
Birgit Heydenreich, Debasis Mishra,
Rudolf Müller, Marc Uetz

Optimal Mechanisms for Single Machine
Scheduling

RM/08/033

JEL code: D44, D71, C69, C72

Maastricht research school of Economics
of TEchnology and ORganizations

Universiteit Maastricht
Faculty of Economics and Business Administration
P.O. Box 616
NL - 6200 MD Maastricht

phone : ++31 43 388 3830
fax : ++31 43 388 4873

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6941877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Optimal Mechanisms for Single Machine Scheduling

Birgit Heydenreich1,∗ Debasis Mishra2 Rudolf Müller1

Marc Uetz3

October 8, 2008

Abstract

We study the design of optimal mechanisms in a setting where job-agents compete
for being processed by a service provider that can handle one job at a time. Each
job has a processing time and incurs a waiting cost. Jobs need to be compensated
for waiting. We consider two models, one where only the waiting costs of jobs are
private information (1-d), and another where both waiting costs and processing times
are private (2-d). Probability distributions represent the public common belief about
private information. We consider discrete and continuous distributions. In this setting,
an optimal mechanism minimizes the total expected expenses to compensate all jobs,
while it has to be Bayes-Nash incentive compatible. We derive closed formulae for the
optimal mechanism in the 1-d case and show that it is efficient for symmetric jobs. For
non-symmetric jobs, we show that efficient mechanisms perform arbitrarily bad. For
the 2-d discrete case, we prove that the optimal mechanism in general does not even
satisfy IIA, the ‘independent of irrelevant alternatives’ condition. Hence any attempt
along the lines of the classical auction setting is doomed to fail. In the 2-d discrete case,
we also show that the optimal mechanism is not even efficient for symmetric agents.

1Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands.
Email:{b.heydenreich,r.muller}@ke.unimaas.nl
∗Supported by NWO grant 2004/03545/MaGW ‘Local Decisions in Decentralised Planning Environments’.

2Indian Statistical Institute, Planning Unit, 7, S.J.S. Sansanwal Marg, New Delhi - 110 016, India.
Email:dmishra@isid.ac.in

3University of Twente, Applied Mathematics, P.O. Box 217, 7500 AE Enschede, The Netherlands. Email:
m.uetz@utwente.nl

1

1 Introduction

The design of optimal auctions is recognized as an intriguing issue in auction theory; first

studied by Myerson (1981) for the case of single item auctions. In that setting, the goal is to

maximize the seller’s revenue. We study the design of optimal auctions (or more precisely,

mechanisms) in a setting where job-agents compete for being processed by a service provider

that can only handle one job at a time. No job can be interrupted once started, and each job is

characterized by service time and weight, the latter representing his disutility for waiting per

unit time. It is well known that the total disutility of the jobs is minimized by a scheduling

policy known as Smith’s rule: schedule jobs in order of non-increasing ratios of weight over

service time (Smith 1956).

Our Contribution. We consider different cases. In the one-dimensional (1-d) case, jobs’

processing times are public information and a job’s weight is only known to the job itself.

We further distinguish between the discrete and continuous case. Publicly known probability

distributions over a finite set of possible weights represent common beliefs about the weights

in the discrete case. For the continuous case, we regard continuous probability distributions.

In the two-dimensional (2-d) case, both weights and processing times are private information

of the jobs. For all different settings, we aim at finding Bayes-Nash incentive compatible

mechanisms that minimize the expected expenses of the service provider. Given jobs’ reports

about their private information, a mechanism determines both an order in which jobs are

served, and for each job a payment that the job receives. The payment can be seen as a

compensation for waiting. By a graph theoretic interpretation of the incentive compatibility

constraints - as used e.g. by Rochet (1987) and in Malakhov and Vohra (2007) - we show

how to derive optimal mechanisms. For the one-dimensional discrete and continuous case,

we obtain closed formulae for modified job weights, and show that serving the jobs in the

order of non-increasing ratios of these modified weights over service times is optimal for

the service provider, as long as a certain regularity condition is fulfilled. It turns out that

the optimal mechanism is not necessarily efficient, i.e., in general it does not maximize

total utility. But it does so if e.g. all jobs are symmetric. For non-symmetric jobs with

discrete weights, we show by example that the cost can be arbitrarily far from optimal if

we insist on efficiency. We also compare our optimal mechanism to the generalized VCG

mechanism and see that for discrete weights, expected payments differ even for the case

of symmetric jobs. For continuous weights, however, revenue equivalence applies and the

generalized VCG mechanism is an optimal mechanism for symmetric jobs. Furthermore, we

analyze a mechanism in the continuous setting that corresponds to the first price auction

2

and we show that this yields another optimal mechanism. For the two-dimensional discrete

case, our main result is that the optimal mechanism generally does not satisfy a property

called IIA, ‘independence of irrelevant alternatives’. From that we conclude that the optimal

mechanism cannot be expressed in terms of modified weights along the lines of the 1-d case. In

fact, any kind of priority based list scheduling algorithm where the priorities of a job depend

only on the characteristics of that job itself cannot in general be an optimal mechanism. We

conclude that optimal mechanism design for the two-dimensional case is substantially more

involved than two-dimensional mechanism design for auction settings, as studied in Malakhov

and Vohra (2007). We also show that even for symmetric jobs, in the 2-d case the optimal

mechanism is not efficient.

