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1 Introduction

Recently developed polyhedral methods have yielded substantial progress in solving many
important NP-hard optimization problems. Some well-known examples are the travel-
ing salesman problem [Padberg and Rinaldi 1991], 0-1 integer programming problems
[Crowder, Johnson and Padberg 1983], mixed 0-1 integer programming problems [Van
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Roy and Wolsey 1987]. We refer to Ho�man and Padberg [1985] and Nemhauser and
Wolsey [1988] for general descriptions of the approach.

In comparison, the investigation and development of polyhedral methods for ma-
chine scheduling problems is still in its early stages. The majority of the research has
focused on single-machine scheduling problems or problems that can be treated as such.
Balas [1985] pioneered the study of scheduling polyhedra with his work on the facial
structure of the job shop scheduling problem. Queyranne [1993] completely character-
ized the polyhedron associated with the simple nonpreemptive single-machine scheduling
problem. Queyranne and Wang [1991] generalized Queyranne's results to include prece-
dence constraints. Wolsey [1989] compared di�erent formulations for the problem with
precedence constraints. Dyer and Wolsey [1990] examined several formulations for the
single-machine scheduling problem with release dates, and Nemhauser and Savelsbergh
[1992] developed a cutting plane algorithm for this problem. Sousa and Wolsey [1992]
investigated a time-indexed formulation for several variants of the nonpreemptive single-
machine scheduling problem. Crama and Spieksma [1993] studied the same formulation
for problems in which the jobs have equal processing times. Lasserre and Queyranne
[1992] presented a mixed integer programming formulation motivated by a control the-
oretic view of scheduling decisions. We refer to Queyranne and Schulz [1997] for a more
comprehensive survey.

In this paper, we report new results for the time-indexed formulation of nonpre-
emptive single-machine scheduling problems studied by Sousa and Wolsey [1992]. They
introduced three classes of inequalities. The �rst class consists of inequalities with right-
hand side 1, and the second and third classes consist of inequalities with right-hand side
k 2 f2; : : : ; ng. Furthermore, they developed a cutting plane algorithm based on these
three classes of inequalities. They used exact separation algorithms to identify violated
inequalities in the �rst class and violated inequalities with right-hand side 2 in the sec-
ond class. They used a simple heuristic to identify violated inequalities in the third
class. Their computational experiments revealed that the bounds obtained are strong
compared to bounds obtained from other mixed integer programming formulations.

These promising computational results stimulated us to study the inequalities with
right-hand side 1 or 2 more thoroughly. To do so, we �rst study the convex hull of
the set of feasible partial schedules, i.e., schedules in which not all jobs have to be
started. We derive complete characterizations of all facet inducing inequalities with
integral coe�cients and right-hand side 1 or 2 for this extended polytope. Then, we give
conditions under which the identi�ed inequalities are also facet inducing for the original
polytope. Our analysis shows that only some of the classes of inequalities used in the
computational experiments by Sousa and Wolsey are facet inducing. To obtain insight
in the e�ectiveness of the classes of facet-inducing inequalities we have derived, we have
developed a branch-and-cut algorithm based on them. We evaluate its performance on
the strongly NP-hard single-machine scheduling problem of minimizing the weighted
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sum of the completion times subject to release dates.

2 Problem formulation

The usual setting for nonpreemptive single-machine scheduling problems is as follows.
A set J of n jobs has to be scheduled on a single machine. Each job j 2 J requires
uninterrupted processing for a period of length pj, where pj is some positive integer.
The machine can handle no more than one job at a time.

The time-indexed formulation studied by Sousa and Wolsey [1992] is based on time-
discretization, i.e., time is divided into periods, where period t starts at time t� 1 and
ends at time t. The planning horizon is denoted by T , which means that all jobs have to
be completed by time T . We assume that T �

Pn
j=1 pj. The formulation is as follows:

minimize
nX

j=1

T�pj+1X

t=1

cjtxjt

subject to

T�pj+1X

t=1

xjt = 1 (j = 1; :::; n); (1)

nX

j=1

tX

s=t�pj+1

xjs � 1 (t = 1; :::; T ); (2)

xjt 2 f0; 1g (j = 1; :::; n; t = 1; :::; T � pj + 1);

where xjt = 1 if job j is started in period t, i.e., at the beginning of period t, and
0 otherwise. This formulation can be used to model several single-machine scheduling
problems by an appropriate choice of the objective coe�cients and possibly a restriction
of the set of variables. For instance, if the objective is to minimize the weighted sum of
the start times, we take coe�cients cjt = wj(t� 1), where wj denotes the weight of job
j; if there are release dates rj, i.e., job j becomes available at time rj , then we discard
the variables xjt for t = 1; : : : ; rj . In the sequel, we denote the set of feasible schedules
by S.

Many of the single-machine scheduling problems that can be modeled by the time-
indexed formulation given above are strongly NP-hard, and therefore the integer pro-
gramming problem de�ned by this formulation is stronglyNP-hard. Crama and Spieksma
[1993] prove that even when we take pj = 2 for all j and cjt 2 f0; 1g the problem is
strongly NP-hard.
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In the above formulation, the convex hull PS of S, the set of feasible schedules, is
not full-dimensional. Sousa and Wolsey [1992] showed that, if T �

Pn
j=1 pj + pmax, then

dim(PS) = nT �
Pn

j=1 pj, where pmax = maxfpj jj 2 f1; : : : ; ngg. As it is often easier to
study full-dimensional polyhedra, we study the convex hull PS� of S�, where S� is the
set of all feasible partial schedules, i.e., the set of feasible schedules in which not all jobs
have to be started. A description of S� can be obtained by relaxing the equations (1)
into inequalities with sense less-than-or-equal, i.e., the set S� is described by:

T�pj+1X

t=1

xjt � 1 (j = 1; :::; n); (3)

nX

j=1

tX

s=t�pj+1

xjs � 1 (t = 1; :::; T ); (4)

xjt 2 f0; 1g (j = 1; :::; n; t = 1; : : : T � pj + 1)

It is not hard to show that PS� is full-dimensional. In the sequel, we consider the polytope
PS� unless we state otherwise. When we say that an inequality is valid, we mean that it
is valid for PS� ; since PS� contains PS , such an inequality is valid for PS too. Moreover,
when we speak about a schedule, we mean a schedule that can be partial, i.e., it does not
have to contain all jobs. When the schedule has to contain all jobs we call it a complete
schedule.

Note that the collection of facet inducing inequalities for the polytope PS� associated
with the set of partial schedules includes all facet inducing inequalities for the polytope
PS associated with the set of complete schedules.

A set V � f0; 1gn is called down-monotone if for all x; y 2 f0; 1gn we have that x � y

and y 2 V implies that x 2 V . Down-monotone 0-1 polytopes are polytopes that are the
convex hull of a down-monotone subset of f0; 1gn. Hammer, Johnson, and Peled [1975]
studied monotone polytopes and proved the following lemma.

Lemma 1 [Hammer, Johnson, and Peled, 1975]
Let P be a down-monotone 0-1 polytope. A facet inducing inequality ax � b for P with

integral coe�cients aj and integral right-hand side b has either b > 0 and coe�cients aj
in f0; 1; : : : ; bg or is a positive scalar multiple of �xj � 0 for some j. 2

Since PS� is a down-monotone 0-1 polytope, the result holds for PS� too. The above
lemma implies that all facet inducing inequalities with right-hand side 0 for PS� have
the form xjs � 0. It can be shown that each inequality xjs � 0 is facet inducing for
PS� by observing that all other unit vectors together with the all-zero vector are a�nely
independent. Extending the proof of Crama and Spieksma [1993], we can show that
these inequalities are also facet inducing for PS , if T �

Pn
j=1 pj + pmax.
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Before we present our analysis of the structure of facet inducing inequalities with
right-hand side 1 or 2, we introduce some notation and de�nitions.

The index-set of variables with nonzero coe�cients in an inequality is denoted by
V . The set of variables with nonzero coe�cients in an inequality associated with job j

de�nes a set of time periods Vj = fsj(j; s) 2 V g. If job j is started in period s 2 Vj ,
then we say that job j is started in V . With each set Vj we associate two values

lj = minfsjs� pj + 1 2 Vjg

and

uj = maxfsjs 2 Vjg:

For convenience, let lj =1 and uj = �1 if Vj = ;. Note that if Vj 6= ;, then lj is the
�rst period in which job j can be �nished if it is started in V , and that uj is the last
period in which job j can be started in V . Furthermore, let l = minflj jj 2 f1; :::; ngg
and u = maxfuj jj 2 f1; :::; ngg.

We de�ne an interval [t1; t2] as the set of periods ft1 + 1; t1 + 2; : : : ; t2g, i.e., the set
of periods between time t1 and time t2. If t1 � t2, then [t1; t2] = ;.

For presentational convenience, we use x(S) to denote
P

(j;s)2S xjs. Recall that PS�

is a down-monotone 0-1 polytope. As a consequence of Lemma 1, valid inequalities with
right-hand side 1 will be denoted by x(V ) � 1 and valid inequalities with right-hand
side 2 will be denoted by x(V 1) + 2x(V 2) � 2, where V = V 1 [ V 2 and V 1 \ V 2 = ;.
Furthermore, we de�ne V 2

j = fs j (j; s) 2 V 2g.
In the sequel, we shall often represent inequalities by diagrams. A diagram contains

a line for each job. The blocks on the line associated with job j indicate the time periods
s for which xjs occurs in the inequality. For example, an inequality of the form (4) can
be represented by the following diagram:

.

.

.
.
.

.

t� pn

t� p2

t

t

n

2

1

� 1:

tt� p1

3 Facet inducing inequalities with right-hand side 1

The purpose of this section is twofold. First, we present new results that extend and
complement the work of Sousa and Wolsey [1992]. Second, we familiarize the reader with

5



our approach in deriving complete characterizations of classes of facet inducing inequal-
ities. Note that parts of the analysis in this section can be simpli�ed, but we present it
in this way to demonstrate the approach we use to deal with the more complicated case
of right-hand side 2.

