
Fast Ejection Chain Algorithms for

Vehicle Routing with Time Windows

H. M. J. Sontrop1, S. P. van der Horn2, G. Teeuwen3, and M. Uetz1

1 Maastricht University, Quantitative Economics, P.O. Box 616, 6200 MD Maastricht,
The Netherlands. E-mail: {Herman.Sontrop@gmail.com, M.Uetz@ke.unimaas.nl}

2 Heezerweg 198, 5614 HJ, Eindhoven, The Netherlands. E-mail:
PietervanderHorn@gmail.com

3 Centre for Quantitative Methods CQM BV, P.O.Box 414, 5600 AK Eindhoven,
The Netherlands, E-mail: G.Teeuwen@cqm.nl

Abstract. This paper introduces new ejection chain strategies to ef-
fectively target vehicle routing problems with time window constraints
(VRPTW). Ejection chain procedures are based on the idea of compound
moves that allow a variable number of solution components to be modi-
fied within any single iteration of a local search algorithm. The yardstick
behind such procedures is the underlying reference structure, which is
the structure that is used to coordinate the moves that are available
for the local search algorithm. The main contribution of the paper is
a new reference structure that is particularly suited in order to handle
the asymmetric aspects in a VRPTW. The new reference structure is
a generalization of the doubly rooted reference structure introduced by
Glover, resulting in a new, powerful neighborhood for the VRPTW. We
use tabu search for the generation of the ejection chains. On a higher
algorithmic level, we study the effect of different meta heuristics to steer
the tabu chain ejection process. Computational results confirm that our
approach leads to very fast algorithms that can compete with the current
state of the art algorithms for the VRPTW.

1 Introduction

Recently, the famous Lin-Kernighan (LK) procedures [14] were dethroned as
champion procedures for solving large scale traveling salesman problems by so-
called Stem & Cycle (SC) ejection chains; see [6]. This is remarkable, since
Lin-Kernighan type procedures had dominated this field for the last decades.

In the words of Glover [9], ‘ejection chain procedures are based on the notion
of generating compound sequences of moves, leading from one solution to an-
other, by linked steps in which changes in selected elements cause other elements
to be “ejected from” their current state, position or value assignment’. A key
difference over the LK-based approaches is the fact that ejection chain proce-
dures explicitly identify a so called reference structure. A reference structure is a
structure similar to, but slightly different from a solution. Via a set of transition

rules, the reference structure guides the generation of acceptable moves from one
reference structure to another. Actual solutions to the problem, usually called

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6941901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 H. M. J. Sontrop et al.

trial solutions in this context, are obtained from any reference structure, again
via a predefined set of transition rules.

In this paper we address the vehicle routing problem with time window con-
straints (VRPTW). Given is a number of customers in the plane, with known
demands, a given service or delivery time, and a fleet of identical vehicles with
known limited capacities. We are asked to find a set of routes starting and ending
at a central depot, such that each client’s demand is delivered, and each client is
visited exactly once. Clearly, any route must not violate the capacity constraints
of the vehicle. In addition, each client must be serviced within its so called time

window. The time window specifies an earliest and a latest time at which the
delivery must begin. If a vehicle arrives at a customer before the opening of the
time window, the vehicle must wait. Arriving after the end of the time window
is not allowed. Two different solutions with the same number of vehicles are usu-
ally ranked by the total distance travelled by the vehicles (sometimes, also the
waiting time is taken into account). The objective considered in this paper is the
total distance travelled by the vehicles, utilizing as many vehicles as required4.

The VRPTW has been extensively studied. The best exact procedures can
still only handle small instances, small being in the order of 50-100 customers [20].
Meta-heuristic procedures mostly minimize the number of vehicles, and among
solutions with the same number of vehicles, prefer those with small total dis-
tance travelled. Since the overall literature is extensive, we refer to [20] for a
thorough introduction into vehicle routing in general, and many references. For
concepts of tabu search, simulated annealing and other meta-heuristics, we refer
to Aarts and Lenstra [1]. As a matter of fact, tabu search based procedures are
the majority among the most effective algorithms for VRPTW, see, e.g., [18, 21,
12], but also other meta heuristic frameworks proved to be effective, such as,
e.g., a multiple ant colony system of [5].

