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Abstract

This paper suggests a combination procedure to exploit the imperfect correla-

tion of cointegration tests to develop a more powerful meta test. To exemplify, we

combine Engle and Granger (1987) and Johansen (1988) tests. Either of these un-

derlying tests can be more powerful than the other one depending on the nature of

the data-generating process. The new meta test is at least as powerful as the more

powerful one of the underlying tests irrespective of the very nature of the data gen-

erating process. At the same time, our new meta test avoids the arbitrary decision

which test to use if single test results con�ict. Moreover it avoids the size distortion

inherent in separately applying multiple tests for cointegration to the same data set.

We apply our test to 143 data sets from published cointegration studies. There,

in one third of all cases single tests give con�icting results whereas our meta tests

provides an unambiguous test decision.
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1 Introduction

Testing for cointegration has become one of the standard tools in applied economic

research. Various tests have been suggested for this purpose, most of which are im-

plemented in standard econometric packages and hence are easily available nowadays.

Well-known examples include the residual-based tests of Engle and Granger (1987) and

Phillips and Ouliaris (1990), or the system-based tests of Johansen (1988, 1991). Further

tests have been suggested by Breitung (2002), Bewley and Yang (1995), Bierens (1997),

and Park (1992), to name just a few. This regularly forces the applied researcher to

select from the test decisions of the various applicable procedures. Often one test rejects

the null hypothesis whereas another test does not, making it unclear how to interpret

test outcomes then. More generally speaking, the p-values of di¤erent tests are typically

not perfectly correlated (Gregory et al., 2004).

Because of the imperfect correlation, it is problematic to choose, for example, a

testing strategy that relies on the test that achieves the smallest p-value. Such strategy is

not suitable to decide whether or not the time series under investigation are cointegrated.

It will not control the probability of rejecting a true null hypothesis at some chosen level

� because it ignores the multiple testing nature of the problem. More speci�cally, using

the test with the smallest p-value will lead to an oversized test.

It has thus been suggested that the signi�cance level of the tests should be adjusted

downwards when running more than one cointegration test. One classical solution to the

problem is the Bonferroni procedure which compares the p-values of N tests with the

more challenging cut-o¤ value of �=N . Unfortunately, this test procedure� while able to

remove the size distortion� has low power. From this line of argument one might view

the imperfect correlation of di¤erent test statistics mostly as a problem.

However, an imperfect correlation of test statistics also implies that one test contains

information that the other one is not exploiting. Hence, we may view the imperfect cor-

relation of underlying tests as bene�cial instead. This leads us to propose an aggregation

procedure to combine di¤erent underlying tests in a meta test that potentially yields an

improvement in power.

One approach popular in meta analysis to combine tests is Fisher�s (1932) approach

which found its application in econometrics in panel-unit root tests for example (Maddala

and Wu, 1999). Fisher-type tests are traditionally used to combine results from one test

on di¤erent and independent samples. This corresponds to the fact that the distribution

of the Fisher test as originally proposed applies only to independent test statistics. This

rules out using a standard Fisher test in a setup where we want to combine correlated

2



underlying tests of one hypothesis on a single sample. Yet, methods to deal with the

issue of correlated test statistics have been developed recently (Hartung, 1999), so that

correlation itself is no longer an insuperable obstacle to meta testing. The challenge has

instead become to estimate the correlation structure of the test statistics. We propose

a bootstrap method to carry out this estimation.

We hence exploit recent advances in meta analysis in order to provide valid inference

on cointegration when several underlying tests are available. In particular, we exemplify

our test using a combination of an Engle and Granger (1987) cointegration test with

a Johansen (1988) maximum eigenvalue test for cointegration rank. We opt for these

two tests as they are both widely used in applied research and also have a relatively

low correlation in p-values (Gregory et al., 2004), so that each of the tests provides a

relatively large amount of independent information.

The proposed bootstrap method for estimating the correlation structure of the under-

lying tests also yields a second version of the meta test that relaxes certain assumptions

required for Hartung�s method. Both versions of our meta test successfully control the

level � of the test and are at the same time powerful.

In particular, we demonstrate that our meta test is as powerful as the most powerful

one of the underlying tests. Which of the underlying tests is most powerful depends

on the true data-generating process. In general either test we consider can be more

powerful than the other one. Being as powerful as the best underlying test, the meta

test therefore provides a test of non cointegration with attractive power properties across

a wide range of relevant data-generating processes. The test can be viewed as selecting

the more powerful of the underlying tests in a fully data driven fashion. At the same

time, the test avoids the size distortion associated with multiple testing that arises when

separately employing several underlying tests. To the best of our knowledge, this is the

�rst time that a practical approach is put forward to combine di¤erent tests of a given

hypothesis applied to a single sample.

To check the practical relevance of our proposed test, we revisit data sets from studies

dealing with cointegration published in the Journal of Applied Econometrics. These data

sets have been exploited by Gregory et al. (2004) to establish as a problem in applied

work that there are often "mixed signals" among cointegration tests, i.e. con�icting

test results. Among other things we �nd that in one third of all cases single tests give

con�icting results. In these cases our meta test is particularly useful. It provides an

unambiguous test decision and therefore is a solution to the "mixed signals" problem.