Establishing complete characterizations of facet inducing inequalities with right-hand
side 1 for the extended polytope PS� proceeds in three phases. First, we derive necessary
conditions in the form of various structural properties of facet-inducing inequalities.
These properties follow from the observation that a valid inequality x(V ) � 1 can be
facet inducing only if it is maximal, i.e., if there does not exist a valid inequality x(W ) � 1
with V � W where V is a proper subset of W . Second, once we have these structural
properties, we derive classes of inequalities that contain all facet inducing inequalities.
Finally, we show that the maximality is also su�cient.

Then we show that under mild conditions on the horizon T we can guarantee that
the facet inducing inequalities we derived for PS� are also facet inducing for the original
polytope PS .

Recall that we do not require a schedule to contain all jobs.

Lemma 2 A facet inducing inequality x(V ) � 1 for PS� is maximal. 2

Property 1 If x(V ) � 1 is valid and maximal, then the sets Vj are intervals, i.e.,

Vj = [lj � pj; uj ], for j = 1; : : : ; n.

Proof. Let j 2 f1; : : : ; ng and assume Vj 6= ;. By de�nition lj�pj+1 is the smallest s
such that s 2 Vj and uj is the largest such value. Consider any s with lj�pj+1 < s < uj
and let job j be started in period s, i.e., xjs = 1.

Suppose (i; t) 2 V is such that xit = xjs = 1 de�nes a feasible schedule. If t < s, i.e.,
job i is started before job j, then the schedule that we obtain by postponing the start
of job j until period uj is also feasible. This schedule does not satisfy x(V ) � 1, which
contradicts the validity of the inequality. Hence no job can be started in V before job j.
Similarly, we obtain a contradiction if t > s, which implies that no job can be started in
V after job j.

We conclude that choosing xjs = 1 prohibits any job from starting in V . Because of
the maximality of x(V ) � 1, we must have (j; s) 2 V . 2

Property 2 Let x(V ) � 1 be valid and maximal.

(a) Assume l = l1 � l2 = minflj jj 2 f2; :::; ngg. Then V1 = [l�p1;l2] and Vj = [lj�pj; l]
for all j 2 f2; :::; ng.
(b) Assume u = u1 � u2 = maxfuj jj 2 f2; :::; ngg. Then V1 = [u2 � p1;u] and Vj =
[u� pj;uj ] for all j 2 f2; :::; ng.
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Proof. (a) Suppose that l = l1 � l2 = minflj j j 2 f2; : : : ; ngg. Observe that Property
1 implies that V1 is an interval and that by de�nition its lower bound equals l� p1. We
now show that the upper bound is equal to l2. Since x2;l2�p2+1 = 1 and x1s = 1 de�nes
a feasible schedule for any s > l2, we have that only one of these variables can occur in
x(V ) � 1; as by de�nition (2; l2 � p2 + 1) 2 V , it follows that the upper bound of V1
is at most l2. Now, let x1s = 1 for some s 2 [l � p1; l2]. Reasoning as in the proof of
Property 1 we can show that since l � p1 + 1 2 V1 it follows that no job can be started
in V after job 1. As s � l2 = minflj jj 2 f2; :::; ngg, it is impossible to start any job in
V before job 1. From the maximality of x(V ) � 1 we conclude that V1 = [l � p1; l2].
Similar arguments can be applied to show that Vj = [lj � pj; l] for all j 2 f2; : : : ; ng.

The proof of (b) is similar to that of (a). 2

Observe that by Property 2(a) a valid and maximal inequality x(V ) � 1 with l = l1
necessarily has u1 = u. Consequently, Lemma 2 and Properties 2(a) and 2(b) can be
combined to give the following theorem.

Theorem 1 A facet inducing inequality x(V ) � 1 for PS� has the following structure:

V1 = [l � p1; u];
Vj = [u� pj; l] (j 2 f2; :::; ng);

(5)

where l = l1 � u1 = u. 2

Theorem 1 says that a facet inducing inequality with right-hand side 1 can be represented
by the following diagram:

� 1:lu� pj

j 2 f2; : : : ; ng

l� p1 u

1

Note that if l = u, then the inequalities with structure (5) coincide with the inequalities
(4); if l = p1, u = T � p1+1, and Vj = ; for all j 2 f2; : : : ; ng, then the inequalities with
structure (5) coincide with the inequalities (3).

Example 1 Let n = 3, p1 = 3, p2 = 4 and p3 = 5. The inequality with structure (5),
l = l1 = 6 and u = u1 = 7 is given by the following diagram:
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.

1
2

1
2

1
2

� 1:

765432

3

2

1

Note that the fractional solution x14 = x17 = x33 =
1
2
satis�es (3) and (4), but violates

the above inequality.

The following theorem shows that the given necessary conditions are also su�cient. The
proof of this theorem uses the concept of a counterexample. If x(V ) � 1 is maximal,
then for each (j; s) =2 V , there exists a (j0; s0) 2 V such that xjs = xj0s0 = 1 is a feasible
schedule, since the variable xjs could be added to the inequality otherwise. Such a
schedule is called a counterexample for (j; s).

Theorem 2 A valid inequality x(V ) � 1 is facet inducing for PS� if and only if it is

maximal.

Proof. Lemma 2 already states that a facet inducing inequality x(V ) � 1 for PS� is
maximal. Now, let x(V ) � 1 be valid and maximal. Let F = fx 2 PS� jx(V ) = 1g. We
show dim(F ) = dim(PS�)� 1 by exhibiting

Pn
j=1 T � pj +1 a�nely independent vectors

in F . First, take all unit vectors xjs = 1 with (j; s) 2 V . Then, because of the max-
imality of x(V ) � 1, there exists a counterexample for each (j; s) =2 V . Together with
the unit vectors, these counterexamples provide the set of a�nely independent vectors. 2

Corollary 1 A valid inequality x(V ) � 1 with structure (5) that is maximal is facet

inducing for PS�. 2

Sousa and Wolsey already established that the class of inequalities with structure (5) is
facet inducing for PS if the horizon T is large enough.

Theorem 3 [Sousa and Wolsey, 1992]
If T �

Pn
j=1 pj + 3pmax, then a valid inequality x(V ) � 1 with structure (5) that is

maximal is facet inducing for PS, where pmax = maxfpjjj = 1; : : : ; ng. 2

A valid inequality x(V ) � 1 with structure (5) is maximal if and only if the following
conditions hold. First, we need that either Vj 6= ; for some j 2 f2; : : : ; ng, or l = p1
and u = T � p1 + 1; these conditions ensure that an inequality containing only one job
includes all variables associated with this job. Second, we need conditions to exclude
nonmaximal inequalities at the border of the interval [0; T ]. If l = u, then we must have
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p[2] � l � T �p[2]+1, where p[2] denotes the processing time of the smallest job but one.
If l < u, then we must have l � p1 and u � minfpj jj 6= 1; pj > u� lg and u � T � p1+1
and l � T + 1�minfpj jj 6= 1; pj > u� lg.

Recall that the inequalities (4) coincide with inequalities with structure (5) with l = u

and that the inequalities (3) coincide with inequalities with structure (5) with l = p1,
u = T � p1 + 1, and Vj = ; for all j 2 f2; : : : ; ng. The above maximality conditions
imply that inequalities (4) are maximal for p[2] � t � T � p[2] + 1 and that inequalities
(3) are maximal for each job j1 with T � 2pj1 + maxfpj jj 6= j1g. Hence, if T is large
enough, then inequalities (3) are all maximal.

Note that an inequality with structure (5) is determined by one job, which without
loss of generality is called job 1, and two time periods l and u. Since the maximality
condition, stating that Vj 6= ; for some j 2 f2; : : : ; ng, implies that u � pmax � l,
it follows that the number of facet inducing inequalities with structure (5) that does
not coincide with an inequality (3) is bounded by nTpmax, and hence the total number
of facet inducing inequalities with structure (5) is bounded by nTpmax + n, which is
polynomial in the size of the formulation.

4 Facet inducing inequalities with right-hand side 2

In the previous section, we have derived a complete characterization of all facet in-
ducing inequalities with right-hand side 1 for the extended polytope PS� . Through
a similar analysis, we now derive a characterization of all facet inducing inequalities
with right-hand side 2 for PS� . First, we consider the structure of valid inequalities
x(V 1) + 2x(V 2) � 2 carefully. We �nd that in such an inequality we can distinguish
three sets of variables, which we will call L, M , and U ; consequently, we call the corre-
sponding structure the LMU-structure. Then, based on this LMU-structure, we derive
a characterization of facet inducing inequalities with right-hand side 2 for PS� . Finally,
we give mild conditions on the horizon T under which the identi�ed inequalities are
facet inducing for the original polytope PS too. Recall that a schedule does not have to
contain all jobs.

We start by studying the structure of valid inequalities with right-hand side 2 and coef-
�cients 0, 1, and 2. Consider a valid inequality x(V 1) + 2x(V 2) � 2. Clearly, at most
two jobs can be started in V = V 1 [ V 2. Let j 2 f1; :::; ng and s 2 Vj . It is easy to see
that, if job j is started in period s, at least one of the following three statements is true.

9



(i) It is impossible to start any job in V before job j, and at most one job can be
started in V after job j.

(ii) There exists a job i with i 6= j such that job i can be started in V before as
well as after job j and any job j0 with j0 6= j; i cannot be started in V .

(iii) At most one job can be started in V before job j, and it is impossible to start
any job in V after job j.

Therefore, we can write V = L [M [ U , where L � V is the set of variables for which
statement (i) holds, M � V is the set of variables for which statement (ii) holds, and
U � V is the set of variables for which statement (iii) holds. Analogously, we can write
Vj = Lj [Mj [ Uj. Note that each of the sets Lj ;Mj , and Uj may be empty.