Related Work. Optimal mechanism design goes back to Myerson (1981). He studies

optimal mechanisms for single item auctions and continuous 1-dimensional type spaces. Here,

optimal auctions are modifications of efficient auctions, more specifically, modifications of the

Vickrey auction. When regarding the seller as additional agent who bids zero in the original

auction, his modified bid might be non-zero in the optimal auction yielding a reservation

price. Malakhov and Vohra (2007) regard optimal mechanisms for an auction setting with

discrete 2-dimensional type spaces. The derived optimal mechanisms again employ the effi-

cient allocation rule with modified bids. As Malakhov and Vohra (2007), we follow Myerson’s

approach and analyze in how far it also works in a simple scheduling setting. We observe

similarities and differences, see Section 3. Especially, we show that for 2-dimensional type

spaces the traditional approach must fail to determine an optimal auction. The fact that

multi-dimensional optimal mechanism design is harder than that for 1-dimensional types,

is well-known. For example, Armstrong (2000) studies a multi-object auction model where

valuations are additive and drawn from a binary distribution (i.e., high or low). He gives

optimal auctions under specific conditions that reduce the type graph. From this paper it

becomes evident that optimal mechanism design with multi-dimensional discrete types is

difficult. For our model, we formalize this difficulty by showing that traditional approaches

inevitably yield IIA-mechanisms and that in some cases none of these is optimal. For de-

tails, we refer to Section 4. In Hartline and Karlin (2007), the authors give an introduction

to optimal mechanism design with 1-dimensional continuous types under dominant strategy

incentive compatibility. Both Myerson’s and our optimal allocation rules turn out to be

dominant strategy implementable as well, while they yield optimal mechanisms in the larger

class of Bayes-Nash incentive compatible mechanisms. Other scheduling models have been

looked at from a different angle in the economic literature. See, e.g., Mitra (2001) for effi-

cient and budget-balanced mechanism design in a 1-dimensional model and Moulin (2007)

3

for mechanisms that prevent merging and splitting of jobs.

Organization. In Section 2, we study the 1-d discrete case and derive closed formulae

for the optimal mechanism. We compare the optimal to efficient mechanisms in Section 3.

In Section 4, we study the 2-d discrete case and show that known approaches are doomed to

fail here. The continuous case is studied in Section 5 and standard auction formats for the

continuous scheduling model are analyzed in Section 6. We conclude with Section 7.

2 Optimal Mechanisms for the 1-Dimensional Setting

2.1 Setting and Preliminaries

Consider a single machine which can handle one job at a time. Let J = {1, . . . , n} denote

the set of jobs. We regard jobs as selfish agents that act strategically. Each job j has a

processing time pj and a weight wj. While pj is publicly known, the actual wj is private

information to job j. We refer to the private information of a job as its type. Jobs share

common beliefs about other jobs’ types in terms of probability distributions. We assume

discrete distribution of weights, that is, agent j’s weight wj follows a probability distribution

over the discrete set Wj = {w1
j , . . . , w

mj

j } ⊂ R, where w1
j < · · · < w

mj

j . Let ϕj be the

probability distribution of wj, that is, ϕj(w
i
j) denotes the probability associated with wi

j for

i = 1, . . . , mj. Let Φj(w
i
j) =

∑i
k=1 ϕj(w

k
j) be the cumulative probability up to wi

j. Both ϕj

and Φj are public information. We assume that jobs’ weights are independently distributed.

Let us denote by W = Πj∈JWj the set of all type profiles. For any job j, let W−j = Πk 6=jWk.

Let ϕ be the joint probability distribution of w = (w1, . . . , wn). Then ϕ(w) = Πn
j=1ϕj(w

ij
j)

for w = (wi1
1 , . . . , win

n) ∈ W . Let w−j and ϕ−j be defined analogously. For wi
j ∈ Wj and

w−j ∈ W−j, we denote by (wi
j, w−j) the type profile where job j has type wi

j and the types

of all other jobs are w−j.

A direct revelation mechanisms consists of an allocation rule f and a payment scheme

π. Jobs have to report their weights and they might report untruthfully if it suits them.

Depending on those reports, the allocation rule selects a schedule, i.e. an order in which jobs

are processed on the machine. The payment scheme assigns a payment that is made to jobs

in order to reimburse them for their waiting cost.

Let S = {σ | σ is a permutation of (1, . . . , n)} denote the set of all feasible schedules.

Then the allocation rule is a mapping f : W → S. For any schedule σ ∈ S, let σj be the

position of job j in the ordering of jobs in σ. Then, by Sj(σ) =
∑

σk<σj
pk, we denote the

start time or waiting time of job j in σ. If job j has waiting time Sj and actual weight

4

wi
j, it encounters a valuation of −wi

jSj. If j additionally receives payment πj, his total

utility is πj − wi
jSj, i.e., we assume quasi-linear utilities. Let us denote by ESj(f, wi

j) :=∑
w−j∈W−j

Sj(f(wi
j, w−j))ϕ−j(w−j) the expected waiting time of job j if it reports weight wi

j

and allocation rule f is applied. Denote by Eπj(w
i
j) :=

∑
w−j∈W−j

πj(w
i
j, w−j)ϕ−j(w−j) the

expected payment to j. We assume that jobs aim at maximizing their expected utility.

