View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Papers in Economics

Mechanisms for Decentralized Online Scheduling’

Birgit Heydenreich* Rudolf Miiller* Marc Uetz*

July 6, 2005

Abstract

The paper introduces a model for online parallel machine scheduling, where any single ma-
chine is run on the basis of a locally optimal sequencing policy. Jobs choose the machine on
which they want to be processed themselves, and in addition, any job j owns a piece of pri-
vate information, namely its indifference cost w; for waiting one additional unit of time before
being processed. We study this setting from the perspective of algorithmic mechanism design,
and assuming that each job prefers to be completed as early as possible, the utilitarian social
choice function minimizes the total weighted completion times) w; ¢;. We prove that in this
setting there exists an online mechanism, running in polynomial time, where rational jobs select
their machine in such a way that the resulting schedule is 3.281-competitive with respect to
the off-line optimal solution that maximizes social welfare. The mechanism deploys an online
payment scheme that induces rational jobs to truthfully report their indifference costs, in the
sense that it is a myopic best response. Moreover, the payment scheme results in a balanced
budget, that is, payments are only made between jobs. We also discuss extensions to mech-
anisms where truth-telling is even an ex-post weakly dominant strategy, while preserving the
competitive ratio.

1 Introduction

We study the online version of the classical parallel machine scheduling problem to minimize the
total weighted completion time P |r;| > w;jc; in the notation of Graham et al. [6] from a new
perspective: We assume that the system needs to be organized without (too much of) central
coordination. More precisely, we ask for the performance of the system if each of the parallel
machines is run on the basis of a reasonable (yet suboptimal) sequencing policy locally, while the
online arriving jobs have to decide for the machines themselves. Each arriving job would like to be
scheduled as early as possible, and it comes with a piece of information that is not publicly known,
namely its indifference cost w; for waiting one unit of time. The processing times p; of jobs are
assumed to be publicly known. The indifference costs w;, together with the processing times p; of
the jobs, however, define the input for the local scheduling policies of the machines. An arriving
job may thus have an incentive to lie about its true indifference cost, in order to strategically
manipulate the schedule. The goal is to nevertheless set up a system that yields a reasonable
overall performance. In this setting, it is typically desirable to implement a social choice function
that is utilitarian, i.e., it maximizes the sum of the valuations of all the jobs [17]. Hence, since any
job prefers to be completed as early as possible, with indifference cost w; for waiting, a mechanism

*Maastricht University, Quantitative Economics, P.O. Box 616, 6200 MD Maastricht, The Netherlands. E-mail:
{b.heydenreich,r.muller,m.uetz}@ke.unimaas.nl

fThis research was supported by NWO grant 2004/03545/MaGW ‘Local Decisions in Decentralised Planning
Environments’.

https://core.ac.uk/display/6941913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that minimizes the total weighted completion time) wj; ¢; implements the utilitarian social choice
function, or in other words, it maximizes the total social welfare.

From a pure algorithmic perspective, this problem poses two challenges, as stated also by
Koutsoupias and Papadimitriou [11]. The first is the lack of information caused by the fact that
jobs become known to the system only at the moment of their arrival (online algorithms). The
second is the lack of unbounded computational resources, which allows only for approximate solutions
to the underlying NP-hard optimization problem (approximation algorithms). A third obstruction,
in fact the starting point for what is known as mechanism design, is the asymmetry of information.:
information that is required to run the system is private to the participants in the system. Selfish
agents trying to maximize their own benefit can therefore do so by reporting strategically about
their private information, thus manipulating the resulting outcome.

Contribution. The paper touches on three research areas, namely the design of approximation
algorithms for NP-hard optimization problems, competitive analysis for online optimization, and
mechanism design for resolving the asymmetry of information. Motivated by the observation that
many real-life systems are not centrally but rather hierarchical organized, we assume that any
of the parallel machines adopts a ‘reasonable’ scheduling policy locally without further reference
to what is happening on other machines. More precisely, we assume that any machine locally
utilizes the well known WSPT rule, since this is the locally optimal scheduling policy for the single
machine scheduling problem 1| | > w;¢; [20]. That is, jobs are scheduled in the order of relative
shortest processing time p;/w; first. Intuitively, the computational complexity of parallel machine
scheduling is thus bypassed, of course at a possible loss in overall performance. Moreover, we assume
that the WSPT rule is used in a myopic, yet practically reasonable sense, namely without further
consideration of the online situation. So at any time, a machine schedules among all jobs assigned
to it the one with largest ratio w;/p; first. Clearly, some procedure is needed to coordinate the
distribution of jobs over machines. Moreover, given that the knowledge of the private information of
the jobs, their indifference costs wj, is vital to achieve a reasonable overall performance, and given
that any job selfishly seeks to minimize its own completion time, we need to set up a mechanism that
induces them to choose the ‘right’” machine, and to report their private information w; truthfully
to the respective machine.