The remainder of this paper is organized as follows: Section 2 describes our test

procedure and Section 3 gives setup and results of our Monte Carlo experiments. Sec-
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tion 4 revisits a set of cointegration studies to provide an empirical application of our

cointegration test. Finally Section 5 concludes.

2 Test Procedure

2.1 Setup

Let xt = (x1t; : : : ; xKt)
0 2 RK be a vector of stochastic variables integrated of order

one, I (1). The stochastic vector xt is said to be cointegrated if there exists at least one

� 2 RK , � 6= 0, such that zt = �0xt is a stationary I (0) process. Suppose we have

observations x0; : : : ;xT .

We are concerned with the following null hypothesis:

H0 : There exists no cointegrating relationship among the variables in xt:

against the alternative hypothesis

H1 : There exists at least one � 6= 0 such that zt = �0xt is I (0).

The literature has suggested various test procedures to discriminate between these

two hypotheses. Well-known examples include the residual-based tests of Engle and

Granger (1987) and Phillips and Ouliaris (1990), or the system-based tests of Johansen

(1988, 1991).

The Engle-Granger test tests the null hypothesis of no cointegration against the

alternative of at least one cointegrating relationship. One computes the t-statistic of


 � 1 in the OLS regression

�ût = (
 � 1)ût�1 +
PX
p=1

�p�ût�p + �t: (1)

Here, ût is the usual residual from a �rst stage OLS regression of one of the xkt; k =

1; : : : ;K, on the remaining elements of xt (and appropriate deterministic terms). The

sum
PP
p=1 �p�ût�p captures residual serial correlation. Alternatively, one could control

for serial correlation by the semiparametric approach of Phillips and Ouliaris (1990).

The system-based tests of Johansen (1988) test the presence of h cointegrating re-

lationships by estimating the number of signi�cantly non-zero eigenvalues of the matrix
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�̂ estimated from the Vector Error Correction Model (VECM)

�xt = �xt�1 +
PX
p=1

�p�xt�p + �0 + �t: (2)

The actual tests are either the �trace-test with test statistic

�trace (h) = �T
KX

j=h+1

ln (1� �̂j) (3)

or the �max-test with test statistic

�max (h) = �T ln (1� �̂h+1) : (4)

Here, �̂j denotes the jth largest eigenvalue of �̂.

2.2 Exploiting Imperfect Correlation between Cointegration Tests

As Gregory et al. (2004) show, the p-values that correspond to the above test statistics are

only weakly correlated, in particular when comparing residual-based and system-based

tests.1 As we argued in the introduction, this means that a more powerful test can

in principle be achieved by exploiting the imperfect correlation of suitably transformed

test statistics. The actual test that we propose is based on Hartung�s (1999) method to

combine dependent test statistics.

Let �i be the test statistics of a test i = 1; : : : ; N of a set of cointegration tests

(e.g. the ones discussed above) and �i its asymptotic distribution function under the

null hypothesis. Under the null, the integral transformation of the test statistic, �i (�i) ;

yields a uniformly distributed random variable on the unit interval. This variable closely

corresponds to the p-values of the test, which are de�ned as pi = �i (�i) if the test rejects

for small values of �i and pi = 1� �i (�i) if the test rejects for large values of �i. Based
on these p-values, we can de�ne a probit representation of the test as ��1(pi) =: ti;

where � is the cumulative distribution function of the standard normal distribution.

Let t =(t1; : : : ; tN )
0. Then, asymptotically, the components of t are marginally stan-

dard normal under the null. Hartung (1999) now, as highlighted by Demetrescu et al.

(2006), additionally makes the auxiliary assumption that t is jointly normally distrib-

uted, denoted t � N (0;�). Under this assumption, we have �0t � N (0; �0��) ; where

1 In unreported simulations, we �nd that under the null hypothesis, the correlation of probits of the
p-values (see below) is about .55 for �trace and Engle-Granger tests.
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� = (1; : : : ; 1)0 : This leads to a standardized meta test statistic,

� =
�0tp
�0��

:

The statistic � follows a standard normal distribution under H0 and the auxiliary as-

sumption of joint normality. Of course, there is no a priori reason to justify joint nor-

mality of t in the case of cointegration tests that we consider. Fortunately, Demetrescu

et al. (2006) demonstrate that Hartung�s procedure can be fruitfully applied even if the

assumption is not met.

As a practical requirement, we need a feasible consistent estimator of �. If the

number of tests N is small, there is no hope to estimate � meaningfully from the

realizations of t: This is so even if one is willing to assume constant correlation of ti; tj
as in Hartung (1999), which in any case would not be a sensible assumption in our

setting. Instead, we rely on a bootstrap method to estimate �.

Thus, we require a method to bootstrap cointegration tests under the null hypothesis.

Such a bootstrap procedure has recently been proposed by Swensen (2006). In brief,

Swensen�s procedure resamples residuals from an estimated VECM representation of

the data-generating process (DGP) to then generate integrated but non-cointegrated

time series. From the resulting bootstrap distribution of the test statistic, we estimate

the correlation matrix of t.

