
Mehanisms for Deentralized Online ShedulingyBirgit Heydenreih� Rudolf M�uller� Mar Uetz�July 6, 2005AbstratThe paper introdues a model for online parallel mahine sheduling, where any single ma-hine is run on the basis of a loally optimal sequening poliy. Jobs hoose the mahine onwhih they want to be proessed themselves, and in addition, any job j owns a piee of pri-vate information, namely its indi�erene ost wj for waiting one additional unit of time beforebeing proessed. We study this setting from the perspetive of algorithmi mehanism design,and assuming that eah job prefers to be ompleted as early as possible, the utilitarian soialhoie funtion minimizes the total weighted ompletion times Pwj j . We prove that in thissetting there exists an online mehanism, running in polynomial time, where rational jobs selettheir mahine in suh a way that the resulting shedule is 3.281-ompetitive with respet tothe o�-line optimal solution that maximizes soial welfare. The mehanism deploys an onlinepayment sheme that indues rational jobs to truthfully report their indi�erene osts, in thesense that it is a myopi best response. Moreover, the payment sheme results in a balanedbudget, that is, payments are only made between jobs. We also disuss extensions to meh-anisms where truth-telling is even an ex-post weakly dominant strategy, while preserving theompetitive ratio.1 IntrodutionWe study the online version of the lassial parallel mahine sheduling problem to minimize thetotal weighted ompletion time {P j rj j Pwj j in the notation of Graham et al. [6℄{ from a newperspetive: We assume that the system needs to be organized without (too muh of) entraloordination. More preisely, we ask for the performane of the system if eah of the parallelmahines is run on the basis of a reasonable (yet suboptimal) sequening poliy loally, while theonline arriving jobs have to deide for the mahines themselves. Eah arriving job would like to besheduled as early as possible, and it omes with a piee of information that is not publily known,namely its indi�erene ost wj for waiting one unit of time. The proessing times pj of jobs areassumed to be publily known. The indi�erene osts wj , together with the proessing times pj ofthe jobs, however, de�ne the input for the loal sheduling poliies of the mahines. An arrivingjob may thus have an inentive to lie about its true indi�erene ost, in order to strategiallymanipulate the shedule. The goal is to nevertheless set up a system that yields a reasonableoverall performane. In this setting, it is typially desirable to implement a soial hoie funtionthat is utilitarian, i.e., it maximizes the sum of the valuations of all the jobs [17℄. Hene, sine anyjob prefers to be ompleted as early as possible, with indi�erene ost wj for waiting, a mehanism�Maastriht University, Quantitative Eonomis, P.O. Box 616, 6200 MD Maastriht, The Netherlands. E-mail:fb.heydenreih,r.muller,m.uetzg�ke.unimaas.nlyThis researh was supported by NWO grant 2004/03545/MaGW `Loal Deisions in Deentralised PlanningEnvironments'.
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that minimizes the total weighted ompletion timePwj j implements the utilitarian soial hoiefuntion, or in other words, it maximizes the total soial welfare.From a pure algorithmi perspetive, this problem poses two hallenges, as stated also byKoutsoupias and Papadimitriou [11℄. The �rst is the lak of information aused by the fat thatjobs beome known to the system only at the moment of their arrival (online algorithms). Theseond is the lak of unbounded omputational resoures, whih allows only for approximate solutionsto the underlying NP-hard optimization problem (approximation algorithms). A third obstrution,in fat the starting point for what is known as mehanism design, is the asymmetry of information:information that is required to run the system is private to the partiipants in the system. Sel�shagents trying to maximize their own bene�t an therefore do so by reporting strategially abouttheir private information, thus manipulating the resulting outome.Contribution. The paper touhes on three researh areas, namely the design of approximationalgorithms for NP-hard optimization problems, ompetitive analysis for online optimization, andmehanism design for resolving the asymmetry of information. Motivated by the observation thatmany real-life systems are not entrally but rather hierarhial organized, we assume that anyof the parallel mahines adopts a `reasonable' sheduling poliy loally without further refereneto what is happening on other mahines. More preisely, we assume that any mahine loallyutilizes the well known WSPT rule, sine this is the loally optimal sheduling poliy for the singlemahine sheduling problem 1 j j Pwj j [20℄. That is, jobs are sheduled in the order of relativeshortest proessing time pj=wj �rst. Intuitively, the omputational omplexity of parallel mahinesheduling is thus bypassed, of ourse at a possible loss in overall performane. Moreover, we assumethat the