must be a

generator of the set of all permutations of the set f1; : : : ; jV jg. The move simply consists in applying
permutation � to �r . Three di�erent choices for 	 are discussed and compared with the standard

de�nition of move.
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A hybrid model (MI-FAP + MB-FAP) is addressed in Al-Khaled [4]. The main novelty with respect

to standard SA consists of an adaptive cooling rate. In particular the cooling rate depends on the

di�erence between the average of the accepted solution values of two consecutive L-loops. Ad hoc

hexagonal test instances are considered.

5.5 Genetic Algorithm (GA)

Genetic Algorithms are inspired by the natural process of reproduction. Metaphors as chromosomes

and population stand for solutions and solution set, respectively. Analogously, a single variable is

often indicated as a gene. Mechanisms as recombination and mutation give rise to new o�spring

by manipulating the current population of solutions. Speci�cally, mutation applies to a single

solution (chromosome) while crossover creates new solutions from a pair of solutions selected in

the current population. Following a standard Darwinistic approach, selection extracts the most

promising individuals in the current population.

The main features of a genetic algorithm are the following:

(i) Chromosomal representation. The correspondence between chromosomes and solutions.

(ii) Initial population. An initial set of solutions (chromosomes).

(iii) Fitness function. The function used to evaluate the quality of candidate chromosomes.

(iv) Selection. A mechanism to select promising chromosomes (in conjunction with �tness func-

tion).

(v) Crossover and mutation. Mechanisms to generate new solutions from the currently selected

chromosomes.

The most common way to represent a solution is as follows: each chromosome is a vector s 2 ZjV j,
where sj is simply the frequency assigned to vj . The split graph model is adopted when multiple

demands are considered. We denote this representation by (R1). In a second rather common

representation (R2) each chromosome is a partition of the vertices in a family of fmax (eventually

empty) subsets S1; S2; : : : ; Sfmax
, called the genes, where Sf is the set of vertices that are assigned

frequency f for f = 1; : : : ; fmax, and fmax is the maximum available frequency. Simple adaptations

are required when not all frequencies in the interval [1; ffmax] are available. Often such a chromosome

is represented by a binary string of fmax�jV j elements. The set of vertices that is assigned frequency
f (called the f-th gene) is stored in the bits in the interval [(f�1)�jV j+1; f�jV j]: speci�cally, a 1
in position (f�1)�fmax+k means that frequency f is assigned to vertex k. In a third representation

(R3) each chromosome is a permutation � of the jV j vertices, and represents the canonical assignment
associated with � (see subsection 3.3). Again, the split graph model is considered when multiple

demands are considered.

Several types of crossover operators have been applied in the literature. As an example, consider

the one point crossover, applied to (R1). Let (f1; : : : ; fn) be the �rst parent chromosome, and let

(g1; : : : ; gn) be the second parent chromosome. Now, an index k is chosen and two new children are

generated: the �rst is (f1; : : : ; fk; gk+1; : : : ; gn), while the second is (g1; : : : ; gk; fk+1; : : : ; fn). More

sophisticated cross-over operators are the two-point crossover, where each parent is split into three

parts, and the uniform cross-over, where the each gene is copied either from the �rst parent or from

the second parent according to a pre-de�ned scheme.

MS-FAP In Valenzuela et al. [130] the representation is (R3). The initial population is randomly

generated. The generalized Saturation Degree greedy algorithm is applied to each element of the
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initial population to obtain good quality initial solutions. The mutation operator consists of ex-

changing the position of two vertices. The �tness function is the span of the permutation. Selection

is made by round-robin for the �rst parent, i.e., all chromosomes are selected in turn according to a

circular ordering, while the second parent is chosen with probability proportional to its �tness value.

Testing is performed on Philadelphia instances.

MO-FAP In Kapsalis et al. [77] the model is a variant of MO-FAP. The �tness function is a

weighted sum of (i) the number of distinct frequencies, (ii) the weighted sum of violated constraints

(di�erent types of constraints di�erent weights), (iii) mobility costs. Two chromosomal represen-

tations are adopted: the �rst is a simple variant of (R1), the second is (R2). Besides standard

operators, a number of specialized crossover operators were tested. The �rst one, applied to (R1),

consists of a repeated application of the following steps:

(i) Select a constraint (and the corresponding pair of vertices u and v) and check whether this

constraint is satis�ed by any of the two currently selected parents.

