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tThe paper introdu
es a model for online parallel ma
hine s
heduling, where any single ma-
hine is run on the basis of a lo
ally optimal sequen
ing poli
y. Jobs 
hoose the ma
hine onwhi
h they want to be pro
essed themselves, and in addition, any job j owns a pie
e of pri-vate information, namely its indi�eren
e 
ost wj for waiting one additional unit of time beforebeing pro
essed. We study this setting from the perspe
tive of algorithmi
 me
hanism design,and assuming that ea
h job prefers to be 
ompleted as early as possible, the utilitarian so
ial
hoi
e fun
tion minimizes the total weighted 
ompletion times Pwj 
j . We prove that in thissetting there exists an online me
hanism, running in polynomial time, where rational jobs sele
ttheir ma
hine in su
h a way that the resulting s
hedule is 3.281-
ompetitive with respe
t tothe o�-line optimal solution that maximizes so
ial welfare. The me
hanism deploys an onlinepayment s
heme that indu
es rational jobs to truthfully report their indi�eren
e 
osts, in thesense that it is a myopi
 best response. Moreover, the payment s
heme results in a balan
edbudget, that is, payments are only made between jobs. We also dis
uss extensions to me
h-anisms where truth-telling is even an ex-post weakly dominant strategy, while preserving the
ompetitive ratio.1 Introdu
tionWe study the online version of the 
lassi
al parallel ma
hine s
heduling problem to minimize thetotal weighted 
ompletion time {P j rj j Pwj 
j in the notation of Graham et al. [6℄{ from a newperspe
tive: We assume that the system needs to be organized without (too mu
h of) 
entral
oordination. More pre
isely, we ask for the performan
e of the system if ea
h of the parallelma
hines is run on the basis of a reasonable (yet suboptimal) sequen
ing poli
y lo
ally, while theonline arriving jobs have to de
ide for the ma
hines themselves. Ea
h arriving job would like to bes
heduled as early as possible, and it 
omes with a pie
e of information that is not publi
ly known,namely its indi�eren
e 
ost wj for waiting one unit of time. The pro
essing times pj of jobs areassumed to be publi
ly known. The indi�eren
e 
osts wj , together with the pro
essing times pj ofthe jobs, however, de�ne the input for the lo
al s
heduling poli
ies of the ma
hines. An arrivingjob may thus have an in
entive to lie about its true indi�eren
e 
ost, in order to strategi
allymanipulate the s
hedule. The goal is to nevertheless set up a system that yields a reasonableoverall performan
e. In this setting, it is typi
ally desirable to implement a so
ial 
hoi
e fun
tionthat is utilitarian, i.e., it maximizes the sum of the valuations of all the jobs [17℄. Hen
e, sin
e anyjob prefers to be 
ompleted as early as possible, with indi�eren
e 
ost wj for waiting, a me
hanism�Maastri
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that minimizes the total weighted 
ompletion timePwj 
j implements the utilitarian so
ial 
hoi
efun
tion, or in other words, it maximizes the total so
ial welfare.From a pure algorithmi
 perspe
tive, this problem poses two 
hallenges, as stated also byKoutsoupias and Papadimitriou [11℄. The �rst is the la
k of information 
aused by the fa
t thatjobs be
ome known to the system only at the moment of their arrival (online algorithms). These
ond is the la
k of unbounded 
omputational resour
es, whi
h allows only for approximate solutionsto the underlying NP-hard optimization problem (approximation algorithms). A third obstru
tion,in fa
t the starting point for what is known as me
hanism design, is the asymmetry of information:information that is required to run the system is private to the parti
ipants in the system. Sel�shagents trying to maximize their own bene�t 
an therefore do so by reporting strategi
ally abouttheir private information, thus manipulating the resulting out
ome.Contribution. The paper tou
hes on three resear
h areas, namely the design of approximationalgorithms for NP-hard optimization problems, 
ompetitive analysis for online optimization, andme
hanism design for resolving the asymmetry of information. Motivated by the observation thatmany real-life systems are not 
entrally but rather hierar
hi
al organized, we assume that anyof the parallel ma
hines adopts a `reasonable' s
heduling poli
y lo
ally without further referen
eto what is happening on other ma
hines. More pre
isely, we assume that any ma
hine lo
allyutilizes the well known WSPT rule, sin
e this is the lo
ally optimal s
heduling poli
y for the singlema
hine s
heduling problem 1 j j Pwj 
j [20℄. That is, jobs are s
heduled in the order of relativeshortest pro
essing time pj=wj �rst. Intuitively, the 
omputational 
omplexity of parallel ma
hines
heduling is thus bypassed, of 
ourse at a possible loss in overall performan
e. Moreover, we assumethat the WSPT rule is used in a myopi
, yet pra
ti
ally reasonable sense, namely without further
onsideration of the online situation. So at any time, a ma
hine s
hedules among all jobs assignedto it the one with largest ratio wj=pj �rst. Clearly, some pro
edure is needed to 
oordinate thedistribution of jobs over ma
hines. Moreover, given that the knowledge of the private information ofthe jobs, their indi�eren
e 
osts wj, is vital to a
hieve a reasonable overall performan
e, and giventhat any job sel�shly seeks to minimize its own 
ompletion time, we need to set up a me
hanism thatindu
es them to 
hoose the `right' ma
hine, and to report their private information wj truthfullyto the respe
tive ma
hine.We prove in this paper that su
h a me
hanism exists. More pre
isely, we present a polynomial-time me
hanism for the previously des
ribed model for de
entralized online s
heduling. As usual inme
hanism design, our me
hanism de�nes payments that have to be made by the jobs, dependingon the ma
hine they 
hoose, and depending on the report of their private information wj . Thesepayments are used for two di�erent purposes. First, as a means of 
oordination, indu
ing the jobsto 
hoose the `right' ma
hine, and se
ond, as a means to stimulate truthful reports of the wj 's.Building upon an analysis of Megow et al. [16℄, we show that the so-de�ned de
entralized me
hanismis 3.281-
ompetitive, that is, under the assumption of rational behavior of the jobs, the obtainedsolution is never more than 3.281 times the optimal o�-line solution that uses 
entral 
oordination.Note that the performan
e bound mat
hes the one obtained by Megow and S
hulz [15℄ for theonline parallel ma
hine problem to minimize Pwj 
j (using 
entral 
oordination). Moreover, thepayments result in a balan
ed budget, that is, no payments are required from or to a 
entral
oordination authority. In the me
hanism, a truthful report of the indi�eren
e 
ost wj is a myopi
best response for any job. We also give an example to show that no payments exist that wouldmake truth-telling an ex-post weakly dominant strategy. In other words, the algorithm 
annotbe turned into a dominant strategy in
entive 
ompatible me
hanism. However, we show thatdominant strategy in
entive 
ompatible me
hanisms 
an be obtained, while maintaining the sameperforman
e bound, at the 
ost of introdu
ing 
entral 
oordination for the distribution of the jobs2