More speci�cally, we use the following algorithm.

Algorithm 1 :

1. Estimate the unrestricted VECM

�xt = �xt�1 +
PX
p=1

�p�xt�p + �0 + �t (5)

to obtain coe¢ cient estimates �̂0; �̂; �̂p and residuals �̂t:
2

2. Check whether the system has no explosive root, i.e. whether kzk � 1, by solving

det[Â(z)] = 0; where

Â(z) = (1� z)IK � �̂z � �̂1(1� z)z � � � � � �̂P (1� z)zP :
2As pointed out by Swensen (2006) one could alternatively estimate a restricted VAR in �rst dif-

ferences to impose the null of no cointegration. However, as Paparoditis and Politis (2003) show for
unit-root tests, imposing such a restriction may lead to a power loss.
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3. If so, draw B series of pseudo errors
�
��t;b
	b=1;:::;B
t=P+1;:::;T

by resampling non-parametrically

with replacement from the residuals f�̂tgt=P+1;:::;T .

4. With these pseudo errors, construct B series of pseudo observations x�t;b from

�x�t;b =
PX
p=1

�̂p�x
�
t�p;b + �̂0 + �

�
t;b:

For the initial observations, set x�t;b = xt; t = 0; : : : ; P:
3

5. Compute the test statistics ��i;b for all pseudo samples b = 1; : : : ; B and all cointe-

gration tests that are to be combined, i = 1; : : : ; N:

6. Estimate the distribution function of the test statistic of each test as

��i (x) =
#
�
��i;h � xjh = 1; : : : ; B

	
B

and calculate the corresponding p-values p�i;b = ��i
�
��i;b
�
or 1 � ��i

�
��i;b
�
; as ap-

propriate. Correspondingly, calculate the p-values, pi; of the test statistics on the

original data by evaluating ��i (�i) or 1� ��i (�i).

7. Obtain the corresponding probit representation of each test statistic, t�i;b = �
�1(p�i;b);

stacked in t�b =
�
t�1;b; : : : ; t

�
N;b

�0 where ��1 is the quantile function of the standard
normal distribution. Correspondingly, obtain ti = ��1 (pi) :

8. Estimate the covariance matrix � of the probits of the tests by

�� =
1

B

X
b

(t�b ��t�) (t�b ��t�)
0 ;

where �t� = 1
B

P
b t
�
b .

This Algorithm provides a feasible version of the test statistic � ;

�� =
�0tp
�0���

;

where t is the probit representation of the bootstrap version of the underlying tests (see

step 7 of Algorithm 1). We then reject H0 at level � if �� < ��1 (�).

3Since we require pseudo observations that are integrated but non-cointegrated, � = 0 is imposed.
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Note that �� will reject H0 at least at level � if all underlying tests ti reject at level

�: This is so because ti < ��1 (�) for all i = 1; : : : ; N implies

�� =
�0tp
�0���

� �0t

N
< ��1 (�) ;

since the entries of the positive semi-de�nite correlation matrix �� are bounded by 1

and �1.
Swensen (2006) analytically proves that his bootstrap procedure for the Johansen

�trace test, i.e. steps 1-6 in Algorithm 1, delivers a consistent estimate ��i of the distribu-

tion of the test statistic under the null hypothesis. It hence yields consistent estimates of

p-values. The key element in Swensen�s (2006) proposition is that the above bootstrap

algorithm yields pseudo observations which have a representation asymptotically equiv-

alent to the true DGP. Therefore, we expect Swensen�s proposition to carry over to other

tests for cointegration, in particular the ones we mentioned before. We corroborate this

conjecture via extensive simulation in Section 3.

2.3 Alternative Formulation

Our Hartung-type test is a modi�cation of the �inverse normal�meta test (Stou¤er et al.,

1949) robusti�ed against dependence among the test statistics. Alternatively, we can

formulate an analogous test that is more closely related to the meta test of Fisher

(1932), suitably modi�ed to take dependencies between the test statistics into account.

The advantage of this second test is that it does not rely on joint normality of t: We

keep from the Fisher test the aggregator of p-values

� = �2
X
i

ln (pi) :

Of course we cannot invoke a �2 (2N) null distribution of � as independency of the

aggregated test statistics is necessary for this result. We therefore propose the following

modi�cation of Algorithm 1 to estimate the distribution of � to account for dependency

among the test statistics.
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Algorithm 2 :

1. - 6. As in Algorithm 1.

7. Obtain the corresponding aggregate � test statistic

��b = �2
X
i

ln
�
p�i;b
�
:

8. Estimate the cumulative distribution function � of the ��b by

�� (x) =
# f��h � xjh = 1; : : : ; Bg

B
:

This provides us with a dependency robust version of the Fisher test, where the p-

values pi of the underlying tests are obtained as in step 6 of Algorithm 1. We calculate

the �nal test statistic as

�� = �2
X
i

ln (pi)

and then reject H0 at level � if �� exceeds the (1� �)-quantile of ��: This second test
can be viewed as a distribution-free version of the test described in Algorithm 1.