WSPT rule is used in a myopi, yet pratially reasonable sense, namely without furtheronsideration of the online situation. So at any time, a mahine shedules among all jobs assignedto it the one with largest ratio wj=pj �rst. Clearly, some proedure is needed to oordinate thedistribution of jobs over mahines. Moreover, given that the knowledge of the private information ofthe jobs, their indi�erene osts wj, is vital to ahieve a reasonable overall performane, and giventhat any job sel�shly seeks to minimize its own ompletion time, we need to set up a mehanism thatindues them to hoose the `right' mahine, and to report their private information wj truthfullyto the respetive mahine.We prove in this paper that suh a mehanism exists. More preisely, we present a polynomial-time mehanism for the previously desribed model for deentralized online sheduling. As usual inmehanism design, our mehanism de�nes payments that have to be made by the jobs, dependingon the mahine they hoose, and depending on the report of their private information wj . Thesepayments are used for two di�erent purposes. First, as a means of oordination, induing the jobsto hoose the `right' mahine, and seond, as a means to stimulate truthful reports of the wj 's.Building upon an analysis of Megow et al. [16℄, we show that the so-de�ned deentralized mehanismis 3.281-ompetitive, that is, under the assumption of rational behavior of the jobs, the obtainedsolution is never more than 3.281 times the optimal o�-line solution that uses entral oordination.Note that the performane bound mathes the one obtained by Megow and Shulz [15℄ for theonline parallel mahine problem to minimize Pwj j (using entral oordination). Moreover, thepayments result in a balaned budget, that is, no payments are required from or to a entraloordination authority. In the mehanism, a truthful report of the indi�erene ost wj is a myopibest response for any job. We also give an example to show that no payments exist that wouldmake truth-telling an ex-post weakly dominant strategy. In other words, the algorithm annotbe turned into a dominant strategy inentive ompatible mehanism. However, we show thatdominant strategy inentive ompatible mehanisms an be obtained, while maintaining the sameperformane bound, at the ost of introduing entral oordination for the distribution of the jobs2



over mahines.We see the ontribution of the paper twofold. First, we introdue a natural paradigm for de-entralization of a parallel mahine system: Eah mahine implements a loally optimal sequeningpoliy, while jobs have to hoose the mahines themselves. Moreover, the proessing requirementspj of the jobs are assumed to be publily known, sine they are publily observable one the jobsare sheduled. Private information is only the indi�erene ost wj of any job, measuring the privateost for being proessed one unit of time later. Seond, we show that in this deentralized model,both the lak of entral oordination and the asymmetry of information an be bypassed by thede�nition of very simple and natural payments that even result in a balaned budget, at least as-suming a ertain notion of rational behavior. Most importantly, of ourse, the resulting mehanismfor the online parallel mahine sheduling problem provides a ompetitive ratio of 3.281.Related Work. Mehanism design in ombination with the design of approximation algo-rithms for sheduling problems has been studied, e.g., by Nisan and Ronen [18℄ and Arher andTardos [2℄. In both papers, not the jobs but the mahines are the sel�shly behaving parts of thesystem, and the private information is the proessing speed of the mahine. Arher and Tardos [2℄onsider as appliation of their main theorem a problem with related parallel mahines, that is,eah mahine i has a proessing speed si, and a job j requires proessing for pj=si time if pro-essed on mahine i. They de�ne a neessary and suÆient ondition for the existene of truthful(dominant strategy inentive ompatible) mehanisms, namely the monotoniity of the total workassigned to a mahine in dependene on its reported speed si. On the basis of this harateri-zation, they design a randomized mehanism that yields a deterministi 3-approximation for theminimum makespan problem, Q j jCmax, while truthfully reporting si is a dominant strategy thatmaximizes the expeted utility of eah mahine. A deterministi monotone algorithm with thesame performane bound was reently proposed by Kovas [12℄. Nisan and Ronen [18℄ onsiderthe minimum makespan problem on unrelated mahines, R j jCmax. There, the proessing time ofany job j on any mahine i is pij, with no relation to speeds of the mahines. In their paper, theprivate information of any mahine i is multi-dimensional, namely the vetor of proessing times(pi1; : : : ; pin). They present a truthful (dominant strategy inentive ompatible) m-approximation,where m denotes the number of mahines. Furthermore, they prove that no truthful mehanisman yield a %-approximation for the minimum makespan problem with % < 2, and