Our main contribution is a new reference structure, generalizing previous
structures, that particularly targets the asymmetric nature of the VRPTW. This
reference structure lies at the heart of a traditional ejection chain procedure
that is based on tabu search. The ejection chain itself is driven by a higher
level meta heuristic. So far, ejection chain studies have mainly focused on the
lower level of control, the ejection chain process itself. In addition to providing
a new reference structure, a novelty in our contribution is therefore also a study
of different (higher level) meta heuristics that are used to steer the ejection
chain process. Here we test two different approaches, iterated local search, and
simulated annealing. Our computational results on established standard test sets
confirm that the resulting hybrid meta heuristic is fast and extremely effective.

2 The Cyclic Doubly Rooted reference structure

It can be considered both a strength and a weakness of LK-based procedures
that certain types of moves require a path reversal. In the absence of (tight) time

4 This is not a limitation of our approach, since it could be adopted to handle other
objectives, too. We opted for this objective in order to be able to compare our results
to the known optimal solutions, which have been obtained using the same objective.

Ejection chains for vehicle routing with time windows 3

windows, path reversals are an important building block of powerful moves. In
the presence of time windows, however, path reversals often violate time win-
dows, especially if the time windows are tight. Therefore, our idea to create a
powerful ejection chain procedure for the VRPTW is to have a reference struc-
ture that still provides a strong connectivity between solutions, but does not rely
on path reversals in order to generate moves.

The current champion TSP procedures use the SC reference structure. Figure
1 shows a instance of this structure. It is a spanning subgraph that consists of
one cycle and a path. The path is called the stem, the end of the stem is called
the tip. The vertex that is shared by the cycle and the stem is called the root.
Note that the root and the tip have odd degrees. Figure 2 shows a Doubly Rooted

Fig. 1. SC Fig. 2. DR Fig. 3. Flower Fig. 4. CDR

(DR) reference structure. It may be conceived as arising from a SC by adding
an edge (t, j) which connects the tip to an arbitrary node j on the cycle.5 Again,
this results in a structure that has two vertices that have an odd degree. In [8]
Glover refers to both these vertices as roots. Glover shows that the DR structure
has several advantages over the SC structure. He proves a connectivity result
showing that the DR allows for more direct trajectories between solutions. Most
important is that the connectivity result also holds for asymmetric problems.
This is our main reason to base the new reference structure on the DR concept
instead of the SC concept. In addition, the DR structure provides access to
moves unavailable to a SC structure. Rego [17] generalizes the SC into the Flower

reference structure6, depicted in Figure 3. As can be seen it is a SC structure
joined with multiple cycles. The intersection of the cycles is called the core. A SC
structure can also be seen as a (trivial) Flower. The Flower concept proved to be
very fruitful for VRP problems without time windows. The reference structure
we propose is closely related to both the DR structure and the Flower concept.
It may be conceived from a Flower by adding an edge (t, j) which connects the
tip to an arbitrary node j on a cycle, as shown in Figure 4.

Figure 5 shows an instance of this new reference structure. We call it a Con-

strained Doubly Rooted reference structure (CDR). We use the word ‘constrained’
since the core, the depot vertex, always represents one of the roots. In Section 7
we briefly discuss an even more general version. Note that a CDR, too, has two
vertices that have odd degree. We will refer to the vertex that represents the
depot as the core, denoted by c. The other vertex with odd degree is called the

5 Another form of a DR arises when we connect the tip to a vertex located on the
stem. This form is not considered in this paper.

6 Rego [17] refers to the vertex t as the root. We use the term tip as in [8], however.

4 H. M. J. Sontrop et al.

Fig. 5. CDR reference structure

root, denoted by r. A vertex v such that the edge (v, r) exists is called a sub-

root. Note that when we eject such an edge (v, r) we obtain a flower structure,
therefore v could also be called an implicit tip.