3 Monte Carlo Experiments

3.1 Setup

Next, we study the properties of the proposed tests in a series of Monte Carlo experi-

ments. As emphasized in the introduction, di¤erent tests for cointegration are likely to

di¤er in their power against di¤erent points in the space of the alternative hypotheses.

For example, Johansen�s �max test can be expected to be relatively more powerful if the

data is indeed generated by a �nite order VECM with uncorrelated errors. Since our

test combines information from tests that are powerful in di¤erent directions, a potential

advantage of our testing strategy is that it should be more robust across di¤erent DGPs.

We therefore consider the following two alternative DGPs
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DGP(A): �xt = �xt�1 + ��xt�1 + ut

� = 0:2I2

DGP(B): x1t + �x2t = z1t; x1t + �x2t = z2t

� = �2; � = �1
z1t = z1t�1 + u1t; z2t = �z2t�1 + u2t:

In both DGPs we set

ut =

 
u1t

u2t

!
iid� N (0; I2) :

These designs are widely used in Monte Carlo studies of cointegration tests. See for

instance Engle and Granger (1987), Gonzalo (1994), Gregory et al. (2004), or Swensen

(2006).

For DGP(A) the null hypothesis of no cointegration is obtained when� = 0; whereas

we parameterize the alternative hypothesis of cointegration by� = (1 0)0 (:15 � :15).
For DGP(B), the null hypothesis is obtained when � = 1; whereas we parameterize the

alternative hypothesis of cointegration by � = 0:85:4

For each DGP, we draw 5,000 replications under both the null and the alternative.

We choose T 2 f50; 75; 100; 125; 150g. These time-series lengths correspond to typical
sample sizes encountered in applied macroeconometric work, e.g. when using quarterly

data. To mitigate the e¤ect of initial conditions, we simulate each DGP for T + 30

time periods and discard the �rst 30 observations. For each replication, we compute

the �� and the �� tests based on B = 10; 000 bootstrap replications. To keep the setup

simple, we �rst choose to combine N = 2 underlying tests. In particular, we select

Johansen�s (1988) �max test and the augmented Engle and Granger (1987) residual-

based test (AEG). We opt for these two tests as they are both widely used in applied

research and also have a relatively low correlation in p-values (Gregory et al., 2004), so

that each of the tests provides a relatively large amount of independent information.

To investigate the relative performance of the new tests, we compare them to fol-

lowing alternative possibilities to test for cointegration: First, the standard augmented

Engle and Granger (AEG) and Johansen �max tests, where we reject the null hypothesis

if the test statistics fall short of (respectively exceed) the level � critical value computed

4Of course, Granger�s representation theorem would allow us to write DGP(B) in a VECM form.
However, error terms would be correlated, the matrix� would have no rows of zeros under the alternative
and � would equal 0:
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Figure 1: Empirical power, DGP(A) and DGP(B), various T
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See notes to Table 1

from the appropriate distribution of the tests.5 Second, we investigate bootstrap ver-

sions of both tests (denoted in the following by AEG� and ��max), which are by-products

of our �� and �� tests. Third, we compute a �naive�meta test based on the bootstrapped

versions of the two underlying tests. This test rejects whenever at least one of the tests

rejects. We call this test �naive�because it ignores the multiple-testing nature of the

problem. Studying this test hence reveals the size distortion incurred by selecting the

most rejective test from a set of cointegration tests.

Implementation of the cointegration tests typically requires to select an order P̂ of

lagged di¤erences to account for auto-correlation. In practice this is often done via some

lag-length selection criterion, see e.g. Lütkepohl (2005). To reduce the computational

burden we waive this option and use a constant order of P̂ = 2 throughout.

3.2 Results

Table 1 reports the empirical size of all tests at the level � of 5%.6 The main �ndings

may be summarized as follows. As expected, the �naive� test is oversized and its size

5 In the case of the AEG test we follow the standard practice of using MacKinnon (1996)-type critical
values, which control for number of observations.

6We also ran all simulations described above at the 1% and 10% level, with qualitatively similar
results. We also experimented with a version of DGP(A) with AR(1) error terms instead of white noise
ut. Again, results are qualitatively similar. Tables with the additional results are available upon request.
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Table 1: Empirical size

Bootstrap tests asymptotic tests
DGP T �� �� �naive� ��max AEG� �max AEG

(A) 50 0.0684 0.0748 0.1026 0.0684 0.0534 0.0930 0.0352
75 0.0570 0.0636 0.0876 0.0530 0.0530 0.0888 0.0374
100 0.0520 0.0562 0.0822 0.0546 0.0486 0.0882 0.0366
125 0.0518 0.0598 0.0796 0.0490 0.0522 0.0854 0.0336
150 0.0496 0.0564 0.0750 0.0492 0.0464 0.0806 0.0314

(B) 50 0.0598 0.0656 0.0932 0.0594 0.0542 0.0876 0.0346
75 0.0558 0.0608 0.0830 0.0488 0.0536 0.0848 0.0356
100 0.0492 0.0524 0.0816 0.0538 0.0490 0.0862 0.0322
125 0.0466 0.0494 0.0746 0.0478 0.0450 0.0836 0.0294
150 0.0482 0.0520 0.0738 0.0504 0.0464 0.0798 0.0332

Average rejection rates at nominal level of 5%. 5,000 replications and 10,000 bootstrap replica-
tions. The tests �� and �� are described in Algorithms 1 and 2 respectively. AEG and �max refer
to Engle and Granger (1987) and Johansen (1988) tests, AEG� and ��max are their bootstrap
counterparts. �Naive�rejects when AEG� or ��max rejects.