Definition 1 A mechanism (f, π) is Bayes-Nash incentive compatible if for every agent j

and every two types wi
j,w

k
j ∈ Wj

Eπj(w
i
j)− wi

jESj(f, wi
j) ≥ Eπj(w

k
j)− wi

jESj(f, wk
j) (1)

under the assumption that all agents apart from j report truthfully. If for allocation rule f

there exists a payment scheme π such that (f, π) is Bayes-Nash incentive compatible, then f

is called Bayes-Nash implementable. The payment scheme π is referred to as an incentive

compatible payment scheme.

In order to account for individual rationality, we need to guarantee non-negative util-

ities for all agents that report their true weight. It will be convenient to ensure indi-

vidual rationality by introducing a so-called dummy weight w
mj+1
j , which we add to the

type space Wj for every agent j. We assume ESj(f, w
mj+1
j) = 0 and Eπj(w

mj+1
j) = 0

for all j ∈ J . Furthermore, we impose the incentive constraints Eπj(w
i
j) − wi

jESj(f, wi
j) ≥

Eπj(w
mj+1
j)−wi

jESj(f, w
mj+1
j), which imply that Eπj(w

i
j)−wi

jESj(f, wi
j) ≥ 0 for any Bayes-

Nash incentive compatible mechanism (f, π). Therefore, the dummy weights together with

the mentioned assumptions guarantee that individual rationality is satisfied along with the

incentive constraints. The dummy weight can be interpreted as an option for any job not to

take part in the mechanism.

We next define the notion of monotonicity w.r.t. weights, which is easily shown to be a

necessary condition for Bayes-Nash implementability. In our setting, it is even a sufficient

condition.

Definition 2 An allocation rule f satisfies monotonicity w.r.t. weights or short monotonic-

ity if for every agent j ∈ J , wi
j < wk

j implies that ESj(f, wi
j) ≥ ESj(f, wk

j).

Theorem 1 An allocation rule f is Bayes-Nash incentive compatible if and only if it satisfies

monotonicity w.r.t. weights.

Before we give a proof of Theorem 1, we introduce the type graph for the Bayes-Nash

setting. Tf has node set Wj and contains an arc from any node wi
j to any other node wk

j of

length

5

`ik = wi
j[ESj(f, wk

j)− ESj(f, wi
j)].

Here, `ik represents the gain in expected valuation for agent j by truthfully reporting type

wi
j instead of lying type wk

j . The incentive constraints for a Bayes-Nash incentive compatible

mechanism (f, π) and job j can be read as

Eπj(w
k
j) ≤ Eπj(w

i
j) + wi

j[ESj(f, wk
j)− ESj(f, wi

j)] = Eπj(w
i
j) + `ik.

That is, the expected payments Eπj(·) constitute a node potential in Tf . According to Müller,

Perea, and Wolf (2007), Bayes-Nash implementability of an allocation rule f is equivalent

to the non-negative cycle property of the type graph Tf for any agent j. Monotonicity is

equivalent to the fact that there is no negative cycle consisting of only two arcs in Tf . We

call this property the non-negative two-cycle property. It follows from

`ik + `ki = wi
j[ESj(f, wk

j)− ESj(f, wi
j)] + wk

j [ESj(f, wi
j)− ESj(f, wk

j)]

= (wi
j − wk

j)[ESj(f, wk
j)− ESj(f, wi

j)].

The last term is non-negative for all jobs j and any two types wi
j and wk

j if and only if

monotonicity holds.

Proof (Theorem 1). All that remains to show is that the non-negative two-cycle property

implies the non-negative cycle property. We first show that the arc lengths satisfy a property

called decomposition monotonicity, i.e., whenever i < k < l then `ik + `kl ≤ `il and `lk + `ki ≤
`li. From that property follows that the length of any cycle can be lower bounded by the

lengths of a number of two cycles, which proves the theorem.

Decomposition monotonicity follows from

`ik + `kl = wi
j[ESj(f, wk

j)− ESj(f, wi
j)] + wk

j [ESj(f, wl
j)− ESj(f, wk

j)]

≤ wi
j[ESj(f, wk

j)− ESj(f, wi
j)] + wi

j[ESj(f, wl
j)− ESj(f, wk

j)]

= wi
j[ESj(f, wl

j)− ESj(f, wi
j)]

= `il,

where the inequality follows from monotonicity. Note that everything remains true if the

dummy type is involved, i.e., if l = mj + 1. The inequality `lk + `ki ≤ `li follows similarly.

In order to prove the second claim, consider a finite cycle c with nodes c1 to ck and

rename the nodes such that c1 < c2 < · · · < ck. Replace every arc (cu, cv) with u < v

6

by arcs (cu, cu+1), (cu+1, cu+2), . . . , (cv−1, cv). Do the same for all arcs (cv, cu) with u < v.

Call the resulting cycle c′. The cycle length of c′ is less than or equal to the length of c,

due to decomposition monotonicity. The new cycle c′ consists only of two-cycles. Due to

monotonicity, those have non-negative length. Hence, c has non-negative length as well. ¤

2.2 Optimal Mechanisms

Let us start by investigating the efficient allocation rule for the given setting, i.e., the allo-

cation rule that maximizes the total valuation of agents. It is well known that scheduling

in order of non-increasing weight over processing time ratios minimizes the sum of weighted

start times
∑n

j=1 wjSj(f(w)) for any type profile w ∈ W , and therefore maximizes the total

valuation of all agents. This allocation rule is known as Smith’s rule (Smith 1956). The op-

timal mechanism that we derive deploys a slightly different allocation rule, namely Smith’s

rule with respect to certain modified weights.