3 Transition rules

Next we state five simple rules that enable us to exploit the CDR structure to
create a powerful ejection chain procedure. None of these rules involves a path
reversal. The moves, however, can easily be adapted to include path reversals,
if desired. In the figures, the core c is always the lowest vertex, and the root, if
present, is displayed shaded.

S1-rule (Solution to CDR)
Eject (s, c)
Add (s, j) where j 6= c

S2-rule (Solution to CDR)
Add (c, p) where p 6= c

Eject (q, p) where q is the predecessor of p

Add (q, j) where j 6= c and j 6= p

E1-rule (CDR to CDR)
Eject (s, r) where s 6= c

Add (s, j) where j 6= r and j 6= c

T1-rule (CDR to Solution)
Eject (s, r) where s 6= c

Add (s, j) where s 6= j

Eject (c, j)

Ejection chains for vehicle routing with time windows 5

T2-rule. (CDR to Solution)
Eject (s, r)
Add (s, c)

In order to not deteriorate the quality of either a solution or a CDR by one
of the transition rules, and to speed up the procedure, whenever an arc (v, w) is
added, we require one of the following two conditions. Either, vertex w must be
a direct neighbor of vertex v in the Delaunay triangulation of the point set of
customers of the underlying instance7, or (v, w) is one of the 12 shortest edges
leaving v such that this edge does not imply a time window violation on its own.
No conditions are placed on edges that involve the depot vertex. Let us call a
transition admissible if one these conditions are satisfied8.

4 Ejection Chain Construction

Figure 6 shows an instance of an ejection chain with depth 5. Starting at a start
solution S, we move to the best CDR structure that can be obtained from S,
using any of the admissible S-transition. Then we use 4 consecutive admissible

Fig. 6. Ejection chain example

E-transitions, moving to the respective best available CDR structure, and at
each level, we determine the best admissible trial solution (TS), using any of the
T -transition rules. Eventually, the compound move would consist of moving from
S to the overall best found trial solution, the boxed trial solution in Figure 6.

In order to be able to move to the ‘best’ admissible CDR structure for any
S- or E-transition, we must decide on the quality of a CDR reference structure
(recall that it does not represent a feasible solution). To this end, we associate
a simple cost function with the CDR reference structure. Figure 7 provides an

7 See [7] for definitions regarding Delaunay triangulations.
8 Glover uses slightly stricter conditions, so called legitimacy conditions, to determine

the edges that are susceptible to being added or ejected, see [8]. The same legitimacy
conditions have been adopted also by Rego [17].

6 H. M. J. Sontrop et al.

example how to determine the cost of a sample CDR structure. The idea is to just
count the total length of arcs included in the structure, incremented by a penalty
term for the total time window violations of the implicit routes. To understand

TW Route A Route B

C: [0,10] AC : 0 VC : 0 AC : 0 VC : 0
1: [2,4] A1: 2 V1: 0 A4: 2 V4: 0
2: [4,5] A2: 4 V2: 0 A2: 6 V2: 1
3: [5,7] A3: 6 V3: 0 A3: 8 V3: 1
4: [2,5] AC : 8 VC : 0 AC : 10 VC : 0

Fig. 7. Instance for determining the cost of a CDR structure

what is meant, consider the instance of Figure 7. On the left we have a CDR
structure. All arcs are of length 2, except arc (4,2) that has length 4. Service
times are 0. Vertex 2 represents the root of the CDR, vertex C represents the
core, while vertices 1 and 4 are the subroots. This CDR has two implicit routes,
route A: {C,1,2,3,C} and route B: {C,4,2,3,C}. (At least one of these routes will
be destroyed at the next move to either another CDR or to a solution.) The table
on the right of Figure 7 shows the time windows (TW), the arrival times Ai and
time window violations Vi for all vertices i. Note that Route A has a violation
of 0 while Route B has a violation of 1 + 1 = 2. The total cost is the sum of the
lengths of all arcs and the total time window violation of all (implicit) routes
multiplied by a certain penalty P . Therefore, we would assign a total cost of
(2 + 2 + 2 + 2 + 2 + 3) + P ∗ (0 + 2) = 13 + 2P .