If job j is started in a period in V 2
j , then it is impossible to start any job in V before

or after job j. It follows that V 2
j � Lj \ Uj for all j and hence V 2 � L \ U . It is not

hard to see that, if Lj 6= ; and Uj 6= ;, then the minimum element in Lj is less than
or equal to the minimum element in Uj, and the maximum element in Lj is less than
or equal to the maximum element in Uj . By de�nition Lj \Mj = ; and Mj \ Uj = ;.
The set Mj consists of periods between the maximum element of Lj and the minimum
element of Uj and hence Mj must be empty if Lj \ Uj 6= ;. By de�nition of the sets L
and U , x(L) � 1 and x(U) � 1 are valid inequalities.

We conclude that a valid inequality x(V 1) + 2x(V 2) � 2 can be represented by a
collection of sets Lj, Mj , and Uj . To derive necessary conditions on the structure of
facet inducing inequalities with right-hand side 2, we study this LMU-structure more
closely.

In the case of right-hand side 1, we only needed the concept of maximality to derive the
structural properties. In this case, we also need the concept of nondecomposability. A
valid inequality x(V 1) + 2x(V 2) � 2 is called nondecomposable if it cannot be written as
the sum of two valid inequalities x(W ) � 1 and x(W 0) � 1. The concept of maximality
becomes a little more complex in this case. A valid inequality x(V 1) + 2x(V 2) � 2
is called maximal if there does not exist a valid inequality x(W 1) + 2x(W 2) � 2 with
V � W , V 2 � W 2, where at least one of the subsets is a proper subset. The following
lemma yields a general necessary condition and will be frequently used to prove structural
properties.

Lemma 3 A facet inducing inequality x(V 1) + 2x(V 2) � 2 for PS� is nondecomposable

and maximal. 2

The remaining part of the analysis of the LMU-structure proceeds in two phases. In the
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�rst phase, we derive conditions on the structure of the sets L and U by considering each
of them separately. After having characterized the structure of L and U , it turns out that,
when considering the overall LMU-structure, we have to distinguish three situations, one
for each possible way of combining L and U . In the second phase, we characterize the
set M for each of these three situations.

Property 3 If x(V 1) + 2x(V 2) � 2 is valid and maximal, then the sets Lj, Mj, and Uj

(j = 1; : : : ; n) are intervals. Moreover, V 2
j = Lj \ Uj for all j, i.e., V

2 = L \ U .

Proof. The proof of the �rst part is similar to the proof of Property 1; the second part
is trivial. 2

Property 4 Let x(V 1) + 2x(V 2) � 2 be valid, nondecomposable, and maximal.

(a) Assume l = l1 � l2 � minflj j j 2 f3; : : : ; ngg. Then L1 = [l � p1; l2] and Lj =
[lj � pj; l] for all j 2 f2; : : : ; ng. Furthermore, there exists a j 2 f2; : : : ; ng such that

Lj 6= ;.

(b) Assume u = u1 � u2 � maxfuj j j 2 f3; : : : ; ngg. Then U1 = [u2 � p1; u] and
Uj = [u � pj; uj ] for all j 2 f2; : : : ; ng. Furthermore, there exists a j 2 f2; : : : ; ng such

that Uj 6= ;.

Proof. (a) The proof for L1 = [l � pj; l2] and Lj = [lj � pj; l] for all j 2 f2; : : : ; ng
is similar to the proof of Property 2. Now suppose that Lj = ; for all j 2 f2; : : : ; ng.
Then x(V 1) + 2x(V 2) � 2 can be written as the sum of the valid inequalities x(W ) � 1
and x(W 0) � 1, where W = f(1; s) j s 2 L1 \ U1g [ f(j; s) j j 2 f2; : : : ; ng; s 2 Vjg

and W 0 = f(1; s) j s 2 V1g. This contradicts the fact that x(V 1) + 2x(V 2) � 2 is
nondecomposable.

The proof of (b) is similar to that of (a). 2

Like the proof of Theorem 2, many of the proofs of the properties and theorems presented
in this section use the concept of a counterexample. If x(V 1) + 2x(V 2) � 2 is maximal,
then for any (j; s) =2 V there must exist a feasible schedule such that xjs = 1 and
x(V 1) + 2x(V 2) = 2; this schedule is called a counterexample for (j; s).

The following property plays a crucial role in the characterization. It shows that a
facet inducing inequality x(V 1) + 2x(V 2) � 2 has at most three types of interval Lj and
at most three types of interval Uj.

Property 5 Let x(V 1) + 2x(V 2) � 2 be valid, nondecomposable, and maximal.

(a) Assume l = l1 � l2 � l�, where l� = minflj j j 2 f3; : : : ; ngg. Then for all

j 2 f3; : : : ; ng with Lj 6= ; we have lj = l� and for all j 2 f3; : : : ; ng with Lj = ; we

have l� � pj � l, i.e., Lj = [l� � pj; l] for all j 2 f3; : : : ; ng.
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(b) Assume u = u1 � u2 � u�, where u� = maxfuj j j 2 f3; : : : ; ngg. Then for all

j 2 f3; : : : ; ng with Uj 6= ; we have uj = u� and for all j 2 f3; : : : ; ng with Uj = ; we

have u� � u� pj, i.e., Uj = [u� pj; u
�] for all j 2 f3; : : : ; ng.

Proof. (a) Let x(V 1) + 2x(V 2) � 2 be valid and maximal with l = l1 � l2 � l�.
By de�nition of l� and Property 4, Lj � [l� � pj; l] for all j 2 f3; : : : ; ng. We assume
without loss of generality l� = l3. Suppose that Lj 6= [l� � pj; l] for some j 2 f4; : : : ; ng,
say L4 6= [l� � p4; l]. Clearly, if l� � p4 � l, then L4 = ; = [l� � p4; l]. Consequently,
l�� p4 < l and l4 > l�, i.e., l�� p4+1 =2 V4. Since x(V

1)+ 2x(V 2) � 2 is maximal, there
exists a counterexample for (4; l� � p4 + 1). Let x4;l��p4+1 = xj1s1 = xj2s2 = 1 de�ne
such a counterexample. Since l� � p4 + 1 � l, the jobs j1 and j2 are started after job
4. Clearly one of the jobs 1; 2 and 3 does not occur in fj1; j2g. Suppose job 3 does not
occur. It is now easy to see that x3;l��p3+1 = xj1s1 = xj2s2 = 1 is a feasible schedule,
which contradicts the validity of x(V 1) + 2x(V 2) � 2. If job 1 or job 2 does not occur in
fj1; j2g we obtain a contradiction in the same way.

The proof of (b) is similar to that of (a). 2

The combination of Lemma 3 and Properties 4 and 5 shows that, if x(V 1) + 2x(V 2) � 2
is facet inducing for PS� and if l = l1 � l2 � l�, then the set L can be represented by
the following diagram:

l� � pj

l2 � p2

l

l

l2l� p1

j 2 f3; : : : ; ng

2

1

Similarly, if u = u1 � u2 � u�, then the set U can be represented by the following
diagram:

u� pj

u� p2

u2 � p1

u�

u2

u

j 2 f3; : : : ; ng

2

1
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The diagrams clearly show that a facet inducing inequality with right-hand side 2 for
PS� contains at most three types of intervals Lj and at most three types of intervals Uj .
The intervals Lj are characterized by the de�nition of the �rst period of the interval;
the intervals Uj are characterized by the de�nition of the last period of the interval. In
fact, the intervals Lj have the same structure for all but two jobs; the same holds for
the intervals Uj .

It turns out that, when we study the overall LMU-structure, it su�ces to consider
three situations, based on the jobs with the deviant intervals Lj and Uj :

(1a) l = l1 < l2 � l� and u = u1 > u2 � u�, where l� = minflj j j 2 f3; : : : ; ngg and
u� = maxfuj j j 2 f3; : : : ; ngg;

(1b) l = l1 < l2 � l�, u = u1 > u3 � u�, and lj > l2 or uj < u3 for all j 2 f2; : : : ; ng,
where l� = minflj j j 2 f3; : : : ; ngg and u� = maxfuj j j 2 f2; 4; : : : ; ngg;

(2) l = l1 and u = u2.

Before we investigate each of the three situations, we present a property that applies to
Case 1.

Property 6 If x(V 1) + 2x(V 2) � 2 with l = l1 < l2 = minflj j j 2 f2; : : : ; ngg and

u = u1 > ui = maxfuj j j 2 f2; : : : ; ngg is valid, nondecomposable, and maximal, then

l2 < ui.

Proof. The proof is based on the fact that if l2 � ui, then x(V 1) + 2x(V 2) � 2 can be
written as the sum of two valid inequalities with right-hand side 1. 2

4.1 Case (1a)

The conditions on lj and uj and Properties 4 and 5 completely determine the sets L and
U . Therefore, all that remains to be investigated is the structure of the set M .

Property 7 If x(V 1) + 2x(V 2) � 2 is valid, nondecomposable, and maximal with l =
l1 < l2 � l� and u = u1 > u2 � u�, then

M1 = [u� � p1; l
�] \ [l2; u2 � p1];

M2 = [u� � p2; l
�] \ [l; u� p2] \ [l2 � p2; u2];

Mj = [u2 � pj; l2] \ [l; u� pj]; (j 2 f3; : : : ; ng):

Proof. Let x(V 1) + 2x(V 2) � 2 with l = l1 < l2 � l� and u = u1 > u2 � u� be valid,
nondecomposable, and maximal. We derive the structure of the set M from that of L
and U .

13



Each set Mj is the intersection of three intervals. The �rst interval follows from the
condition that there exists a job i with i 6= j such that if job j is started in Mj , then job
i can be started in V before as well as after job j. The second interval follows from the
condition that if job j is started in Mj , then any job j0 with j0 6= j; i cannot be started
in V . The third interval is [lj � pj ; uj ].