over ma
hines.We see the 
ontribution of the paper twofold. First, we introdu
e a natural paradigm for de-
entralization of a parallel ma
hine system: Ea
h ma
hine implements a lo
ally optimal sequen
ingpoli
y, while jobs have to 
hoose the ma
hines themselves. Moreover, the pro
essing requirementspj of the jobs are assumed to be publi
ly known, sin
e they are publi
ly observable on
e the jobsare s
heduled. Private information is only the indi�eren
e 
ost wj of any job, measuring the private
ost for being pro
essed one unit of time later. Se
ond, we show that in this de
entralized model,both the la
k of 
entral 
oordination and the asymmetry of information 
an be bypassed by thede�nition of very simple and natural payments that even result in a balan
ed budget, at least as-suming a 
ertain notion of rational behavior. Most importantly, of 
ourse, the resulting me
hanismfor the online parallel ma
hine s
heduling problem provides a 
ompetitive ratio of 3.281.Related Work. Me
hanism design in 
ombination with the design of approximation algo-rithms for s
heduling problems has been studied, e.g., by Nisan and Ronen [18℄ and Ar
her andTardos [2℄. In both papers, not the jobs but the ma
hines are the sel�shly behaving parts of thesystem, and the private information is the pro
essing speed of the ma
hine. Ar
her and Tardos [2℄
onsider as appli
ation of their main theorem a problem with related parallel ma
hines, that is,ea
h ma
hine i has a pro
essing speed si, and a job j requires pro
essing for pj=si time if pro-
essed on ma
hine i. They de�ne a ne
essary and suÆ
ient 
ondition for the existen
e of truthful(dominant strategy in
entive 
ompatible) me
hanisms, namely the monotoni
ity of the total workassigned to a ma
hine in dependen
e on its reported speed si. On the basis of this 
hara
teri-zation, they design a randomized me
hanism that yields a deterministi
 3-approximation for theminimum makespan problem, Q j jCmax, while truthfully reporting si is a dominant strategy thatmaximizes the expe
ted utility of ea
h ma
hine. A deterministi
 monotone algorithm with thesame performan
e bound was re
ently proposed by Kova
s [12℄. Nisan and Ronen [18℄ 
onsiderthe minimum makespan problem on unrelated ma
hines, R j jCmax. There, the pro
essing time ofany job j on any ma
hine i is pij, with no relation to speeds of the ma
hines. In their paper, theprivate information of any ma
hine i is multi-dimensional, namely the ve
tor of pro
essing times(pi1; : : : ; pin). They present a truthful (dominant strategy in
entive 
ompatible) m-approximation,where m denotes the number of ma
hines. Furthermore, they prove that no truthful me
hanism
an yield a %-approximation for the minimum makespan problem with % < 2, and present a ran-domized me
hanism that beats this deterministi
 lower bound. De
entralized s
heduling is alsosubje
t of a paper by Wellman et al. [22℄. In 
ontrast to the model we propose, however, the term`de
entralized' in [22℄ des
ribes the fa
t that agents 
hoose their bidding strategy on the basis oflo
al information, whi
h di�ers from our notion of de
entralization.In the sequel of the paper, we formalize the model and introdu
e the required notation inSe
tion2. In Se
tion3 we �rst give a simple example to show that de
entralization may be arbitrarilybad in general, and propose an algorithm for online s
heduling on parallel ma
hines using 
entral
oordination, inspired by [16℄. In Se
tion 4, we analyze this algorithm from a me
hanism designperspe
tive, and in Se
tion 5 we introdu
e a simple payment s
heme that yields a de
entralizedimplementation of the same algorithm, in su
h a way that truthful reporting the indi�eren
e 
ostswj is a myopi
 best response for any job. We analyze the performan
e of the resulting me
hanismin Se
tion 6 and 
on
lude with further extensions and remarks in Se
tion 7.2 Model and NotationWe 
onsider the online s
heduling problem with non-trivial release dates on parallel ma
hines withthe obje
tive to minimize the weighted sum of 
ompletion times, P j rj j Pwj 
j . We are given a3