Finally, it is important to notice that each ejected edge is declared tabu for
the remainder of the ejection chain. In addition, all edges ejected in one ejection
chain are declared tabu also for the next θ ejection chains considered by the
algorithm, where θ is a randomized parameter that is explained in more detail
in Section 6.

5 Higher Level Meta Heuristics

Ejection chain procedures are able to manipulate multiple solution components
within a single compound move. Based on the theory developed by Glover [8]
for the DR reference structure, the CDR-structure proposed in this paper is
conjectured to provide a strong form of connectivity between any two solutions.
Therefore, a search can (and indeed does) easily get stuck in a so-called basin

of attraction, see [15]. Hence we need a mechanism that will provide an escape
trajectory from such a basin. We implemented two mechanisms, iterated local
search as well as simulated annealing.

5.1 Iterated Local Search

A simple, yet surprisingly effective technique is to apply an Iterated Local Search

(ILS) strategy, see [15, 2] We propose an ILS where the embedded heuristic is

Ejection chains for vehicle routing with time windows 7

based on tabu controlled ejection chains and uses random vertex ejections as
kick moves. From a given start solution S1 a basic ILS scheme can be stated as
follows.

Apply a kick move on S1 yielding S2

Perform a local search on S2 resulting in S3

Choose wether or not to accept S3

If S3 is accepted restart from S3, otherwise restart from S1

We use the random ejection of a single vertex v as a kick move. The ejected vertex
v forms a new route on its own, while we link v’s predecessor to its successor.
Note that the kick move never introduces infeasibility. One of the main strengths
of our procedure is its ability to merge routes in a way similar, but much more
efficient, than the well known Clark & Wright savings procedure [3]. Therefore
creating single vertex routes presents no problems and, in a way, only makes
it easier for our procedure to find new moves, since ejecting vertices always
creates more ‘freedom’ in existing routes. Note that, through the objective, the
procedure is strongly biased to decrease the number of routes, so creating a
new route by ejecting a vertex through a kick is a move not likely to be made
by the procedure otherwise, even though the kick move is available as a forced
combination of an S2 and T2 move. We thus follow the view expressed in [16],
namely that a kick move should correspond to a modification of the structure
that is not easily accessible to the moves already available or is unlikely to be
chosen by the procedure itself.9 The following pseudo code summarizes the ILS
procedure we used.

ILS_EjectionChainProcedure:
{

while(n < MaxNrOfIterations)
{

while(Depth < MaxDepth)
{

MoveToNewReferenceStructure
GetOptimalTrialSolution
Depth++

}
DetermineOptimalTrialSolutionOverCurrentEjectionChain
UpdateBestKnownSolution
if(n mod KickFrequency = 0)
{

ReturnToCurrentBestKnownSolution
ApplyKickMove

}
UpdateTabuList
n++

}
}

The inner while-loop processes new ejection chains. Each chain is initialized via
an S-rule. At each level we check all admissible trial solutions via T -rules, storing
the best. We keep adding levels via best admissible E-moves until we reach the
maximum depth. The procedure then returns the best found trial solution to
the ILS procedure, the outer while-loop. Periodically the procedure applies a

9 Since we use Tabu search, instead of strict local search, the kick move is temporarily
“irreversible”, thus the procedure is forced to find an alternative way to repair the
sustained “damage” obtained from the kick move. The “strength” of the kick is
rather low. Ejecting more than one vertex per kick proved unsuccessful.

8 H. M. J. Sontrop et al.

kick move on the best known solution. Note that the ILS procedure we use only
accepts improvements. Other acceptance criteria could be used; see [4, 15].