(ii) If it is satis�ed, then interchange the frequencies assigned to u and v in the �rst parent with

those assigned in the second parent.

The second one is a single-point operator applied to (R2): similar to [38] (described above), the

genes are interchanged taking care of the hard constraints. A �rst mutation operator is applied to

(R1) and consists of choosing a pair of vertices and interchanging the frequencies assigned to them.

Also the second mutation operator applies to (R1) and consists of choosing a pair of vertices whose

assignment violates a hard constraint, then randomly changing the assigned frequencies with a new

pair of available frequencies which do not violate such constraint. The last mutation applies to

(R2). A set of vertices with the same frequency are reassigned a commonly available new frequency.

Finally, several strategies to static and dynamic modi�cation of the �tness function are proposed.

Experiments are performed using the CALMA data set.

In Dorne and Hao [40] the model is (distance) MO-FAP and the authors adopt the standard repre-

sentation (R1). The �tness function is the number of unsatis�ed constraints. Mutation in a given

chromosome is performed by selecting an infeasible assignment, i.e., a vertex v and a frequency

assigned to v violating one or more constraints, and then replacing this frequency with the best

alternative. The selection mechanism extracts one chromosome from the current population by

favoring elements not yet trapped in local optima. The child obtained by applying the mutation

operator is accepted only if (i) its �tness function is not worse than the �tness of the parent or

(ii) randomly with a given probability. No crossover is applied. Test instances are a set of 18 real-

life problems from CNET. The algorithm favorably compares with Constraint Programming and

Simulated Annealing.

Dorne and Hao [41] extend the algorithm presented in [40] to the multi-demand case. Co-cell

constraints are used to limit the size of the search space by a suitable adaptation of the mutation

operator. Again, crossover is not implemented. The GA algorithm is repeated several times after

the generation of a new population. Testing is performed on 10 instances.

Finally, Hao and Dorne [62] extend the algorithm presented in [41] (described above) by applying

three di�erent crossovers: single-point, uniform, and con
ict based. The last consists of changing

only those genes representing frequencies violating one or more constraints.

MI-FAP In Cuppini [39] the encoding scheme is (R2), while the �tness function is the weighted

sum of two terms: the �rst takes into account the global interference level, while the second is

a measure of the span. Only asexual crossover is used to produce new generations: it consists of
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choosing two genesG1; G2 in a chromosome and two crossover points (the same for each gene). Then,

two new genes are obtained by breaking the old genes in the crossover point and then by completing

the �rst part of G1 with the second part of G2 and the �rst part of G2 by the second part of G1. A

chromosome is chosen with probability proportional to its �tness value. Computational experiments

are performed on a number of ad hoc instances.

In Lai and Coghill [90] the chromosomal representation is (R1). Three-point crossover is applied

with some specialization required to avoid con
icts in reconstructing the new o�spring. Random

mutation is applied to each gene of a new chromosome with probability equal to 0.01.

Ngo and Li [103] use the representation (R2). Crossover and mutation are designed to maintain

the number of one's in the chromosome unchanged (Genetic-Fix Algorithm) so that the number of

frequencies assigned to each vertex is unchanged. In particular, two-point crossover is applied by

selecting an initial gene g1 and a �nal gene g2 and by swapping only a subset of the genes between

g1 and g2. The solution is mutated by randomly substituting a frequency assigned to a given vertex

with a di�erent one. A compressed encoding scheme which takes co-cell distance constrains implicitly

into account is also proposed in order to reduce the search space. To diversify the search, a local

search procedure is sporadically applied to the current best solution in order to increase the quality

of the solution. Basically, a suitable subset of the most interfered frequencies currently assigned to

some vertices is selected and randomly replaced by new frequencies.