set of jobs J = f1; : : : ; ng, with pro
essing requirements pj > 0, j 2 J , and ea
h job needs to bepro
essed on any of the parallel, identi
al ma
hines from the set M = f1; : : : ;mg. We 
onsiderthe time-stamp model of online optimization [19℄, that is, the jobs arrive over time, every job jat its release date rj � 0. Only at this time, the system learns about the existen
e of a job, andthe pro
essing time pj is revealed. We assume that any job j prefers a lower 
ompletion time to ahigher one, where the 
ompletion time 
j is the moment in time when job j's pro
essing is �nished.Ea
h job owns a pie
e of private information, namely its indi�eren
e 
ost, or weight, whi
h wedenote by w�j . The weight represents the privately known 
ost to a job for one additional unitof time spent waiting. We use w�j for the indi�eren
e 
ost to di�erentiate it from the reportedweight, wj, whi
h may be di�erent. We de�ne the valuation of job j with indi�eren
e 
ost w�j for as
hedule that gives it 
ompletion time 
j as �w�j 
j . While jobs behave sel�shly trying to maximizetheir valuations, the so
ial welfare is maximized whenever the weighted sum of 
ompletion timesPj2J w�j 
j is minimum.3 The MinIn
rease AlgorithmRe
all our assumption that ea
h of the m ma
hines utilizes the WSPT rule lo
ally, and supposethat ea
h job tries to minimize its 
ompletion time with respe
t to the already present jobs, as ithas no information about future job arrivals. Then the following 
an happen.Example 1. Let there be m ma
hines and m jobs with pro
essing times 1; 1 � "; 1� 2"; : : : ; 1�(m � 1)" for 
onstant " with 0 < " < 1=m, and assume that ea
h job has unit weights. Let alljobs arrive at time zero, but in the given order. (One 
ould enfor
e this order by slightly 
hangingthe release dates and adding dummy jobs, whi
h would not in
uen
e the demonstrated e�e
t, but
ompli
ate notation.)Then an optimal s
hedule assigns exa
tly one job to every ma
hine, resulting inPw�j 
j < m. Ifea
h job 
an sele
t a ma
hine itself, an arriving job only �nds jobs already s
heduled on ma
hineswith a larger pro
essing time. By an indu
tive argument, no in
entives exist to report a falseweight, sin
e any arriving job will be the shortest, and therefore any of the m ma
hines wouldminimize the job's 
ompletion time. It is therefore possible that all jobs 
hoose the same ma
hine1.The weighted sum of 
ompletion times is then larger than (1�(m�1)")(m(m+1)=2) and thereforethe approximation ratio is bounded from below by(1� (m� 1)")(m(m + 1)=2)m = m+ 12 � (m+ 1)(m� 1)2 ";whi
h be
omes arbitrarily large for large m.Hen
e, a de
entralized sele
tion of ma
hines by the jobs themselves 
an 
ause arbitrarily largedeviations from the optimum. On the other hand, using 
entral 
oordination one 
an enfor
e thesolution to be O(1)-
ompetitive, that is, not worse than a 
onstant times the o�-line optimum. Wenext propose an algorithm that is inspired by the MinIn
rease algorithm in [16℄, whi
h yields a
ompetitive ratio of 3.281. Sin
e we have to rely on reported weights wj, we 
onsider Pj2J wj
jinstead ofPj2J w�j 
j . In order to formulate the algorithm, we �rst introdu
e the ne
essary notation.Let 
j(i) denote the 
ompletion time of job j when assigned to ma
hine i. Let j ! i denote thefa
t that job j is s
heduled on ma
hine i. Without loss of generality, we assume that the jobs are1Again, one 
ould make the �rst ma
hine the only one maximizing the utility of an arriving job by adding dummyjobs with small pro
essing times that o

upy all other ma
hines, before any `real' job arrives.4



numbered in order of their arrival, i.e. j < k ) rj � rk. For any job j, let H(j) denote the set ofjobs that have higher priority than j a

ording to WSPT, i.e.,H(j) = �k 2 J j wkpk > wjpj � [�k � j j wkpk = wjpj � :Note that H(j) in
ludes j, too. Similarly, let L(j) = J n H(j) denote the set of jobs with lowerpriority. In 
ase of equal ratios wj=pj , we break ties by giving higher priority to jobs that arriveearlier a