Our goal is to set up a mechanism that is Bayes-Nash incentive compatible and among

all such mechanisms minimizes the expected total payment that has to be made to the jobs.

Given any Bayes-Nash incentive compatible mechanism (f, π), one can obviously substitute

the payment scheme by its expected payment scheme yielding (f, Eπ(·)) without loosing

Bayes-Nash incentive compatibility. Moreover, the expected total payment to the agents

remains unchanged under the substitution. Therefore, we restrict focus to mechanisms in

which agents always receive a payment which is independent of the specific report of the

other agents and of the actual allocation.

Note that, unlike e.g. in Myerson (1981), in the discrete setting considered here revenue

equivalence does not hold. Therefore, there are possibly multiple payment schemes that

make an allocation rule incentive compatible. Let f be an allocation rule and let πf (·) be

a payment scheme that minimizes expected expenses for the machine among all payment

schemes that make f Bayes-Nash incentive compatible. More specifically, πf
j (wi

j) denotes the

payment to agent j declaring weight wi
j under this optimal payment scheme. Let Pmin(f) =∑

j∈J

∑
wi

j∈Wj
ϕj(w

i
j)π

f
j (wi

j) be the minimum expected total expenses for allocation rule f .

The following lemma specifies the optimal payment scheme for a given allocation rule.

Lemma 1 For a Bayes-Nash implementable allocation rule f , the payment scheme defined

by

πf
j (w

mj+1
j) = 0, πf

j (wi
j) =

mj∑

k=i

wk
j [ESj(f, wk

j)− ESj(f, wk+1
j)] for i = 1, . . . ,mj

7

is incentive compatible, individually rational and minimizes the expected total payment made

to agents. The corresponding expected total payment is given by

Pmin(f) =
∑
j∈J

mj∑
i=1

ϕj(w
i
j)w

i
jESj(f, wi

j),

where the modified weights wj are defined as follows

w1
j = w1

j , wi
j = wi

j + (wi
j − wi−1

j)
Φj(w

i−1
j)

ϕj(wi
j)

for i = 2, . . . , mj.

Proof. Let p = (wi
j = a0, a1, . . . , am = w

mj+1
j) denote a path from wi

j to w
mj+1
j in the

type graph Tf for agent j. Denote by length(p) the sum of its arc lengths. Let (f, π) be a

Bayes-Nash incentive compatible mechanism. Adding up the incentive constraints

Eπj(ai) ≤ Eπj(ai−1) + ai−1[ESj(f, ai)− ESj(f, ai−1)] = Eπj(ai−1) + `ai−1ai

for i = 1, . . . , m yields

Eπj(w
mj+1
j) ≤ Eπj(w

i
j) + length(p).

Assuming Eπj(w
mj+1
j) = 0, this is equivalent to −length(p) ≤ Eπj(w

i
j). As f is Bayes-Nash

implementable, Tf satisfies the non-negative cycle property. Consequently, we can compute

shortest paths in Tf . With dist(wi
j, w

mj+1
j) being the length of a shortest path from wi

j to

w
mj+1
j , the above yields −dist(wi

j, w
mj+1
j) ≤ Eπj(w

i
j). Therefore, −dist(wi

j, w
mj+1
j) is a lower

bound on the expected payment for reporting wi
j. On the other hand, since we have

dist(wi
j, w

mj+1
j) ≤ `ik + dist(wk

j , w
mj+1
j)

for any two types wi
j and wk

j , it follows that

−dist(wk
j , w

mj+1
j) ≤ −dist(wi

j, w
mj+1
j) + `ik.

Consequently, −dist(·, wmj+1
j) defines a node potential in Tf . Setting πf

j (wi
j) =

−dist(wi
j, w

mj+1
j) therefore yields an incentive compatible payment scheme that minimizes

the expected payment to every agent for any reported type of the agent. Consequently, this

payment scheme also minimizes the expected total payment to agents. Recall that individual

rationality is satisfied along with the incentive constraints.

Since arc lengths in Tf satisfy decomposition monotonicity, a shortest path from wi
j

to w
mj+1
j is the path that includes all intermediate nodes wi+1

j , . . . , wmj . Observing that

8

−dist(w
mj+1
j , w

mj+1
j) = 0 and −dist(wi

j, w
mj+1
j) =

∑mj

k=i w
k
j [ESj(f, wk

j)−ESj(f, wk+1
j)]∀wi

j ∈
Wj \ {wmj+1

j } proves the first claim.

Next, we compute the minimum expected total payment for allocation rule f .