In Crisan and M�uhlenbein [36] the encoding scheme is (R1). The mutation operator consists of

replacing a frequency assigned to one vertex by a randomly chosen frequency from a candidate set.

The new frequency must respect co-cell constraints. Crossover is obtained by selecting a good vertex

v in the �rst parent, i.e., a vertex with no local violation, and then constructing a new assignment

in the following way: (i) for v and for all vertices belonging to the neighborhood of v, the new

assignment is equal to the assignment in the �rst parent; (ii) for all other vertices the assignment is

as in the second parent. The rationale behind this choice is that, if we partition the network into

two subnetworks G1 and G2, two distinct assignments may have opposite performances in terms

of �tness function in G1 and G2. In this way an attempt is made to get the best out of the two

parents. Of course, after crossover, local adjustments are required to minimize the �tness function.

Tests were performed on real-life instances.

Beckmann and Killat [12] adopted (R3) as representation. The model is MS-FAP and the span is

optimized by iteratively reducing the number of available frequencies. The �tness function takes

into account the number of \blocked calls" (vertices that cannot be assigned an available frequency

without violating hard constraints) plus an additional tie-breaking term that takes the number of

vertices receiving large frequencies into account. In the selection mechanism, a chromosome is chosen

with probability proportional to its �tness value. Two di�erent mutation operators are considered:

(i) one of the blocked calls is selected and randomly displaced, or (ii) a group of 4 contiguous calls

is randomly rearranged - in fact, at each application of this mutation operator, 3 di�erent groups

are randomly selected. Uniform crossover produces two children from a pair of parents. First, the

vertices are randomly partitioned into two subsets. In one child, the vertices in the �rst subset

obtain the positions they occupy in the �rst parent, while the other vertices obtain the residual

positions according to the ordering induced by the second parent. For the other child, the role of

the parents is interchanged. The test bed is a subset of the Philadelphia instances.

In Jaimes-Romero et al. [70], MI-FAP is solved by a standard genetic algorithm blended with a

local search heuristic which is used to generate the new population. In particular, after a solution

with 0 blocking probability is found by a standard genetic algorithm, a new phase is started where

the algorithm tries to minimize the overall interference level (number of violated constraints). Once

a chromosome C is selected, a mutation is generated by looking to the best neighbor, where the

neighborhood is the 1-exchange restricted to vertices which are endpoints of an edge violated by C.

The chromosomal representation is (R2). Testing is performed over ad hoc instances.
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An innovative approach to mutation and crossover is presented by Kolen [83] to solve MI-FAP.

The �tness function is the cost of the solution. The initial population is generated at random.

The mutation operator consists of a 1-opt local search that transforms the input solution into a

1-optimal solution. This operator is applied to every new entry and to every chromosome in the

initial population. So, at any stage, every solution in the current population is 1-optimal. The most

relevant di�erence with former genetic approaches is that crossover is an optimal operator, i.e., once

the two parents are selected, the best possible combination of their genes is calculated to generate a

single child. More precisely, the selection operator is a random operator which selects a parent with

a probability inverse proportional to its �tness value. Every vertex in the child solution will then

obtain its frequency either from one parent or from the other - so that there are only two possible

choices for each vertex. The best solution is then computed by applying a branch-and-cut procedure

based on the partial constrained formulation of MI-FAP, see Section 3.4.

In Crompton et al. [38] the two di�erent representations (R1) and (R2) along with corresponding

crossover and mutation operations are compared and applied to a hybrid model. The single point

crossover operation, applied to (R2), produces children C1; C2 from parents P 1; P 2 by �rst selecting

a so-called cross frequency x. Then C1
f
= P 1

f
and C2

f
= P 2

f
for 1 � f � x. The remaining classes

are interchanged with some care, since simply letting C2
f
= P 1

f
and C1

f
= P 2

f
for f > x would result

in infeasible solutions (a feasible chromosome is a partition of the vertices). Two point and uniform

crossover are simple extensions. Mutation consists of randomly selecting a vertex and reassigning it

to a di�erent class. The �tness function is a weighted sum of four terms, representing the number

of violated constraints, the span, the order and the larger violation. This scheme is incorporated

into a parallel algorithm, where each node of a parallel computer runs a sequential algorithm with

its own population of chromosomes. Occasionally exchanges of chromosomes can take place among

various populations. The authors illustrate the superior e�ectiveness of the (R2) scheme over (R1)

on two di�erent instances.