Table 2: Empirical power

Bootstrap tests asymptotic tests
DGP T �� �� �naive� ��max AEG� �max AEG

(A) 50 0.1244 0.1342 0.1836 0.1032 0.1154 0.1704 0.0712
75 0.2284 0.2426 0.3106 0.2138 0.1908 0.3116 0.1388
100 0.4094 0.4352 0.5106 0.3964 0.3142 0.5258 0.2436
125 0.6424 0.6644 0.7174 0.6274 0.4714 0.7408 0.3954
150 0.8286 0.8458 0.8690 0.8090 0.6264 0.8884 0.5516

(B) 50 0.0922 0.101 0.1274 0.0722 0.0882 0.1166 0.0596
75 0.1216 0.1356 0.1586 0.0760 0.1288 0.1414 0.0904
100 0.1900 0.2108 0.2442 0.1390 0.2032 0.2064 0.1500
125 0.2884 0.3122 0.3442 0.1958 0.3080 0.2816 0.2382
150 0.3932 0.4248 0.4558 0.2676 0.4212 0.3872 0.3402

See notes to Table 1
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Figure 2: Empirical power, DGP(B), T = 100, various �
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exceeds the nominal level by approximately 3 - 4 percentage points.7 All other bootstrap

tests control size reasonably well. The �� test (and to a lesser extent also the �� test)

exhibits a slight upward size distortion for small T; partly due to a distortion of ��max
for small T: However, this size distortion vanishes for T � 100: In line with e.g. Swensen
(2006), we �nd a more pronounced upward size distortion of the asymptotic �max test.

By contrast, the asymptotic AEG test is slightly undersized.

Table 2 now reports the empirical power of all tests at the level � of 5%. Figure 1

summarizes the main information of Table 2 graphically. As expected, power increases

in T for all tests. While of the single tests the AEG� test is the most powerful single

test for DGP (B), the �max and ��max tests are most powerful for DGP(A).
8 This result

may not entirely surprising, as both tests were originally designed having DGPs of type

(A) and (B) respectively in mind.

The meta tests �� and �� both perform similarly and well, though �� has slightly

higher power throughout. In particular, the �� test is somewhat more powerful than the

most powerful single test for either DGP.

In addition to the Monte-Carlo experiments displayed in Tables 1 and 2, we run

further experiments varying the degree of mean reversion of the cointegration error

in DGP(B), i.e. distance of the alternative from the null. That is we choose � 2
f0:95; 0:85; 0:75; 0:65; 0:55g: We focus on DGP(B) as the underlying tests are the more

7Note that this size distortion is very close to the one that can be inferred from Table I in Gregory
et al. (2004).

8 In judging the power of the asymptotic �max test versus its bootstrap counterpart, one needs to take
into account the test�s upwards size distortion. Consequently, its size-adjusted power is lower.
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Table 3: Rejection rates when combining N > 2 tests

Size Power
DGP T ��(2) ��(4) ��(2) ��(4) ��(2) ��(4) ��(2) ��(4)

(A) 50 0.0748 0.0750 0.0684 0.0706 0.1342 0.1336 0.1244 0.1272
75 0.0636 0.0598 0.0570 0.0546 0.2426 0.2428 0.2284 0.2336
100 0.0562 0.0526 0.0520 0.0504 0.4352 0.4376 0.4094 0.4216
125 0.0598 0.0562 0.0518 0.0500 0.6644 0.6612 0.6424 0.6524
150 0.0564 0.0536 0.0496 0.0502 0.8458 0.8428 0.8286 0.8340

(B) 50 0.0656 0.0650 0.0598 0.0598 0.1010 0.1042 0.0922 0.0942
75 0.0608 0.0582 0.0558 0.0518 0.1356 0.1372 0.1216 0.1268
100 0.0524 0.0502 0.0492 0.0484 0.2108 0.2200 0.1900 0.2028
125 0.0494 0.0502 0.0466 0.0462 0.3122 0.3228 0.2884 0.3022
150 0.0520 0.0506 0.0482 0.0472 0.4248 0.4338 0.3932 0.4098

Average rejection rates at nominal level of 5%. 5,000 replications and 10,000 bootstrap replica-
tions. The tests �� and �� are described in Algorithms 1 and 2 respectively. ��(N) and ��(N)
combine N tests.

challenging competitors in that case. We �x T = 100; which corresponds to a typical

sample size in applications. Figure 2 summarizes the results. Throughout, the �� test

outperforms the AEG� test marginally, which is itself substantially more powerful than

the ��max test.

To summarize, both �� and �� control the size of the test and yet provide a powerful

and �exible alternative to traditional cointegration tests.