We prove in this paper that such a mechanism exists. More precisely, we present a polynomial-
time mechanism for the previously described model for decentralized online scheduling. As usual in
mechanism design, our mechanism defines payments that have to be made by the jobs, depending
on the machine they choose, and depending on the report of their private information w;. These
payments are used for two different purposes. First, as a means of coordination, inducing the jobs
to choose the ‘right’ machine, and second, as a means to stimulate truthful reports of the w;’s.
Building upon an analysis of Megow et al. [16], we show that the so-defined decentralized mechanism
is 3.281-competitive, that is, under the assumption of rational behavior of the jobs, the obtained
solution is never more than 3.281 times the optimal off-line solution that uses central coordination.
Note that the performance bound matches the one obtained by Megow and Schulz [15] for the
online parallel machine problem to minimize) wj¢; (using central coordination). Moreover, the
payments result in a balanced budget, that is, no payments are required from or to a central
coordination authority. In the mechanism, a truthful report of the indifference cost w; is a myopic
best response for any job. We also give an example to show that no payments exist that would
make truth-telling an ex-post weakly dominant strategy. In other words, the algorithm cannot
be turned into a dominant strategy incentive compatible mechanism. However, we show that
dominant strategy incentive compatible mechanisms can be obtained, while maintaining the same
performance bound, at the cost of introducing central coordination for the distribution of the jobs

2

over machines.

We see the contribution of the paper twofold. First, we introduce a natural paradigm for de-
centralization of a parallel machine system: Each machine implements a locally optimal sequencing
policy, while jobs have to choose the machines themselves. Moreover, the processing requirements
p; of the jobs are assumed to be publicly known, since they are publicly observable once the jobs
are scheduled. Private information is only the indifference cost w; of any job, measuring the private
cost for being processed one unit of time later. Second, we show that in this decentralized model,
both the lack of central coordination and the asymmetry of information can be bypassed by the
definition of very simple and natural payments that even result in a balanced budget, at least as-
suming a certain notion of rational behavior. Most importantly, of course, the resulting mechanism
for the online parallel machine scheduling problem provides a competitive ratio of 3.281.

Related Work. Mechanism design in combination with the design of approximation algo-
rithms for scheduling problems has been studied, e.g., by Nisan and Ronen [18] and Archer and
Tardos [2]. In both papers, not the jobs but the machines are the selfishly behaving parts of the
system, and the private information is the processing speed of the machine. Archer and Tardos [2]
consider as application of their main theorem a problem with related parallel machines, that is,
each machine ¢ has a processing speed s;, and a job j requires processing for p;/s; time if pro-
cessed on machine . They define a necessary and sufficient condition for the existence of truthful
(dominant strategy incentive compatible) mechanisms, namely the monotonicity of the total work
assigned to a machine in dependence on its reported speed s;. On the basis of this characteri-
zation, they design a randomized mechanism that yields a deterministic 3-approximation for the
minimum makespan problem, Q | | Cryax, while truthfully reporting s; is a dominant strategy that
maximizes the expected utility of each machine. A deterministic monotone algorithm with the
same performance bound was recently proposed by Kovacs [12]. Nisan and Ronen [18] consider
the minimum makespan problem on unrelated machines, R | | Cphax. There, the processing time of
any job j on any machine i is p;;, with no relation to speeds of the machines. In their paper, the
private information of any machine 7 is multi-dimensional, namely the vector of processing times
(pi1, - - - Pin)- They present a truthful (dominant strategy incentive compatible) m-approximation,
where m denotes the number of machines. Furthermore, they prove that no truthful mechanism
can yield a g-approximation for the minimum makespan problem with ¢ < 2, and present a ran-
domized mechanism that beats this deterministic lower bound. Decentralized scheduling is also
subject of a paper by Wellman et al. [22]. In contrast to the model we propose, however, the term
‘decentralized’ in [22] describes the fact that agents choose their bidding strategy on the basis of
local information, which differs from our notion of decentralization.

In the sequel of the paper, we formalize the model and introduce the required notation in
Section2. In Sectiond we first give a simple example to show that decentralization may be arbitrarily
bad in general, and propose an algorithm for online scheduling on parallel machines using central
coordination, inspired by [16]. In Section 4, we analyze this algorithm from a mechanism design
perspective, and in Section 5 we introduce a simple payment scheme that yields a decentralized
implementation of the same algorithm, in such a way that truthful reporting the indifference costs
w; is a myopic best response for any job. We analyze the performance of the resulting mechanism
in Section 6 and conclude with further extensions and remarks in Section 7.

2 Model and Notation

We consider the online scheduling problem with non-trivial release dates on parallel machines with
the objective to minimize the weighted sum of completion times, P|r;| > w;c;. We are given a

3

set of jobs J = {1,...,n}, with processing requirements p; > 0, j € J, and each job needs to be
processed on any of the parallel, identical machines from the set M = {1,...,m}. We consider
the time-stamp model of online optimization [19], that is, the jobs arrive over time, every job j
at its release date r; > 0. Only at this time, the system learns about the existence of a job, and
the processing time p; is revealed. We assume that any job j prefers a lower completion time to a
higher one, where the completion time ¢; is the moment in time when job j's processing is finished.
Each job owns a piece of private information, namely its indifference cost, or weight, which we
denote by w;f. The weight represents the privately known cost to a job for one additional unit
of time spent waiting. We use w} for the indifference cost to differentiate it from the reported
weight, w;, which may be different. We define the valuation of job j with indifference cost wj for a
schedule that gives it completion time c; as fu);f(:j. While jobs behave selfishly trying to maximize
their valuations, the social welfare is maximized whenever the weighted sum of completion times
> jeswjcj is minimum.