5.6 Arti�cial Neural Networks (ANN)

Again, the natural learning process is a useful paradigm to de�ne heuristic algorithms for combi-

natorial problems. In the ANN context, solutions are generated by a network of neurons, whose

states represent the values of the variables involved in the model. In order to minimize an energy

function, which represents the objective of the problem, the neurons change their states dynamically

as a function of the states of the neighboring neurons.

Basic ingredients in an ANN algorithm are the following:

(i) Neuron de�nition. The mapping between neuron states and solutions.

(ii) Energy function. The objective to be minimized.

(iii) Synapses (coupling weights). Weighted connections between two neurons.

(iv) Local updating rule. Function of the neighbor states and the coupling weights used to update

the state of a neuron.

A standard way to de�ne the neural network for FAP is the following: associate a neuron Vif with

each pair (i; f) where i 2 V and f 2 Fv . Two neurons are coupled if the corresponding vertices

are adjacent in the interference graph. The energy function is the weighted sum of several terms,

representing di�erent types of interference constraints (co-cell, co-site, etc.), demand constraints

(number of required frequencies) and sometimes instance speci�c requirements.

In Kunz [89] the model is distance MI-FAP. The coupling weight between two distinct neurons Vif
and Vjr depends on the type of interference relation (co-cell, co-site, etc.) between the corresponding
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two assignments. Computational experiments were performed on random hexagonal networks and

a real-life network from the city of Helsinki.

In Funabiki and Takefuji [54] the model is distance MI-FAP. The local updating rule consists of two

terms. The �rst term is proportional to the demand de�ciency while the second is proportional to

the distance violations. Several heuristics are proposed to increase the ability of escaping from local

minima.

The dynamic MI-FAP is considered in Del Re et al. [113]. At each iteration the current assignment

is updated to take into account new requests of connection. To speed up the process, only those

vertices involved in new connections are re-optimized. The energy function is the weighted sum

of several terms to handle interference level, unsatis�ed demand, (Hamming) distance from former

assignment, (Hamming) distance from prede�ned reuse schemes, number of distinct frequency as-

signed. Computational experiments are performed on hexagonal networks with non-uniform traÆc

distribution. A special type of dynamic channel allocation is the borrowing channel assignment

(BCA) where one vertex is allowed to borrow frequencies from its neighbors. A standard ANN

algorithm to solve (BCA) is presented in Sandalidis et al. [118].

In Kim et al. [81] the neurons can only assume binary values. The energy function takes into account

several types of interference constraints and the level of unsatis�ed demand. In particular, the latter

term is translated into an additional input to each neuron, which forces the assignment of new

frequencies to vertices with unsatis�ed demand. Several initialization and updating methods are

proposed. Benchmark instances are ad hoc hexagonal networks.

Model MI-FAP is addressed in the connectionist algorithm presented in Bouju et al. [22]. The

algorithm is compared on the CALMA test-bed.

Finally, Smith and Palaniswami [122] modi�ed the Hop�eld network to incorporate some hill climbing

mechanism for escaping from local minima. Experiments with a self-organizing neural network are

also performed (however, the Hop�eld network with hill climbing appears to be the best method).

Benchmark instances are the Philadelphia instances and the Helsinki instances proposed in [89].

5.7 Ant Colony Optimization

Ant Colony Optimization (ACO) is a class of constructive meta-heuristic algorithms inspired by real

ants behavior. We have a �xed number of ants, where each ant can be interpreted as a sequential

greedy algorithm which iteratively generates a solution by upgrading partial solutions moves. A

move is controlled by two parameters: the attractiveness which is based on the structure of the

problem (costs and constraints); the pheromone trail level which takes into account how many times

a given move has been successful. Pheromone trails are updated when all ants have completed the

construction of their solution, increasing (decreasing) the level for those moves which led to good

(bad) solutions. A lower bound is required to �x the initial level of pheromones. Finally, the solution

generated by each ant is possibly improved by local search.