The behavior of our ILS procedure is such that, in a sense, we always stay
close the the current best solution value. This is in line with the so called Pyramid

Principle, as stated by Glover [9]. The ILS enables us to search with a low tabu
tenure for most of the time. Our computational results in Section 6 confirm that
the ILS procedure proved to be able to generate high quality solutions in a small
number of iterations, where one iteration is understood to be one pass of the
outer while-loop.

5.2 Simulated Annealing

Instead of using ILS, we can also use Simulated Annealing (SA) as meta heuristic
to control the ejections chain procedure. An interesting variant arises when we
return each generated trial solution to an SA process. The SA process then either
accepts the current trial solution, terminating the current chain or it rejects the
trial solution, enabling the chain to grow further. If no trial solution is accepted
the procedure will select the best encountered trial solution in the current chain
and start a new chain from there.

SA_EjectionChainProcedure:
{

while(n < MaxNrOfIterations)
{

while(Depth < MaxDepth)
{

MoveToNewReferenceStructure

GetOptimalTrialSolution

Depth++

if(AnnealingAccept)
{

TerminateCurrentChain
}

}

DetermineOptimalTrialSolutionOverCurrentEjectionChain

UpdateBestKnownSolution

UpdateTabuList

n++
}

}

This procedure has the ability to automatically converge from an SA process
to a strict tabu search. In the beginning of the search, when the temperature is
high, ejection chains will be terminated prematurely because the SA will easily
accept. However, when the temperature becomes very low, we always reach the
maximum depth of the chain. Therefore the best trial solution will be chosen,
just as a strict tabu search process would do.

This procedure adds two important qualities to a strict SA process. First, the
search is much more guided in the early stages. This is because the generation
of neighbors is done via a tabu controlled process, the ejection chain, instead
of a random generation. Second, the time at the end of the search is spent
more efficiently: in the end a strict SA process will generate a great number
of trial solutions that will all be rejected. This kind of behavior is not desired,
particularly when the checking of feasibility is expensive, as is often the case in
time window constrained settings.

Ejection chains for vehicle routing with time windows 9

6 Computational results

This section contains the test results for the two proposed meta heuristics. The
algorithms were programmed in C++. Testing was done on a 2.5Ghz, AMD ma-
chine with 512MB ram. We performed the computational test on the well known
Solomon test cases [19]. Testing was done on the 50 as well as the 100 vertex
instances. Since we minimize the total distance, we can compare to the global op-
timal values, as stated in [20]. The computational results stated here are therefore
restricted to those instances where global optimal values are known. In addition
we tested the procedure on larger instances generated by Homberger [10], again
restricted to instances where global optima are known [11]. The Homberger test
sets extend the Solomon sets and share the same design.

Both procedures use the same design of tabu ejection chains. After each ejec-
tion chain, all ejected edges are declared tabu for an additional θ iterations,
where θ is randomly drawn from the interval [10, 30]. As a diversification mea-
sure, we increased this interval to [40,50] (50 vertices) or [70,100] (100 vertices)
for 100 iterations, if the procedure did not find an improvement for 1000 subse-
quent iterations. The maximum depth for an ejection chain was always 50. The
time window violation penalty P was set to 100. For both procedures we used
the same, trivial start solution where each client forms an individual route. For
the 50 vertex sets we performed 50,000 iterations, and for the 100 vertex and
Homberger sets 100,000 iterations.

The results of Table 1 confirm that we get extremely close to the optimal solu-
tions, on all tested instances. We display the globally optimal solutions (vehicles
used, travel distance), the vehicles used by our solutions, as well as the deviation
from the optimum (in %). The columns labelled ARO display a statistic for the
tightness of the time windows, the average relative overlap (ARO)10.

We observe that the ILS procedure clearly outperforms the SA procedure.
This is probably due to the effectiveness of the kick moves; in fact, the ILS
scheme performed a kick very often, every 5 iterations. The comparably worse
performance of the SA procedure might also be caused by a too simplistic cooling
schedule. It proved difficult to find a reasonable cooling scheme for the larger
test sets. Therefore we only list the results for the ILS procedure here.

