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Abstract

This paper illustrates analytically the effects of cross-unit cointegration

using as an example the conventional pooled least squares estimate in the

spurious panel regression case. The results suggest that the usual result of

asymptotic normality depends critically on the absence of cross-unit cointe-

gration.
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1 Introduction

The use of nonstationary panel data techniques to infer both spurious and coin-
tegrated regressions has basically exploded during the last couple of years. The
main reason for this being the more powerful and straightforward asymptotic re-
sults based on pooling across a large cross-section of independent units. In fact, as
shown by Phillips and Moon (1999), since this independence effectively works by
smoothing out the usual unit root dependency for each unit, normal inference is
usually possible, even in the usually so difficult spurious regression case.
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However, as argued by Banerjee at al. (2006), assuming independence in this
way is usually not warranted, especially when considering macroeconomic or finan-
cial data with strong intra-economic linkages. In particular, by using simulation
methods, they show that the presence of cross-unit cointegration, a reasonable
assumption in most applications, can have quite drastic effects on inference.

In this paper, we complement analytically the simulation results of Banerjee at
al. (2006) taking as an example the pooled least squares slope estimator in the
simple bivariate case.1 We consider two possibilities, one is when the cointegration
occurs across the whole panel, while the other is when the cointegration occurs
within groups that are otherwise independent of each other, which seems like a
reasonable scenario when studying for example convergence clubs. In both cases,
it is shown that the presence of cross-unit cointegration in both the dependent and
independent variables leads to statistics that diverge with the size of the cross-
section. On the other hand, if at least one of the variables does not cointegrate
across units, then normality is again possible, with the center of the distribution
located at the long-run average regression coefficient. For the case with cointe-
gration within groups, this naturally leads to the definition of a long-run average
group coefficient.

The next two sections present our main findings, while Section 4 concludes. All
proofs are regelated to the appendix.

2 Panel common unit roots

Suppose that yit and xit are two a scalar variables such that

xit = λxifxt + δxiexit + uxit and yit = λyifyt + δyieyit + uyit, (1)

where t = 1, ..., T and i = 1, ..., N indexes the time series and cross-sectional
units, respectively. Note that while the first term on the right-hand side of these
equations are common across i, the second is not. The parameters λxi, δxi, λyi

and δyi are assumed to be mutually independent, and randomly distributed across
i with expected values λx, δx, λy and δy, respectively. We further assume that
the disturbances uxit and uyit are stationary processes, while the remaining right-
hand side variables in (1) are pure unit root processes that satisfy the following
invariance principles as T →∞ for each i

1√
T

[
fxt

fyt

]
⇒

[
Bx

By

]
and

1√
T

[
exit

eyit

]
⇒

[
Bxi

Byi

]
,

where ⇒ signifies weak convergence. The vectors of common and idiosyncratic
Brownian motions, B and Bi say, are assume to be independent with covariance
matrices Ωf and Ωe

i , respectively, where Ωe
i is a random matrix with expectation

1This work is related to that of Gengenbach et al. (2006). However, while they focus specifically

on the case when testing for cointegration, our focus is more conceptual, and our interest in the

least squares slope estimate is just for illustration.
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Ωe. All variables and random parameters indexed by i are independent along the
cross-sectional dimension.

Although very simple, as we shall see, this data generating process yields signif-
icant insight. In particular, note how (1) nests a variety of spurious regression cases
both with and without cross-unit cointegration, depending on the values taken by
λxi, δxi, λyi and δyi.2 In fact, it is not difficult to see that (1) is actually a system
of two Bai and Ng (2004) factor models, one for xit and one for yit. Define

β̂ =

(
N∑

i=1

T∑
t=1

xityit

)/( N∑
i=1

T∑
t=1

x2
it

)
.

The objective of this paper is to show how β̂, the conventional pooled least squares
slope estimator in a regression of yit on xit, behaves in this context.

Let us define the following two quantities

Qxx = λ2
x

(∫
B2

x

)
+

1
2
δ2
xΩe

xx,

Uxy =
1
6

(
λ2

xδ2
yΩf

xxΩe
yy + λ2

yδ2
xΩf

yyΩe
xx + δ2

yδ2
xΩe

yyΩe
xx

)
+

1
2
λyλxδyδxΩf

xyΩe
xy.

Given Qxx and Uxy, if we let →p signify convergence in probability, then the
asymptotic distribution of β̂ can be summarized in the following way.