Pmin(f) =
∑
j∈J

mj∑
i=1

ϕj(w
i
j)π

f
j (wi

j)

=
∑
j∈J

mj∑
i=1

ϕj(w
i
j)

mj∑

k=i

wk
j [ESj(f, wk

j)− ESj(f, wk+1
j)]

=
∑
j∈J

mj∑
i=1

ϕj(w
i
j)

(
mj∑

k=i

wk
j ESj(f, wk

j)−
mj∑

k=i+1

wk−1
j ESj(f, wk

j)

)

=
∑
j∈J

mj∑
i=1

ϕj(w
i
j)

(
wi

jESj(f, wi
j) +

mj∑

k=i+1

ESj(f, wk
j)(w

k
j − wk−1

j)

)

=
∑
j∈J

ESj(f, w1
j)w

1
jϕj(w

1
j)

+
∑
j∈J

mj∑
i=2

ESj(f, wi
j)

(
ϕj(w

i
j)w

i
j + (wi

j − wi−1
j)

i−1∑

k=1

ϕj(w
k
j)

)

=
∑
j∈J

ESj(f, w1
j)w

1
jϕj(w

1
j)

+
∑
j∈J

mj∑
i=2

ESj(f, wi
j)

(
Φj(w

i
j)w

i
j − Φj(w

i−1
j)wi−1

j

)

Let us define modified weights wj by setting w1
j = w1

j and for i = 2, . . . ,mj

wi
j =

wi
jΦj(w

i
j)− wi−1

j Φj(w
i−1
j)

ϕj(wi
j)

=
wi

jϕj(w
i
j) + wi

jΦj(w
i−1
j)− wi−1

j Φj(w
i−1
j)

ϕj(wi
j)

= wi
j + (wi

j − wi−1
j)

Φj(w
i−1
j)

ϕj(wi
j)

.

This yields

Pmin(f) =
∑
j∈J

mj∑
i=1

ϕj(w
i
j)w

i
jESj(f, wi

j).

¤

9

Given the minimum payments per allocation rule, we want to specify the allocation rule

f which minimizes Pmin(f) among all Bayes-Nash implementable allocation rules.

Definition 3 If f ∈ arg min{Pmin(f) | f : W → S, f Bayes-Nash implementable}, then we

call the mechanism (f, πf) an optimal mechanism.

We will need the following regularity condition that ensures Bayes-Nash implementability

of the allocation rule in our optimal mechanism.

Definition 4 We say that regularity is satisfied if for every agent j and i = 2, . . . ,mj − 1

wi
j + (wi

j − wi−1
j)

Φj(w
i−1
j)

ϕj(wi
j)

≤ wi+1
j + (wi+1

j − wi
j)

Φj(w
i
j)

ϕj(w
i+1
j)

.

This implies that wi
j < wk

j whenever wi
j < wk

j .

Note that regularity is satisfied e.g. if the differences wi
j − wi−1

j are constant and the distri-

bution has a non-increasing reverse hazard rate4.

Theorem 2 Let the modified weights be defined as in Lemma 1. Let f be the allocation rule

that schedules jobs in order of non-increasing ratios wj/pj. If regularity holds, then (f, πf)

is an optimal mechanism.

Proof. We show that f is Bayes-Nash implementable and minimizes Pmin(f) among all Bayes-

Nash implementable allocation rules. For any allocation rule f , we can rewrite Pmin(f) as

follows, using independence of weight distributions. Let W ′
j = Wj \ {wmj+1

j } and W ′ =

Πj∈JW ′
j .

Pmin(f) =
∑
j∈J

∑

wi
j∈W ′

j

ϕj(w
i
j)w

i
jESj(f, wi

j)

=
∑
j∈J

∑

wi
j∈W ′

j

ϕj(w
i
j)w

i
j

∑
w−j∈W−j

Sj(f(wi
j, w−j))ϕ−j(w−j)

=
∑
j∈J

∑

(wi
j ,w−j)∈W ′

ϕ(wi
j, w−j)w

i
jSj(f(wi

j, w−j))

=
∑

w∈W ′
ϕ(w)

∑
j∈J

wjSj(f(w)).

4The reverse hazard rate of the distribution with pdf ϕ and cdf Φ is defined as ϕ(x)/Φ(x), see e.g. Krishna
(2002).

10

Thus, Pmin(f) can be minimized by minimizing
∑

j∈J wjSj(f(w)) for every reported type

profile w. This is achieved by using Smith’s rule with respect to modified weights, i.e.,

scheduling in order of non-increasing ratios wj/pj. Under Smith’s rule, the expected start

time ESj(wj) is clearly non-increasing in the modified weight wj. The regularity condition

ensures that it is non-increasing in the original weights wj. Therefore, Smith’s rule with

respect to modified weights satisfies monotonicity and is hence Bayes-Nash implementable

by Theorem 1. This completes the proof. ¤

3 Optimality versus Efficiency

For symmetric agents the optimal and the efficient allocation coincide.

Corollary 1 If agents are symmetric, i.e. W1 = · · · = Wn, ϕ1 = · · · = ϕn and p1 = · · · = pn

and if distributions are such that regularity holds, then the optimal mechanism is efficient.

Proof. If W1 = · · · = Wn = {w1, . . . , wm} and ϕ1 = · · · = ϕn, then for any two agents j1 and

j2, and i = 1, . . . ,m, the modified weights are equal, i.e. wi
j1

= wi
j2

. Since processing times

are also equal and since regularity guarantees that modified weights are increasing in the

original weights, scheduling jobs in order of their non-increasing ratios wj/pj is equivalent to

scheduling them in order of their non-increasing ratios wj/pj. That is, the efficient allocation

rule and the allocation rule from the optimal mechanism in Theorem2 coincide. ¤

If weight distributions differ among agents or if agents have different processing times,

then the optimal mechanism is in general not efficient. In fact, when restricting to efficient

mechanisms, the total expected payment can be arbitrarily bad in comparison to the optimal

one. This is illustrated by the following two examples.