present a ran-domized mehanism that beats this deterministi lower bound. Deentralized sheduling is alsosubjet of a paper by Wellman et al. [22℄. In ontrast to the model we propose, however, the term`deentralized' in [22℄ desribes the fat that agents hoose their bidding strategy on the basis ofloal information, whih di�ers from our notion of deentralization.In the sequel of the paper, we formalize the model and introdue the required notation inSetion2. In Setion3 we �rst give a simple example to show that deentralization may be arbitrarilybad in general, and propose an algorithm for online sheduling on parallel mahines using entraloordination, inspired by [16℄. In Setion 4, we analyze this algorithm from a mehanism designperspetive, and in Setion 5 we introdue a simple payment sheme that yields a deentralizedimplementation of the same algorithm, in suh a way that truthful reporting the indi�erene ostswj is a myopi best response for any job. We analyze the performane of the resulting mehanismin Setion 6 and onlude with further extensions and remarks in Setion 7.2 Model and NotationWe onsider the online sheduling problem with non-trivial release dates on parallel mahines withthe objetive to minimize the weighted sum of ompletion times, P j rj j Pwj j . We are given a3



set of jobs J = f1; : : : ; ng, with proessing requirements pj > 0, j 2 J , and eah job needs to beproessed on any of the parallel, idential mahines from the set M = f1; : : : ;mg. We onsiderthe time-stamp model of online optimization [19℄, that is, the jobs arrive over time, every job jat its release date rj � 0. Only at this time, the system learns about the existene of a job, andthe proessing time pj is revealed. We assume that any job j prefers a lower ompletion time to ahigher one, where the ompletion time j is the moment in time when job j's proessing is �nished.Eah job owns a piee of private information, namely its indi�erene ost, or weight, whih wedenote by w�j . The weight represents the privately known ost to a job for one additional unitof time spent waiting. We use w�j for the indi�erene ost to di�erentiate it from the reportedweight, wj, whih may be di�erent. We de�ne the valuation of job j with indi�erene ost w�j for ashedule that gives it ompletion time j as �w�j j . While jobs behave sel�shly trying to maximizetheir valuations, the soial welfare is maximized whenever the weighted sum of ompletion timesPj2J w�j j is minimum.3 The MinInrease AlgorithmReall our assumption that eah of the m mahines utilizes the WSPT rule loally, and supposethat eah job tries to minimize its ompletion time with respet to the already present jobs, as ithas no information about future job arrivals. Then the following an happen.Example 1. Let there be m mahines and m jobs with proessing times 1; 1 � "; 1� 2"; : : : ; 1�(m � 1)" for onstant " with 0 < " < 1=m, and assume that eah job has unit weights. Let alljobs arrive at time zero, but in the given order. (One ould enfore this order by slightly hangingthe release dates and adding dummy jobs, whih would not inuene the demonstrated e�et, butompliate notation.)Then an optimal shedule assigns exatly one job to every mahine, resulting inPw�j j < m. Ifeah job an selet a mahine itself, an arriving job only �nds jobs already sheduled on mahineswith a larger proessing time. By an indutive argument, no inentives exist to report a falseweight, sine any arriving job will be the shortest, and therefore any of the m mahines wouldminimize the job's ompletion time. It is therefore possible that all jobs hoose the same mahine1.The weighted sum of ompletion times is then larger than (1�(m�1)")(m(m+1)=2) and thereforethe approximation ratio is bounded from below by(1� (m� 1)")(m(m + 1)=2)m = m+ 12 � (m+ 1)(m� 1)2 ";whih beomes arbitrarily large for large m.Hene, a deentralized seletion of mahines by the jobs themselves an ause arbitrarily largedeviations from the optimum. On the other hand, using entral oordination one an enfore thesolution to be O(1)-ompetitive, that is, not worse than a onstant times the o�-line optimum. Wenext propose an algorithm that is inspired by the MinInrease algorithm in [16℄, whih yields aompetitive ratio of 3.281. Sine we have to rely on reported weights wj, we onsider Pj2J wjjinstead ofPj2J w�j j . In order to formulate the algorithm, we �rst introdue the neessary notation.Let j(i) denote the ompletion time of job j when assigned to mahine i. Let j ! i denote thefat that job j is sheduled on mahine i. Without loss of generality, we assume that the jobs are1Again, one ould make the �rst mahine the only one maximizing the utility of an arriving job by adding dummyjobs with small proessing times that oupy all other mahines, before any `real' job arrives.4



