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Abstract

We develop an algorithm that solves the constant capacities economic lot-sizing prob-
lem with concave production costs and linear holding costs in O(T 3) time. The algorithm
is based on the standard dynamic programming approach which requires the computation
of the minimal costs for all possible subplans of the production plan. Instead of com-
puting these costs in a straightforward manner, we use structural properties of optimal
subplans to arrive at a more e�cient implementation. Our algorithm improves upon the
O(T 4) running time of an earlier algorithm.
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1 Introduction

In the single-item capacitated economic lot-sizing problem there is demand for a single item

in T consecutive periods. The demand in a certain period may be satis�ed by production in

that period or from inventory that has been produced in earlier periods. It is assumed that

there is no inventory at the beginning of period 1 and that no inventory should be left at the

end of period T . Furthermore, capacity constraints on the production levels have to be taken

into account. The total costs associated with a production plan depend on the production

and inventory levels. A �xed set-up cost is incurred in a certain period whenever production

takes place. In addition there are production costs which are a function of the production

level. Finally, there are holding costs, which are a function of the inventory level at the end

of the period. The objective is to �nd a feasible production plan that minimizes total costs.

In most models that have been studied in the literature, the cost functions are assumed to be

concave or linear. Under these assumptions, many uncapacitated models are polynomially

solvable. For instance, if all cost functions are linear, then the uncapacitated version of

the above problem is solvable in O(T logT ) time (cf. Aggarwal and Park [1], Federgruen

and Tzur [5] and Wagelmans et al. [11]). Polynomial algorithms also exist for many other

uncapacitated lot-sizing problems with linear costs (cf. Aggarwal and Park [1] and Van Hoesel

et al. [8]). The uncapacitated problem with concave production and holding costs is solvable

in O(T 2) time (cf. Veinott [10]).

For capacitated problems the situation is quite di�erent. Florian et al. [7] and Bitran and

Yanasse [2] have shown that the single item capacitated economic lot-sizing problem is NP-

hard, even in many special cases. Bitran and Yanasse also designed a classi�cation scheme

for capacitated lot-sizing problems with linear production and holding costs. They use the

four �eld notation �=�==�, where �, �,  and � represent the set-up cost, unit holding cost,

unit production cost and capacity type, respectively. Each of the parameters �, � and 

can take on one of the values G, C, ND, NI or Z. G means that the parameter follows an

arbitrary pattern over time, whereas C, ND, NI and Z indicate constant, non-decreasing,

non-increasing and zero parameter values, respectively. � can take on the values G, C, ND

or NI; in case there are no capacity restrictions, the fourth �eld is omitted.

A very successful DP approach to solve the most general problem, G=G=G=G, has recently

been proposed by Chen et al. [3]. We also refer to that paper for a discussion of other work

on NP-hard versions of the capacitated economic lot-sizing problem.

With respect to polynomially solvable special cases of the capacitated economic lot-sizing

problem, the following results are known. Bitran and Yanasse showed that ND/Z/ND/NI

and C=Z=C=G can be solved in O(T ) respectively O(T logT ) time. Chung and Lin [4] gave

an O(T 2) algorithm for NI/G/NI/ND and an O(T 4) algorithm for G=G=G=C was presented

by Florian and Klein [6]. The latter algorithm also solves the more general constant capacity

problem in which the cost functions are concave instead of linear. Pochet and Wolsey [9]

consider the related problem in which multiple batches of equal capacity are available, each

requiring a set-up cost. They solve this problem in O(T 3) time.

In this paper we will show that when the production costs are concave and the holding costs

are linear, it is possible to solve the economic lot-sizing problem with constant capacities in

O(T 3) time. Hence, for this case we improve upon the Florian{Klein algorithm.
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This paper is organized as follows. In Section 2 we introduce some notation. Section 3

contains a description of a greedy algorithm for solving a basic subproblem. In Section 4 the

actual algorithm is described. Section 5 contains conclusions and some remarks.

2 Preliminaries

We will use the following notation:

T : the length of the planning horizon;

C : the production capacity in each period.

Furthermore, for each period t 2 f1; : : : ; Tg:

dt: the demand in t;

xt: the production level in t;

It: the inventory level at the end of t (I0 = 0);

ft: the set-up cost in t;

ht: the unit holding cost in t;

pt(xt): the production costs in t, a concave function of xt.