3 The MinlIncrease Algorithm

Recall our assumption that each of the m machines utilizes the WSPT rule locally, and suppose
that each job tries to minimize its completion time with respect to the already present jobs, as it
has no information about future job arrivals. Then the following can happen.

Example 1. Let there be m machines and m jobs with processing times 1,1 — €, 1—2¢,...,1 —
(m — 1)e for constant € with 0 < € < 1/m, and assume that each job has unit weights. Let all
jobs arrive at time zero, but in the given order. (One could enforce this order by slightly changing
the release dates and adding dummy jobs, which would not influence the demonstrated effect, but
complicate notation.)

Then an optimal schedule assigns exactly one job to every machine, resulting in) w; c; <m. If
each job can select a machine itself, an arriving job only finds jobs already scheduled on machines
with a larger processing time. By an inductive argument, no incentives exist to report a false
weight, since any arriving job will be the shortest, and therefore any of the m machines would
minimize the job’s completion time. It is therefore possible that all jobs choose the same machine'.
The weighted sum of completion times is then larger than (1 —(m—1)e)(m(m+1)/2) and therefore
the approximation ratio is bounded from below by

1—=(m—-1e)(m(m+1)/2) m+1 (m+1)(m-—1)

m T 2 &

which becomes arbitrarily large for large m.

Hence, a decentralized selection of machines by the jobs themselves can cause arbitrarily large
deviations from the optimum. On the other hand, using central coordination one can enforce the
solution to be O(1)-competitive, that is, not worse than a constant times the off-line optimum. We
next propose an algorithm that is inspired by the MININCREASE algorithm in [16], which yields a
competitive ratio of 3.281. Since we have to rely on reported weights w;, we consider)
instead of >, ; w}
Let ¢;(i) denote the completion time of job j when assigned to machine i. Let j — i denote the

fact that job j is scheduled on machine :. Without loss of generality, we assume that the jobs are

jes Wic
¢;j. In order to formulate the algorithm, we first introduce the necessary notation.

! Again, one could make the first machine the only one maximizing the utility of an arriving job by adding dummy
jobs with small processing times that occupy all other machines,; before any ‘real’ job arrives.

4

numbered in order of their arrival, i.e. j <k = r; <. For any job j, let H(j) denote the set of
jobs that have higher priority than j according to WSPT, i.e.,

H(j) = {ke]| =% wf}u{ksﬂ“i:ﬂ}.
Pk pj pj

Note that H(j) includes j, too. Similarly, let L(j) = J \ H(j) denote the set of jobs with lower
priority. In case of equal ratios w;/p;, we break ties by giving higher priority to jobs that arrive
earlier according to the online sequence. Furthermore, let s; denote the starting time of j, i.e.,
the time when j eventually starts being processed. Clearly, s; > r;. At a given point ¢ in time,
machine ¢ might be busy processing a job. Let b;(t) denote the remaining processing time of that
job at time ¢, i.e., at time ¢ machine i will be blocked during b;(¢) units of time for new jobs. If
machine i is idle at time ¢, set b;(¢) = 0. The algorithm consists of a local scheduling policy, the
WSPT rule, that is applied by every machine and an assignment procedure that is used whenever
a new job arrives.

Algorithm 1: MININCREASE Algorithm

Local Sequencing Policy: Whenever a machine becomes idle, it starts processing the job with
highest priority among all available jobs assigned to it. Priority here means the ratio of reported
weight over processing time. In case of equal ratios a job with smaller index has higher priority.

Assignment:
1. At time r; job j arrives and reports a weight w; (possibly w; # w3).

2. For every machine i € M the increase in the objective value (where the true weights wj
are replaced by the reports w;) is computed. The increase of j on machine i is

incr(j,1) = wjc;(i) + p; Z wy = w;[r; + bi(r;) Z i + pj| + pj Z Wy -

kEL()) kEH(j) kEL(H)
k—1 k—1 k—1
k<j k<j k<j
Sk >Tj Sp>T Sk >T

3. Job j is assigned to machine i; € argmin;¢ ,, incr(j,i) with minimum index.

The MININCREASE Algorithm still makes use of central coordination in Step 3. In the sequel
we will first analyze the MININCREASE Algorithm, and then introduce payments that allow a
decentralized implementation of the algorithm.

4 The Mechanism Design Perspective

In order to get hands on the quality of a schedule, our aim is to motivate the jobs to report their
private piece of information, their indifference costs w7, truthtully. Therefore we give a definition of
truthfulness which requires some mechanism design notatlon first. In mechanism design, one refers
to the private information of an agent as its type. Let us regard the job set J = {1,...,n} as a of
agents, each having a true type wj from the space of possible types W. Given a vector of reports
w = (wy,...,wy) of all agents (jobs), an allocation algorithm A: W™ — O computes an outcome
A(w) from the set of possible outcomes O. Here, the set of outcomes O is the set of all possible
schedules. A payment rule m : W™ — R" determines payments 71 (w),...,m,(w) for every agent.
The tuple u = (A,) is called a mechanism. We confine ourselves to direct revelation mechanisms,
where the strategy of each agent j is simply to report a type w; € W. We assume that agents
5

have quasi-linear utilities, i.e., an agent j’s utility is computed from its valuation v;(A(w)|w}) (i.e.,
its valuation v; for the outcome A(w), given its true type wj) and its payment m;(w) as follows:
wj(a(w)|w?) = v (A(w)]w) — m;(w).