Maniezzo and Carbonaro [91] solve MI-FAP by means of ACO. A partial solution consists of an

assignment of frequencies to a subset of the vertices. In order to complete a given partial solution,

every ant selects a new vertex and a new frequency to be assigned to this vertex at each iteration.

This assignment is de�ned as a move. The initial lower bound is computed by solving the relaxation

of the (orientation) formulation proposed in [20]. The solution produced by each ant is locally

upgraded by local search. The authors use this solution to de�ne a partial order on the vertex set

(as in the orientation model). The proposed local search algorithm looks for solutions with the

same underlying order. Benchmark test problems are the CALMA instances and the Philadelphia

instances.
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5.8 Formulation based relaxations

A standard way to solve an optimization problem consists of describing it by means of a mathe-

matical formulation which in turn may be solved by some standard techniques. However, for most

practical instances such formulations are too large to be solved to optimality and we must content

ourselves with heuristic solutions. A classical heuristic approach consists of removing some \diÆcult"

constraints so that the residual problem can be handled. Removed constraints can be accounted for

in several ways or simply ignored.

5.8.1 Lagrangian Relaxation

In Chang and Kim [31] the adopted model is MB-FAP, with co-channel and adjacent channel con-

straints. A family of stable sets (patterns) of the interference graph is generated. To simplify the

model, frequencies are assigned to patterns, rather than to single vertices. The objective function

is linearized by exploiting the fact that the Erlang B formula is piecewise linear. The problem is

formulated as a mixed-integer linear program, by means of two types of variables: assignment vari-

ables (to select patterns and assign a frequency to each selected pattern), and variables associated

with the linearization of the Erlang B formula. The Lagrangian relaxation is obtained by relaxing

all the constraints coupling the two types of variables. The residual problem is a maximum weighted

stable set problem which is solved by branch-and-bound. The Lagrangian multipliers are updated

by a standard subgradient approach. Test problems are randomly generated.

5.8.2 Orientation formulation

The orientation formulation (cf. Section 3.6.2) is exploited in the method proposed by Bornd�orfer et

al. [20] for MI-FAP. The authors show that, under mild assumptions, the relaxation of the orientation

formulation has integral solutions once all variables of type �uv are �xed either to 0 or 1, i.e., an

orientation of the edges has been �xed. This observation leads to a two-stage heuristic. In the �rst

stage an orientation � is chosen. In a second stage, a minimum cost assignment is found by solving

the associated linear program. A new partial orientation is then generated by exploiting information

associated to the solution of the relaxation.

5.8.3 Potential reduction

An approximation algorithm both for MI-FAP and for MO-FAP based on Karmarkar's potential

reduction approach to combinatorial optimization is proposed by Warners et al. [135]. First the

problem is formulated as a quadratic non-convex optimization problem (see Section 3.4). It is then

shown that any feasible (optimal) fractional solution to this formulation can be converted to multiple

feasible (optimal) integer solutions of MI(MO)-FAP. Now, solving quadratic non-convex optimization

is a diÆcult task which can be approximately performed by applying potential reduction. To do

this, the constraints of the formulation that ensure that each vertex receives exactly one frequency

are relaxed and the objective function is modi�ed by adding a weighted logarithmic barrier potential

function. Namely, for each constraint i if we denote by si its slack variable and by wi an associated

positive weight, the new term has the form
P

i
wi log si. This new non-convex optimization problem

is solved by an adaption of the method developed by Karmarkar et al. [78]. Several implementation

details of this approach, such as starting point, alternative rounding schemes, techniques to escape

local minima are discussed in deep. Also, several preprocessing techniques are used to reduce the

size of the instances. Experiments are performed on the CALMA instances.
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5.9 Ad hoc

5.9.1 Solve and Extend

The solve and extend strategy consists of two phases. In the �rst phase, a suitably hard subproblem

of the original one is selected and solved. The subproblem should be small enough to be handled

easily. In the second phase the solution found in this way is extended to a solution to the original

problem. The two phases are iterated until a \satisfactory" solution to the whole problem is found

or until a stopping criterion is met. The term \satisfactory" gives rise to di�erent interpretations in

di�erent papers. In Smith et al. [121] (MS-FAP) the initial subproblem is found by selecting a p-level

clique, i.e., a subset C of the vertices of G with the property that Æ(u; v) � p for all u; v 2 C. Such

a clique is selected in order to maximize the associated lower bound for MS-FAP, see Section 4.4.2.