The cumulative demand of a set of consecutive periods fs; : : : ; tg (1 � s < t � T ) will be

denoted by ds;t =
Pt

�=s d� .

Without loss of generality we may assume:

(a) For each period t : dt � C. If this is not the case, we can move the excess demand in t to

the preceding period t � 1 without changing the set of feasible solutions.

(b) The unit holding costs are all equal to zero. If this is not the case, then an equivalent

problem is obtained by omitting the holding costs and rede�ning the production costs as

~pt(xt) = pt(xt) +
PT

i=t hixt (cf. Wagelmans et al. [11]). Note that we can achieve this

only when the original holding costs are linear.

For notational convenience, we let cf(t) denote the cost of producing at full capacity in period

t, i.e., cf(t) = ft + ~pt(C) (t 2 f1; : : : ; Tg).

We call production in a period t fractional if it is between 0 and C, i.e., 0 < xt < C. Florian

and Klein [6] have shown that there exists an optimal schedule such that between any pair of

fractional production periods there is at least one period with zero inventory. This property

is often referred to as the fractional production property. It also holds in case of general

capacities. For any feasible solution, we de�ne a subplan (t1; t2) (1 � t1 � t2 � T ) as a set

of consecutive periods, starting with t1 and ending with t2, such that at most one period

has fractional production and It1�1 = It2 = 0 . (Note that our de�nition of subplan is more

general than the usual de�nition in which inventories of intermediate periods t1; : : : ; t2�1 are

required to be strictly positive.) It follows from the fractional production property that we

only need to consider feasible solutions that can be subdivided into subplans. This suggests

an approach in which we �rst determine optimal solutions for all subplans and then choose

the best combination of subplans which constitute a complete solution. In the next section

we will present an algorithm for �nding an optimal solution for a given subplan.
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3 Greedy algorithm

Consider a �xed subplan (t1; t2) for which we want to �nd a minimum cost solution. In case

dt1;t2 = KC for some integer K, any feasible solution has only full production periods, namely

exactly K. Hence, �nding a minimum cost solution for the subplan boils down to determining

in which K periods full production should take place. In case cumulative demand is not a

multiple of C, i.e., if dt1;t2 = f + KC for some integer K and f such that 0 < f < C,

then any feasible solution has K full production periods and a fractional period in which the

production level equals f . Suppose that we �x the fractional production period, then the

problem is again to determine an optimal set of full production periods. In the remainder

of this paper we will focus on the case in which the subplan contains a fractional period,

because this problem is clearly as least as hard as the problem without a fractional period.

We can restrict the fractional production f to periods t with dt;t2 � f , since fractional

production in later periods will lead to positive ending inventory in period t2, contradicting

the de�nition of a subplan. Therefore, we de�ne tmax to be the latest period t such that

dt;t2 � f . Similarly, there is an earliest possible fractional period. If dt1;t > (t�1)C+f , then

the periods t1 through t must be full capacity production periods. Therefore, we de�ne tmin

as the �rst period t for which dt1;t � (t� 1)C + f .

Suppose the fractional period is �xed to t 2 ftmin; : : : ; tmaxg and let P (t) denote the corre-

sponding problem of determining optimal full production periods. We introduce a function

A(�) (� 2 ft1; : : : ; t2g) which denotes the minimum number of full production periods in

ft1; : : : ; �g in any feasible solution of P (t).

A(�) =

8><
>:

d
dt1;�

C
e for � < t

d
dt1;��f

C
e for � � t

A solution of P (t) is feasible if and only if for any � 2 ft1; : : : ; t2g the number of full pro-

duction periods in ft1; : : : ; �g is at least A(�). The function A is integral and monotonically

nondecreasing for the periods ft1; : : : ; t� 1g and ft; : : : ; t2g. Moreover, A(t� 1) � A(t) + 1.

Note that A can take on the values f0; : : : ; Kg. De�ne for all k 2 f1; : : : ; Kg the period wk

as the earliest period � for which A(�) = k holds. The following is obvious.

Feasibility condition

A production schedule is feasible, i.e., I� � 0 for all � 2 ft1; : : : ; t2g, if and only if for every

period wk (1 � k � K), there are at least k production periods in ft1; : : : ; wkg.

This period wk is called a choice period because it forces us to choose a k-th full production

period in the set f1; : : : ; wkg. We choose this production period as speci�ed below.