Example 1 Let there be two jobs 1 and 2 with W1 = {M + 1} and W2 = {1,M} for some

constant M . Let ϕ2(1) = 1− 1/M , ϕ2(M) = 1/M and p1 = p2 = 1. Let Eff be the efficient

and Opt be the optimal allocation rule. Then the ratio Pmin(Eff)/Pmin(Opt) goes to infinity

as M goes to infinity.

Proof. The efficient allocation rule, Smith’s rule, always allocates job 1 first. So the optimal

payment for Smith’s rule is to pay 0 to job 1 and to pay M to job 2, irrespective of its type.

The minimum expected total payment is hence Pmin(Eff) = M .

For the optimal allocation, we compute modified weights after Lemma 1: w1
1 = w1

1 =

M + 1, w1
2 = w1

2 = 1 and w2
2 = M + (M − 1)(1− 1/M)/(1/M) = M2 −M + 1. The latter is

11

larger than M +1 if M > 2. Therefore, job 2 is scheduled in front of job 1 if he has weight M

and behind if he has weight 1. The expected start times for job 2 are ES2(Opt, 1) = 1 and

ES2(Opt,M) = 0, respectively. Optimal payments according to Lemma 1 are πOpt
2 (1) = 1

and πOpt
2 (M) = 0. For job 1, the expected start time is ES1(Opt,M + 1) = 1/M and the

expected payment πOpt
1 (M +1) = 1+1/M . Hence, Pmin(Opt) = 1+1/M +1 · (1−1/M) = 2.

Consequently, Pmin(Eff)/Pmin(Opt) = M/2, which tends to infinity if M goes to infinity.

¤

Remark 1 In the above, the ratio of the expected payments of the efficient versus the optimal

allocation rule is analyzed. Similarly, we can derive that the expected ratio of the payments

tends to infinity as M approaches infinity. The latter is slightly more technical.

Example 2 Let there be two jobs 1 and 2 with the same weight distribution W1 = W2 =

{1,M}, ϕj(1) = 1−1/M , ϕj(M) = 1/M for j = 1, 2. Let p1 = 1/2 and p2 = M/2+1. Let Eff

be the efficient and Opt be the optimal allocation rule. Then the ratio Pmin(Eff)/Pmin(Opt)

goes to infinity as M goes to infinity.

Proof. The efficient allocation rule always schedules job 1 first, since 1/(1/2) = 2 > 2M/(M+

2) = M/(M/2 + 1). Therefore, the expected start time of job 1 is 0 and that of job 2 is

1/2. Optimal payments according to Lemma 1 are πEff
1 (1) = πEff

1 (M) = 0 and πEff
2 (1) =

πEff
2 (1) = M/2. Hence, Pmin(Eff) = M/2.

For the optimal mechanism, we compute modified weights as w1
1 = w1

2 = 1 and w2
1 =

w2
2 = M2 − M + 1. Job 1 is scheduled first, whenever both jobs have the same weight

or job 1 has a larger weight than job 2. In the case where job 1 has (modified) weight

1 and job 2 has modified weight M2 − M + 1, job 2 is scheduled first for M > 2, since

1/(1/2) < (M2 −M + 1)/(M/2 + 1). The resulting expected start times and payments are

given below:

ES1(Opt, 1) = 1/2 + 1/M

ES1(Opt, M) = 0

ES2(Opt, 1) = 1/2

ES2(Opt, M) = 1/(2M)

πOpt
1 (1) = 1/2 + 1/M

πOpt
1 (M) = 0

πOpt
2 (1) = 1− 1/(2M)

πOpt
2 (M) = 1/2.

Hence,

Pmin(Opt) = (
1

2
+

1

M
)(1− 1

M
) + (1− 1

2M
)(1− 1

M
) +

1

2
· 1

M

= (1− 1

M
)(

3

2
+

1

2M
) +

1

2
· 1

M
.

12

Thus, the ratio Pmin(Eff)/Pmin(Opt) tends to infinity if M tends to infinity. ¤

Remark 2 As in the first example, it can be shown that also that the expected ratio of the

payments tends to infinity as M approaches infinity.

Comparison to Myerson’s result. For the single item auction and continuous type

spaces, Myerson (1981) has made similar observations: in his setting, the Vickrey auction is

an efficient auction. The optimal auction can be seen as a modified Vickrey auction with the

seller submitting a bit himself. In our setting also, the allocation in the optimal mechanism

is equivalent to the efficient allocation rule with respect to modified data. Nevertheless,

in Myerson (1981) the optimal and the efficient mechanism may differ. For the single item

auction this can be due to the seller keeping the item (even in the symmetric case) or because

a bidder that has not submitted the highest bid can get the item in the asymmetric case. In

our setting, the optimal and the efficient mechanism can only differ if agents are asymmetric,

see Corollary 1 and Examples 1 and 2.