The valuation of a job j for a schedule that gives it completion time c; is fu);f(:j. The corre-
sponding utility if j has to pay 7; will be abbreviated by u; and is therefore u; = —wj¢; —m;. We
will deal with non-negative payments m; > 0 only, i.e., jobs have to pay a non-negative amount for
being processed. With this notation, u; is always negative. Therefore, we assume that a job has
a constant and sufficiently large utility for ‘being processed at all’. That would add a constant to
u; such that the true utility is always positive. Since this does not change the jobs’ behavior when
maximizing their utility, we will omit the constant and continue working with u;.

Definition 2. A direct revelation mechanism u is called truthful or dominant strategy incentive
compatible if for all agents j € J, all fized reports of the other agents w_; = (w1, ..., wj—1,Wj41,...,
wy,) and all possible reports wj € W, uj(u(w—j, wi)|w;) > uj(p(w—j, w;)|w;). That is, if reporting
the truth is a weakly dominant strategy for each agent.

An allocation algorithm that computes outcomes that would be desirable for a social planner is
called social choice function. The overall goal is to design a mechanism that implements this social
choice function. In the model we consider, we assume a wutilitarian social choice function. This is
one of the common goals when maximizing the social welfare [17].

Definition 3. A social choice function f is called utilitarian if it mazimizes the sum of valuations
of all agents, i.e., f(w) € argmax,cp Y ;e s vj(ofw;).

The social choice function is thus an algorithm maximizing ZjeJ fu);f(:j, or equivalently mini-
mizing ZjeJ wjcj. Our goal is thus the design of a mechanism that implements this social choice
function, i.e., a mechanism that yields a schedule minimizing Zje]w;cj' For utilitarian social

choice functions we have the following well known theorem.

Theorem 4. (Groves [7]) If the allocation algorithm A computes the utilitarian social choice func-
tion for every input vector w, then there is a payment scheme w such that the direct revelation
mechanism (A,) is truthful.

In other words, an algorithm that computes an optimal schedule for) w;c; for any vector
of weights w, can be extended to a truthful mechanism with appropriate payments. Scheduling
to minimize the weighted sum of completion times with release dates, however, is NP-hard, even
in the off-line case [14]. Furthermore, no online algorithm for the single machine problem can be
better than 2-competitive [9] regardless of the question whether or not P=NP, and lower bounds
exist for parallel machines, too [21]. Therefore, the social choice function cannot be computed due
to lack of both unbounded computational resources and information. Moreover, it is known that
Theorem 4 does not generalize to the case where an approximation of the social choice function is
used, this was shown by Nisan and Ronen [18]. And indeed, it is not possible to find a payment =
that completes the MININCREASE Algorithm to a truthful mechanism. To illustrate the latter, we
use the following necessary condition formulated by Lavi et al. [13].

Definition 5. (Weak Monotonicity) An allocation algorithm A satisfies weak monotonicity if for
any agent j € J, every fized report vector of the other agents w_; and every pair of possible types
w; and wj

vi(A(w_j, w;)|w;) — vj(A(w_j, wj)|w;) > vj(Alw_j,wj)|w;) — vj(Alw_j, w;)|w;).

6

Lemma 6. (Lavi, Mu’alem, and Nisan [13]) Let A be an allocation algorithm. If there is a payment
scheme m such that (A,) is a truthful mechanism, then A satisfies weak monotonicity.

This result is now applied to our model. Lemma 7 reformulates weak monotonicity in terms of
our valuation functions.

Lemma 7. For a job j € J and fized reports w_; by the other jobs, let A(w_j,w;) denote the
resulting schedule if j reports wj. Let ¢j(A(w_j,w;)) be the corresponding (ez-post) completion
time of j in that schedule. Then A satisfies weak monotonicity in the described model if and only
if it satisfies

wj < wj = ¢j(A(w_j,w;)) > c;j(Alw_j,w;))

Vied, Yw_;eW" ! Vuwjw; €W
Proof. See Appendix A. O

The above condition is in fact equivalent to the notion of decreasing work curves as formulated
by Archer and Tardos [2]. An example in Appendix B shows that the MININCREASE Algorithm
does not satisfy weak monotonicity, and therefore does not allow a payment scheme that extends
the algorithm to a mechanism that makes truth-telling an ex-post weakly dominant strategy (i.e.,
a truthful mechanism). Let us summarize this.

Theorem 8. There does not exist a payment scheme that extends the MININCREASE algorithm to
a truthful mechanism.

Proof. Use Lemma 7 and the example in Appendix B. O

5 Payments for Myopic Rational Jobs

We cannot extend the MININCREASE algorithm with a payment scheme that makes truth-telling an
ex-post dominant strategy. Therefore, we focus on the moment when a job arrives and is assigned to
a machine, and propose a payment scheme that makes truth-telling at least a myopic best response
for any arriving job. That is, at time ¢ when a job announces its reported weight w;, truth-telling
is a strategy that maximizes the job’s utility on the basis of the available information at time .