The ARO statistic provides a clue on the performance of our procedure. It
measures the average overlap between any two time windows. We observe that,
on average, when the procedure performs worse, the ARO is high. This indeed
makes sense, since a high ARO implies that the instance more closely resembles
a VRP without time windows, while our procedure is explicitly designed for
settings where the time windows are tight. In fact, in settings with a lot of
overlap between time windows, path reversals might be useful. But as a tribute
to (tight) time windows, path reversals are explicitly excluded in our algorithm
design.

Finally, we note that the computation times are very reasonable, although
we did not tune our implementation for speed. Within 10 seconds running time

10 ARO = 100·
∑

i

∑

j>i

(

Overlapij

|TWi|
+

Overlapij

|TWj |

)

/(n(n − 1)), where |TWi| is the length

of time window i and n is the number of clients (the depot is not considered a client).

10 H. M. J. Sontrop et al.

on each 50 vertex instance, the ILS provides solutions on average 1.98% away
from the optimum. 1 minute for each 100 vertex instance yields 2.69% deviation
from the optimum on average. Computation times, however, can be decreased
considerably. For example, using earliest departure times and latest arrival times
as defined in [13], one can check the feasibility of trial solutions in constant time.

50 VERTICES GLOBAL ILS SA

SET ARO Veh Dist Veh Dev Veh Dev

C101 5.64 5 362.4 5 0.23 5 0.23

C102 30.43 5 361.4 5 0.21 5 0.21

C103 52.54 5 361.4 5 0.21 5 5.21

C104 80.66 5 358 5 0.25 5 4.06

C105 11.07 5 362.4 5 0.23 5 0.65

C106 8.09 5 362.4 5 0.23 5 0.65

C107 17.17 5 362.4 5 0.23 5 0.65

C108 23.82 5 362.4 5 0.23 5 2.40

C109 36.75 5 362.4 5 0.23 5 2.04

C201 3.90 3 360.2 3 0.44 3 0.44

C202 29.07 3 360.2 3 0.44 3 0.44

C203 52.06 3 359.8 3 0.45 3 0.45

C204 80.78 2 350.1 2 0.46 2 0.46

C205 9.17 3 359.8 3 0.45 3 0.45

C206 14.25 3 359.8 3 0.45 3 1.96

C207 24.13 3 359.6 3 0.45 3 0.70

C208 19.02 2 350.5 2 0.46 2 0.46

R101 6.08 12 1044 12 0.26 12 0.26

R102 30.33 11 909 11 0.27 11 1.06

R103 52.54 9 772.9 9 0.46 9 1.23

R104 79.39 6 625.4 6 2.67 6 2.96

R105 19.03 9 899.3 10 2.23 9 1.67

R106 39.29 5 793 8 0.28 8 0.28

R107 58.00 7 711.1 7 4.31 7 0.68

R108 81.64 6 617.7 6 0.41 6 3.91

R109 38.66 8 786.8 8 1.07 8 0.96

R110 58.07 7 697 7 0.34 7 1.17

R111 59.02 7 707.2 7 0.80 7 4.28

R112 79.00 6 630.2 6 1.88 6 2.36

R201 13.00 6 791.9 6 0.31 6 0.51

R202 35.62 5 698.5 6 1.18 5 3.42

R205 28.19 5 690.9 4 0.96 4 1.29

RC101 21.37 8 944 9 1.25 8 0.17

RC102 40.47 7 822.5 8 2.16 8 6.41

RC103 58.65 6 710.9 6 0.54 6 1.79

RC104 82.06 5 545.8 5 0.27 5 5.82

RC105 40.75 8 855.3 8 0.19 8 6.68

RC106 44.58 6 723.2 6 4.66 6 8.65

RC107 65.40 6 642.7 6 0.47 6 5.95

RC108 81.55 6 598.1 6 0.18 6 4.58

RC201 14.23 5 684.8 5 0.22 5 1.53

RC205 28.37 5 631 5 0.16 5 3.36

39.38 0.79 2.20

100 VERTICES GLOBAL ILS

SET ARO Veh Dist Veh Dev

C101 6.37 10 827.3 10 0.20

C102 29.72 10 827.3 10 0.20

C103 52.78 10 826.3 10 0.21

C104 76.01 10 822.9 10 0.81

C105 12.19 10 827.3 10 0.20

C106 15.37 10 827.3 10 0.20