We �rst determine M1. If job 1 is started in M1, then, since l2 � l� and u2 � u�,
job 2 is the job that can be started in V before as well as after job 1. This implies
that M1 � [l2; u2 � p1]. Furthermore, it is impossible to start any job j 2 f3; : : : ; ng
in V and hence M1 � [u� � p1; l

�]. We conclude that M1 � [u� � p1; l
�] \ [l2; u2 � p1].

Clearly, this dominates the condition that M1 � [l � p1; u]. If job 1 is started in period
s 2 [u� � p1; l

�] \ [l2; u2 � p1], then, since s 2 [l2; u2 � p1], [l2; u2 � p1] � [l � p1; u], and
L2 \ U2 = [u � p2; l], job 2 cannot be started in L2 \ U2. Since x(V

1) + 2x(V 2) � 2 is
maximal, it follows that M1 = [u� � p1; l

�] \ [l2; u2 � p1].
The other setsMj can be determined in the same way. The conditionMj � [lj�pj; uj ]

is dominated by other conditions for all but j = 2. 2

Lemma 3 and Properties 4, 5 and 7 completely determine the LMU-structure of a facet
inducing inequality x(V 1) + 2x(V 2) � 2 for PS� with l = l1 < l2 � l� and u = u1 >

u2 � u�. We can further show that for all j 2 f3; : : : ; ng we have [u2 � pj; l] � Lj and
[u � pj ; l2] � Uj . We combine all these results to obtain the following theorem. Note
that we have reformulated the intervals Mj to emphasize their inherent structure.

Theorem 4 A facet inducing inequality x(V 1)+2x(V 2) � 2 for PS� with l = l1 < l2 � l�

and u = u1 > u2 � u� has the following LMU-structure:

L1 = [l � p1; l2]; M1 = [u� � p1; l
�] n (L1 [ U1);

L2 = [l2 � p2; l]; M2 = [maxfu�; l2g � p2;minfl�; u2g] n (L2 [ U2);
Lj = [l� � pj; l]; Mj = [u2 � pj; l2] n (Lj [ Uj);

U1 = [u2 � p1; u];
U2 = [u� p2; u2];
Uj = [u� pj; u

�] (j 2 f3; : : : ; ng);
(6)

where [u2 � pj; l] � Lj and [u� pj ; l2] � Uj for all j 2 f3; : : : ; ng. 2

Hence, a facet inducing inequality x(V 1) + 2x(V 2) � 2 for PS� with l = l1 < l2 � l� and
u = u1 > u2 � u� can be represented by the following diagram:
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UML

� 2.

l2

u2 � pj

minfl�; u2gmaxfu�; l2g � p2

l�u� � p1

u� pj u�

u� p2 u2

uu2 � p1

l

l

l� � pj

l2 � p2

l2l� p1

j 2 f3; : : : ; ng

2

1

Example 2 Let n = 4, p1 = 3, p2 = 5, p3 = 6, and p4 = 9. The inequality with
LMU-structure (6) and l = l1 = 7, l2 = 9, l� = 12, u� = 14, u2 = 16 and u = u1 = 19 is
given by the following diagram:

1
2

1
2

1
2

1
2

1
2

UML

193

� 2.

181716151413121110987654

4

3

2

1

Note that the fractional solution x15 = x1;19 = x2;10 = x2;16 = x4;4 = 1
2
violates this

inequality. It is easy to check that this solution satis�es all inequalities with structure
(5).

The following theorem shows that the given necessary conditions are also su�cient.

Theorem 5 A valid inequality x(V 1) + 2x(V 2) � 2 with l = l1 < l2 � l� and u = u1 >

u2 � u� and LMU-structure (6) that is nondecomposable and maximal is facet inducing

for PS�.

Proof. Let x(V 1) + 2x(V 2) � 2 be a valid inequality with l = l1 < l2 � l� and
u = u1 > u2 � u� and LMU-structure (6) that is nondecomposable and maximal, and let
F = fx 2 PS� jx(V 1)+2x(V 2) = 2g. We show that dim(F ) = dim(PS�)�1 by exhibiting
dim(PS�)�1 linearly independent directions in F , where a direction is a vector d = x�y

with x; y 2 F . For notational convenience, a direction will be speci�ed by its nonzero
components. We give three sets of directions: unit vectors djs = 1 for all (j; s) =2 V ,
vectors djs = 1; d1;l�p1+1 = d2u2 = �1 for all (j; s) 2 V 2, and a set of jV j � jV 2j � 1
linearly independent directions dj1s1 = 1; dj2;s2 = �1 with (j1; s1); (j2; s2) 2 V n V 2.
Together these give dim(PS�)� 1 linearly independent directions in F .
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If (j; s) =2 V , then, since x(V 1) + 2x(V 2) � 2 is maximal, there is a counterexample
for (j; s), say, de�ned by xjs = xj1s1 = xj2s2 = 1. Clearly this schedule is an element of
F . Note that the schedule yj1s1 = yj2s2 = 1 also is an element of F and hence d = x� y

yields the direction djs = 1.
For (j; s) 2 V 2 the schedule de�ned by xjs = 1 is an element of F . Since l < l2 and,

by Property 6, l2 < u2, we have that y1;l�p1+1 = y2u2 = 1 de�nes a feasible schedule.
This schedule is also an element of F and hence djs = 1; d1;l�p1+1 = d2u2 = �1 is a
direction in F for all (j; s) 2 V 2.

The remaining jV j � jV 2j � 1 directions have the form dj1s1 = 1; dj2s2 = �1 with
(j1; s1); (j2; s2) 2 V nV 2. We determine the directions in such a way that the undirected
graph G with vertex set V n V 2 and with edge set equal to the pairs (j1; s1); (j2; s2)
corresponding to the chosen directions forms a spanning tree. This guarantees that the
determined directions are linearly independent. We refer to Van den Akker [1994] for a
complete description of the determination of these directions. 2

The following theorem shows that the su�cient conditions given by the previous theorem
are also su�cient for the original polytope if the planning horizon T is large enough.

Theorem 6 If T �
Pn

j=1 pj + 5pmax, then a valid inequality x(V 1) + 2x(V 2) � 2 with

l = l1 < l2 � l� and u = u1 > u2 � u� and LMU-structure (6) that is nondecomposable
and maximal is facet inducing for PS.

Proof. The proof proceeds along the same lines as the proof of the previous theorem:
we pick almost the same set of directions. We need the extra term of 5pmax in the bound
on T , because we now have to extend the partial schedules used to de�ne the directions
to complete schedules. 2

An inequality with LMU-structure (6) is determined by two jobs and six time periods
l; l2; l

�; u�; u2 and u. It is facet inducing for PS� if and only if it is maximal and non-
decomposable. We have derived the exact conditions on the eight de�ning parameters
to ensure this. These conditions are omitted here for reasons of brevity. We refer to
Van den Akker [1994] for a complete description. It turns out that the number of facet
inducing inequalities for PS� with structure (6) is bounded by 2n2T 3p3max, and is hence
polynomial in the size of the formulation.

4.2 Case (1b)

Like in Case (1a), the conditions on lj and uj and Properties 4 and 5 completely deter-
mine the sets L and U . From these properties we derive that, if l2 = l� and u3 = u�,
then Li 6= ; and Ui 6= ;, where i is such that pi = maxfpj j j 2 f2; : : : ; ngg. But then
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li = l2 and ui = u3 and we are in Case (1a). We conclude that l2 < l� or u3 > u�. All
that remains to be investigated is the structure of the set M .

Property 8 If x(V 1) + 2x(V 2) � 2 is valid, nondecomposable, and maximal with l =
l1 < l2 � l�, u = u1 > u3 � u�, and lj > l2 or uj < u3 for all j 2 f2; : : : ; ng, then

M1 = ;;

M2 = [u3 � p2; l
�] \ [l; u� p2] \ [l2 � p2; u

�];
M3 = [u� � p3; l2] \ [l; u� p3] \ [l� � p3; u3];
Mj = [u3 � pj; l2] \ [l; u� pj] j 2 f4; : : : ; ng:

Proof. The proof is analogous to the proof of Property 7. 2

Properties 4, 5, and 8 determine the LMU-structure of a facet inducing inequality x(V 1)+
2x(V 2) � 2 for PS� with l = l1 < l2 � l�, u = u1 > u3 � u�, and lj > l2 or uj < u3 for
all j 2 f2; : : : ; ng. Like in Case (1a), we use a di�erent representation of the set M to
emphasize the inherent structure of the intervals Mj . It turns out that a facet inducing
inequality x(V 1) + 2x(V 2) � 2 for PS� with l = l1 < l2 � l�, u = u1 > u3 � u�, and
lj < l2 or uj < u3 for all j 2 f2; : : : ; ng has the following property, which restricts the
class of inequalities determined by Properties 4, 5, and 8 and leads to a simpler form of
the intervals Mj .

Property 9 If x(V 1) + 2x(V 2) � 2 is valid, nondecomposable, and maximal with l =
l1 < l2 � l�, u = u1 > u3 � u�, and lj > l2 or uj < u3 for all j 2 f2; : : : ; ng, then
l� � u�. 2

Lemma 3 and Properties 4, 5, 8, and 9 can be combined to give the following theorem.

Theorem 7 A facet inducing inequality x(V 1) + 2x(V 2) � 2 for PS� with l = l1 < l2 �

l�, u = u1 > u3 � u�, and lj > l2 or uj < u3 for all j 2 f2; : : : ; ng has the following

LMU-structure:

L1 = [l � p1; l2]; M1 = ;; U1 = [u3 � p1; u];
L2 = [l2 � p2; l]; M2 = [u3 � p2; l

�] n (L2 [ U2); U2 = [u� p2; u
�];

L3 = [l� � p3; l]; M3 = [u� � p3; l2] n (L3 [ U3); U3 = [u� p3; u3];
Lj = [l� � pj; l]; Mj = [u3 � pj; l2] n (Lj [ Uj); Uj = [u� pj; u

�] (j 2 f4; : : : ; ng);

(7)

where l� � u�. 2

Hence, a facet inducing inequality x(V 1) + 2x(V 2) � 2 for PS� with l = l1 < l2 � l�,
u = u1 > u3 � u�, and lj > l2 or uj < u3 for all j 2 f2; : : : ; ng can be represented by
the following diagram:
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l2u3 � pj

l2u� � p3

l�u3 � p2

u� pj u�

u� p3 u3

u�

u3 � p1

ll� � pj

l� � p3

j 2 f4; : : : ; ng

3

UML

� 2:

u� p2

u

l

ll2 � p2

l2l� p1

2

1

The following theorem shows that the given necessary conditions are also su�cient.