Greedy algorithm

Start with the production plan in which only the fractional production takes place in period

t. This period is not available for full production. The K full production periods are chosen

as follows. Consider the choice periods wk; k 2 f1; : : : ; Kg; in increasing order. The cheapest

available period � in the set ft1; : : : ; wkg is chosen as production period, i.e., cf(�) is minimal

among the available periods � 2 ft1; : : : ; wkg. If necessary, break ties by choosing the earliest

period.
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Example

We consider subplan (1; 7). The capacity C is 5 units. The cumulative demand is 18, and

therefore K = 3 and f = 3. The other data are given in Table 1, where p� denotes the unit

production costs in period � , i.e., production costs are linear.

Table 1: Data of example

� 1 2 3 4 5 6 7

d� 0 4 2 1 4 5 2

f� 4 7 5 8 7 7 5

p� 3 1 0 1 2 1 1

cf(�) 19 12 5 13 17 12 10

Let period 4 be the fractional period, i.e., x4 = 3. Then the calculations of the greedy

algorithm are shown in Table 2.

Table 2: Results of greedy algorithm

� 1 2 3 4 5 6 7

d1;� 0 4 6

d1;� � f 4 8 13 15

A(�) 0 1 2 1 2 3 3

choice n y y n n y n

full prod. n y y n n y n

The choice periods are 2, 3 and 6. In this example, the full production periods coincide with

the choice periods. However, this is not the case in general, as can be seen by swapping the

cost structure of periods 1 and 2. This would leave the choice periods unchanged, but period

1 would be chosen as a full production period instead of period 2. Finally, we note that the

total cost of this plan is 12 + 5 + (8 + 3 � 1) + 12 = 40.

The de�nition of choice period wk ensures that the k-th full production period is chosen from

a set of available periods which is as large as possible. The greedy aspect of the algorithm is

that among all these available periods the cheapest one is chosen. Clearly, the greedy solution

is feasible. Its optimality is proved next.

Let us �rst de�ne an ordering on the feasible solutions of P (t). Consider two feasible produc-

tion plans S and S0 and the �rst full production period in which they di�er. If that period

is earlier in S than it is in S0, then solution S is called lexicographically earlier than solution

S0. Note that the number of full production periods is equal to K in both solutions.

Lemma 1 The greedy algorithm constructs the lexicographically earliest optimal production

plan for P (t).

Proof. Let S be the lexicographically earliest optimal solution. Suppose it is not equal to

the solution SG created by the greedy algorithm.
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Let w1; : : : ; wK be the choice periods for the greedy algorithm, and let �1; : : : ; �K be the

respective full production periods chosen by the greedy algorithm. Let k be the smallest

index such that �k is not in S. There is a period � 0 in ft1; : : : ; wkg that is a production

period in S but not in SG, because otherwise S would have less than k production periods

in ft1; : : : ; wkg, violating the feasibility condition.

Consider the following cases.

(1) If cf(� 0) < cf(�k), then this contradicts the fact that the greedy algorithm chooses the

cheapest available production period for wk.

(2) If cf(� 0) = cf(�k) and � 0 < �k, then this contradicts the fact that the greedy algorithm

chooses the earliest period among the cheapest available ones.

The feasibility condition is also satis�ed by the solution created from S by replacing � 0 by �k
as a production period. Therefore, we can conclude the following.

(3) If cf(� 0) > cf(�k), then the solution S can be improved.

(4) If cf(� 0) = cf(�k) and � 0 > �k, then the solution S is not the lexicographically earliest

optimal solution.

Hence, the assumption that � 0 6= �k always leads to a contradiction. We conclude that SG is

equal to S, the lexicographically earliest optimal solution.

2

When referring to the optimal solution in the remainder of this paper, we will mean the

lexicographically earliest optimal solution.

By solving P (t) for all t 2 ftmin; : : : ; tmaxg, we can determine the optimal solution for subplan

(t1; t2). Instead of solving each of these problems separately, we will propose an iterative

algorithm in Section 4. This algorithm not only computes the optimal solutions of the

problems P (t) (t 2 ftmin; : : : ; tmaxg), but also the optimal solutions of the problems de�ned

as follows. Let t 2 ftmin; : : : ; tmaxg, then P (t)0 is the problem of �nding an optimal schedule

when f units become available in period t completely for free, i.e., without costing any money

or capacity. Clearly, a feasible solution for this problem corresponds to a choice of K full

production periods. The only di�erence with problem P (t) is that period t is now also

available for full production (at cost cf(t)). It is easily seen that an optimal solution of P (t)0

can be found by applying the greedy algorithm. Note that the choice periods for P (t) and

P (t)0 are identical. Again, when referring to the optimal solution of P (t)0, we will mean the

solution constructed by the greedy algorithm. The following properties play a key role in the

algorithm.