C107 18.17 10 827.3 10 0.20

C108 25.07 10 827.3 10 0.20

C109 37.63 10 827.3 10 0.20

C201 4.33 3 589.1 3 0.42

C202 28.32 3 589.1 3 0.42

C203 52.19 3 588.7 3 0.42

C205 9.35 3 586.4 3 0.42

C206 14.65 3 586 3 0.43

C207 18.41 3 585.8 3 0.42

C208 19.74 3 585.8 3 0.43

R101 6.23 20 1637.7 20 0.32

R102 29.31 18 1466.6 18 0.48

R103 51.22 14 1208.7 15 1.47

R105 18.62 15 1355.3 16 1.29

R106 38.34 13 1234.6 13 1.86

R107 57.06 11 1064.6 12 4.06

R109 38.13 13 1146.9 13 2.53

R110 57.21 12 1068 12 3.80

R111 56.13 12 1048.7 12 4.55

R201 13.012 8 1143.2 8 0.82

RC101 19.44 15 1619.8 17 2.28

RC102 38.21 14 1457.4 15 2.16

RC103 56.15 11 1258 12 2.74

RC105 35.84 15 1513.7 17 3.89

RC201 14.23 9 1261.8 10 1.83

30.63 1.27

HOMBERGER GLOBAL ILS

SET ARO Veh Dist Veh Dev

c1 2 1 5.76 20 2698.6 20 0.22

c1 2 2 29.02 20 2694.3 20 1.08

c1 2 5 11.89 20 2694.9 20 1.23

c1 2 6 16.04 20 2694.9 20 0.43

c1 2 7 17.95 20 2694.9 20 0.23

c1 2 8 24.00 20 2684 20 0.80

c1 4 1 6.18 40 7138.8 40 0.22

r1 2 1 1.82 23 4667.2 26 3.20

14.08 0.93

Table 1: Computational Results.

7 Conclusions and recommendations

One of the key reasons for the good performance of our algorithms for VRPTW
is, we believe, due to the ability to generate powerful compound moves that do
not require a path reversal. It must be noted, however, that LK-based methods,
that do perform path reversals, are extremely efficient in settings without time
windows. We observed that, on average, when there is high overlap in the time

Ejection chains for vehicle routing with time windows 11

windows, the procedure performs less effective. It is likely that the absence of
path reversals is a reason. However, our concept can be adapted quite easily to
include moves that use path reversals, too.

It can be considered a strength that the procedures do not, in any form, use
pre-processing or post-processing. Also, the procedures can not be considered
two-phased methods, since they always use the same, extremely simple, start
solution. A strong feature of the iterated local search is that the kick move
can be made very problem-specific, and can be used to decrease any possibly
sustained infeasibility during the search.

Generalizing the reference structure by relaxing the constraint that one of the
roots must be the core is likely to further improve the procedure. The resulting
Generalized Doubly Rooted reference structure (GDR) is shown in figure 8. The
stated rules can be used as guidelines to create new S, E and T -type rules to
exploit the GDR structure. E rules can be constructed that are able to increase
or decrease the number of routes. In contrast, in the stated procedure, the total
number of routes can not be changed by more than one route per ejection chain.
Further research is necessary to examine the potential of the GDR structure
over the CDR structure. Finally, the procedure can, in all probability, easily be

Fig. 8. Generalized Doubly Rooted reference structure (GDR)

extended to the multi-depot case by using the reference structure in Figure 8,
but allowing the roots to lie on cycles not necessarily joined by the same depot.