ording to the online sequen
e. Furthermore, let sj denote the starting time of j, i.e.,the time when j eventually starts being pro
essed. Clearly, sj � rj . At a given point t in time,ma
hine i might be busy pro
essing a job. Let bi(t) denote the remaining pro
essing time of thatjob at time t, i.e., at time t ma
hine i will be blo
ked during bi(t) units of time for new jobs. Ifma
hine i is idle at time t, set bi(t) = 0. The algorithm 
onsists of a lo
al s
heduling poli
y, theWSPT rule, that is applied by every ma
hine and an assignment pro
edure that is used whenevera new job arrives.Algorithm 1: MinIn
rease AlgorithmLo
al Sequen
ing Poli
y: Whenever a ma
hine be
omes idle, it starts pro
essing the job withhighest priority among all available jobs assigned to it. Priority here means the ratio of reportedweight over pro
essing time. In 
ase of equal ratios a job with smaller index has higher priority.Assignment:1. At time rj job j arrives and reports a weight wj (possibly wj 6= w�j ).2. For every ma
hine i 2M the in
rease in the obje
tive value (where the true weights w�jare repla
ed by the reports wj) is 
omputed. The in
rease of j on ma
hine i isin
r(j; i) = wj
j(i) + pj Xk2L(j)k!ik<jsk>rj wk = wj [rj + bi(rj) + Xk2H(j)k!ik<jsk>rj pk + pj ℄ + pj Xk2L(j)k!ik<jsk>rj wk:3. Job j is assigned to ma
hine ij 2 argmini2M in
r(j; i) with minimum index.The MinIn
rease Algorithm still makes use of 
entral 
oordination in Step 3. In the sequelwe will �rst analyze the MinIn
rease Algorithm, and then introdu
e payments that allow ade
entralized implementation of the algorithm.4 The Me
hanism Design Perspe
tiveIn order to get hands on the quality of a s
hedule, our aim is to motivate the jobs to report theirprivate pie
e of information, their indi�eren
e 
osts w�j , truthfully. Therefore we give a de�nition oftruthfulness whi
h requires some me
hanism design notation �rst. In me
hanism design, one refersto the private information of an agent as its type. Let us regard the job set J = f1; : : : ; ng as a ofagents, ea
h having a true type w�j from the spa
e of possible types W . Given a ve
tor of reportsw = (w1; : : : ; wn) of all agents (jobs), an allo
ation algorithm A : W n ! O 
omputes an out
omeA(w) from the set of possible out
omes O. Here, the set of out
omes O is the set of all possibles
hedules. A payment rule � : W n ! Rn determines payments �1(w); : : : ; �n(w) for every agent.The tuple � = (A; �) is 
alled a me
hanism. We 
on�ne ourselves to dire
t revelation me
hanisms,where the strategy of ea
h agent j is simply to report a type wj 2 W . We assume that agents5



have quasi-linear utilities, i.e., an agent j 's utility is 
omputed from its valuation vj(A(w)jw�j ) (i.e.,its valuation vj for the out
ome A(w), given its true type w�j ) and its payment �j(w) as follows:uj(�(w)jw�j ) = vj(A(w)jw�j )� �j(w).The valuation of a job j for a s
hedule that gives it 
ompletion time 
j is �w�j 
j . The 
orre-sponding utility if j has to pay �j will be abbreviated by uj and is therefore uj = �w�j 
j � �j : Wewill deal with non-negative payments �j � 0 only, i.e., jobs have to pay a non-negative amount forbeing pro
essed. With this notation, uj is always negative. Therefore, we assume that a job hasa 
onstant and suÆ
iently large utility for `being pro
essed at all'. That would add a 
onstant touj su
h that the true utility is always positive. Sin
e this does not 
hange the jobs' behavior whenmaximizing their utility, we will omit the 
onstant and 
ontinue working with uj .De�nition 2. A dire
t revelation me
hanism � is 
alled truthful or dominant strategy in
entive
ompatible if for all agents j 2 J , all �xed reports of the other agents w�j = (w1; : : : ; wj�1; wj+1; : : : ;wn) and all possible reports wj 2W , uj(�(w�j; w�j )jw�j ) � uj(�(w�j ; wj)jw�j ). That is, if reportingthe truth is a weakly dominant strategy for ea
h agent.An allo
ation algorithm that 
omputes out
omes that would be desirable for a so
ial planner is
alled so
ial 
hoi
e fun
tion. The overall goal is to design a me
hanism that implements this so
ial
hoi
e fun
tion. In the model we 
onsider, we assume a utilitarian so
ial 
hoi
e fun
tion. This isone of the 
ommon goals when maximizing the so
ial welfare [17℄.De�nition 3. A so
ial 
hoi
e fun
tion f is 
alled utilitarian if it maximizes the sum of valuationsof all agents, i.e., f(w) 2 argmaxo2OPj2J vj(ojwj):The so
ial 
hoi
e fun
tion is thus an algorithm maximizing Pj2J �w�j 
j , or equivalently mini-mizing Pj2J w�j 
j . Our goal is thus the design of a me
hanism that implements this so
ial 
hoi
efun
tion, i.e., a me
hanism that yields a s
hedule minimizing Pj2J w�j 
j . For utilitarian so
ial
hoi
e fun
tions we have the following well known theorem.Theorem 4. (Groves [7℄) If the allo
ation algorithm A 
omputes the utilitarian so
ial 
hoi
e fun
-tion for every input ve
tor w, then there is a payment s
heme � su
h that the dire
t revelationme
hanism (A; �) is truthful.In other words, an algorithm that 
omputes an optimal s
hedule for Pwj 
j for any ve
torof weights w, 
an be extended to a truthful me
hanism with appropriate payments. S
hedulingto minimize the weighted sum of 
ompletion times with release dates, however, is NP-hard, evenin the o�-line 
ase [14℄. Furthermore, no online algorithm for the single ma
hine problem 
an bebetter than 2-
ompetitive [9℄ regardless of the question whether or not P=NP, and lower boundsexist for parallel ma
hines, too [21℄. Therefore, the so
ial 
hoi
e fun
tion 
annot be 
omputed dueto la
k of both unbounded 
omputational resour
es and information. Moreover, it is known thatTheorem 4 does not generalize to the 
ase where an approximation of the so
ial 
hoi
e fun
tion isused, this was shown by Nisan and Ronen [18℄. And indeed, it is not possible to �nd a payment �that 
ompletes the MinIn
rease Algorithm to a truthful me
hanism. To illustrate the latter, weuse the following ne
essary 
ondition formulated by Lavi et al. [13℄.De�nition 5. (Weak Monotoni
ity) An allo
ation algorithm A satis�es weak monotoni
ity if forany agent j 2 J , every �xed report ve
tor of the other agents w�j and every pair of possible typesewj and wjvj(A(w�j ; ewj)j ewj)� vj(A(w�j ; ewj)jwj) � vj(A(w�j ; wj)j ewj)� vj(A(w�j ; wj)jwj):6