Lemma 2 Let t 2 ftmin; : : : ; tmaxg. The optimal solutions of P (t+ 1)0 and P (t)0 di�er with

respect to the full production periods in at most one period. Moreover, if there is a di�erence,

then the optimal solution of P (t)0 is obtained from the optimal solution of P (t+1)0 by moving

production from a period in ft1; : : : ; tg to a period in ft+ 1; : : : ; t2g.
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Proof. We will prove that the solutions produced by the greedy algorithm in both problems

di�er in at most one production period, as described in the lemma.

The problems P (t)0 and P (t + 1)0 di�er with respect to function A only in period t: A(t) =

d
dt1 ;t

C
e in P (t + 1)0 and A(t) = d

dt1;t�f

C
e in P (t)0. Thus, A(t) may be one unit less in P (t)0

than in P (t+1)0. This gives a possible di�erence in the set of choice periods, which can only

occur if t is a choice period in P (t+ 1)0, say the k-th. In that case, the k-th choice period in

P (t)0 may be a period u with t < u < wk+1. All other choice periods are identical in both

problems.

Clearly, because the �rst k� 1 choice periods are identical, the �rst k� 1 production periods

chosen by the greedy algorithm will be the same for both problems. If all choice periods are

identical in both problems, or if the greedy algorithm chooses the same production periods

at t and u, then the optimal solutions do not di�er. Hence, we only have to examine the case

where the choices in t and u di�er, say � 0 is chosen at t in problem P (t+1)0, and � 00 is chosen

at u in problem P (t)0.

By de�nition, � 0 is the available cheapest period in ft1; : : : ; tg , and �
00 is the cheapest available

period in ft1; : : : ; ug. Thus, �
00 6= � 0 implies � 00 > t and cf(� 00) < cf(� 0).

We will show that in the remainder of the greedy algorithm the number of di�erent production

periods for both problems remains at most one, and that the di�erence is always as speci�ed

in the lemma.

As argued before, the choice periods after u are equal for both problems. Let those periods

be wk+1; : : : ; wK, and consider the production period chosen at wk+1.

(a) Suppose that � 0 is the period chosen at wk+1 in problem P (t)0.

Because � 0 is the cheapest available period up to wk+1 in P (t)0, it follows that � 00 is the

cheapest available period up to wk+1 in P (t + 1)0. Clearly, from wk+1 on the partial

solutions are equal again.

(b) Suppose � 6= � 0 is the period chosen at wk+1 in problem P (t)0.

� is the cheapest available period up to wk+1, and therefore � > t (since � 0 is the cheapest

available period up to t). Moreover, in P (t + 1)0 it is also the cheapest available period,

unless � 00 is cheaper. However, which of these periods is chosen does not matter. In both

cases the di�erence with respect to the partial solution of P (t)0 remains one period, either

� or � 00, and both are later than t.

If (a) occurs, then it follows immediately that the full production periods of the optimal

solutions of P (t)0 and P (t+1)0 are equal. If (b) occurs, the above argument can be repeated

for the later choice periods wk+2; : : : ; wK, and the lemma is proved.

2

If t is not chosen as a full production period in the optimal solution of P (t)0, then it is

clearly optimal to take the same full production periods as the solution of P (t). In case

the optimal solutions are not equal, we have the following result which can be proved using

similar arguments as in the proof of Lemma 2.
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Lemma 3 Let t 2 ftmin; : : : ; tmaxg and suppose that t is a full production period in the

optimal solution of P (t)0. Then the optimal solution of P (t) di�ers from the optimal solution

of P (t)0 only in the fact that the full production in t is reallocated.

4 Global algorithm

The global algorithm for solving the lot-sizing problem consists of two phases. In the �rst

phase we �nd the optimal solutions for the subplans. In the second phase these solutions are

used to determine an optimal solution of the overall problem.

Phase 1: Find the minimum cost for all subplans (t1; t2), 1 � t1 � t2 � T .