Acknowledgements. This research was performed on behalf of the Center

for Quantitative Methods, CQM BV, Eindhoven, The Netherlands. We
are very grateful for all the support during the project. In addition, the authors
would like to thank Fred Glover and Emile Aarts for all their valuable comments,
suggestions and encouragement. We found their collaboration very inspiring.

References

1. E. H. L. Aarts and J. K. Lenstra. Local search in combinatorial optimization.
Wiley, Chichester, UK, 1996.

2. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Comput. Surv., 35(3):268–308, 2003.

3. G. Clark and J. W. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:568–581, 1964.

12 H. M. J. Sontrop et al.

4. M. den Besten, T. Stützle, and M. Dorigo. Design of iterated local search algo-
rithms. In E. J. W. Boers, J. Gottlieb, P. L. Lanzi, R. E. Smith, S. Cagnoni,
E. Hart, G. R. Raidl, and H. Tijink, editors, Applications of Evolutionary Com-

puting, volume 2037 of Lecture Notes in Computer Science, pages 441–451, 2001.
5. L. M. Gambardella, E. Taillard, and G. Agazzi. MACS-VRPTW: A multiple ant

colony system for vehicle routing problems with time windows. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 63–76.
McGraw-Hill, 1999.

6. D. Gamboa, C. Rego, and F. Glover. Implementation analysis of efficient heuristic
algorithms for the traveling salesman problem. Computers and Operations Re-

search, 2004. To appear.
7. P. L. George and H. Borouchaki. Delaunay Triangulation and Meshing, Applica-

tions to Finite Elements. Hermes, 1998.
8. F. Glover. Ejection chains, reference structures and alternating path methods

for traveling salesman problems. Discrete Applied Mathematics, 65(1-3):223–253,
1996.

9. F. Glover and M. Laguna. Tabu Search. Kluwer, Dordrecht, NL, 1998.
10. J. Homberger. Extended solomon’s VRPTW instances. www.fernuni-

hagen.de/WINF/touren/inhalte/probinst.htm, 2000.
11. B. Kallehauge, J. Larsen, and O. B. G. Madsen. Lagrangian duality applied to the

vehicle routing problem with time windows. Computers and Operations Research,
2005. To appear.

12. P. Kilby, P. Prosser, and P. Shaw. Guided local search for the vehicle rout-
ing problem. In S. Voss, S. Martello, I. H. Osman, and C. Roucairol, editors,
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimiza-

tion, pages 473–486. Kluwer, Boston, MA, 1997.
13. G. A. P. Kindervater and M. W. P. Savelsbergh. Vehicle routing: Handling edge

exchanges. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combina-

torial Optimization, pages 337–360. Wiley, Chichester, UK, 1997.
14. S. Lin and B. W. Kernighan. An effective heuristic for the traveling salesman

problem. Operations Research, 21:498–516, 1973.
15. H. R. Lourenco, O. Martin, and T. Stützle. Iterated local search. In F. Glover

and G. Kochenberger, editors, The Handbook of Metaheuristics, pages 321–353.
Kluwer, Norwell, MA, 2002.

16. O. C. Martin and S. W. Otto. Combining Simulated Annealing with Local Search

Heuristics, volume 63 of Annals of Operations Research, pages 57–75. 1996.
17. C. Rego. A subpath ejection method for the vehicle routing problem. Management

Science, 44(10):1447–1459, 1998.
18. Y. Rochat and É. D. Taillard. Probalistic diversification and intensification in local

search for vehicle routing. Journal of Heuristics, 1:147–167, 1995.
19. M. Solomon. Algorithms for the vehicle routing and scheduling problem with time

window constraints. Operations Research, 35:254–265, 1987.
20. P. Toth and D. Vigo. The Vehicle Routing Problem. Society for Industrial and

Applied Mathematics, Philadelphia, PA, 2002.
21. J. Xu and J. Kelly. A network-flow based tabu search heuristic for the vehicle

routing problem. Transportation Science, 30:379–393, 1996.