numbered in order of their arrival, i.e. j < k ) rj � rk. For any job j, let H(j) denote the set ofjobs that have higher priority than j aording to WSPT, i.e.,H(j) = �k 2 J j wkpk > wjpj � [�k � j j wkpk = wjpj � :Note that H(j) inludes j, too. Similarly, let L(j) = J n H(j) denote the set of jobs with lowerpriority. In ase of equal ratios wj=pj , we break ties by giving higher priority to jobs that arriveearlier aording to the online sequene. Furthermore, let sj denote the starting time of j, i.e.,the time when j eventually starts being proessed. Clearly, sj � rj . At a given point t in time,mahine i might be busy proessing a job. Let bi(t) denote the remaining proessing time of thatjob at time t, i.e., at time t mahine i will be bloked during bi(t) units of time for new jobs. Ifmahine i is idle at time t, set bi(t) = 0. The algorithm onsists of a loal sheduling poliy, theWSPT rule, that is applied by every mahine and an assignment proedure that is used whenevera new job arrives.Algorithm 1: MinInrease AlgorithmLoal Sequening Poliy: Whenever a mahine beomes idle, it starts proessing the job withhighest priority among all available jobs assigned to it. Priority here means the ratio of reportedweight over proessing time. In ase of equal ratios a job with smaller index has higher priority.Assignment:1. At time rj job j arrives and reports a weight wj (possibly wj 6= w�j ).2. For every mahine i 2M the inrease in the objetive value (where the true weights w�jare replaed by the reports wj) is omputed. The inrease of j on mahine i isinr(j; i) = wjj(i) + pj Xk2L(j)k!ik<jsk>rj wk = wj [rj + bi(rj) + Xk2H(j)k!ik<jsk>rj pk + pj ℄ + pj Xk2L(j)k!ik<jsk>rj wk:3. Job j is assigned to mahine ij 2 argmini2M inr(j; i) with minimum index.The MinInrease Algorithm still makes use of entral oordination in Step 3. In the sequelwe will �rst analyze the MinInrease Algorithm, and then introdue payments that allow adeentralized implementation of the algorithm.4 The Mehanism Design PerspetiveIn order to get hands on the quality of a shedule, our aim is to motivate the jobs to report theirprivate piee of information, their indi�erene osts w�j , truthfully. Therefore we give a de�nition oftruthfulness whih requires some mehanism design notation �rst. In mehanism design, one refersto the private information of an agent as its type. Let us regard the job set J = f1; : : : ; ng as a ofagents, eah having a true type w�j from the spae of possible types W . Given a vetor of reportsw = (w1; : : : ; wn) of all agents (jobs), an alloation algorithm A : W n ! O omputes an outomeA(w) from the set of possible outomes O. Here, the set of outomes O is the set of all possibleshedules. A payment rule � : W n ! Rn determines payments �1(w); : : : ; �n(w) for every agent.The tuple � = (A; �) is alled a mehanism. We on�ne ourselves to diret revelation mehanisms,where the strategy of eah agent j is simply to report a type wj 2 W . We assume that agents5



have quasi-linear utilities, i.e., an agent j 's utility is omputed from its valuation vj(A(w)jw�j ) (i.e.,its valuation vj for the outome A(w), given its true type w�j ) and its payment �j(w) as follows:uj(�(w)jw�j ) = vj(A(w)jw�j )� �j(w).The valuation of a job j for a shedule that gives it ompletion time j is �w�j j . The orre-sponding utility if j has to pay �j will be abbreviated by uj and is therefore uj = �w�j j � �j : Wewill deal with non-negative payments �j � 0 only, i.e., jobs have to pay a non-negative amount forbeing proessed. With this notation, uj is always negative. Therefore, we assume that a job hasa onstant and suÆiently large utility for `being proessed at all'. That would add a onstant touj suh that the true utility is always positive. Sine this does not hange the jobs' behavior whenmaximizing their utility, we will omit the onstant and ontinue working with uj .De�nition 2. A diret revelation mehanism � is alled truthful or dominant strategy inentiveompatible if for all agents j 2 J , all �xed reports of the other agents w�j = (w1; : : : ; wj�1; wj+1; : : : ;wn) and all possible reports wj 2W , uj(�(w�j; w�j )jw�j ) � uj(�(w�j ; wj)jw�j ). That is, if reportingthe truth is a weakly dominant strategy for eah agent.An alloation algorithm that omputes outomes that would be desirable for a soial planner isalled soial hoie funtion. The overall goal is to design a mehanism that implements this soialhoie funtion. In the model we onsider, we assume a utilitarian soial hoie funtion. This isone of the ommon goals when maximizing the soial welfare [17℄.De�nition 3. A soial hoie funtion f is alled utilitarian if it maximizes the sum of valuationsof all agents, i.e., f(w) 2 argmaxo2OPj2J vj(ojwj):The soial hoie funtion is thus an algorithm maximizing Pj2J �w�j j , or equivalently mini-mizing Pj2J w�j j . Our goal is thus the design of a mehanism that implements this soial hoiefuntion, i.e., a mehanism that yields a shedule minimizing Pj2J w�j j . For utilitarian soialhoie funtions we have the following well known theorem.Theorem 4. (Groves [7℄) If the alloation algorithm A omputes the utilitarian soial hoie fun-tion for every input vetor w, then there is a payment sheme � suh that the diret revelationmehanism (A; �) is truthful.In other