The payments we introduce are motivated by the Vickrey Clarke Groves (VCG) mechanism
[7]. That is, a job j pays at the moment of its placement on one of the machines an amount that
compensates the decrease in utility of the other jobs. Besides making the mechanism truthful (in a
myopic sense that is weaker than dominant strategy incentive compatible!), these payments give us
the opportunity to decentralize the algorithm. If we let jobs select a machine themselves, myopic
rational jobs select the machine that the MININCREASE Algorithm would have selected, too. We
will see in the next section that this can be turned into a constant-factor approximation of the
off-line optimum, given that the jobs behave rationally. The algorithm including the payments is
displayed below as the DECENTRALIZED MININCREASE Algorithm.

The DECENTRALIZED MININCREASE Algorithm together with the stated payments results in a
balanced budget for the scheduler. That is, the payments paid and received by the jobs sum up to
zero, since every arriving job immediately makes its payment to the jobs that are displaced by it.

Moreover, although reporting the truth does not necessarily result in an ex-post equilibrium, a
truth-telling job is guaranteed the initial utility it achieves when being scheduled at arrival. That is,
whenever a job’s utility is affected by an arriving job, the decrease in utility caused by an increasing
completion time is immediately compensated for by a payment.

7

Algorithm 2: DECENTRALIZED MININCREASE Mechanism

Local Sequencing Policy: Whenever a machine becomes idle, it starts processing the job with
highest priority among all available jobs assigned to it. Priority here means the ratio of reported
weight over processing time. In case of equal ratios a job with smaller index has higher priority.

Assignment:
1. At time r; job j arrives and reports a type w; (possibly w; # w3).

2. For every machine i, job j observes the current situation and computes

(i) =rj+bi(r;)+ > pr+p; and (i) =p; Y w.

keH(j) keL(j)
b2 b2
<J <J

Sk >T;j Sk >Tj

3. Job j chooses a machine i; € M. Its utility for being scheduled on machine i is
u;(i) = —wjc;(i) —mi(4)-

4. The job is scheduled on i; according to WSPT among all currently available jobs on i; whose
processing has not started yet. The payment 7;, (j) has to be paid by j.

5. The completion time for every job k € L(j), k — i, k < j, sy > r; increases by p; due to j’s
presence. As compensation, k receives a payment of wyp;.

Theorem 9. Under the DECENTRALIZED MININCREASE mechanism, an arriving job mazimizes
its current utility u; by reporting its true weight wy. Also ex-post, the job will be left with the same
utility uj. Furthermore, any report w; # w;-‘ may lead to a suboptimal utility.

Proof. We first regard the single machine case, i.e., m = 1. Suppose, at the arrival of job j jobs
ki,ko, ..., k, with corresponding processing times p1, po, . .., p, and reported weights w1, wo, . .., w,
are queueing to be processed on the machine, but none of them has started being processed yet.
Without loss of generality let wy/p1 > wa/pa > --- > w, /p,. By choosing its weight appropriately,
job j could be scheduled at any position in front of, between or behind the already present jobs.
Therefore, it has to decide for every job ks, s € {1,...,r}, whether it wants to be placed in front of
ks or not. Displacing ks would increase mj(1) by wyp;, whereas c;(1) is decreased by p,. Thus, j's
utility changes by w;ps —wspj if j displaces kg. Therefore, it is rational for j to displace &, if and
only if wips —wyp; > 0, which is equivalent to w}/p; > wy/ps. As the machine schedules according
to WSPT, j is placed at the position that maximizes its utility when reporting w;. Therefore,
truth-telling is a dominant strategy in the myopic sense. Note that 7 can achieve the position
between job ks_1 and kg by reporting any w; € (pj ws/ps,pj ws—1/ps—1]. Thus, reporting w;-‘ is not
the only myopic best response.

For m > 1, recall that j can select a machine itself. As reporting the truth maximizes its utility
on every single machine, and as j can then choose the machine that maximizes its utility among
all machines, truth-telling will maximize j’s immediate utility at arrival.

For the second part of the claim, suppose k is displaced by the arriving job j. The current
completion time of k thus increases by p;. Therefore, k’s utility decreases by wip;. If k has
reported truthfully it receives a payment of wpp; in Step 5 of the algorithm, upon j’s arrival.
Hence, job k immediately receives a payment from job j that exactly compensates for the delay.

For the last claim, suppose j reports w; > w}. Then it may happen that some job & is assigned
to the same machine, and w;/p; > wy/py > w}/p;. With report w;, job j would be scheduled in
front of k, whereas w; would give it the place behind k. The increase in j’s utility when reporting

8

wj over its utility for reporting wj is therefore wipy — wyp; < 0. An analogous argument shows

that reporting less than w

; can be non-optimal, too.]