On the generalized VCG Mechanism. The VCG mechanism is due to Vickrey (1961),

Clarke (1971) and Groves (1973). The allocation rule is the efficient one. In our setting this

means scheduling in order of non-increasing ratios wj/pj. The payment scheme pays to agent

j an amount that is equal to an appropriate constant (possibly depending on other agents’

types, but not on j’s type) minus the total loss in valuation of the other agents due to j’s

presence. For agent j with processing time pj, the total loss in valuation of the other agents

is equal to the product of pj and the total weight of all agents processed after j. In order to

ensure individual rationality, we have to add pj times the total weight of all agents except j.

Therefore, the resulting payment to j for reported type profile w and efficient schedule σ is

equal to

πV CG
j (w) = pj

∑

k∈J
σk<σj

wk.

As illustrated by examples 1 and 2, the allocation of the VCG mechanism can differ from

the allocation of the optimal mechanism if agents are not symmetric. Moreover, if agents

are symmetric, the VCG mechanism still can be non-optimal in terms of payments. This is

illustrated by the following example.

Example 3 There are two symmetric agents with W1 = W2 = {w1, w2}, w1 < w2, and

ϕj(w
1) = ϕj(w

2) = 1/2 for j = 1, 2. Processing times are equal and without loss of generality

p1 = p2 = 1. Then the expected expenses of the VCG mechanism are strictly higher than

those of the optimal mechanism.

13

Proof. Regularity is trivially satisfied and therefore the allocation of the optimal mechanism

from Section 2 is efficient. There are four possible type profiles, each occurring with prob-

ability 1/4: (w1, w1), (w1, w2), (w2, w1), (w2, w2). The resulting schedules are the same for

the VCG and the optimal mechanism and schedule the job with the higher weight first or

randomize uniformly in the case of equal weights, respectively. Let us first compute the ex-

pected total payment for the VCG mechanism. The VCG mechanism pays to the job that is

scheduled last the weight of the job that is scheduled before him. Thus, the VCG mechanism

has to spend w1 in the first case, and w2 in the second, third and fourth case, respectively.

The total expected payment of the VCG mechanism is hence (3w2+w1)/4. Let (f, πf) denote

the optimal mechanism from Section 2. In the optimal mechanism, the expected payment to

a job with weight w1 is equal to Eπf
j (w1) = w1[ESj(f, w1)− ESj(f, w2)] + w2ESj(f, w2) =

w1[3/4 − 1/4] + w2[1/4] = w1/2 + w2/4. The expected payment to a job with weight w2 is

Eπf
j (w2) = w2ESj(f, w2) = w2/4. The total expected payment for the optimal mechanism

is thus 2 · 1/2 · (w1/2 + w2/4 + w2/4) = (w1 + w2)/2. Since w2 > w1, the expected expenses

of the VCG mechanism are strictly higher than those of the optimal mechanism. Therefore,

the VCG mechanism is not optimal. ¤

4 The 2-Dimensional Setting

4.1 Setting and Notation

In contrast to the 1-dimensional setting, both weight and processing time of a job are now

private information of the job. Hence j’s type is the tuple (wj, pj). We restrict atten-

tion to discrete type spaces, i.e., (wj, pj) ∈ Wj × Pj, where Wj = {w1
j , . . . , w

mj

j } with

w1
j ≤ · · · ≤ w

mj

j and Pj = {p1
j , . . . , p

qj

j } with p1
j ≤ · · · ≤ p

qj

j . Let ϕj be the probability

distribution of j’s type, that is, ϕj(w
i
j, p

k
j) denotes the probability associated with the type

(wi
j, p

k
j) for i = 1, . . . ,mj and k = 1, . . . , qj. Both ϕj and Φj are public. Distributions

are independent between agents. Denote by T = Πj∈J(Wj × Pj) the set of all type pro-

files. For any job j, let T−j = Πr 6=j(Wr × Pr) be the set of type profiles of all jobs except

j. Let ϕ be the joint probability distribution of (w1, p1, . . . , wn, pn). Then for type profile

t = (wi1
1 , pk1

1 , . . . , win
n , pkn

n) ∈ T , ϕ(t) = Πn
j=1ϕj(w

ij
j , p

kj

j). Let t−j and ϕ−j be defined analo-

gously. For (wi
j, p

k
j) ∈ Wj × Pj and t−j ∈ T−j, we denote by ((wi

j, p
k
j), t−j) the type profile

where job j has type (wi
j, p

k
j) and the types of the other jobs are represented by t−j. De-

note by ESj(f, wi
j, p

k
j) :=

∑
t−j∈T−j

Sj(f((wi
j, p

k
j), t−j))ϕ−j(t−j) the expected waiting time of

job j if he reports type (wi
j, p

k
j) and allocation rule f is applied. Denote by Eπj(w

i
j, p

k
j) :=

14

∑
t−j∈T−j

πj((w
i
j, p

k
j), t−j)ϕ−j(t−j) the expected payment to j.

We assume that an agent can only report a processing time that is not lower than his

true processing time and that a job is processed for his reported processing time. This is

a natural assumption, since a job can add unnecessary work to achieve a longer processing

time, but reporting a shorter processing time can easily be punished by preempting the job

after the declared processing time (before it is actually finished).

Note that by regarding the processing time as private information, we introduce informa-

tional externalities: job j has a different valuation for a schedule if the processing time (and

hence the type) of a job scheduled before j changes. In this regard, our model differs from

the 2-dimensional auction model studied in Malakhov and Vohra (2007).