3.3 Extension to more than two tests

We combined AEG and �max tests to illustrate our approach with two widely applied

cointegration tests. Of course, as the discussion in Section 2 makes clear, our approach

is not restricted to combining two tests. The procedures can accommodate other and

more tests as well. Potentially, this could yield further gains in power if the additional

tests added extra information.

We therefore ran some extra simulations, where we additionally include the semi-

parametric t-test of Phillips and Ouliaris (1990) (in their notation Ẑt) and the �trace test

of Johansen (1988). From the work of Gregory et al. (2004) we know that the correla-

tion of tests within a group of tests, i.e. among residual-based and among system-based

tests, is fairly high. Therefore we expect no large gain in power. Our exercise serves to
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check whether this intuition is correct; and more importantly it serves to check whether

the meta test is still able to control size for N > 2. Both questions can be answered

a¢ rmatively, see Table 3. For comparison, we report the results for the combination

of two tests (��(2), ��(2)) from Tables 1 and 2. There is a small� but insigni�cant�

improvement in both size and power by moving to a version of the meta test that uses

four underlying tests.

4 Empirical Application

4.1 Setup

Naturally we are interested in the applicability and the relevance of our testing strategy

in practice. To shed light on this question, we revisit the studies which Gregory et al.

(2004) investigated for �mixed signals�, i.e. con�icting test results from cointegration

tests. Gregory et al. (2004) analyze the cointegration tests reported in 34 studies dealing

with cointegration which were published in the Journal of Applied Econometrics (JAE)

from 1994 to March/April 2001.9 From these studies we construct 161 data sets in which

we test for cointegration. The data sets exhibit large di¤erences in sample size, which

ranges from 27 to 7693 with a median size of 73. Similarly the number of variables di¤ers

across studies and ranges from 2 to 11.

Our goal is to document the extent to which con�icting test results arise in actual

applications and how our proposed meta test is able to heal this problem. As Gregory

et al. (2004), we do not intend to suggest that the authors of the original studies have

been in any way strategic in their choice of which test for cointegration to apply. Most

applied researchers tend to view the di¤erent tests as rather interchangeable, with the

choice more dependent on the nature of the investigation.

We follow Gregory et al. (2004) closely in their setup. The original published studies

employ di¤erent methods to test their speci�cations. To make the results comparable,

we impose a unifying but standard methodology. For the residual-based tests where a de-

pendent variable is required, we follow the choice in the original paper if possible. If there

is no obvious dependent variable, we choose it on the basis of the highest R2: Addition-

ally we need to allow for variation in lag lengths across data sets. The literature discusses

a number of di¤erent methods for choosing the number of lags. We have chosen a fairly

standard one and determine the lag length P̂ for the VECM estimation of our algorithm

9The data sets are available online through the Journal of Applied Econometrics� website
(http://qed.econ.queensu.ca/jae/2004-v19.1/gregory-haug-lomuto/).

15



using a Schwarz Information Criterion (BIC) as described e.g. in Lütkepohl (2005, Sec-

tions 4.3.2 and 8.1). We search over the range 1 � P̂ � min
�
8
�
T
100

�1=5
; T�2
2(K+1)

�
; where

K is the number of variables, and impose the same number of lags for the two Johansen

tests and the Engle-Granger test. Our qualitative conclusions would not be di¤erent if

alternative selection methods were employed. All tests include a constant and a trend.

4.2 Results

We compare the test results of (bootstrap versions of) �trace; �max, Phillips and Ouliaris

(1990), AEG tests as underlying tests with the �� (4) test.10 To see how the �� test had

worked in practice, we proceed as follows. We �rst check whether all single test agree

or not in their testing decision at the 5% level, see left panel of Table 4. In those cases

where con�icting test results occurred we check what the test used in the original paper

had suggested as a test result (more precisely what would have been the outcome of our

bootstrap version with the chosen lag-length criterion), see the right panel of Table 4.

In all cases we compute and compare to the test result according to the �� (4) test.

Table 4 reports the frequencies for all possible pairs of outcomes.11 As we argued

at the end of Section 2, a feature of our test is that whenever all underlying bootstrap

tests reject, so will the ��. This theoretical result is con�rmed. Moreover, we also see

that when all tests do not reject the null, the meta test typically does not reject either.

However, such cases of agreeing tests make up only 68% of all data sets (tests).

For the remaining 32% of data sets we have con�icting single tests and here our test

turns out to be most useful. It allows the researcher to arrive at a de�nite conclusion.

We �nd in 60% (=27/45) of the con�icting cases that the meta test does not reject

the null. In the remaining 40% of the con�icting cases, however, the �� test leads to a

rejection of the null of no cointegration. Moreover, we note the following.

First, rejecting whenever at least one (but not all) of the tests rejected would have

lead to a substantial overstatement of cointegration (45 vs. 18 cases according to the ��

test). Similarly, not rejecting whenever one test did not reject would have lead to an

understatement of cointegration.