A solution to G[C] is found heuristically. This solution is then (heuristically) extended to a solution

of G. If such a solution is \satisfactory", we are done. Otherwise new vertices are added to C and

the method is iterated. The new vertices are chosen according to decreasing saturation degrees, i.e.,

the number of di�erent frequencies assigned in the neighborhood.

A similar approach is presented in Mannino and Sassano [94] to solve MS-FAP; the solution to the

subproblems and the extension are found by an exact implicit enumeration algorithm. A \satisfac-

tory" solution is a solution whose span does not exceed a pre-de�ned quantity. New vertices are

selected and added to the subproblem by using connectivity criteria. Namely, if S is the set of

vertices in the subproblem, then the new vertex v maximizes the quantity
P

u2S
Æ(u; v).

5.9.2 Constraint Programming

The models considered by Walser [133] are MS-FAP and MO-FAP. The original interference graph

is heuristically shrunk by constructing a suitable covering of the vertices with stable sets. All

the vertices in a stable set are identi�ed into a single vertex, which corresponds to assigning the

same frequency to all of the original vertices. To compute a feasible assignment of the shrunk

graph, the author uses canonical assignments, see Section 3.3. To obtain the solution constraint

programming techniques are used. A restricted backtracking technique, called limited discrepancy

search is exploited, which consists of visiting only those leaves of the branching tree which are not

\too far" from the �rst solution achieved by depth �rst search.

6 Concluding Remarks

In this survey, we have given an overview of the frequency assignment literature of the last 10{15

years. To conclude the paper, we like to make the following remarks.

The classi�cation given in section 3 shows that the frequency assignment problem does not exist.

In this survey, we classi�ed the FAPs according to their objective function, given two constraint

types: assignment and interference. However, there are more relevant technical and practical issues

not accounted for, such as multiple interference and dynamic channel allocation. This makes it very

diÆcult to seek out the relevant literature. The fact that the problem is at the crossroad of multiple

disciplines (graph theory, management science and telecommunication technology), does not make

it easier either to keep track of new developments. The digest in Appendix B uses this classi�cation

to sort the publications, to support the search for relevant literature. This digest is also published

at the FAP web-site [48] and will be regularly updated with the newest publications in the �eld.

In this way, it hopefully serves as the �rst source for all those who are interested, now and in the

future.
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Another drawback that holds for most optimization problems motivated by practice, and therefore

also for FAPs, is the limited availability of benchmark instances. Most of the proposed algorithms are

tested on speci�c, solitary instances, often unavailable to the public, or even on randomly generated

instances. Exceptions are the CALMA and COST 259 projects, the papers devoted to the solution

of the Philadelphia instances, and the e�ort made by Caminada [27] to make available a real GSM

network instance, with all its technical side constraints. It would be a tremendous improvement

when authors test their algorithms not only on their solitary instances, but also on at least one of

these sets of benchmarks instances. Alternatively, new/existing data sets can be made available so

that other groups can test their algorithms on these instances as well. Also in this context, FAP

web likes to serve as an intermediary, and as the place for comparing the results.

Finally, many of the proposed methods, especially the heuristics are sometimes small variations on

standard themes. For the sake of completeness, a brief description of most of these technical papers

have been reported in the survey. On the other hand, a limited number of original or seminal papers

have appeared, and they have been discussed in more detail. We hope that our categorization of

these methods gives insight into their contribution, and helps in positioning future research as well.