Theorem 8 A valid inequality x(V 1) + 2x(V 2) � 2 with l = l1 < l2 � l�, u = u1 >

u3 � u�, and lj > l2 or uj < u3 for all j 2 f2; : : : ; ng and LMU-structure (7) that is
nondecomposable and maximal is facet inducing for PS�.

Proof. The proof of this theorem is similar to that of Theorem 5. 2

In the same way as in Case (1a), the proof can be extended to prove that the su�cient
conditions given by the previous theorem are also su�cient for the original polytope if
the horizon T is large enough.

Theorem 9 If T �
Pn

j=1 pj + 5pmax, then a valid inequality x(V 1) + 2x(V 2) � 2 with

l = l1 < l2 � l�, u = u1 > u3 � u�, and lj > l2 or uj < u3 for all j 2 f2; : : : ; ng and

LMU-structure (7) that is nondecomposable and maximal is facet inducing for PS. 2

An inequality with LMU-structure (7) is determined by three jobs and six time periods
l; l2; l

�; u�; u3 and u. Like in Case (1a), we have derived the exact conditions on the
nine de�ning parameters to ensure that it is nondecomposable and maximal. Again, we
refer to Van den Akker [1994] for a complete description. The number of facet inducing
inequalities for PS� with structure (7) is bounded by n3T 4p2max.

Remark. It may seem more natural to de�ne Case (1a) as l = l1 < l2 < l� and
u = u1 > u2 > u�, and Case (1b) as l = l1 < l2 � l� and u = u1 > u3 � u�. Since under
this de�nition Property 9 does not hold, we prefer the given one.

4.3 Case (2)

This case di�ers from the other ones, as the conditions on lj and uj and Properties 4 and
5 do not completely determine the sets L and U . It turns out to be bene�cial to introduce
two parameters l0 = minflj j j 2 f3; : : : ; ngg and u0 = maxfuj j j 2 f3; : : : ; ngg, which
slightly di�er from l� and u� de�ned in Property 5, because it is possible that l2 > l0 or
u1 < u0. This leads to the following property, which is similar to Property 5.
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Property 10 Let x(V 1) + 2x(V 2) � 2 be a valid, nondecomposable, and maximal in-

equality with l = l1 and u = u2.

(a) For all j 2 f3; : : : ; ng with Lj 6= ;, we have lj = l0 and for all j 2 f3; : : : ; ng with

Lj = ;, we have l0 � pj � l, i.e., Lj = [l0 � pj ; l] for all j 2 f3; : : : ; ng.
(b) For all j 2 f3; : : : ; ng with Uj 6= ;, we have uj = u0 and for all j 2 f3; : : : ; ng with

Uj = ;, we have u0 � u� pj, i.e., Uj = [u� pj; u
0] for all j 2 f3; : : : ; ng. 2

We next investigate the structure of the set M .

Property 11 If x(V 1)+2x(V 2) � 2 is a valid, nondecomposable, and maximal inequal-

ity with l = l1 and u = u2, then

M1 = [u0 � p1; l
0] \ [minfl2; l

0g; u� p1] \ [l � p1; u1];
M2 = [u0 � p2; l

0] \ [l;maxfu1; u
0g � p2] \ [l2 � p2; u];

Mj = ; j 2 f3; : : : ; ng

Proof. Like in Case (1b), the proof of this property is analogous to that of Property
7. 2

Lemma 3 and Properties 4, 10, and 11 completely determine the LMU-structure of a
facet inducing inequality x(V 1) + 2x(V 2) � 2 for PS� with l = l1 and u = u2. We can
further show that [l0 � p2; l] � L2 and [u� p1; u

0] � U1. We combine all these results to
obtain the following theorem. Just like in the previous two cases, we have reformulated
the intervals Mj to emphasize their inherent structure.

Theorem 10 A facet inducing inequality x(V 1) + 2x(V 2) � 2 for PS� with l = l1 and

u = u2 has the following LMU-structure:

L1 = [l � p1;minfl2; l
0g]; M1 = [u0 � p1;minfl0; u1g] n (L1 [ U1);

L2 = [l2 � p2; l]; M2 = [maxfu0; l2g � p2; l
0] n (L2 [ U2);

Lj = [l0 � pj; l]; Mj = ;;

U1 = [u� p1; u1];
U2 = [maxfu1; u

0g � p2; u];
Uj = [u� pj; u

0] (j 2 f3; : : : ; ng);
(8)

where [l0 � p2; l] � L2 and [u� p1; u
0] � U1. 2

Hence, a facet inducing inequality x(V 1) + 2x(V 2) � 2 for PS� with l = l1 and u = u2
can be represented by the following diagram:
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minfl0; u1g

maxfu0; l2g � p2 maxfu1; u
0g � p2

minfl2; l
0g u1u� p1

l0

UML

� 2.

u0 � p1

u� pj u0

u

ll0 � pj

ll2 � p2

l� p1

j 2 f3; : : : ; ng

2

1

The following theorem shows that the given necessary conditions are also su�cient.

Theorem 11 A valid inequality x(V 1) + 2x(V 2) � 2 with l = l1 and u = u2 and LMU-

structure (8) that is nondecomposable and maximal is facet inducing for PS�.

Proof. The proof proceeds along the same lines as that of Theorem 5. 2

In the same way as in Case (1a), we can extend the proof of the above theorem to
show that if the horizon T is large enough, then the given su�cient conditions are also
su�cient for the original polytope.

Theorem 12 If T �
Pn

j=1 pj + 5pmax then, a valid inequality x(V 1) + 2x(V 2) � 2 with

l = l1 and u = u2 and LMU-structure (8) that is nondecomposable and maximal is facet

inducing for PS. 2

An inequality with structure (8) is determined by two jobs and six time periods. Like
in Case (1a), we have derived exact conditions on the parameters that ensure that the
inequality is nondecomposable and maximal. The number of facet inducing inequalities
with structure (8) is bounded by 2n2T 4p2max.

5 Separation

Since we want to use the classes of facet-inducing inequalities derived above in a branch-
and-cut algorithm, we must solve the separation problem associated with each class, i.e.,
we must be able to identify an inequality in the class that cuts of the current fractional
LP solution or to prove that such an inequality does not exist.

Clearly, a branch-and-cut algorithm for a single-machine scheduling problem op-
timizes some objective function over the convex hull of complete schedules, i.e., PS .
However, since we characterized facet inducing inequalities for PS� , i.e., the convex hull
of partial schedules, our separation algorithms will identify violated inequalities for the
latter polytope. Fortunately, facet inducing inequalities for PS� always de�ne valid in-
equalities for PS and, as we have shown, in many cases de�ne facet inducing inequalities
for PS .

20



Our separation algorithms are based on clever enumeration. We analyze the charac-
teristics of violated facet-inducing inequalities and use these characteristics to enumerate
only a small fraction of all facet inducing inequalities while guaranteeing that a violated
facet inducing inequality will be found if one exists.

We illustrate the underlying idea for the class of facet-inducing inequalities with
right-hand side 1. Recall that each facet inducing inequality x(V ) � 1 is completely
determined by a job k, which without loss of generality is called job 1, and values l and
u. Let ~x be the current LP solution and let F be a subset of variables with ~xjt > 0
for all (j; t) 2 F and ~x(F ) > 1. Our separation algorithm restricts the search for a
violated inequality to the subset of facet inducing inequalities covering F for which u� l

is minimal. A facet inducing inequality x(V ) <= 1 covering F is minimal with respect
to u � l when there does not exist a facet inducing inequality x(V 0) � 1 with F � V 0

and u0 � l0 < u � l, i.e., u � l cannot be decreased without removing nonzero variables
from the inequality. We will show that a facet inducing inequality x(V ) � 1 covering
F with minimal u � l value has ~x1;l�p1+1 > 0 and ~x1u > 0. We refer to this condition
as the positive subset condition. As a consequence of the positive subset condition, all
potential violated minimal facet inducing inequalities x(V ) � 1 can be enumerated in
time polynomial in the number of fractional variables in the current LP solution, whereas
the total number of facet inducing inequalities with right-hand side 1 is polynomial in
the planning horizon T .

Example 3 Consider a three-job problem with p1 = 4, p2 = 4, and p3 = 3. The LP so-
lution x15 = x19 = x27 = x2;11 =

1
2
, x31 = 1 violates the three inequalities with structure

(5) given by the diagrams below

1
2
3

4 5 6 7 8 9
1

2

1

2
1

2 � 1;
1
2
3

5 6 7 8 9
1

2

1

2
1

2 � 1;
1
2
3

5 6 7 8 9 10
1

2

1

2
1

2 � 1;

Our separation algorithm will only examine the facet inducing inequality corresponding
to the middle diagram.

The development of separation algorithms for facet inducing inequalities with right-
hand side 2 is also based on the identi�cation of positive subset conditions.

In the sequel, ~x denotes the current LP-solution. As we start with the LP-relaxation
of the original formulation, ~x satis�es (1) and (2).
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5.1 A separation algorithm for facet inducing inequalities with right-
hand side 1

To identify violated facet inducing inequalities with right-hand side 1, we have to identify
violated inequalities with structure (5).

The following lemma shows that the separation can be restricted to the identi�cation
of inequalities satisfying a positive subset condition which states that ~x1;l�p1+1 > 0 and
~x1u > 0. By this condition u � l is minimal in the sense that it cannot be decreased
without removing nonzero variables from the inequality.