Phase 2: Find, in the directed graph with vertices f0; : : : ; Tg and arcs (t1 � 1; t2), 1 � t1 �

t2 � T , the shortest path from vertex 0 to vertex T , where the length of arc (t1�1; t2)

is equal to the minimum cost of subplan (t1; t2).

Except for vertex 0, the vertices on the shortest path found in Phase 2 correspond to the

last periods of the subplans which constitute an optimal production plan. Given the cost of

each subplan, the second phase can be implemented in O(T 2) time, since the graph is acyclic

and the number of arcs is O(T 2). Thus, Phase 2 is not the bottleneck of the algorithm. We

will therefore focus on Phase 1. By considering all possible fractional production periods and

using the greedy algorithm, a minimum cost solution for a given subplan can be found in

O(T 2) time. Because there are O(T 2) possible subplans, this implies an O(T 4) algorithm for

Phase 1. We will give improvements that lead to an O(T 3) implementation.

4.1 Iterative algorithm for Phase 1

We will show that the minimum cost of each subplan (t1; t2) (1 � t1 � t2 � T ) can be

calculated in O(T ) amortized time. The algorithm consists of the following steps for each

subplan.

Let tmin, tmax and the optimization problems P (t)0 and P (t) (t 2 ftmin; : : : ; tmaxg) be as

de�ned in the previous section.

Initialization

Compute the optimal solution of P (tmax)
0. This solution is also optimal for P (tmax).

Iterations

For t from tmax � 1 down to tmin do

Step 1: Determine the optimal solution of P (t)0 from the optimal solution of P (t+ 1)0.

Step 2: Determine the optimal solution of P (t) from the optimal solution of P (t)0.

Example (continued)

Consider again the subplan (1; 7) with C = 5, f = 3, K = 3 and the data in Table 1.

Note that tmin = 1 and tmax = 6. Table 3 shows in the second column the choice periods
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for varying fractional periods t. The optimal full production periods for P (t)0 and P (t) are

shown in the third and fourth column, respectively. The last column gives the optimal value

of P (t). Hence, in the example, it is optimal to have the fractional production in period 4

and full production in the periods 2, 3 and 6.

Table 3: Optimal solutions for varying fractional periods

t choice P (t)0 P (t) cost

6 2 3 5 2 3 5 2 3 5 44

5 2 3 6 2 3 6 2 3 6 42

4 2 3 6 2 3 6 2 3 6 40

3 2 4 6 2 3 6 2 4 6 42

2 2 4 6 2 3 6 1 3 6 46

1 2 4 6 2 3 6 2 3 6 42

The row for t = 6 corresponds to the initialization of the iterative algorithm. The other

rows correspond to the iterations. For each row of these rows, �rst the solution in the third

column is computed from the solution immediately above it. Then this solution is used to

compute the solution in the fourth column. Note that Lemma 2 is reected by the fact

that the di�erence between two consecutive rows in the third column is at most one period.

Furthermore, the third and fourth column di�er on the same row in at most one period.

This reects Lemma 3. On the other hand, as can be seen in this example, in the fourth

column the di�erence between two consecutive rows may be two periods. This is exactly why

we introduced the problems P (t)0. Instead of trying to derive an optimal solution of P (t)

directly from an optimal solution of P (t + 1), which may be complicated, we perform two

relatively simple steps involving P (t+ 1)0 and P (t)0.

We will now show how the initialization and the iterations can be implemented in linear

amortized time.

4.2 Implementation of initialization

The initialization can be carried out simultaneously for all subplans (t1; t2) with t1 �xed and

t2 2 ft1; : : : ; Tg by using the following lemma.

Lemma 4 Let 1 � t1 � t2 � T � 1. Consider the optimal solutions for subplans (t1; t2) and

(t1; t2 + 1), where the fractional periods are the last production periods. Then the set of full

production periods in the solution for subplan (t1; t2) is a subset of the set of full production

periods in the solution for subplan (t1; t2 + 1).

Proof. This follows from the fact that the choice periods for the smaller subplan are a subset

of the set of choice periods of the larger subplan. If dt1;t2 < kC � dt1;t2+1 for some k, then

one extra production period is chosen in the larger subplan.

2
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From Lemma 4, it follows that performing the initialization for all subplans with �rst period

t1 has a total running time that is of the same order as the running time of the initialization

for subplan (t1; T ) only. The latter can easily be implemented in O(T 2) time. Hence, the

overall algorithm takes O(T 3) in the initialization step.