words, an algorithm that omputes an optimal shedule for Pwj j for any vetorof weights w, an be extended to a truthful mehanism with appropriate payments. Shedulingto minimize the weighted sum of ompletion times with release dates, however, is NP-hard, evenin the o�-line ase [14℄. Furthermore, no online algorithm for the single mahine problem an bebetter than 2-ompetitive [9℄ regardless of the question whether or not P=NP, and lower boundsexist for parallel mahines, too [21℄. Therefore, the soial hoie funtion annot be omputed dueto lak of both unbounded omputational resoures and information. Moreover, it is known thatTheorem 4 does not generalize to the ase where an approximation of the soial hoie funtion isused, this was shown by Nisan and Ronen [18℄. And indeed, it is not possible to �nd a payment �that ompletes the MinInrease Algorithm to a truthful mehanism. To illustrate the latter, weuse the following neessary ondition formulated by Lavi et al. [13℄.De�nition 5. (Weak Monotoniity) An alloation algorithm A satis�es weak monotoniity if forany agent j 2 J , every �xed report vetor of the other agents w�j and every pair of possible typesewj and wjvj(A(w�j ; ewj)j ewj)� vj(A(w�j ; ewj)jwj) � vj(A(w�j ; wj)j ewj)� vj(A(w�j ; wj)jwj):6



Lemma 6. (Lavi, Mu'alem, and Nisan [13℄) Let A be an alloation algorithm. If there is a paymentsheme � suh that (A; �) is a truthful mehanism, then A satis�es weak monotoniity.This result is now applied to our model. Lemma7 reformulates weak monotoniity in terms ofour valuation funtions.Lemma 7. For a job j 2 J and �xed reports w�j by the other jobs, let A(w�j ; wj) denote theresulting shedule if j reports wj. Let j(A(w�j ; wj)) be the orresponding (ex-post ) ompletiontime of j in that shedule. Then A satis�es weak monotoniity in the desribed model if and onlyif it satis�es wj < ewj ) j(A(w�j ; wj)) � j(A(w�j ; ewj))8 j 2 J; 8w�j 2W n�1; 8wj; ewj 2W:Proof. See Appendix A.The above ondition is in fat equivalent to the notion of dereasing work urves as formulatedby Arher and Tardos [2℄. An example in Appendix B shows that the MinInrease Algorithmdoes not satisfy weak monotoniity, and therefore does not allow a payment sheme that extendsthe algorithm to a mehanism that makes truth-telling an ex-post weakly dominant strategy (i.e.,a truthful mehanism). Let us summarize this.Theorem 8. There does not exist a payment sheme that extends the MinInrease algorithm toa truthful mehanism.Proof. Use Lemma 7 and the example in Appendix B.5 Payments for Myopi Rational JobsWe annot extend theMinInrease algorithm with a payment sheme that makes truth-telling anex-post dominant strategy. Therefore, we fous on the moment when a job arrives and is assigned toa mahine, and propose a payment sheme that makes truth-telling at least a myopi best responsefor any arriving job. That is, at time t when a job announes its reported weight wj, truth-tellingis a strategy that maximizes the job's utility on the basis of the available information at time t.The payments we introdue are motivated by the Vikrey Clarke Groves (VCG) mehanism[7℄. That is, a job j pays at the moment of its plaement on one of the mahines an amount thatompensates the derease in utility of the other jobs. Besides making the mehanism truthful (in amyopi sense that is weaker than dominant strategy inentive ompatible!), these payments give usthe opportunity to deentralize the algorithm. If we let jobs selet a mahine themselves, myopirational jobs selet the mahine that the MinInrease Algorithm would have seleted, too. Wewill see in the next setion that this an be turned into a onstant-fator approximation of theo�-line optimum, given that the jobs behave rationally. The algorithm inluding the payments isdisplayed below as the Deentralized MinInrease Algorithm.The Deentralized MinInrease Algorithm together with the stated payments results in abalaned budget for the sheduler. That is, the payments paid and reeived by the jobs sum up tozero, sine every arriving job immediately makes its payment to the jobs that are displaed by it.Moreover, although reporting the truth does not neessarily result in an ex-post equilibrium, atruth-telling job is guaranteed the initial utility it ahieves when being sheduled at arrival. That is,whenever a job's utility is a�eted by an arriving job, the derease in utility aused by an inreasingompletion time is immediately ompensated for by a payment.7