Second, the tests that have been �preferred� in the actual studies tend to be more

10We performed the analogous exercise with asymptotic single tests. One might view this alternative
as closer to conventional empirical practice. On the other hand, using the bootstrap tests as in Table 4
avoids the size distortion of the Johansen test in small samples (see Table 1). In any case, results are
very similar. Tables are available upon request.
11For 18 data sets step 2 of our Algorithm �nds an explosive root and hence we cannot calculate our

bootstrap tests.
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Table 4: Test results in applied studies and the �� test

number of cases in which ...

single test results ... ... in case of con�icting
agree con�ict results: �preferred�test�

r :r
P

r :r
P

�� (4) : r 65 1 18 84 �� (4) : r 11 5 16
�� (4) : :r 0 32 27 59 �� (4) : :r 14 11 25P

65 33 45 143
P

25 16 41

r : test rejects; :r : test does not reject
� : Test type on which conclusions in the original study were based. For four data sets where we
obtain con�icting test results no cointegration testing was reported.

Absolute frequencies of cointegration-test results for data from Gregory et al. (2004). Single tests
include bootstrapped Engle-Granger, Phillips-Ouliaris and Johansen tests. The �� (4) combines
these tests as described in Section 2. All bootstrap tests are constructed using 10,000 bootstrap
resamples.

rejective than our meta test (25 vs. 16 rejections in 41 tests).12 This suggests that the

evidence in favor of cointegration would have been somewhat less pronounced if the

studies could have relied on a suitable meta test for cointegration.

Third, whether or not the preferred test rejected the null does not seem to be infor-

mative on whether or not �� rejects conditional on observing con�icting test results. This

is re�ected by approximately equal conditional probabilities: 27=45 ' 14=25 ' 11=16.

In other words, we cannot conclude from a published test result what the �� test would

indicate, conditional on the fact that a further single test leads to a con�icting test

result.

5 Conclusion

This paper proposes a meta test that combines information from di¤erent underlying

tests for cointegration. To the best of our knowledge, this is the �rst time that a practical

approach has been put forward to combine di¤erent tests of one hypothesis applied to a

12 In four cases of con�icting test results, the original study did not report a cointegration test but was
rather concerned with e.g. estimating cointegration vectors.
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single sample. The test takes into account the multiple testing nature of running more

than one underlying test and hence controls size. By contrast, running more than one

test and then simply inferring about the hypothesis from the most rejective test does

not achieve this goal but leads to a signi�cantly oversized test, as we have shown. While

controlling size, the proposed meta test is powerful, and certainly more powerful than

traditional methods to account for multiplicity like for example the Bonferroni method.

Extensive Monte Carlo simulations demonstrate the e¤ectiveness of our approach.

An application of our test to a set of cointegration studies con�rms its practical value. It

allows the applied researcher arrive at an unambiguous test decision in cases of con�icting

single test results.

The setup we put forward is fairly general and hence can be adopted to other testing

problems for which several (imperfectly correlated) tests have been developed. Examples

include testing for unit roots or heteroscedasticity. Essentially, what is needed is a

bootstrap method suitable for the phenomenon of interest. For the above mentioned

testing problems such bootstrap methods would be the sieve and the wild bootstrap,

respectively.

In practice, a major advantage of our proposed test should be that it relieves the

applied researcher from the discretionary and sometimes arbitrary choice of the cointe-

gration test(s) she wants to rely on to reach a test decision.
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Appendix for the referee

The following provides size and power tables for the 1% and 10% nominal level for

DGP(A) and (B). Furthermore it provides size and power results for a third DGP with

autocorrelated errors. This DGP has the same parameterization as DGP(A) except for

that

ujt = �ujt�1 + "jt; � = 0:33:

Table 5: Alternative DGP(C): Empirical size of the cointegration tests at nominal level
of 5%

Bootstrap tests asymptotic tests
DGP T �� �� naive ��max AEG� �max AEG

(C) 50 0.0716 0.0814 0.1124 0.0734 0.0594 0.1046 0.0392
AR(1) Shocks 75 0.0572 0.0652 0.0942 0.058 0.0562 0.0938 0.0398

100 0.0508 0.0564 0.0816 0.0544 0.0456 0.0954 0.0376
125 0.0516 0.0582 0.0830 0.0500 0.0542 0.0920 0.0366
150 0.0518 0.0558 0.0784 0.0488 0.0496 0.0856 0.0316

See notes to Table 1

Table 6: Alternative DGP(C): Empirical power of the cointegration tests at nominal
level of 5%

Bootstrap tests asymptotic tests
DGP T �� �� naive ��max AEG� �max AEG

(C) 50 0.1144 0.1220 0.1756 0.0982 0.1092 0.1660 0.0712
AR(1) Shocks 75 0.1850 0.1970 0.2634 0.1688 0.1670 0.2654 0.1206

100 0.3300 0.3518 0.4192 0.3042 0.2646 0.4346 0.2074
125 0.5282 0.5544 0.6140 0.4978 0.4122 0.6282 0.3388
150 0.7174 0.7372 0.7808 0.6898 0.5488 0.7950 0.4716

See notes to Table 1
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Table 7: Empirical size of the cointegration tests at nominal level of 1%