6 Performance of the mechanism

It is not a goal in itself to have a truthful mechanism, but to use the truthfulness in order to achieve
a reasonable overall performance in terms of the social welfare Zw;‘ ¢j. The DECENTRALIZED
MININCREASE Algorithm as stated above, however, does not yet yield a constant approximation
factor; simple examples can be constructed in the same flavor as in [15]. In fact, it can be considered
folklore that early arriving jobs with large processing times are critical and have to be delayed
[1, 15, 16]. In order to achieve a constant competitive ratio, we also adopt this idea and use
modified release dates as [15, 16]. To this end, we change the release date of every job j € J from
rj to r; = max{r;j,ap;}, where « is a constant that will later be chosen appropriately. That is, a
job is considered critical if the job’s original release date r; is smaller than « times its processing
time p;. A critical job will be ignored until time ap; > r;. Only then it has to select a machine and
report a weight w;. Note that the aforementioned properties concerning the balanced budget and
the conservation of utility still apply to the algorithm with modified release dates. According to
Theorem 9, rational jobs report their weights truthfully. The theorem still applies to the case with
modified release dates, as the arguments in the proof of Theorem 9 do not depend on the actual
time when the job has to decide (and report a wj;). Yet, it has to be noted that the modification
of release dates restricts the level of decentralization in the resulting mechanism, as some central
control has to assure that a critical job cannot advance to a machine between its true and its
modified release date. We obtain the following theorem.

Theorem 10. Suppose every job is rational in reporting a weight w; and selecting a machine.
Then the DECENTRALIZED MININCREASE algorithm, together with the modified release dates r; =
max{r;j,ap;} for critical jobs, is p-competitive, with p = 3.281.

Proof. First, according to Theorem 9, we can assume that jobs report their weights w; truthfully,
and moreover, select a machine that minimizes their utility. That is, they select a machine 7 that
minimizes

uj(i) = wicj(i) + mi(j) = wj [} + bi(r;) + Z Pk +pj| +p; Z wy,.

keH (j) keL(j)
))
<7 <7
sk>r; sk>r"j

This, however, exactly equals the immediate increase of the objective value > w;-‘ c; that is due to
the addition of job j to the schedule. We now claim that we can express the objective value 7 of
the resulting schedule as

Z =y u(iy),

jeJ
where ¢; is the machine selected by job j. Here, it is important to note that w;(i;) does not express
the total (ex-post) contribution of job j to Zw;-‘ cj, but only the increase upon arrival of j on
machine ;. However, further contributions of job j to) w; c; only appear when job j is displaced
by some later arriving job with higher priority, say k. This contribution by job j to Zw;‘ Cjs
however, will be accounted for when adding u (k).

Next, since we assume that any job maximizes its utility upon arrival, or equivalently minimizes
1 (i) when selecting a machine ¢, we can apply an averaging argument over the number of machines,

like in [16], to obtain:
le— .
T3 t)
icd =1
The remainder of the proof utilizes the definitions of (i) and particulary the fact that, upon
arrival of job j on any of the machines i (at time r7), machine 7 is blocked for time b;(r}), which is
upper bounded by r; /. This upper bound is machine-independent, and follows from the definition
of r;, since any job k in process at time r; fulfills apy, <, < r;. Furthermore, the proof utilizes a
lower bound on any (off-line) optimum schedule from Eastman et al. [5, Thm. 1]. The details are
moved to Appendix C, due to space limitations. The resulting performance bound 3.281 is identical

to the one of [15], letting o equal (V17m?2 —2m + 1 —m + 1)/(4m). O

7 Discussion and Extensions

In the proposed model for decentralized online scheduling, our assumption was that any job ex-
periences costs w; for waiting one extra unit of time, known only to the job itself. Moreover, we
demand a certain level of decentralization by letting the arriving jobs choose their machines them-
selves. The social welfare is maximal when the total weighted completion time) w; ¢; is minimal.
There are three drawbacks of the proposed mechanism that we briefly discuss next.

The jobs truthfully report their weights w}
A stronger result would be that truth-telling is an ex-post dominant strategy. This can indeed be
achieved when giving up the requirement that jobs choose the machines themselves. For example,
when jobs are distributed over machines uniformly at random, utilizing a characterization of Gui et
al. [8], we can determine a payment scheme in polynomial time such that the resulting mechanism
is dominant strategy incentive compatible, independent of the realization of the random choices.
The performance bound remains 3.281 (in expectation). However, when giving up on the decentral-
ization, one can as well set up a dominant strategy incentive compatible mechanism that is based
upon a recently proposed algorithm by Correa and Wagner [4], yielding a (deterministic) compet-
itive ratio of 2.62. But notice that, in both cases, the resulting payments can only be determined
ex-post, and cannot be implemented online, like with the mechanism we propose.

As a tribute to the desired constant competitive ratio, we had to take special care of critical jobs
(i-e., jobs with ap; > r;), delaying their moment of decision from r; to r;- = apj. Clearly, as stated
already above, this restricts the level of decentralization, as some central control has to implement
this delay of critical jobs. However, given the restriction that jobs choose machines themselves, we
are not aware of a better way to handle critical jobs.

We argued that the social welfare is maximized whenever the total weighted completion time
of jobs > wj ¢; is minimal. Given that we have to confine ourselves with approximations, it would
be more desirable, though, to minimize the total weighted flow time,) w;(c; — ;). However, note
that for a single machine and unit weights, this problem does not even admit a constant-factor
approximation algorithm in the off-line setting [10], unless P=NP. Nevertheless, it would be an
interesting direction for future research to consider also other metrics than) wj¢;, e.g. stretch
metrics as proposed in [3].

under the assumption of myopic rational behavior.