Lemma 6. (Lavi, Mu'alem, and Nisan [13℄) Let A be an allo
ation algorithm. If there is a payments
heme � su
h that (A; �) is a truthful me
hanism, then A satis�es weak monotoni
ity.This result is now applied to our model. Lemma7 reformulates weak monotoni
ity in terms ofour valuation fun
tions.Lemma 7. For a job j 2 J and �xed reports w�j by the other jobs, let A(w�j ; wj) denote theresulting s
hedule if j reports wj. Let 
j(A(w�j ; wj)) be the 
orresponding (ex-post ) 
ompletiontime of j in that s
hedule. Then A satis�es weak monotoni
ity in the des
ribed model if and onlyif it satis�es wj < ewj ) 
j(A(w�j ; wj)) � 
j(A(w�j ; ewj))8 j 2 J; 8w�j 2W n�1; 8wj; ewj 2W:Proof. See Appendix A.The above 
ondition is in fa
t equivalent to the notion of de
reasing work 
urves as formulatedby Ar
her and Tardos [2℄. An example in Appendix B shows that the MinIn
rease Algorithmdoes not satisfy weak monotoni
ity, and therefore does not allow a payment s
heme that extendsthe algorithm to a me
hanism that makes truth-telling an ex-post weakly dominant strategy (i.e.,a truthful me
hanism). Let us summarize this.Theorem 8. There does not exist a payment s
heme that extends the MinIn
rease algorithm toa truthful me
hanism.Proof. Use Lemma 7 and the example in Appendix B.5 Payments for Myopi
 Rational JobsWe 
annot extend theMinIn
rease algorithm with a payment s
heme that makes truth-telling anex-post dominant strategy. Therefore, we fo
us on the moment when a job arrives and is assigned toa ma
hine, and propose a payment s
heme that makes truth-telling at least a myopi
 best responsefor any arriving job. That is, at time t when a job announ
es its reported weight wj, truth-tellingis a strategy that maximizes the job's utility on the basis of the available information at time t.The payments we introdu
e are motivated by the Vi
krey Clarke Groves (VCG) me
hanism[7℄. That is, a job j pays at the moment of its pla
ement on one of the ma
hines an amount that
ompensates the de
rease in utility of the other jobs. Besides making the me
hanism truthful (in amyopi
 sense that is weaker than dominant strategy in
entive 
ompatible!), these payments give usthe opportunity to de
entralize the algorithm. If we let jobs sele
t a ma
hine themselves, myopi
rational jobs sele
t the ma
hine that the MinIn
rease Algorithm would have sele
ted, too. Wewill see in the next se
tion that this 
an be turned into a 
onstant-fa
tor approximation of theo�-line optimum, given that the jobs behave rationally. The algorithm in
luding the payments isdisplayed below as the De
entralized MinIn
rease Algorithm.The De
entralized MinIn
rease Algorithm together with the stated payments results in abalan
ed budget for the s
heduler. That is, the payments paid and re
eived by the jobs sum up tozero, sin
e every arriving job immediately makes its payment to the jobs that are displa
ed by it.Moreover, although reporting the truth does not ne
essarily result in an ex-post equilibrium, atruth-telling job is guaranteed the initial utility it a
hieves when being s
heduled at arrival. That is,whenever a job's utility is a�e
ted by an arriving job, the de
rease in utility 
aused by an in
reasing
ompletion time is immediately 
ompensated for by a payment.7



Algorithm 2: De
entralized MinIn
rease Me
hanismLo
al Sequen
ing Poli
y: Whenever a ma
hine be
omes idle, it starts pro
essing the job withhighest priority among all available jobs assigned to it. Priority here means the ratio of reportedweight over pro
essing time. In 
ase of equal ratios a job with smaller index has higher priority.Assignment:1. At time rj job j arrives and reports a type wj (possibly wj 6= w�j ).2. For every ma
hine i, job j observes the 
urrent situation and 
omputes
j(i) = rj + bi(rj) + Xk2H(j)k!ik<jsk>rj pk + pj and �j(i) = pj Xk2L(j)k!ik<jsk>rj wk:3. Job j 
hooses a ma
hine ij 2M . Its utility for being s
heduled on ma
hine i isuj(i) = �w�j 
j(i)� �i(j).4. The job is s
heduled on ij a

ording to WSPT among all 
urrently available jobs on ij whosepro
essing has not started yet. The payment �ij (j) has to be paid by j.5. The 
ompletion time for every job k 2 L(j); k ! ij ; k < j; sk > rj in
reases by pj due to j 'spresen
e. As 
ompensation, k re
eives a payment of wkpj .Theorem 9. Under the De
entralized MinIn
rease me
hanism, an arriving job maximizesits 
urrent utility uj by reporting its true weight w�j . Also ex-post, the job will be left with the sameutility uj. Furthermore, any report wj 6= w�j may lead to a suboptimal utility.Proof. We �rst regard the single ma
hine 
ase, i.e., m = 1. Suppose, at the arrival of job j jobsk1; k2; : : : ; kr with 
orresponding pro
essing times p1; p2; : : : ; pr and reported weights w1; w2; : : : ; wrare queueing to be pro
essed on the ma
hine, but none of them has started being pro
essed yet.Without loss of generality let w1=p1 � w2=p2 � � � � � wr=pr. By 
hoosing its weight appropriately,job j 
ould be s
heduled at any position in front of, between or behind the already present jobs.Therefore, it has to de
ide for every job ks, s 2 f1; : : : ; rg, whether it wants to be pla
ed in front ofks or not. Displa
ing ks would in
rease �j(1) by wspj, whereas 
j(1) is de
reased by ps. Thus, j 'sutility 
hanges by w�jps �wspj if j displa
es ks. Therefore, it is rational for j to displa
e ks if andonly if w�jps�wspj > 0; whi
h is equivalent to w�j=pj > ws=ps. As the ma
hine s
hedules a