Bootstrap tests asymptotic tests
DGP T �� �� �naive� ��max AEG� �max AEG

(A) 50 0.0142 0.0210 0.0236 0.0160 0.0106 0.0200 0.0064
75 0.0106 0.0144 0.0182 0.0100 0.0120 0.0168 0.0080
100 0.0104 0.0148 0.0186 0.0122 0.0090 0.0186 0.0064
125 0.0090 0.0142 0.0126 0.0086 0.0082 0.0144 0.0052
150 0.0104 0.0128 0.0174 0.0128 0.0088 0.0210 0.0070

(B) 50 0.0170 0.0210 0.0236 0.0160 0.0106 0.0200 0.0064
75 0.0116 0.0144 0.0182 0.0100 0.0120 0.0168 0.0080
100 0.0112 0.0148 0.0186 0.0122 0.0090 0.0186 0.0064
125 0.0090 0.0142 0.0126 0.0086 0.0082 0.0144 0.0052
150 0.0122 0.0128 0.0174 0.0128 0.0088 0.0210 0.0070

See notes to Table 1

Table 8: Empirical size of the cointegration tests at nominal level of 10%

Bootstrap tests asymptotic tests
DGP T �� �� �naive� ��max AEG� �max AEG

(A) 50 0.1212 0.1262 0.1822 0.1238 0.1046 0.1738 0.0706
75 0.1078 0.1118 0.1598 0.1026 0.1022 0.1754 0.0764
100 0.0984 0.1022 0.1524 0.1010 0.0952 0.1620 0.0726
125 0.1026 0.1052 0.1560 0.1002 0.1058 0.1664 0.0800
150 0.1012 0.1036 0.1510 0.0978 0.0994 0.1566 0.0738

(B) 50 0.1106 0.115 0.1702 0.1162 0.1008 0.1688 0.0684
75 0.1060 0.1116 0.1582 0.0996 0.1052 0.1690 0.0752
100 0.1022 0.1034 0.1574 0.1028 0.0992 0.1572 0.0728
125 0.0962 0.1006 0.1486 0.0980 0.0950 0.1606 0.0682
150 0.0940 0.0982 0.1426 0.0944 0.0934 0.1556 0.0712

See notes to Table 1
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Table 9: Empirical power of the cointegration tests at nominal level of 1%

Bootstrap tests asymptotic tests
DGP T �� �� naive ��max AEG� �max AEG

(A) 50 0.0302 0.0378 0.0472 0.0268 0.0264 0.0444 0.0166
75 0.0660 0.0802 0.0978 0.0614 0.0546 0.1034 0.0374
100 0.1402 0.1664 0.1990 0.1486 0.0986 0.2224 0.0694
125 0.2884 0.3362 0.3790 0.3126 0.1892 0.4164 0.1370
150 0.4874 0.5456 0.5796 0.5190 0.2888 0.6242 0.2144

(B) 50 0.0240 0.0334 0.0344 0.0178 0.0228 0.0270 0.0148
75 0.0288 0.0360 0.0384 0.0192 0.0308 0.0320 0.0210
100 0.0582 0.0750 0.0748 0.0344 0.0608 0.0594 0.0402
125 0.0906 0.1168 0.1140 0.0570 0.0964 0.0896 0.0616
150 0.1378 0.1722 0.1620 0.0804 0.1446 0.1282 0.1006

See notes to Table 1

Table 10: Empirical power of the cointegration tests at nominal level of 10%

Bootstrap tests asymptotic tests
DGP T �� �� naive ��max AEG� �max AEG

(A) 50 0.2188 0.2258 0.3132 0.1894 0.2074 0.2910 0.1456
75 0.3748 0.3834 0.4762 0.3348 0.3212 0.4746 0.2548
100 0.6044 0.6120 0.6942 0.5628 0.4776 0.6944 0.3990
125 0.8010 0.8114 0.854 0.7740 0.6446 0.8654 0.5756
150 0.9306 0.9370 0.9484 0.9066 0.7874 0.9544 0.7324

(B) 50 0.1618 0.1698 0.2278 0.1344 0.1624 0.2166 0.1116
75 0.2150 0.2280 0.2912 0.1624 0.234 0.2610 0.1778
100 0.3126 0.3286 0.3926 0.2304 0.3366 0.3478 0.2690
125 0.4364 0.4582 0.5172 0.3214 0.4704 0.4480 0.3944
150 0.5626 0.5830 0.6456 0.433 0.605 0.5580 0.5242

See notes to Table 1
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Table 11: Frequencies of test results in applied studies and the �� test: Comparison to
asymptotic tests

results

con�ict agree

r :r
P

�� : r 12 70 2 84
�� : :r 18 4 37 59P

30 74 33 143

r : test rejects; :r : test does not reject
� : Test type on which conclusions in the original study were based. For four data sets where we
obtain con�icting test results no cointegration testing was reported.

Absolute frequencies of cointegration-test results for data from Gregory et al. (2004). Single tests
include asymptotic Engle-Granger, Phillips-Ouliaris and Johansen tests. The �� (4) combines
bootstrapped versions of these tests as described in Section 2. All bootstrap tests are constructed
using 10,000 bootstrap resamples.
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