Algorithm 2: Deentralized MinInrease MehanismLoal Sequening Poliy: Whenever a mahine beomes idle, it starts proessing the job withhighest priority among all available jobs assigned to it. Priority here means the ratio of reportedweight over proessing time. In ase of equal ratios a job with smaller index has higher priority.Assignment:1. At time rj job j arrives and reports a type wj (possibly wj 6= w�j ).2. For every mahine i, job j observes the urrent situation and omputesj(i) = rj + bi(rj) + Xk2H(j)k!ik<jsk>rj pk + pj and �j(i) = pj Xk2L(j)k!ik<jsk>rj wk:3. Job j hooses a mahine ij 2M . Its utility for being sheduled on mahine i isuj(i) = �w�j j(i)� �i(j).4. The job is sheduled on ij aording to WSPT among all urrently available jobs on ij whoseproessing has not started yet. The payment �ij (j) has to be paid by j.5. The ompletion time for every job k 2 L(j); k ! ij ; k < j; sk > rj inreases by pj due to j 'spresene. As ompensation, k reeives a payment of wkpj .Theorem 9. Under the Deentralized MinInrease mehanism, an arriving job maximizesits urrent utility uj by reporting its true weight w�j . Also ex-post, the job will be left with the sameutility uj. Furthermore, any report wj 6= w�j may lead to a suboptimal utility.Proof. We �rst regard the single mahine ase, i.e., m = 1. Suppose, at the arrival of job j jobsk1; k2; : : : ; kr with orresponding proessing times p1; p2; : : : ; pr and reported weights w1; w2; : : : ; wrare queueing to be proessed on the mahine, but none of them has started being proessed yet.Without loss of generality let w1=p1 � w2=p2 � � � � � wr=pr. By hoosing its weight appropriately,job j ould be sheduled at any position in front of, between or behind the already present jobs.Therefore, it has to deide for every job ks, s 2 f1; : : : ; rg, whether it wants to be plaed in front ofks or not. Displaing ks would inrease �j(1) by wspj, whereas j(1) is dereased by ps. Thus, j 'sutility hanges by w�jps �wspj if j displaes ks. Therefore, it is rational for j to displae ks if andonly if w�jps�wspj > 0; whih is equivalent to w�j=pj > ws=ps. As the mahine shedules aordingto WSPT, j is plaed at the position that maximizes its utility when reporting w�j . Therefore,truth-telling is a dominant strategy in the myopi sense. Note that j an ahieve the positionbetween job ks�1 and ks by reporting any wj 2 (pj ws=ps; pj ws�1=ps�1℄. Thus, reporting w�j is notthe only myopi best response.For m > 1, reall that j an selet a mahine itself. As reporting the truth maximizes its utilityon every single mahine, and as j an then hoose the mahine that maximizes its utility amongall mahines, truth-telling will maximize j 's immediate utility at arrival.For the seond part of the laim, suppose k is displaed by the arriving job j. The urrentompletion time of k thus inreases by pj. Therefore, k's utility dereases by w�kpj. If k hasreported truthfully it reeives a payment of w�kpj in Step 5 of the algorithm, upon j's arrival.Hene, job k immediately reeives a payment from job j that exatly ompensates for the delay.For the last laim, suppose j reports wj > w�j . Then it may happen that some job k is assignedto the same mahine, and wj=pj > wk=pk > w�j=pj . With report wj, job j would be sheduled infront of k, whereas w�j would give it the plae behind k. The inrease in j 's utility when reporting8



wj over its utility for reporting w�j is therefore w�jpk � wkpj < 0. An analogous argument showsthat reporting less than w�j an be non-optimal, too.6 Performane of the mehanismIt is not a goal in itself to have a truthful mehanism, but to use the truthfulness in order to ahievea reasonable overall performane in terms of the soial welfare Pw�j j . The DeentralizedMinInrease Algorithm as stated above, however, does not yet yield a onstant approximationfator; simple examples an be onstruted in the same avor as in [15℄. In fat, it an be onsideredfolklore that early arriving jobs with large proessing times are ritial and have to be delayed[1, 15, 16℄. In order to ahieve a onstant ompetitive ratio, we also adopt this idea and usemodi�ed release dates as [15, 16℄. To this end, we hange the release date of every job j 2 J fromrj to r0j = maxfrj ; �pjg, where � is a onstant that will later be hosen appropriately. That is, ajob is onsidered ritial if the job's original release date rj is smaller than � times its proessingtime pj. A ritial job will be ignored until time �pj > rj. Only then it has to selet a mahine andreport a weight wj. Note that the aforementioned properties onerning the balaned budget andthe onservation of utility still apply to the algorithm with modi�ed release dates. Aording toTheorem9, rational jobs report their weights truthfully. The theorem still applies to the ase withmodi�ed release dates, as the arguments in the proof of Theorem 9 do not depend on the atualtime when the job has to deide (and report a wj). Yet, it has to be noted that the modi�ationof release dates restrits the level of deentralization in the resulting mehanism, as some entralontrol has to assure that a ritial job annot advane to a mahine between its true and itsmodi�ed release date. We obtain the following theorem.Theorem 10. Suppose every job is rational in reporting a weight wj and seleting a mahine.Then the Deentralized MinInrease algorithm, together with the modi�ed release dates r0j =maxfrj ; �pjg for ritial jobs, is %-ompetitive, with % = 3:281.Proof. First, aording to Theorem 9, we an assume that jobs report their weights w�j truthfully,and moreover, selet a mahine that minimizes their utility. That