ordingto WSPT, j is pla
ed at the position that maximizes its utility when reporting w�j . Therefore,truth-telling is a dominant strategy in the myopi
 sense. Note that j 
an a
hieve the positionbetween job ks�1 and ks by reporting any wj 2 (pj ws=ps; pj ws�1=ps�1℄. Thus, reporting w�j is notthe only myopi
 best response.For m > 1, re
all that j 
an sele
t a ma
hine itself. As reporting the truth maximizes its utilityon every single ma
hine, and as j 
an then 
hoose the ma
hine that maximizes its utility amongall ma
hines, truth-telling will maximize j 's immediate utility at arrival.For the se
ond part of the 
laim, suppose k is displa
ed by the arriving job j. The 
urrent
ompletion time of k thus in
reases by pj. Therefore, k's utility de
reases by w�kpj. If k hasreported truthfully it re
eives a payment of w�kpj in Step 5 of the algorithm, upon j's arrival.Hen
e, job k immediately re
eives a payment from job j that exa
tly 
ompensates for the delay.For the last 
laim, suppose j reports wj > w�j . Then it may happen that some job k is assignedto the same ma
hine, and wj=pj > wk=pk > w�j=pj . With report wj, job j would be s
heduled infront of k, whereas w�j would give it the pla
e behind k. The in
rease in j 's utility when reporting8



wj over its utility for reporting w�j is therefore w�jpk � wkpj < 0. An analogous argument showsthat reporting less than w�j 
an be non-optimal, too.6 Performan
e of the me
hanismIt is not a goal in itself to have a truthful me
hanism, but to use the truthfulness in order to a
hievea reasonable overall performan
e in terms of the so
ial welfare Pw�j 
j . The De
entralizedMinIn
rease Algorithm as stated above, however, does not yet yield a 
onstant approximationfa
tor; simple examples 
an be 
onstru
ted in the same 
avor as in [15℄. In fa
t, it 
an be 
onsideredfolklore that early arriving jobs with large pro
essing times are 
riti
al and have to be delayed[1, 15, 16℄. In order to a
hieve a 
onstant 
ompetitive ratio, we also adopt this idea and usemodi�ed release dates as [15, 16℄. To this end, we 
hange the release date of every job j 2 J fromrj to r0j = maxfrj ; �pjg, where � is a 
onstant that will later be 
hosen appropriately. That is, ajob is 
onsidered 
riti
al if the job's original release date rj is smaller than � times its pro
essingtime pj. A 
riti
al job will be ignored until time �pj > rj. Only then it has to sele
t a ma
hine andreport a weight wj. Note that the aforementioned properties 
on
erning the balan
ed budget andthe 
onservation of utility still apply to the algorithm with modi�ed release dates. A

ording toTheorem9, rational jobs report their weights truthfully. The theorem still applies to the 
ase withmodi�ed release dates, as the arguments in the proof of Theorem 9 do not depend on the a
tualtime when the job has to de
ide (and report a wj). Yet, it has to be noted that the modi�
ationof release dates restri
ts the level of de
entralization in the resulting me
hanism, as some 
entral
ontrol has to assure that a 
riti
al job 
annot advan
e to a ma
hine between its true and itsmodi�ed release date. We obtain the following theorem.Theorem 10. Suppose every job is rational in reporting a weight wj and sele
ting a ma
hine.Then the De
entralized MinIn
rease algorithm, together with the modi�ed release dates r0j =maxfrj ; �pjg for 
riti
al jobs, is %-
ompetitive, with % = 3:281.Proof. First, a

ording to Theorem 9, we 
an assume that jobs report their weights w�j truthfully,and moreover, sele
t a ma
hine that minimizes their utility. That is, they sele
t a ma
hine i thatminimizes uj(i) = w�j 
j(i) + �i(j) = w�j �r0j + bi(rj) + Xk2H(j)k!ik<jsk>r0j pk + pj�+ pj Xk2L(j)k!ik<jsk>r0j w�k:This, however, exa
tly equals the immediate in
rease of the obje
tive value Pw�j 
j that is due tothe addition of job j to the s
hedule. We now 
laim that we 
an express the obje
tive value Z ofthe resulting s
hedule as Z =Xj2J uj(ij) ;where ij is the ma
hine sele
ted by job j. Here, it is important to note that uj(ij) does not expressthe total (ex-post) 
ontribution of job j to Pw�j 
j , but only the in
rease upon arrival of j onma
hine ij . However, further 
ontributions of job j toPw�j 
j only appear when job j is displa
edby some later arriving job with higher priority, say k. This 
ontribution by job j to Pw�j 
j ,however, will be a