All above mentioned reasons for confusing the study of the frequency assignment literature, applied

to the authors of this survey as well. Over and over again, we discovered relevant (new or old)

papers on the topic. Therefore, we do not claim that this survey gives a complete overview of the

literature. We, however, have con�dence that all important developments in the �eld have been

covered. Although we plan to keep track of future trends in frequency assignment, this intention

can only be realized with the help of all working in the �eld. Also at this point, FAP web plays

an important role. By providing information about new papers and results to FAP web, the FAP

community can be informed extremely fast, and newcomers are always provided with the latest

information in the �eld.

Altogether, this survey should not be seen as a �nal report on frequency assignment, but as an eval-

uation of the �eld. There is still enough room for improvement of the solution and lower bounding

techniques for all variants of frequency assignment problems. The practical relevance of, in partic-

ular, the minimum interference and minimum blocking FAPs can be an additional motivation to do

so. This survey o�ers the possibility to detect the areas where advances can be successful.
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[131] G. Verfaillie, M. Lemâ�tre, and T. Schiex, Russian doll search for solving constraint optimiza-

tion problems, Proceedings of the 13th National Conference on Arti�cial Intelligence (AAAI-96)

(Portland, OR, USA), 1996, pp. 181{187.

[132] V. G. Vizing, Critical graphs with given chromatic class (russian), Diskret. Analiz 5 (1965),

9{17.

[133] J. P. Walser, Feasible cellular frequency assignment using constraint programming abstractions,

Proceedings of the Workshop on Constraint Programming Applications (CP96) (Cambridge,

Massachusetts, USA), 1996.

[134] W. Wang and C. K. Rushforth, An adaptive local-search algorithm for the channel-assignment

problem (CAP), IEEE Transactions on Vehicular Technology 45 (1996), 459{466.

[135] J. P. Warners, T. Terlaky, C. Roos, and B. Jansen, A potential reduction approach to the

frequency assignment problem, Discrete Applied Mathematics 78 (1997), 251{282.

[136] J. Zerovnik, Experiments with a randomized algorithm for a frequency assignment problem,

Tech. Report 97{27, Ecole Normale Sup�erieure de Lyon, 1997.

[137] M. Zhang and T.P. Yum, The nonuniform compact pattern allocation algorithm for cellular

mobile systems, IEEE Transactions on Vehicular Technology 40 (1991), 387{391.

[138] J. A. Zoellner and C. L. Beall, A breakthrough in spectrum conserving frequency assignment

technology, IEEE Transactions on Electromagnetic Compatiblity 19 (1977), 313{319.

49



A Comparison of Benchmark Results

In this appendix, a description and a comparison of the results for frequency assignment benchmark

instances is presented. From the instances mentioned in Section 2.2, the Philadelphia, CALMA,

and COST 259 instances are publicly available and used by several research groups. The other

instances are not publicly available and/or only used by a limited number of researchers, which

makes a comparison diÆcult. The latest results for the benchmark instances compared here, as well

as the instances themselves can be found at FAP web [48].

A.1 Philadelphia benchmarks

Table 1 shows for the Philadelphia instances, the demand vector for the 21 hexagons, see Figure 4(a),

page 8, and the reuse distances as explained in Section 2.1. The frequency domains F (v) are simply

Z+, in which case minimization of the span is equivalent to minimization of the maximum used

frequency. Note that, there is a di�erence of one between minimum span and maximum used

frequency. In conformity with [130], the instances are denoted by P1-P9. Some of them are also

known as E3-E9, after [68]. In Table 2, the results of both lower bounding and upper bounding

techniques are compared.

A.2 CALMA benchmarks

The CALMA instances (cf. Section 2.2) di�er from other frequency assignment problems by their

speci�c distance /separation constraints. Besides the minimum distance constraints, the instances

also contain equality constraints to model that two frequencies at a �xed distance have to be assigned

to the corresponding vertices. The distance is the same for all constraints and every vertex is

contained in exactly one equality constraint. Moreover, the domains are constructed in such a way

that for every frequency there exists only one `matching' frequency. Altogether, these characteristics

provide the possibility to reduce the size of the instances to half the original size whenever that may

be pro�table. The number of available frequencies for a vertex is 40 on average. The set of instances

contains MO-FAPs, MS-FAPs, as well as MI-FAPs. The number of vertices ranges from 200 to 916,

the number of edges from 1200 to 5700. For more information on the instances, we refer to [2, 26].