Lemma 4 If ~x violates a facet inducing inequality x(V ) � 1, then we may assume that

~x1;l�p1+1 > 0 and ~x1u > 0.

Proof. Let ~x violate a facet inducing inequality x(V ) � 1. Since ~x satis�es (4), we
must have l < u. Suppose ~x1;l�p1+1 = 0. If we increase l by 1, then the variable x1;l�p1+1

is removed from x(V ) � 1 and the variables xj;l+1 with j 6= 1 such that u�pj < l+1 are
added to this inequality. In this way we obtain another facet inducing inequality. Since
in the original inequality ~x1;l�p1+1 = 0, ~x also violates the new inequality. We conclude
that if ~x1;l�p1+1 = 0, then we obtain another violated inequality by decreasing u � l.
We may hence assume ~x1;l�p1+1 > 0. In the same way we can show if ~x1u = 0, then we
obtain another violated inequality by decreasing u, i.e., by decreasing u � l. We may
hence also assume that ~x1u > 0. 2

Since the current LP-solution ~x satis�es the equations (3), a violated inequality x(V ) � 1
must have Vj 6= ; for some j 2 f2; : : : ; ng and hence u�maxfpj j j 2 f2; : : : ; ngg < l.

A facet inducing inequality x(V ) � 1 is determined by a job j and time periods l and
u. Recall that the number of such inequalities is of order nTpmax, where pmax denotes
the maximal processing time. However, the number of inequalities satisfying the positive
subset condition is bounded by the square of the number of fractional variables in the
current LP-solution and hence the number of inequalities that have to be checked by the
separation algorithm is bounded by this number. The resulting separation algorithm is
as follows.

SepRHS1(~x)

begin

for all jobs j 2 f1; : : : ; ng do
for all l such that 0 < ~xj;l�pj+1

< 1 do

for all u such that l < u < l +maxfpi j i 6= jg and 0 < ~xju < 1 do

if
P

s2[l�pj ;u]
~xjs +

P
i6=j

P
s2[u�pi;l]

~xis > 1

then violated inequality identi�ed;

end.
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5.2 A separation algorithm for facet inducing inequalities with right-
hand side 2

Facet inducing inequalities with right-hand side 2 are inequalities with structure (6),
(7), or (8). Because of the complexity of the necessary conditions for an inequality with
one of these structures to be nondecomposable and maximal, and hence facet inducing,
the separation algorithm is not restricted to facet inducing inequalities but considers
all nondecomposable inequalities with one of these structures. As we have done in the
previous subsection, we will study the characteristics of violated inequalities and use
these characteristics to develop clever enumeration schemes. For reasons of brevity,
we only consider facet inducing inequalities with structure (6) and omit proofs. The
interested reader is referred to Van den Akker [1994] for additional information.

Lemma 5 If ~x satis�es all valid inequalities x(W ) � 1 with W � V and violates an

inequality x(V 1) + 2x(V 2) � 2, then ~xjs < 1 for all (j; s) 2 V .

The following lemmas show that the separation can again be restricted to the identi�ca-
tion of inequalities satisfying a positive subset condition. In this case, the positive subset
condition implies that u� l, u2� l2, and (l

�� l2)
++(u2�u

�)+ have to be minimal, where
the expressions (l� � l2)

+ and (u2 � u�)+ stem from the conditions on the parameters
stating that l2 � l� and u2 � u�.

Lemma 6 If ~x violates an inequality x(V 1) + 2x(V 2) � 2 with structure (6), then we

may assume that ~x1;l�p1+1 > 0 and ~x1u > 0.

Lemma 7 If ~x violates an inequality x(V 1) + 2x(V 2) � 2 with structure (6), then we

may assume that ~x2;l2�p2+1 > 0, and ~x2u2 > 0.

Lemma 8 If ~x violates an inequality x(V 1) + 2x(V 2) � 2 with structure (6), then we

may assume that

(a) if l� > l2, then either ~x1l� > 0, M1 6= ;, and l� is the maximum of M1, or ~x2l� > 0,
M2 6= ;, and l� is the maximum of M2 ;
(b) if u� < u2, then either ~x1u��p1+1 > 0, M1 6= ;, and u� � p1 + 1 is the minimum of

M1, or ~x2u��p2+1 > 0, M2 6= ;, and u� � p2 + 1 is the minimum of M2.

Note that for an inequality x(V 1) + 2x(V 2) � 2 with structure (6) and with l2 < l� we
have that M1 6= ; and l� is the maximum of M1 if and only if u� � p1 < l� � u2 � p1.
The other conditions in Lemma 8 can be rewritten in a similar way.

Based on the previous lemmas, we can derive a separation algorithm for inequalities
x(V 1) + 2x(V 2) � 2 with structure (6). As for facet inducing inequalities with right-
hand side 1, the algorithm is based on enumeration of fractional variables in the current
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solution. The algorithm is more involved because when we enumerate over l� and u� we
have to distinguish the cases L2 = ;, U2 = ;, and L2 6= ; ^ U2 6= ;.

6 A branch-and-cut algorithm for 1jrjj
P
wjCj

Based on the separation algorithms discussed in the previous section, we have developed
a branch-and-cut algorithm for the problem of minimizing the sum of the weighted com-
pletion times on a single machine subject to release dates, i.e., 1jrj j

P
wjCj , which is

known to be strongly NP-hard (Lenstra, Rinnooy Kan, and Brucker [1977]). Developing
a branch-and-cut algorithm involves a lot of engineering, especially when dealing with
large linear programs and large numbers of cuts. We elaborate on several such engineer-
ing aspects and show that handling them properly is of crucial importance to the overall
performance of the algorithm.

The branch-and-cut algorithms have been implemented using MINTO, a Mixed IN-
Teger Optimizer (Nemhauser, Savelsbergh, and Sigismondi [1994]). MINTO is a software
system that solves mixed-integer linear programs by a branch-and-bound algorithm with
linear relaxations. The user can enrich the basic algorithm by providing a variety of spe-
cialized application functions that can customize MINTO to achieve maximum e�ciency
for a problem class. Our computational experiments have been conducted with MINTO
2.0/CPLEX 3.0 and have been run on a IBM RS/6000 model 590.

For our computational experiments, we have used sets of 20 randomly generated
instances with uniformly distributed parameters; the weights are in [1; 10], the release
dates are in [0; 1

2

Pn
j=1 pj], and the processing times are in [1; pmax]. We consider sets

of 20-job instances with pmax equal to 5, 10, and 20, respectively, and sets of 30-job
instances with pmax equal to 5 and 10, respectively. Recall that the number of constraints
is n+ T and the number of variables is approximately nT . Since T �

Pn
j=1 pj, the size

of the linear program increases when the number of jobs increases as well as when the
processing times increase. For the 30-job problems we did not consider pmax = 20, since
the memory requirements were too large.

6.1 Quality of the lower bounds

The goal of our �rst experiments was to evaluate the quality of the lower bounds obtained
by just solving the LP-relaxation, by solving the LP-relaxation in combination with
facet inducing inequalities with right-hand side 1, and by solving the LP-relaxation in
combination with facet inducing inequalities with right-hand side 1 and 2. The results
for one hundred instances, twenty in each of the sets, are summarized in Table 1. Let
ZLB denote a lower bound on the optimal value ZIP of the integer program. The gap
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GLB corresponding to this lower bound is de�ned by

GLB =
ZIP � ZLB

ZIP

� 100%:

Note that this gap is expressed as a percentage. In Table 1, we report for each set of
twenty instances corresponding to the same combination (n; pmax) the following numbers:

� Gav
LP and Gmax

LP : the average gap after solving the LP-relaxation and the maximum
of these gaps;

� Gav
1 and Gmax

1 : the average gap after the addition of cuts with right-hand side 1
and the maximum of these gaps;

� Gav
2 and Gmax

2 : the average gap after the addition of cuts with right-hand side 1
and 2 and the maximum of these gaps.

Table 1. Quality of the bounds.

LP 1 2

(n; pmax) Gav
LP Gmax

LP Gav
1 Gmax

1 Gav
2 Gmax

2

(20, 5) 0.379 1.346 0.157 1.228 0.058 0.572
(20,10) 0.64 1.959 0.233 1.337 0.054 0.407
(20,20) 0.507 1.657 0.126 0.966 0.047 0.385
(30, 5) 0.390 1.309 0.179 0.664 0.121 0.599
(30,10) 0.478 1.099 0.121 0.934 0.096 0.592

These results show that the bounds obtained for these randomly generated instances
are excellent, even the initial linear relaxation is always within two percent of the opti-
mum, and that both classes of inequalities are e�ective in reducing the integrality gap.
Table 1 indicates that for most of the instances the addition of cuts with right-hand side
1 closes at least half of the integrality gap and that addition of cuts with right-hand side
2 reduces this gap even further.

The results in Table 1 do not re
ect the fact that many instances were solved to
optimality just by adding cuts. Table 2 provides statistics on the frequency with which
optimal solutions were found. More precisely, we report:

� nLP : the number of instances for which the optimal solution of the LP-relaxation
was integral;

� n1: the total number of instances that were solved to optimality after the addition
of cuts with right-hand side 1;
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� n2: the total number of instances that were solved to optimality after the addition
of cuts with right-hand side 1 and 2.

Table 2. Number of instances that were solved to optimality.

(n; pmax) nLP n1 n2
(20, 5) 5 12 18
(20,10) 0 6 16
(20,20) 4 13 17
(30, 5) 5 6 8
(30,10) 0 5 9

From Table 2 we conclude that the addition of cuts with right-hand side 2 signi�cantly
increases the number of instances that are solved without branching.

6.2 Branching strategies

When the addition of cuts fails to solve the problem, we resort to branch-and-bound. In
this section, we discuss three branching strategies and we evaluate their performance.

In the �rst branching strategy, we branch on the fractional variable xjt closest to 0.5
(variable dichotomy). We set xjt = 1 on one branch, i.e., we force job j to start in time
period t, and xjt = 0 on the other branch, i.e., we prevent job j from being started in
time period t. In case of ties, we select the variable with the smallest t.