Theorem 1. Under the assumptions laid out above, as N, T →∞

(a) β̂ →p
1

Qxx

(
λyλx

∫
ByBx +

1
2
δxδyΩe

xy

)
(b)

√
Nβ̂ −

√
N

1
Qxx

(
λyλx

∫
ByBx +

1
2
δxδyΩe

xy

)
⇒ N

(
0,

1
Q2

xx

Uxy

)

Note how Theorem 1 expresses the asymptotic distribution of β̂ in terms of the
parameters of (1). This is very instructive.

Firstly, note that the mean of the distribution depends critically on the com-
mon components of xit and yit. In particular, note that if λx is zero, so that
only yit has a common component, then

√
Nβ̂ converges to a normal variate with

mean δyΩe
xy/δxΩe

xx, which is the long-run average regression coefficient derived by
Phillips and Moon (1999) in the cross-sectionally independent case. On the other
hand, if λx and λy are both nonzero, then β̂ is no longer consistent for δyΩe

xy/δxΩe
xx,

and in fact diverges as N grows. This suggests that much of the empirical work
based on the pooled least squares estimator in nonstationary panel data with a
possible common factor structure needs to be reevaluated, see for example Coakley
et al. (2005).

2The case with cointegration between yit and xit at is also covered, and amounts for example to

setting λxi and λyi to zero for all i while imposing equality or proportionality of the idiosyncratic

unit roots exit and exit.
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This clearly illustrates the importance of the common components, both for
inferential and cointegration testing purposes. For example, with both yit and xit

affected, the asymptotic distribution of
√

Nβ̂ is no longer normal, but dependent
on Brownian motion, which makes it look more like something that one would
expect to see in the conventional time series case. Similarly, it is not difficult to
see how tests for the absence of cointegration based on the consistency of β̂, such
as those of Kao (1999), become invalid in this case.

Secondly, the variance of the asymptotic distribution of
√

Nβ̂ depends on both
the idiosyncratic and common components. However, note that if there are no
common components, then the variance reduces to 2δ2

yΩe
yy/3, which is likely to be

smaller than for the case with common components, and it is definitely smaller
than 2(λ2

yΩf
yy + δ2

yΩe
yy)/3, the variance when λx is zero. Hence, the presence of the

common components affects the asymptotic distribution of
√

Nβ̂ by increasing its
variance.

3 Group specific unit roots

Next, we examine the case with group specific common unit roots. Specifically,
suppose that there are M groups with K units in each, and let fxjt be the common
unit root component of xit for group j = 1, ...,K containing the units i = 1 +
(j − 1)K, ..., jK. The group specific common component of yit is constructed in
the same way, and is denoted fyjt. Let Bxj and Byj be the Brownian motions
associated with fxjt and fyjt, and assume that these have covariance Ωf

j and that
they are independent across j.

In view of Theorem 1, it is not difficult to see that as N, T →∞ with M fixed

β̂ →p

(
λyλx

1
M

M∑
j=1

∫
ByjBxj +

1
2
δxδyΩe

xy

)/(
λ2

x

1
M

M∑
j=1

∫
B2

xj +
1
2
δ2
xΩe

xx

)
.

By contrast, if M is permitted to grow with N , then we get

β̂ →p

(
λyλxΩf

xy + δxδyΩe
xy

)/(
λ2

xΩf
xx + δ2

xΩe
xx

)
,

where Ωf is the expected value of Ωf
j . This second result is very interesting.

Specifically, suppose that δx is zero so that xit has no idiosyncratic unit root, then
the probability limit of β̂ reduces to λyΩf

xy/λxΩf
xx, which might be thought of as a

long-run average group coefficient. Thus, if the number of groups are permitted to
grow with N , then we end up with something that is very similar to what we had
earlier in the case with panel common unit roots. This seems very reasonable since
in this case the group essentially takes the role of the individual unit. Moreover,
as in Section 2, it is possible to show that if M is permitted to grow with N and
T , then

√
Nβ̂ is asymptotically normal.
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4 Concluding remarks

It is now well-known that the conventional assumption of independent cross-sections
is very hard to maintain when conducting inference in nonstationary panels.

In this paper, we study the effects of cross-unit cointegration taking as an exam-
ple the pooled least squares estimator in the spurious regression case. We consider
both the case when the cointegration takes place across the panel as a whole, and
when it takes place within groups. Our findings suggest that the presence of cross-
unit cointegration can have dramatic effects for the usual asymptotic results based
on cross-section independence, and that the consistency and asymptotic normal-
ity of the pooled least squares estimator may even be lost. These results have
important implications, not only for theoretical, but also for applied work. Take
for example the study of Coakley et al. (2005), in which the authors seek to in-
fer purchasing power parity using pooled least squares methods in the presence of
common factors. Our results indicate that this type of analysis can be potentially
very deceptive.