ounted for when adding uk(ik).9



Next, sin
e we assume that any job maximizes its utility upon arrival, or equivalently minimizesuj(i) when sele
ting a ma
hine i, we 
an apply an averaging argument over the number of ma
hines,like in [16℄, to obtain: Z �Xi2J 1m mXi=1 uj(i) :The remainder of the proof utilizes the de�nitions of uj(i) and parti
ulary the fa
t that, uponarrival of job j on any of the ma
hines i (at time r0j), ma
hine i is blo
ked for time bi(r0j), whi
h isupper bounded by r0j=�. This upper bound is ma
hine-independent, and follows from the de�nitionof r0j , sin
e any job k in pro
ess at time r0j ful�lls �pk � r0k � r0j. Furthermore, the proof utilizes alower bound on any (o�-line) optimum s
hedule from Eastman et al. [5, Thm. 1℄. The details aremoved to Appendix C, due to spa
e limitations. The resulting performan
e bound 3.281 is identi
alto the one of [15℄, letting � equal (p17m2 � 2m+ 1�m+ 1)=(4m).7 Dis
ussion and ExtensionsIn the proposed model for de
entralized online s
heduling, our assumption was that any job ex-perien
es 
osts w�j for waiting one extra unit of time, known only to the job itself. Moreover, wedemand a 
ertain level of de
entralization by letting the arriving jobs 
hoose their ma
hines them-selves. The so
ial welfare is maximal when the total weighted 
ompletion timePwj 
j is minimal.There are three drawba
ks of the proposed me
hanism that we brie
y dis
uss next.The jobs truthfully report their weights w�j under the assumption of myopi
 rational behavior.A stronger result would be that truth-telling is an ex-post dominant strategy. This 
an indeed bea
hieved when giving up the requirement that jobs 
hoose the ma
hines themselves. For example,when jobs are distributed over ma
hines uniformly at random, utilizing a 
hara
terization of Gui etal. [8℄, we 
an determine a payment s
heme in polynomial time su
h that the resulting me
hanismis dominant strategy in
entive 
ompatible, independent of the realization of the random 
hoi
es.The performan
e bound remains 3.281 (in expe
tation). However, when giving up on the de
entral-ization, one 
an as well set up a dominant strategy in
entive 
ompatible me
hanism that is basedupon a re
ently proposed algorithm by Correa and Wagner [4℄, yielding a (deterministi
) 
ompet-itive ratio of 2.62. But noti
e that, in both 
ases, the resulting payments 
an only be determinedex-post, and 
annot be implemented online, like with the me
hanism we propose.As a tribute to the desired 
onstant 
ompetitive ratio, we had to take spe
ial 
are of 
riti
al jobs(i.e., jobs with �pj > rj), delaying their moment of de
ision from rj to r0j = � pj. Clearly, as statedalready above, this restri
ts the level of de
entralization, as some 
entral 
ontrol has to implementthis delay of 
riti
al jobs. However, given the restri
tion that jobs 
hoose ma
hines themselves, weare not aware of a better way to handle 
riti
al jobs.We argued that the so
ial welfare is maximized whenever the total weighted 
ompletion timeof jobs Pwj 
j is minimal. Given that we have to 
on�ne ourselves with approximations, it wouldbe more desirable, though, to minimize the total weighted 
ow time,Pwj(
j � rj). However, notethat for a single ma
hine and unit weights, this problem does not even admit a 
onstant-fa
torapproximation algorithm in the o�-line setting [10℄, unless P=NP. Nevertheless, it would be aninteresting dire
tion for future resear
h to 
onsider also other metri
s than Pwj 
j , e.g. stret
hmetri
s as proposed in [3℄.A
knowledgements. Thanks to Dries Vermeulen for some helpful dis
ussions.10
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esA Proof of Lemma 7Lemma 7. Let for a job j 2 J and �xed reports w�j for the other jobs A(w�j ; wj) denote the resultings
hedule if j reports wj as 
omputed by allo
ation algorithm A. Let 
j(A(w�j ; wj)) be the 
orresponding(ex-post ) 
ompletion time of j in that s
hedule. Then A satis�es weak monotoni
ity in our des
ribed modelif and only if it satis�es wj < ewj ) 
j(A(w�j ; wj)) � 
j(A(w�j ; ewj))8 j 2 J ; 8w�j 2 Wn�1 ; 8wj ; ewj 2 W:Proof. Let wj < ewj . Using the spe
ial stru
ture of the valuation fun
tion in our model the weak monotoni
ity
ondition be
omes:vj(A(w�j ; ewj)j ewj)� vj(A(w�j ; ewj)jwj)� vj(A(w�j ; wj)j ewj) + vj(A(w�j ; wj)jwj) � 0, � ewj
j(A(w�j ; ewj)) + wj
j(A(w�j ; ewj)) + ewj
j(A(w�j ; wj))� wj
j(A(w�j ; wj)) � 0, ( ewj � wj)[
j(A(w�j ; wj))� 
j(A(w�j ; ewj))℄ � 0, 
j(A(w�j ; wj))� 
j(A(w�j ; ewj)) � 0 ;where the last equivalen
e follows from wj < ewj :B The MinIn
rease algorithm is not weakly monotoneExample 11. Let [w=p℄ denote a job with (reported ) weight w and pro
essing time p. Suppose that we haveto s
hedule the following four jobs on two ma
hines: [6=3℄; [5=4℄; j = [w= 17 ℄; [20=4℄, where w is a parameter.Let all jobs have release date zero, but let us assume that they nevertheless arrive in the given order. (We
ould alternatively enfor
e this order by adding small but positive 
onstants to some of the release dateswithout 
hanging the e�e
t demonstrated below. )Let us 
onsider the MinIn
rease algorithm. The �rst job [6/3℄ in
reases the obje
tive value on bothma
hines by the same amount and is therefore s
heduled on the �rst ma
hine. The se
ond job [5/4℄ is thenassigned to the se
ond ma
hine. We 
onsider two values for the weight of j, namely w1 = 114 and w2 = 12 . Inthe �rst 
ase the weight over pro
essing time ratio is 12 and therefore smaller than the respe
tive ratios of thetwo jobs already assigned to ma
hines. Thus, j would be s
heduled last on ea
h of the ma
hines a