is, they selet a mahine i thatminimizes uj(i) = w�j j(i) + �i(j) = w�j �r0j + bi(rj) + Xk2H(j)k!ik<jsk>r0j pk + pj�+ pj Xk2L(j)k!ik<jsk>r0j w�k:This, however, exatly equals the immediate inrease of the objetive value Pw�j j that is due tothe addition of job j to the shedule. We now laim that we an express the objetive value Z ofthe resulting shedule as Z =Xj2J uj(ij) ;where ij is the mahine seleted by job j. Here, it is important to note that uj(ij) does not expressthe total (ex-post) ontribution of job j to Pw�j j , but only the inrease upon arrival of j onmahine ij . However, further ontributions of job j toPw�j j only appear when job j is displaedby some later arriving job with higher priority, say k. This ontribution by job j to Pw�j j ,however, will be aounted for when adding uk(ik).9



Next, sine we assume that any job maximizes its utility upon arrival, or equivalently minimizesuj(i) when seleting a mahine i, we an apply an averaging argument over the number of mahines,like in [16℄, to obtain: Z �Xi2J 1m mXi=1 uj(i) :The remainder of the proof utilizes the de�nitions of uj(i) and partiulary the fat that, uponarrival of job j on any of the mahines i (at time r0j), mahine i is bloked for time bi(r0j), whih isupper bounded by r0j=�. This upper bound is mahine-independent, and follows from the de�nitionof r0j , sine any job k in proess at time r0j ful�lls �pk � r0k � r0j. Furthermore, the proof utilizes alower bound on any (o�-line) optimum shedule from Eastman et al. [5, Thm. 1℄. The details aremoved to Appendix C, due to spae limitations. The resulting performane bound 3.281 is identialto the one of [15℄, letting � equal (p17m2 � 2m+ 1�m+ 1)=(4m).7 Disussion and ExtensionsIn the proposed model for deentralized online sheduling, our assumption was that any job ex-perienes osts w�j for waiting one extra unit of time, known only to the job itself. Moreover, wedemand a ertain level of deentralization by letting the arriving jobs hoose their mahines them-selves. The soial welfare is maximal when the total weighted ompletion timePwj j is minimal.There are three drawbaks of the proposed mehanism that we briey disuss next.The jobs truthfully report their weights w�j under the assumption of myopi rational behavior.A stronger result would be that truth-telling is an ex-post dominant strategy. This an indeed beahieved when giving up the requirement that jobs hoose the mahines themselves. For example,when jobs are distributed over mahines uniformly at random, utilizing a haraterization of Gui etal. [8℄, we an determine a payment sheme in polynomial time suh that the resulting mehanismis dominant strategy inentive ompatible, independent of the realization of the random hoies.The performane bound remains 3.281 (in expetation). However, when giving up on the deentral-ization, one an as well set up a dominant strategy inentive ompatible mehanism that is basedupon a reently proposed algorithm by Correa and Wagner [4℄, yielding a (deterministi) ompet-itive ratio of 2.62. But notie that, in both ases, the resulting payments an only be determinedex-post, and annot be implemented online, like with the mehanism we propose.As a tribute to the desired onstant ompetitive ratio, we had to take speial are of ritial jobs(i.e., jobs with �pj > rj), delaying their moment of deision from rj to r0j = � pj. Clearly, as statedalready above, this restrits the level of deentralization, as some entral ontrol has to implementthis delay of ritial jobs. However, given the restrition that jobs hoose mahines themselves, weare not aware of a better way to handle ritial jobs.We argued that the soial welfare is maximized whenever the total weighted ompletion timeof jobs Pwj j is minimal. Given that we have to on�ne ourselves with approximations, it wouldbe more desirable, though, to minimize the total weighted ow time,Pwj(j � rj). However, notethat for a single mahine and unit weights, this problem does not even admit a onstant-fatorapproximation algorithm in the o�-line setting [10℄, unless P=NP. Nevertheless, it would be aninteresting diretion for future researh to onsider also other metris than Pwj j , e.g. strethmetris as proposed in [3℄.Aknowledgements. Thanks to Dries Vermeulen for some helpful disussions.10