Acknowledgements. Thanks to Dries Vermeulen for some helpful discussions.

10

References

[1]

[2]

[3]

E. J. Anderson and C. N. Potts. Online scheduling of a single machine to minimize total weighted
completion time. Mathematics of Operations Research, 29(3):686—-697, August 2004.

A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In Proc. 42nd Annual
Symposium on Foundations of Computer Science, pages 482 491. IEEE Computer Society, 2001.

M. A. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for scheduling contin-
uous job streams. In Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 270 279.
ACM-SIAM, 1998.

J. R. Correa and M. R. Wagner. LP-based online scheduling: from single to parallel machines. In
M. Jinger and V. Kaibel, editors, Proc. 11th Conference on Integer Programming and Combinatorial
Optimization, volume 3509 of Lecture Notes in Computer Science, pages 196-209. Springer, 2005.

W. L. Eastman, S. Even, and I. M. Isaacs. Bounds for the optimal scheduling of n jobs on m processors.
Management Science, 11:268-279, 1964.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and approximation
in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:287 326, 1979.

T. Groves. Incentives in teams. Fconometrica, pages 617-631, 1973.

H. Gui, R. Miiller, and R. Vohra. Dominant strategy mechanisms with multidimensional types. Discus-
sion paper, The Center for Mathematical Studies in Economics & Management Sciences, Northwestern
University, Evanston, IL, October 2004.

J. A. Hoogeveen and A. P. A. Vestjens. Optimal on-line algorithms for single machine scheduling. In
W. H. Cunningham, S. T. McCormick, and M. Queyranne, editors, Proc. 5th Conference on Integer
Programming and Combinatorial Optimization, volume 1084 of Lecture Notes in Computer Science,
pages 404 414. Springer, 1996.

H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and nonapproximability results for
minimizing total flow time on a single machine. SIAM Journal on Computing, 28:1155-1166, 1999.

E. Koutsoupias and C. Papdimitriou. Worst-case equilibria. In C. Meinel and S. Tison, editors, Proc.
16th Annual Symposium on Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes in
Computer Science, pages 404-413. Springer, 1999.

A. Kovacs. Fast monotone 3-approximation algorithm for scheduling related machines. In G. S. Brodal
and S. Leonardi, editors, Proc. 13th Annual European Symposium on Algorithms, Lecture Notes in
Computer Science. Springer, 2005, to appear.

R. Lavi, A. Mu’alem, and N. Nisan. Towards a characterization of truthful combinatorial auctions. In
Proc. 44th Annual Symposium on Foundations of Computer Science, pages 574-583. IEEE Computer
Society, 2003.

E. L. Lenstra, A. H. G. Rinooy Kan, and P. Brucker. Complexity of machine scheduling problems.
Annals of Discrete Mathematics, 1:243-362, 1977.

N. Megow and A. S. Schulz. On-line scheduling to minimize average completion time revisited. Opera-
tions Research Letters, 32:485 490, 2004.

N. Megow, M. Uetz, and T. Vredeveld. Stochastic online scheduling on parallel machines. In G. Per-
siano and R. Solis-Oba, editors, Proc. Second International Workshop on Approzimation and Online
Algorithms, volume 3351 of Lecture Notes in Computer Science, pages 167 180. Springer, 2005.

H. Moulin. Azioms of Cooperative Decision Making. Cambridge University Press, Cambridge, USA,
1988.

N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior, 35:166 196,
2001.

11

[19] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. In J. Y-T. Leung, editor, Handbook of Scheduling,
chapter 15. CRC Press LLC, 2004.

[20] W. Smith. Various optimizers for single stage production. Naval Research Logistics Quarterly, 3:59 66,
1956.

[21] A. P. A. Vestjens. On-line Machine Scheduling. PhD thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, 1997.

[22] M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MacKie-Mason. Auction protocols for decen-
tralized scheduling. Games and Economic Behavior, to appear.

Appendices
A Proof of Lemma?7

Lemma 7. Let for a job j € J and fized reports w_; for the other jobs A(w_;,w;) denote the resulting
schedule if j reports w; as computed by allocation algorithm A. Let c¢;(A(w—_j,w;)) be the corresponding
(ex-post) completion time of j in that schedule. Then A satisfies weak monotonicity in our described model
if and only if it satisfies

wj <wj = ¢j(Alw—j,w;)) 2 ¢;(Alwj, w;))

ViedJ, Yw_;e W Vuw;w; €W

Proof. Let w; < w;. Using the special structure of the valuation function in our model the weak monotonicity
condition becomes:

v (A(w—j, wj)|w;) —vj (A(w—j, ;) w;) — vj(A(w—j, w;)|w;) + vj(Alw—j, wj)|w;) > 0

i1
—wjc;(Alw—j, wy)) + wjc; (A(w—j, 0;)) + wjc;(Alw_j,w;)) —wjc;(Alw_j,w;)) > 0
R4
(wj —wj)[ej(Alw—j,wj)) — ¢j(A(w—j, w;))] > 0
=4
cj(A(w—j,w;)) — ¢;(Alw—;,w;)) > 0,
where the last equivalence follows from w; < w;. O

B The MININCREASE algorithm is not weakly monotone

Example 11. Let [w/p] denote a job with (reported) weight w and processing time p. Suppose that we have
to schedule the following four jobs on two machines: [6/3],[5/4],j = [w/+],[20/4], where w is a parameter.
Let all jobs have release date zero, but let us assume that they nevertheless arrive in the given order. (We
could alternatively enforce this order by adding small but positive constants to some of the release dates

without changing the effect demonstrated below.)