ordingto the WSPT rule. It would 
ause the following in
reases:in
r(j; 1) = 17w1 + 3w112



in
r(j; 2) = 17w1 + 4w1:Therefore, j is assigned to the end of ma
hine 1, whi
h results in the preliminary s
hedule depi
ted on theleft of Figure 1.The se
ond 
ase for w2 = 12 yields a ratio of 72 , whi
h would pla
e j �rst on both ma
hines. Therespe
tive in
reases are: in
r(j; 1) = 17w2 + 6 � 17in
r(j; 2) = 17w2 + 5 � 17 :Job j would be s
heduled on ma
hine 2 yielding the s
hedule depi
ted on the right of Figure 1. The lastPSfrag repla
ements 11 22 6/36/3 5/45/4 jjFigure 1: S
hedules for Example 11job [20/4℄ has a ratio larger than all the ratios of the present jobs. Therefore it would be s
heduled �rst onboth ma
hines. In both 
ases the total weight of jobs on the �rst ma
hine is larger than the total weight ofjobs on the se
ond ma
hine. Therefore the in
rease in the obje
tive value 
aused by the last job is in both
ases smaller on the se
ond ma
hine. Thus the job is s
heduled on the se
ond ma
hine, whi
h in
reases j 's
ompletion time only in the se
ond 
ase. Thus, j is 
ompleted at time 3+ 17 when reporting 114 and at time4 + 17 when reporting 12 . Therefore, the MinIn
rease algorithm does not satisfy weak monotoni
ity.C Proof of Theorem 10Theorem 10. Suppose every job is rational in reporting a weight wj and sele
ting a ma
hine. Then theDe
entralized MinIn
rease algorithm, together with the modi�ed release dates r0j = maxfrj ; �pjg for
riti
al jobs, is %-
ompetitive, with % = 3:281.Proof. Re
all that Z denotes the obje
tive value of the �nal s
hedule produ
ed by the De
entralizedMinIn
rease algorithm. Let ZOPT denote the value of the optimum o�-line solution. We have alreadyargued that Z �Xi2J 1m mXi=1 uj(i) :Next, re
all that upon arrival of job j on any of the ma
hines i (at time r0j), ma
hine i is blo
ked for timebi(r0j) � r0j=�. Therefore we get, for any j,1m mXi=1 uj(i) = w�j r0j + w�j mXi=1 bi(r0j)m + w�j mXi=1 Xk2H(j)k!ik<jsk>r0j pkm + w�j pj + pj mXi=1 Xk2L(j)k!ik<jsk>r0j w�km= w�j r0j + w�j mXi=1 bi(r0j)m + w�j Xk2H(j)k<jsk>r0j pkm + w�j pj + pj Xk2L(j)k<jsk>r0j w�km� w�j r0j + w�j mXi=1 bi(r0j)m + w�j Xk2H(j)k<j pkm + w�j pj + pj Xk2L(j)k<j w�km� w�j r0j + w�j r0j� + w�j Xk2H(j)k<j pkm + w�j pj + pj Xk2L(j)k<j w�km :13



The last term 
an be rewritten as follows:Xj2J pj Xk2L(j)k<j w�km = X(j;k):j2H(k)k<j pj w�km = X(j;k):k2H(j)j<k pkw�jm =Xj2J w�j Xk2H(j)k>j pkm :Thus, Z � Xj2J w�j (1 + 1� )r0j +Xj2J w�j Xk2H(j)k<j pkm +Xj2J w�j pj +Xj2J w�j Xk2H(j)k>j pkm= Xj2J w�j (1 + 1� )r0j +Xj2J w�j Xk2H(j) pkm + m� 1m Xj2J w�j pj :Now, we apply a lower bound on the optimal o�-line s
hedule from [5, Thm. 1℄, namelyZOPT �Xj2J w�j Xk2H(j) pkm + m� 12m Xj2J w�j pj ;yielding: Z � ZOPT +Xj2J w�j (1 + 1� )r0j + m� 12m Xj2J w�j pj� ZOPT +Xj2J w�j (1 + 1� )(rj + �pj) + m� 12m Xj2J w�j pj= ZOPT +Xj2J w�j �(1 + 1� )rj + (1 + �+ m� 12m )pj� ;where in the se
ond inequality rj + �pj is used as an upper bound on r0j . Applying the trivial lower boundPj2J w�j (rj + pj) � ZOPT , we get:Z � ZOPT +max�1 + 1�; 1 + �+ m� 12m �ZOPT= 2ZOPT +max� 1�; �+ m� 12m �ZOPT :Therefore, we get the performan
e bound% = 2 +max� 1�; �+ m� 12m � :This 
an now be optimized for �, whi
h was already done in [15℄. There it was shown that % < 3:281 for� = p17m2 � 2m+ 1�m+ 1)=(4m).
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