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[19℄ K. Pruhs, J. Sgall, and E. Torng. Online sheduling. In J. Y-T. Leung, editor, Handbook of Sheduling,hapter 15. CRC Press LLC, 2004.[20℄ W. Smith. Various optimizers for single stage prodution. Naval Researh Logistis Quarterly, 3:59{66,1956.[21℄ A. P. A. Vestjens. On-line Mahine Sheduling. PhD thesis, Eindhoven University of Tehnology,Eindhoven, The Netherlands, 1997.[22℄ M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MaKie-Mason. Aution protools for deen-tralized sheduling. Games and Eonomi Behavior, to appear.AppendiesA Proof of Lemma 7Lemma 7. Let for a job j 2 J and �xed reports w�j for the other jobs A(w�j ; wj) denote the resultingshedule if j reports wj as omputed by alloation algorithm A. Let j(A(w�j ; wj)) be the orresponding(ex-post ) ompletion time of j in that shedule. Then A satis�es weak monotoniity in our desribed modelif and only if it satis�es wj < ewj ) j(A(w�j ; wj)) � j(A(w�j ; ewj))8 j 2 J ; 8w�j 2 Wn�1 ; 8wj ; ewj 2 W:Proof. Let wj < ewj . Using the speial struture of the valuation funtion in our model the weak monotoniityondition beomes:vj(A(w�j ; ewj)j ewj)� vj(A(w�j ; ewj)jwj)� vj(A(w�j ; wj)j ewj) + vj(A(w�j ; wj)jwj) � 0, � ewjj(A(w�j ; ewj)) + wjj(A(w�j ; ewj)) + ewjj(A(w�j ; wj))� wjj(A(w�j ; wj)) � 0, ( ewj � wj)[j(A(w�j ; wj))� j(A(w�j ; ewj))℄ � 0, j(A(w�j ; wj))� j(A(w�j ; ewj)) � 0 ;where the last equivalene follows from wj < ewj :B The MinInrease algorithm is not weakly monotoneExample 11. Let [w=p℄ denote a job with (reported ) weight w and proessing time p. Suppose that we haveto shedule the following four jobs on two mahines: [6=3℄; [5=4℄; j = [w= 17 ℄; [20=4℄, where w is a parameter.Let all jobs have release date zero, but let us assume that they nevertheless arrive in the given order. (Weould alternatively enfore this order by adding small but positive onstants to some of the release dateswithout hanging the e�et demonstrated below. )Let us onsider the MinInrease algorithm. The �rst job [6/3℄ inreases the objetive value on bothmahines by the same amount and is therefore sheduled on the �rst mahine. The seond job [5/4℄ is thenassigned to the seond mahine. We onsider two values for the weight of j, namely w1 = 114 and w2 = 12 . Inthe �rst ase the weight over proessing time ratio is 12 and therefore smaller than the respetive ratios of thetwo jobs already assigned to mahines. Thus, j would be sheduled last on eah of the mahines aordingto the WSPT rule. It would ause the following inreases:inr(j; 1) = 17w1 + 3w112



inr(j; 2) = 17w1 + 4w1:Therefore, j is assigned to the end of mahine 1, whih results in the preliminary shedule depited on theleft of Figure 1.The seond ase for w2 = 12 yields a ratio of 72 , whih would plae j �rst on both mahines. Therespetive inreases are: inr(j; 1) = 17w2 + 6 � 17inr(j; 2) = 17w2 + 5 � 17 :Job j would be sheduled on mahine 2 yielding the shedule depited on the right of Figure 1. The lastPSfrag replaements 11 22 6/36/3 5/45/4 jjFigure 1: Shedules for Example 11job [20/4℄ has a ratio larger than all the ratios of the present jobs. Therefore it would be sheduled �rst onboth mahines. In both ases the total weight of jobs on the �rst mahine is larger than the total weight ofjobs on the seond mahine. Therefore the inrease in the objetive value aused by the last job is in bothases smaller on the seond mahine. Thus the job is sheduled on the seond mahine, whih inreases j 'sompletion time only in the seond ase. Thus, j is ompleted at time 3+ 17 when reporting 114 and at time4 + 17 when reporting 12 . Therefore, the MinInrease algorithm does not satisfy weak monotoniity.C Proof of Theorem 10Theorem 10. Suppose every job is rational in reporting a weight wj and seleting a mahine. Then theDeentralized MinInrease algorithm, together with the modi�ed release dates r0j = maxfrj ; �pjg forritial jobs, is %-ompetitive, with % = 3:281.Proof. Reall that Z denotes the objetive value of the �nal shedule produed by the DeentralizedMinInrease algorithm. Let ZOPT denote the value of the optimum o�-line solution. We have alreadyargued that Z �Xi2J 1m mXi=1 uj(i) :Next, reall that upon arrival of job j on any of the mahines i (at time r0j), mahine i is bloked for timebi(r0j) � r0j=�. Therefore we get, for any j,1m mXi=1 uj(i) = w�j r0j + w�j mXi=1 bi(r0j)m + w�j mXi=1 Xk2H(j)k!ik<jsk>r0j pkm + w�j pj + pj mXi=1 Xk2L(j)k!ik<jsk>r0j w�km= w�j r0j + w�j mXi=1 bi(r0j)m + w�j Xk2H(j)k<jsk>r0j pkm + w�j pj + pj Xk2L(j)k<jsk>r0j w�km� w�j r0j + w�j mXi=1 bi(r0j)m + w�j Xk2H(j)k<j pkm + w�j pj + pj Xk2L(j)k<j w�km� w�j r0j + w�j r0j� + w�j Xk2H(j)k<j pkm + w�j pj + pj Xk2L(j)k<j w�km :13



The last term an be rewritten as follows:Xj2J pj Xk2L(j)k<j w�km = X(j;k):j2H(k)k<j pj w�km = X(j;k):k2H(j)j<k pkw�jm =Xj2J w�j Xk2H(j)k>j pkm :Thus, Z � Xj2J w�j (1 + 1� )r0j +Xj2J w�j Xk2H(j)k<j pkm +Xj2J w�j pj +Xj2J w�j Xk2H(j)k>j pkm= Xj2J w�j (1 + 1� )r0j +Xj2J w�j Xk2H(j) pkm + m� 1m Xj2J w�j pj :Now, we apply a lower bound on the optimal o�-line shedule from [5, Thm. 1℄, namelyZOPT �Xj2J w�j Xk2H(j) pkm + m� 12m Xj2J w�j pj ;yielding: Z � ZOPT +Xj2J w�j (1 + 1� )r0j + m� 12m Xj2J w�j pj� ZOPT +Xj2J w�j (1 + 1� )(rj + �pj) + m� 12m Xj2J w�j pj= ZOPT +Xj2J w�j �(1 + 1� )rj + (1 + �+ m� 12m )pj� ;where in the seond inequality rj + �pj is used as an upper bound on r0j . Applying the trivial lower boundPj2J w�j (rj + pj) � ZOPT , we get:Z � ZOPT +max�1 + 1�; 1 + �+ m� 12m �ZOPT= 2ZOPT +max� 1�; �+ m� 12m �ZOPT :Therefore, we get the performane bound% = 2 +max� 1�; �+ m� 12m � :This an now be optimized for �, whih was already done in [15℄. There it was shown that % < 3:281 for� = p17m2 � 2m+ 1�m+ 1)=(4m).
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