Table 3 shows the results for the MO-FAP instances, Table 4 the results for the MS-FAP instances,

and �nally Table 5 the results for the MI-FAP.

A.3 COST 259 benchmarks

In the COST 259 project [33] (cf. Section 2.2) on Wireless Flexible Personalized Communications,

32 realistic GSM network planning scenarios were collected and served as benchmark for comparing

algorithms within COST 259. The scenarios together with several contributed frequency plans are

made available on the FAP web [48]. Here, we restrict ourselves to a brief description of the scenarios

and the key �gures of the computed assignments.

The scenarios have been contributed by E-Plus Mobilfunk GmbH (bradford-t-p, bradford nt-t-p,

and K), Siemens AG (siemens instances), and Swisscom Ltd. (Swisscom instance). The bradford,

bradford nt, and K instances originate from a GSM 1800 Network. The wildcards t and p stand for

�ve di�erent traÆc loads and three interference predictions on the basis of di�erent signal prediction

models. The basic traÆc load is drawn at random according to an empirically observed distribu-

tion [60]. This traÆc is then scaled with the factors t prior to applying the Erlang-B formula in order

to obtain the required number of TRXs per cell. The signal predictions (p) are done assuming free
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space propagation with a decay factor of 1.5 (free), using a Modi�ed Okumura-Hata model (race),

and using a model developed by E-Plus (eplus), see [50] for details. The siemens and Swisscom

scenarios originate from GSM 900 networks. More characteristics of the COST 259 instances are

collected in Table 6. Double spectrum size values mean that the spectrum consists of two part of

consecutive frequencies.

Scenario #
si
te
s

#
ce
lls

av
g.
#
T
R
X
s/
ce
ll

m
ax
.
#
T
R
X
s/
ce
ll

sp
ec
tr
um

si
ze

jV
j

de
ns
ity
(%
)

K 92 264 1.01 2 50 267 56.57

bradford-0-p 649 1886 1.00 1 75 1886 13.59

bradford-1-p 649 1886 1.05 3 75 1971 13.46

bradford-2-p 649 1886 1.17 5 75 2214 13.50

bradford-4-p 649 1886 1.47 9 75 2775 13.44

bradford-10-p 649 1886 2.02 12 75 4145 13.41

Siemens1 179 506 1.84 4 20, 23 930 9.03

Siemens2 86 254 3.85 6 4, 72 977 49.17

Siemens3 366 894 1.82 3 55 1623 9.18

Siemens4 279 760 3.66 5 39 2785 10.50

Swisscom 87 148 2.09 4 3, 49 310 8.29

Table 6: Characteristics of COST 259 scenarios

A total of 115 assignments are currently available for the di�erent scenarios. Tables 7 and 8 display

the key �gures of these assignments: the number of separation violations, the total amount of

interference, the maximum level of co-channel interference, and the maximum level of adjacent-

channel interference. More statistics of these assignments are available at the FAP web [48] or in

Eisenbl�atter and K�urner [49]. Both Hellebrandt and Heller contributed results on the Threshold

Accepting method [65]. These results are presented in di�erent columns, marked (1) and (2). The

method used by Enders [51] has not been published. The semide�nite programming approach of

Eisenbl�atter [46] provides a lower bound on the total amount of unavoidable co-channel interference.

B Digest of Frequency Assignment Literature

In Section 3, we classi�ed the frequency assignment problems according to their objective function.

For each of the resulting four classes of FAP, we summarized the literature on this problem in Tables 9

to 12. For each paper we depicted the applied technique(s) and the used instances. Table 9 shows

an overview of the literature available for the Maximum Service FAP (Max-FAP) and the Minimum

Blocking FAP (MB-FAP). Next, Table 10 is devoted to the Minimum Order FAP (MO-FAP). The

literature for the Minimum Span FAP (MS-FAP) is collected in Table 11. Finally, the Minimum

Interference FAP (MI-FAP) is the topic of Table 12.
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