In the second branching strategy, we branch on the assignment constraintP
1�t�T�pj+1 xjt = 1 for the job j that covers the largest time interval, i.e., the job j for

which the di�erence between the �rst and last period with positive xjt is maximal (GUB
dichotomy). We set

P
1�t�bt�c xjt = 1 on one branch, i.e, we force job j to start not later

than bt�c, and
P

bt�c<t�T�pj+1 xjt = 1 on the other branch, i.e., we force job j to start
not before bt�c + 1, where we choose t� to be equal to

P
1�t�T�pj+1(t � 1)xjt, i.e., the

mean start time suggested by the current LP solution. The second branching scheme
has the advantage that it divides the search space more evenly, which is a desirable
characteristic of a branching strategy.

Computational experiments have revealed that these two branching strategies work
best with best-bound search of the tree.

In the third branching strategy (positional branching), we exploit the structure of
feasible schedules and �x jobs at certain positions in the schedule. At level d in the
branch-and-bound tree the jobs in positions 1; : : : ; d � 1 have already been �xed and
some job j is �xed at position d. Fixing a job j in position d is accomplished by �xing
its start time at the maximum of its release date and the completion time of the (d�1)th
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job. Note that this can be done because the objective function is nondecreasing in the
completion times of the jobs. As a dominance rule, we do not allow a job to be �xed in
position d if its release date is so large that it is possible to complete some other job that
has not yet been �xed before this release date. The subproblems at level d are de�ned
by �xing at position d the jobs that have not been �xed yet at an earlier position. The
order in which these subproblems are selected is determined on the basis of the mean
start times suggested by the current LP solution, i.e., the jobs are put in nondecreasing
order of

P
1�t�T�pj+1(t�1)xjt. This strategy works best in combination with depth-�rst

search of the tree.
In Tables 3a and 3b, we compare the performance of the di�erent branching strategies

for the two sets of 30-job instances with pmax = 5 and pmax = 10. Since the majority
of the 20-job instances were solved to optimality in the root node, we do not report
results for these instances. In the experiments we used all cuts, i.e., cuts with right-hand
side 1 as well as cuts with right-hand side 2. In the �rst three rows of the tables, we
report on the number of nodes in the branch-and-bound tree: the average number (nav),
the maximum number (nmax), and the standard deviation (�n). In the last three rows
of the table, we report on the computation time (in seconds). Several observations

Table 3a. Performance of the di�erent branching strategies for n = 30 and pmax = 5.

(30,5) positional GUB variable
branching dichotomy dichotomy

nav 52.30 6.60 489.90
nmax 255. 29. 7545.
�n 66.02 7.63 1641.01

tav 7.98 6.08 213.12
tmax 20.31 23.99 3307.94
�t 5.50 4.55 716.77

can be made based on these results. First, the branching strategy based on variable
dichotomy is clearly inferior to the other two. Second, GUB branching requires fewer
nodes than positional branching. However, evaluating fewer nodes does not translate
into faster solution times. There are two factors that, in our opinion, contribute to
this phenomenon. Positional branching �xes many more variables, which reduces the
size of the linear programs that have to be solved. In addition, in a depth-�rst search
strategy consecutive linear programs di�er only slightly. Consequently, the basis of last
solved linear program is a good starting basis for the current linear program. In a
best-bound search strategy consecutive linear programs are likely to di�er considerably.
Consequently, the basis of the last solved linear program does not provide a good starting
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Table 3b. Performance of the di�erent branching strategies for n = 30 and pmax = 10.

(30,10) positional GUB variable
branching dichotomy dichotomy

nav 26.57 19.35 169.05
nmax 286. 247. 2661.
�n 56.62 52.86 578.68

tav 23.27 53.15 477.38
tmax 384.63 691.51 7269.59
�t 60.10 146.96 1585.95

basis for the current linear program. Furthermore, since many cuts are generated during
the solution process, the basis associated with the last linear program solved in the
parent node does not provide a good starting basis either. A �nal observation is that
there is a high variation in complexity among the instances. With GUB branching all
but one instance are solved in fewer than 20 nodes and less than 60 seconds; the one
di�cult instance took a little less than 250 nodes and 700 seconds. To verify whether
this is typical behavior, we generated 20 additional 30-job instances with pmax = 10 and
tested GUB branching and positional branching on the extended set of 40 instances.
The results for this extended set of instances can be found in Table 4 and show a similar
pattern.

Table 4. Performance of the di�erent branching strategies for n = 30 and pmax = 10.

(30,10) positional GUB
branching dichotomy

nav 133.38 29.05
nmax 2108. 573.
�n 370.06 95.92

tav 83.49 59.98
tmax 638.79 691.51
�t 158.91 142.37

An advantage of the branching strategy based on GUB dichotomy is that it can be

applied for all objective functions
Pn

j=1

PT�pj+1
t=1 cjtxjt, whereas the positional branching

strategy is based on the assumption that it is most favorable to start a job as early as
possible, i.e., it can only be applied if the objective function is nondecreasing in the
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completion times of the jobs.
On the other hand, with the positional branching strategy the total number of nodes

in the branch-and-bound tree only depends on the number of jobs, whereas for the
branching strategy based on GUB dichotomy the number of nodes depends on the number
of jobs as well as on the planning horizon, i.e., on the size of the processing times. This
suggests that positional branching may perform better for instances with large processing
times.

6.3 Cut generation schemes

In this subsection, we study the in
uence of di�erent cut generation schemes on the
performance of the branch-and-cut algorithm. Cut generation schemes try to �nd the
proper balance between the expected increase in performance due to stronger bounds
that result from the addition of cuts and the expected decrease in performance due to
the e�ort required to identify violated cuts and to solve larger and more di�cult linear
programs. Cut generation schemes specify, among other things, when we try to identify
violated inequalities, which of the identi�ed violated inequalities are added, and when
inactive inequalities are deleted.

The experiments of the previous section showed that 30-job instances with pmax = 5
are relatively easy, in the sense that their solution requires very few nodes, and that a
large sample of 30-job instances with pmax = 10 is necessary to be able to draw reliable
conclusions. Therefore, the remaining experiments have been conducted on the extended
set of 40 randomly generated 30-job instances with pmax = 10.

We have investigated various possible cut generation schemes that specify choices
related to which classes of cuts to use and when to use them.

R12T12: At all nodes, add cuts with right-hand side 1 and 2.

R12T1: At the root node, add cuts with right-hand side 1 and 2; in all other nodes, add
cuts with right-hand side 1.

R12: At the root node, add cuts with right-hand side 1 and 2; in all other nodes, do not
add cuts.

R1T1: At all nodes, add cuts with right-hand side 1.

The performance of these variants is shown in Table 5a and 5b. We report the
performance of these variants with positional branching as well as with GUB branching.
Again, nav and nmax denote the average and maximum number of nodes, and tav and
tmax denote the average and maximum computation time (in seconds).

Several observations can be made based on these results. First, it is advantageous to
generate cuts throughout the search tree. Second, the cut generation scheme R12T12,
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Table 5a. Cut generation schemes with positional branching.

R12T12 R12T1 R12 R1T1

nav 133.38 220.90 377.07 422.07
nmax 2108 3677 7504 4764

tav 83.49 71.25 75.62 64.01
tmax 638.79 528.46 816.73 595.59

Table 5b. Cut generation schemes with GUB branching.

R12T12 R12T1 R12 R1T1

nav 29.05 67.42 107.70 89.97
nmax 573 1981 3443 1595

tav 59.98 69.54 66.09 59.81
tmax 691.51 889.87 991.02 846.20

i.e., generating cuts with right-hand side 1 and 2, clearly results in the fewest number of
evaluated nodes. However, evaluating fewer nodes does not translate into faster solution
times. For positional branching, cut generation scheme R1T1, i.e., generating only cuts
with right-hand side 1, is much faster than R12T12 even though it generates considerably
more nodes, and for GUB branching, cut generation scheme R1T1 is about as fast as
R12T12 although it generates more nodes. This is probably due to the fact that the
linear programs that result if cuts with right-hand side 2 are added are more di�cult
because they are denser than the ones resulting from the addition of cuts with right-hand
side 1. So far the two best variants of the algorithm are positional branching with cut
generation scheme R1T1 and GUB branching with cut generation scheme R12T12. We
prefer cut generation scheme R12T12 over R1T1 for GUB branching because it seems
to be more robust in the sense that the maximum number of evaluated nodes and the
maximum computation time over all instances are the smallest. For the remainder, we
will restrict our computational experiments to these two variants.

The cut generation schemes discussed above specify choices related to which classes
of cuts to use and when to use them. We have also considered cut generation schemes
that try to improve the performance by limiting the number of violated inequalities
that will be added to the active linear program. In fact, such a cut generation scheme
has been active during all previous experiments. When MINTO processes a node, it
monitors the changes in the value of the LP solutions from iteration to iteration. If it
detects that the total change in the value of the LP solution in the last three iterations
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is less than 0.5 percent, i.e., 0.005 times the value of the current LP solution, it forces
MINTO to branch. This feature is incorporated in MINTO to handle the `tailing-o�'
e�ect exhibited by many cutting plane algorithms.

The experiments carried out to evaluate the quality of the bounds, discussed in Sec-
tion 6.1, revealed that it is impossible to predict the change in objective function value
after the addition of violated inequalities. It frequently happened that the objective func-
tion hardly changed for several iterations before improving signi�cantly. Consequently,
it is very likely that MINTO, with default settings, would sometimes force branching too
soon. To ensure the best possible bound at the root node, we have chosen to deactivate
forced branching in the root node.