As a final note, although the simplicity of the data generating process used
in this paper naturally raises some concerns, we would like to stress that most
assumptions are only for ease of exposure, and can in principle be relaxed with-
out affecting the main conclusions. For example, it can be easily generalized to
accommodate deterministic intercept, trend terms and additional dynamics.
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Mathematical appendix

In this appendix, Theorem 1 is proven. For brevity, only necessary details are
provided. Unreported results can be obtained from the corresponding author upon
request.

Proof of Theorem 1.

Consider (a). The least squares estimator of β can be written as

√
Nβ̂ =

(
1

NT 2

N∑
i=1

T∑
t=1

x2
it

)−1

1√
NT 2

N∑
i=1

T∑
t=1

xityit. (A1)

Consider the denominator, whose limit as N, T →∞ is given by

1
NT 2

N∑
i=1

T∑
t=1

x2
it = λ2

xi

1
T 2

T∑
t=1

f2
xt + δ2

xi

1
NT 2

N∑
i=1

T∑
t=1

e2
xit

+ 2λxiδxi
1

NT 2

N∑
i=1

T∑
t=1

fxtexit + Op(T−1)

→p λ2
x

(∫
B2

x

)
+ δ2

xE

(∫
B2

ix

)
+ 2λxδxE

(∫
BxBix

)
= λ2

x

(∫
B2

x

)
+

1
2
δ2
xΩe

xx, (A2)

where the last equality follows from the independence of Bx and Bix, and the
moments of Brownian motion.

Similarly, for the numerator, we have

1√
NT 2

N∑
i=1

T∑
t=1

xityit =
√

Nλxiλyi
1

T 2

T∑
t=1

fxtfyt + λxiδyi
1√

NT 2

N∑
i=1

T∑
t=1

fxteyit

+ λyiδxi
1√

NT 2

N∑
i=1

T∑
t=1

fytexit

+ δyiδxi
1√

NT 2

N∑
i=1

T∑
t=1

eyitexit + Op(T−1), (A3)

which has the following limit as T →∞

1√
NT 2

N∑
i=1

T∑
t=1

xityit ⇒
√

N

(
λxiλyi

∫
BxBy

)

+
1√
N

N∑
i=1

(
λxiδyi

∫
BxByi + λyiδxi

∫
ByBxi + δyiδxi

∫
ByiBxi

)

=
√

N

(
λxiλyi

∫
BxBy

)
+

1√
N

N∑
i=1

Ui, say. (A4)
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Thus, passing N →∞, it is clear that

1
NT 2

N∑
i=1

T∑
t=1

xityit −
(

λxλy

∫
BxBy

)
=

1
N

N∑
i=1

Ui →p
1
2
δxδyΩe

xy.

This establishes (a).
Next, consider (b). By using (a) and the Lindberg-Lévy theorem, as N, T →∞

1√
NT 2

N∑
i=1

T∑
t=1

xityit −
√

N

(
λxλy

∫
BxBy +

1
2
δxδyΩe

xy

)

⇒ N

(
0, lim

N→∞

1
N

N∑
i=1

E(U2
i )

)
.

For the variance, we have

E(U2
i ) = E

((
λxδy

∫
BxByi + λyδx

∫
ByBxi + δyδx

∫
ByiBxi

)2
)

= λ2
xδ2

yE

(∫
BxByi

)2

+ λ2
yδ2

xE

(∫
ByBxi

)2

+ δ2
yδ2

xE

(∫
ByiBxi

)2

+ 2λyλxδyδxE

(∫
BxByi

)(∫
BxiBy

)
=

1
6

(
λ2

xδ2
yΩf

xxΩe
yy + λ2

yδ2
xΩf

yyΩe
xx + δ2

yδ2
xΩe

yyΩe
xx

)
+

1
2
λyλxδyδxΩf

xyΩe
xy. (A5)

where the second equality follows from the fact that all cross-products except the
squared ones have expectation zero, while the second follows from the moments of
Brownian motion.

Putting everything together, we obtain

√
Nβ̂ −

√
N

1
Qxx

(
λxλy

∫
BxBy +

1
2
δxδyΩe

xy

)
⇒ N

(
0,

1
Q2

xx

Uxy

)
.

This completes the proof of (b). �
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