4.3 Implementation of iterations

The iterations are implemented for each subplan (t1; t2) separately. Suppose that the optimal

solutions of problems P (t + 1)0; : : : ; P (tmax)
0 and the related optimal solutions of P (t +

1); : : : ; P (tmax) have been computed.

Step 1

To compute the optimal solution of P (t)0 from the optimal solution of P (t+1)0, we �rst move

the f units from t + 1 to t, while keeping all full production periods the same. The e�ect is

that It increases by f units. Recall that the capacity in period t remains C in P (t)0. From

Lemma 2, it follows that there is at most one period in ft1; : : : ; tg from which we have to

move production to a period in ft+ 1; : : : ; t2g.

Let the following data be available:

Period u, the earliest period in ft; : : : ; t2g such that Iu < C; note that It2 = 0.

For all v 2 ft1; : : : ; ug: �v , the earliest cheapest available period in ft1; : : : ; vg.

Period s, the latest period in ft1; : : : ; tg such that Is�1 < C; by de�nition It1�1 = 0

For all r 2 fs; : : : ; tg: r, the most expensive production period in fs; : : : ; rg.

Note that moving production from a certain period to a later period reduces the inventory

of the original production period and that of each intermediate period by C. Hence, feasi-

bility conditions restrict us to moving production from a period in fs; : : : ; tg to a period in

ft+ 1; : : : ; ug. We will only perform this move if the resulting plan is really cheaper, i.e., if

cf(t) > cf(�u). Note that if this holds then �u > t, otherwise this pro�table move would

already have been possible in problem P (t + 1)0.

Suppose we actually move production from t to �u. Then we update u by setting it equal

to t. To see that this is correct, note that, if production is moved, then It < C + f , because

otherwise the move would have been feasible (and pro�table) in P (t + 1)0. Moreover, if

cf(t) < cf(�t), or if cf(t) = cf(�t) and t < �t, then we set �� = t for � 2 ft; : : : ; tg. We

do not need the values of s and r (r 2 fs; : : : ; tg) in Step 2. Therefore, these values are not

updated between Steps 1 and 2 of the same period t.

Example (continued)

Consider the iteration for t = 5. The full production periods in the optimal solution of P (6)0

are 2, 3 and 5. Table 4 shows the situation just after moving the f units to period 5. We

see that u = 6, because, starting at period 5, it is the earliest period with an inventory level

below C = 5. Similarly, the latest period before period 5 with an inventory level less than C

is period 4. Therefore, s = 5.

Because cf(5) > cf(6), we move production from period 5 to period 6. The updated situation

is shown in Table 5. We now have u = t = 5. Because cf(5) > cf(4), the value of �5 does

not change.
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Table 4: Situation for t = 5

� 1 2 3 4 5 6 7

cf(�) 19 12 5 13 17 12 10

prod. n y y n y n n

I� 0 1 4 3 7 2 0

�� 1 1 1 4 4 6

� 5

Table 5: Optimal solution of P (5)0

� 1 2 3 4 5 6 7

cf(�) 19 12 5 13 17 12 10

prod. n y y n n y n

I� 0 1 4 3 2 2 0

�� 1 1 1 4 4

Step 2

If t is not a full production period in the optimal solution of P (t)0, then the optimal solution

of P (t) follows immediately. Otherwise, we use Lemma 3 to compute the optimal solution of

P (t) from the optimal solution of P (t)0, i.e., we only move the production of C units from

period t to another period. Due to feasibility restrictions the latter period must be chosen in

ft1; : : : ; ug. Clearly, it is optimal to take the cheapest one available, i.e., �u.

Example (continued)

Table 6 shows the situation at the beginning of Step 2 in the iteration for t = 3, i.e., the

optimal solution of P (3)0. Note that u = 5. Because period 3 is a production period, we

replace it by period �5 = 4 to obtain the optimal solution of P (3).

Table 6: Situation for t = 3

� 1 2 3 4 5 6 7

cf(�) 19 12 5 13 17 12 10

prod. n y y n n y n

I� 0 1 7 6 2 2 0

�� 1 1 1 4 4

Updating the data in succesive iterations

Consider the iteration for period t � 1. Starting with the optimal solution of P (t)0, we �rst

move the f units from t to t� 1. This increases the inventory of period t� 1 by f units. We

update u correctly by setting it equal to t� 1 if It�1 < C.