To evaluate the e�ect of di�erent forcing strategies on the performance of the al-
gorithms, we have investigated the following three strategies: no forced branching, no
forced branching at the root node but forced branching at all other nodes, and forced
branching throughout the tree. The results are shown in Tables 6a and 6b. We conclude

Table 6a. Forcing strategies with GUB branching.

no forcing no root forcing forcing

nav 27.92 29.05 56.12
nmax 419 573 1419

tav 130.33 59.98 56.45
tmax 2396.48 691.51 804.85

Table 6b. Forcing strategies with positional branching.

no forcing no root forcing forcing

nav 432.70 422.07 409.80
nmax 5036 4746 4746

tav 65.55 64.01 62.32
tmax 602.62 595.59 608.17

the following from these results. First, the tailing-o� e�ect is much stronger when cuts
with right-hand side 2 are used. Second, the strategy that we adopted, i.e., no forcing
at the root node, works well.

There are various other ways to limit the number of violated inequalities that will
be added to the active linear program: limit the number of cuts that are added in a
single round of cut generation, limit the number of rounds of cut generation per node
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evaluation, and limit the number of nodes at which cut generation takes place (this is
sometimes referred to as the cut frequency). All these did not seem to have a signi�cant
positive e�ect on the performance of the basic algorithm. In most cases, the performance
of these variants was actually worse.

Finally, we have experimented with cut generation schemes in which inequalities are
deleted when they have been inactive for a number of consecutive iterations, i.e., the
dual variable associated with the inequality has been 0 for a number of consecutive
iterations. Table 7 shows the e�ect of di�erent thresholds for deletion (10, 50, 1000) for
GUB branching. Note that setting the threshold to 1000 for this application is equivalent
to no cut deletion. We see that cut deletion does in
uence the computation time and

Table 7. E�ect of di�erent thresholds for cut deletion.

10 50 1000

nav 28.82 29.05 30.42
nmax 573 573 595

tav 75.98 59.98 80.06
tmax 901.98 691.51 1320.93

that a threshold of 50 seems appropriate for our application. We have not performed
the same experiment for positional branching, but it is very likely that our conclusions
are also applicable to positional branching.

6.4 Primal heuristics

In this subsection, we describe the primal heuristics that have been incorporated in the
branch-and-cut algorithm. The availability of good feasible solutions is important for
various reasons. In case of depth-�rst search (which we do in case of positional branching)
it may signi�cantly reduce the number of nodes that have to be evaluated, since any node
with a lower bound greater than or equal to the value of the best known solution can be
skipped from further consideration. In case of best-bound search (which we do in case of
GUB branching) it will not reduce the number of evaluated nodes by much, but it will
reduce the set of unevaluated nodes that has to be kept, which is important for large
integer programs because it reduces the chance of running out of memory. Furthermore,
good feasible solutions are essential for e�ective reduced cost �xing.

We have implemented four primal heuristics. The �rst heuristic is derived from
Smith's rule (Smith [1956]). Smith's rule solves 1jj

P
wjCj, i.e., the case without release

dates. Smith's rule states that 1jj
P
wjCj is solved by scheduling the jobs in order

of nondecreasing pj=wj ratio. Our �rst heuristic schedules the jobs according to the
following rule: at each decision point schedule the available job with the smallest pj=wj
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ratio, where the �rst decision point is the smallest release date, and the kth decision
point is either the completion time of the job scheduled in the (k � 1)th position or,
in case there are no jobs available at that time, the smallest release date among the
unscheduled jobs.

The other three heuristics schedule the jobs according to some ordering based on the
values of the current linear programming solution. We have used the following three
orderings:

� schedule jobs in order of nondecreasing mean start time
PT�pj+1

t=1 (t� 1)xjt;

� schedule jobs in order of nondecreasing maximum start time argmaxtfxjtg;

� schedule jobs in order of nondecreasing �rst start time argmintfxjt > 0g.

In most situations, the ordering based on the mean start time provides the best feasible
solution. However, since these heuristics take very little time we always apply all of them.
Furthermore, note that these heuristics are applied every time that a linear program has
been solved, whereas the �rst heuristic is applied only once.

Let zUB denote an upper bound on the optimal value zIP of the integer program.
The gap GUB corresponding to this upper bound is de�ned by

GUB =
zUB � zIP

zIP
� 100%:

In Table 8, we report for those 30-job instances that were not solved to optimality by
the initial LP-relaxation the following numbers:

� Gav
ratio and G

max
ratio: the average gap for the �rst heuristic and the maximum of these

gaps;

� Gav
init and Gmax

init : the average gap for the best of the other three heuristics when
applied to the solution of the initial LP relaxation and the maximum of these gaps;

� Gav
root and Gmax

root : the average gap after the root node has been evaluated and the
maximum of these gaps.

Observe that the gap after the root node has been evaluated may di�er for the two
variants we consider, since we do not generate cuts with right-hand side 2 with the
positional branching scheme.

The computational results show that the solutions to the LP-relaxations encountered
during the solution process provide good starting-points for obtaining primal solutions;
the heuristics based on these fractional solutions provide much better primal solutions
than the �rst heuristic. Recent results on approximation algorithms for machine schedul-
ing problems [Goemans 1997, Hall, Schulz, Shmoys, and Wein 1997] provide theoretical
evidence of the strength of LP-based heuristics for single machine scheduling problems.
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Table 8. Performance of the primal heuristics.

RHS1 RHS12

Gav
ratio Gmax

ratio Gav
init Gmax

init Gav
root Gmax

root Gav
root Gmax

root

9.03 17.52 1.47 6.94 0.44 2.22 0.19 1.23

7 Related research and conclusions

As mentioned in the introduction, Sousa and Wolsey [1992] and Crama and Spieksma
[1993] have also studied the time-indexed formulation of single machine scheduling prob-
lems. In this section, we brie
y indicate the relation between their research and our
research.

Sousa and Wolsey present three classes of valid inequalities. The �rst class consists of
inequalities with right-hand side 1, and the second and third class consist of inequalities
with right-hand side k 2 f2; : : : ; n�1g. Each class of inequalities is derived by considering
a set of jobs and a certain time period. The right-hand side of the resulting inequality
is equal to the cardinality of the considered set of jobs.

Sousa and Wolsey show that the inequalities in the �rst class, which is exactly the
class of inequalities with structure (5), are all facet inducing, if T �

Pn
j+1 pj+3pmax. In

Section 3, we have complemented this result by showing that all facet inducing inequal-
ities with right-hand side 1 for the extended polytope PS� are in this class, and hence
all facet inducing inequalities with right-hand side 1 for the original polytope PS have a
representation in this class.

With respect to the other two classes of valid inequalities studied by Sousa and
Wolsey we make the following observations. Any inequality in the second class that has
right-hand side 2 can be lifted to an inequality with LMU-structure (6) if pk1 6= pk2 , and
to an inequality with LMU-structure (8) if pk1 = pk2 , where fk1; k2g is the set of jobs
considered. Any inequality in the third class that has right-hand side 2 can be written
as the sum of two valid inequalities with right-hand side 1.

Sousa and Wolsey also developed a cutting plane algorithm based on the three classes
of inequalities they derived. We have only been able to compare our algorithm with their
algorithm on a set of 4 instances. Each one is solved at the root node by both algorithms.
Therefore, we cannot make any meaningful comparative statements.

Crama and Spieksma investigate the special case of equal processing times. They
completely characterize all facet inducing inequalities with right-hand side 1 and present
two other classes of facet inducing inequalities with right-hand side k 2 f2; : : : ; n� 1g.

Our characterization of all facet inducing inequalities with right-hand side 1 was
found independently and generalizes their result. The inequalities in their second class
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that have right-hand side 2 are special cases of the inequalities with LMU-structure (8),
and the inequalities in their third class that have right-hand side 2 are special cases of
the inequalities with LMU-structure (6). In addition to the facet inducing inequalities
reported in their paper, they have identi�ed other classes of facet inducing inequalities
with right-hand side 2 [Spieksma 1991].

Crama and Spieksma also developed a branch-and-cut algorithm based on the classes
of facet-inducing inequalities they derived. They tested their algorithm on two classes
of problems. The �rst one has randomly generated objective coe�cients cjt. The second
one has objective coe�cients cjt = wj(t � rj) if rj � t � dj and cjt = M otherwise,
where M is some large integer; these instances model minimization of the weighted sum
of the completion times subject to release dates and deadlines,

where release dates and deadlines may be violated at large cost. For both problem
classes the performance of our algorithm and their algorithm is comparable. However,
their branch-and-cut algorithm incorporates classes of cuts that have been derived specif-
ically for problems with equal processing times, whereas our algorithm does not.

For the problem 1jrj j
P
wjCj, several combinatorial branch-and-bound algorithms

have been developed, i.e., branch-and-bound algorithms that are not based on linear
programming relaxations. An example is the algorithm of Belouadah, Posner, and Potts
[1992]. The lower bounds in their algorithm are based on job-splitting. The number
of nodes that have to be evaluated by their algorithm is larger than the number of
nodes that have to be evaluated by our algorithm, but their algorithm requires less
computation time. This indicates that our lower bounds are better, but that we need
more time to compute them. This is due to the fact that we have to solve large linear
programs. However, our branch-and-cut algorithm can easily be applied to many types
of scheduling problems with various objective functions, whereas these combinatorial
branch-and-bound algorithms are typically designed for one speci�c problem type.

We conclude that the strength of the presented branch-and-cut algorithm is that it
can be applied successfully to a wide range of single-machine scheduling problems, but
that its weakness is the fact that in its current form it is limited to instances with a
relatively small number of jobs and relatively small processing times, because otherwise
the time to solve the linear programs becomes prohibitive. In a sequel paper (Van den
Akker, Hurkens, and Savelsbergh [1995]), we will investigate column generation as a way
of handling this weakness.

The new classes of facet inducing inequalities that we have derived and subsequently
incorporated in a branch-and-cut algorithm are valuable, since they reduce the integrality
gap and have allowed us to solve larger instances, in terms of processing times, than have
been solved with other branch-and-cut codes.

Another important strength of the proposed approach is the quality of the feasible
solutions obtained at the root node. The embedded LP-based heuristics produce high
quality feasible solutions.
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