Let us consider the MININCREASE algorithm. The first job [6/3] increases the objective value on both
machines by the same amount and is therefore scheduled on the first machine. The second job [5/4] is then
assigned to the second machine. We consider two values for the weight of j, namely w! = 11—4 and w? = % In
the first case the weight over processing time ratio is % and therefore smaller than the respective ratios of the
two jobs already assigned to machines. Thus, j would be scheduled last on each of the machines according

to the WSPT rule. It would cause the following increases:
. . [1
incr(j,1) = ZW + 3w

12

1
incr(4,2) = ?wl + 4w’

Therefore, j is assigned to the end of machine 1, which results in the preliminary schedule depicted on the
left of Figure1.
The second case for w? = % yields a ratio of % which would place j first on both machines. The
respective increases are:
incr(j,1) L2 +6 !
/) — — R
ner(g, W -
1 1
. i9) = Zw’+5 .
incr(j,2) W Z
Job j would be scheduled on machine 2 yielding the schedule depicted on the right of Figure 1. The last

—_

6/3 i 1 6/3 |
5/4 S 250 5/ |

[\

Figure 1: Schedules for Example 11

job [20/4] has a ratio larger than all the ratios of the present jobs. Therefore it would be scheduled first on
both machines. In both cases the total weight of jobs on the first machine is larger than the total weight of
jobs on the second machine. Therefore the increase in the objective value caused by the last job is in both
cases smaller on the second machine. Thus the job is scheduled on the second machine, which increases j’s
comple‘rlon time only i 1n the second case. Thus, j is completed at time 3 + = ! when reportlng 77 and at time
4+ I when reporting 2 Therefore, the MININCREASE algorithm does not sa‘rlsfy weak m0n0t0n1c1ty.

C Proof of Theorem 10

Theorem 10. Suppose every job is rational in reporting a weight w; and selecting a machine. Then the
DECENTRALIZED MININCREASE algorithm, together with the modified release dates r; = max{r;, ap;} for
critical jobs, is o-competitive, with o = 3.281.

Proof. Recall that Z denotes the objective value of the final schedule produced by the DECENTRALIZED
MININCREASE algorithm. Let Z9FT denote the value of the optimum off-line solution. We have already

argued that
1 & .
Z < E - E u;(i)

ied =1
Next, recall that upon arrival of job j on any of the machines i (at time r’), machine i is blocked for time
bi(r) < r}/a. Therefore we get, for any j,

m m
%ZU]‘('L.) = wjr] +w]Z ;) +wi Y Z —+w p]+p]2 Z wk
i=1 =1k

i=1 keL(j
Ic%z kaz
k<j k<j
sk>r;- sk>r;
" bi(r)) *
i\1'5 Pk w
= w;r;+w;g L+ w) E — +wip; +pj E —£
y m m m
i=1 ke H(j) keL(j)
k<j k<j
sk>r'- sk>r;-
m I
* ! * bZ(T] ’IU;;
< w]r]+wjz Z —+wp]+p] Z —
y m m
i=1 kEH keL(j)
Ic<] k<j
r p w*
k
< U)]T]+’LU—+’LU E —-I-w;pj-l-pj E —k
« m
kEH (j) kEL(j)
k<j k<j

13

The last term can be rewritten as follows:

ST Ho Sty Aoy Y

J€] keL(j) (3.h): (3.h): J€] keH()
k<j JjEH (k) keH(j) k>j
k<j i<k

Thus,

Z < Zw 1+ 7‘ -I-Zw +prj-|-2w Z Pk

Jj€JS JjE€JS keH(j) JjeJ JjeJ keH(j

k<j k>]
pk m—1
E w3 1+)i+ E w; E —) wip;j.
JjeJ JjeJ ke H(j jeJ

Now, we apply a lower bound on the optimal off-line schedule from [5, Thm. 1], namely

ZO0PT > Z Z Pk m27;1 Zw;pj 7

JjeJ keH(j JjeJ
yielding:
1
zZ < ZOPT+ZM;(1+Q T+ Zw ‘Dj
JjeJ JjeJ
. 1
< ZOPT+ij(]' a)(TJ + ap;) + pr]
JjeJ JjE€JS
1 m—1
_ 7OPT *
= ZOPT 4+ w; {(1+a)rj+(1+a+ 5)py}a

jeJ

where in the second inequality r; + ap; is used as an upper bound on r . Applying the trivial lower bound
2 jeswi(ry +pj) < ZOPT we get:

VA

IN

1 -1
ZOPT+max{1+—,1+a+m—}ZOPT
«a 2m
1 -1
= ZZOPT-I-maX{—,a-I-m—}ZOPT.
Q m

Therefore, we get the performance bound

This can now be optimized for «, which was already done in [15]. There it was shown that ¢ < 3.281 for

a=V1Tm?2-2m+1—m+1)/(4m). O

14