It can easily be veri�ed that, unless t � 1 < s, there is no need to update s if production

has not been moved in Step 1 of the preceding iteration. Furthermore, we have the following

result.

11



Lemma 5 Suppose that in Step 1 of the iteration for period t, production is moved from a

period in fs; : : : ; tg to a period in ft+ 1; : : : ; ug. Then it is not necessary to check whether

production should be moved in Step 1 of the iterations for periods fs; : : : ; t� 1g.

Proof. Suppose that a full production period is moved in Step 1 of the iteration for t from

a period in fs; : : : ; tg to a period after t. Note that this move reduces the inventory of t to

a level below C. Suppose that the lemma is false and there are periods in fs; : : : ; t � 1g for

which it is pro�table to move a full production period in Step 1. Consider the �rst iteration

for which this happens and let � be the corresponding period. A pro�table move with respect

to � consists of moving full production from a period in fs; : : : ; �g to a period after � , but

not later than t. This move would also have been a feasible and pro�table one with respect

to the solution given at the start of the iteration for t. As this was the optimal solution of

P (t + 1)0, we have derived a contradiction. Hence, the lemma holds.

2

This lemma justi�es that, after a move has been performed in Step 1, we do not perform this

step until we reach the iteration for s� 1. Therefore, updating s is done correctly as follows.

At the beginning of the iteration for t�1 we check whether t�1 < s. If this is the case, then

we determine the new value of s and we compute the periods r for all r 2 fs; : : : ; t� 1g.

Figure 1 summarizes how the data are initialized and updated.

Initialization

solve P (t+ 1)0

u := tmax; compute �v (v 2 ft1; : : : ; ug)
determine s; compute r (r 2 fs; : : : ; tmaxg)
moved:=`no'

Iterations

for t := tmax � 1 down to tmin do
take solution of P (t+ 1)0; move f units from t+ 1 to t

if It < C, then u := t

if t < s then
determine s; compute r (r 2 fs; : : : ; tg)
moved:=`no'

if moved=`no' then (Step 1:)

move production if pro�table ! solution of P (t)0

if production is moved then
moved:=`yes'
u := t

update �� (� 2 ft; : : : ; tg)
perform Step 2

Figure 1: Overview of algorithm

Let us now turn to the complexity of the iterations. We will show that to compute and update

the data during the iterations, each period is considered not more than a constant number of
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times. This implies the desired result that the iterations for a given subplan require in total

O(T ) time.

Initially, for t = tmax, we have u = tmax and the initial values of �v are computed for all

v 2 ft1; : : : ; ug simultaneously by considering v in increasing order. The initial value of s is

determined by considering the periods in decreasing order, from tmax onwards, until the �rst

period with inventory level less than C is found. The values of r for r 2 fs; : : : ; tmaxg are

computed by considering the elements in fs; : : : ; tmaxg in increasing order.

Updating u is done by checking It < C for each t during the algorithm. Updating �v is done

only if a move is performed in Step 1. In that case, we update the value for the periods

ft; : : : ; tg, where t � s. Step 1 will be performed again only for t < s, and thus the

mentioned values will not be updated for a second time.

Each time s is determined we move in decreasing order from t to the �rst period for which

the starting inventory is less than C. This step will not be repeated for any t � s, so the

check takes place for each period at most once. Finally, we compute r for r 2 fs; : : : ; tg just

after s has been determined, by considering the elements in fs; : : : ; tg in increasing order.

Again, each period will only be considered once.

5 Concluding remarks

We have presented an O(T 3) dynamic programming algorithm for solving the economic lot-

sizing problem with constant capacities, concave production costs and linear holding costs.

Our algorithm is an improvement over the algorithm of Florian and Klein [6] by a factor T .

However, the latter algorithm also solves the more general problem in which the holding costs

are concave. For our approach the linearity of the holding costs seems essential. It allows us

to formulate an equivalent problem without holding costs, for which it is easy to calculate

the change in costs when a full production period is moved.

The improvement in running time of our algorithm is based on the idea that for a given

subplan many similar subproblems have to be solved. The algorithm exploits the fact that

the optimal solutions to these problems are partially equal. The only possible way in which a

further improvement could be achieved, seems to be the exploitation of relations concerning

the positioning of optimal fractional periods in closely related subplans. Until now, we have

not been able to identify such relations.
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