4.2 Bayes-Nash Implementability and the Type Graph

Definition 5 A mechanism (f, π) is called Bayes-Nash incentive compatible if for every

agent j and every two types (wi1
j , pk1

j) and (wi2
j , pk2

j) with i1, i2 ∈ {1, . . . , mj}, k1, k2 ∈
{1, . . . , qj}, k1 ≤ k2,

Eπj(w
i1
j , pk1

j)− wi1
j ESj(f, wi1

j , pk1
j) ≥ Eπj(w

i2
j , pk2

j)− wi1

j ESj(f, wi2
j , pk2

j) (2)

under the assumption that all agents apart from j report truthfully.

Note that by defining the incentive constraints only for k1 ≤ k2, we account for the fact that

agents can only overstate their processing time, but cannot understate it.

In order to ensure individual rationality, again add a dummy type tdj to the type space for

every agent j, and let ESj(f, tdj) = 0 and Eπj(t
d
j) = 0 for all j ∈ J . As in the 1-dimensional

case, the dummy types together with the mentioned extra incentive constraints guarantee

that individual rationality is satisfied along with the incentive constraints. Sometimes, it will

be convenient to write (w
mj+1
j , pk

j) for some k ∈ {1, . . . , qj} instead of tdj .

In the 2-dimensional setting, the type graph Tf of agent j has node set Wj × Pj and

contains an arc from any node (wi1
j , pk1

j) to every other node (wi2
j , pk2

j) with i ∈ {1, . . . ,mj},
i2 ∈ {1, . . . ,mj + 1}, k ∈ {1, . . . , qj}, k1 ≤ k2 of length

`(i1k1)(i2k2) = wi1
j [ESj(f, wi2

j , pk2
j)− ESj(f, wi1

j , pk1
j)].

Note that we have arcs only in direction of increasing processing times, since agents can only

overstate their processing time. Furthermore, every node has an arc to the dummy type, but

there are no outgoing arcs from the dummy type.

15

Similar as in Malakhov and Vohra (2007), one can show that for monotonic allocation rules

some arcs in the type graph are not necessary, since the corresponding incentive constraints

are implied by others. We first give the definition of monotonicity in the 2-dimensional setting

and then formulate a lemma which reduces the set of necessary incentive constraints.

Definition 6 An allocation rule f satisfies monotonicity w.r.t. weights if for every agent

j ∈ J and fixed pk
j ∈ Pj, wi1

j < wi2
j implies that ESj(f, wi1

j , pk
j) ≥ ESj(f, wi2

j , pk
j).

Lemma 2 Let f be an allocation rule satisfying monotonicity w.r.t. weights. For any agent

j, the following constraints imply all other incentive constraints:

Eπj(wi
j , p

k
j)− wi

jESj(f, wi
j , p

k
j) ≥ Eπj(wi+1

j , pk
j)− wi

jESj(f, wi+1
j , pk

j) (3)

for i ∈ {1, . . . ,mj}, k ∈ {1, . . . , qj}
Eπj(wi+1

j , pk
j)− wi+1

j ESj(f, wi+1
j , pk

j) ≥ Eπj(wi
j , p

k
j)− wi+1

j ESj(f, wi
j , p

k
j) (4)

for i ∈ {1, . . . ,mj − 1}, k ∈ {1, . . . , qj}
Eπj(wi

j , p
k
j)− wi

jESj(f, wi
j , p

k
j) ≥ Eπj(wi

j , p
k+1
j)− wi

jESj(f, wi
j , p

k+1
j) (5)

for i ∈ {1, . . . ,mj}, k ∈ {1, . . . , qj − 1}

Proof. For any i1, i2, i3 ∈ {1, . . . , mj + 1},i1 < i2 < i3, and any k ∈ {1, . . . , qj} the constraint

Eπj(w
i1
j , pk

j)− wi1
j ESj(f, wi1

j , pk
j) ≥ Eπj(w

i3
j , pk

j)− wi1
j ESj(f, wi3

j , pk
j)

is implied by

Eπj(w
i1
j , pk

j)− wi1
j ESj(f, wi1

j , pk
j) ≥ Eπj(w

i2
j , pk

j)− wi1
j ESj(f, wi2

j , pk
j)

and

Eπj(w
i2
j , pk

j)− wi2
j ESj(f, wi2

j , pk
j) ≥ Eπj(w

i3
j , pk

j)− wi2
j ESj(f, wi3

j , pk
j).

In fact, adding up the latter two constraints yields

Eπj(w
i1
j , pk

j)− wi1
j ESj(f, wi1

j , pk
j)

≥ Eπj(w
i3
j , pk

j) + wi2
j (ESj(f, wi2

j , pk
j)− ESj(f, wi3

j , pk
j))− wi1

j ESj(f, wi2
j , pk

j)

≥ Eπj(w
i3
j , pk

j) + wi1
j (ESj(f, wi2

j , pk
j)− ESj(f, wi3

j , pk
j))− wi1

j ESj(f, wi2
j , pk

j)

= Eπj(w
i3
j , pk

j)− wi1
j ESj(f, wi3

j , pk
j),

where the second inequality follows from monotonicity and wi1
j < wi2

j . Note that everything

remains true if the dummy type is involved, i.e., if (wi3
j , pk

j) = (w
mj+1
j , pk

j) = tdj . These

16

arguments imply that all constraints of the type

Eπj(w
i1
j , pk

j)− wi1
j ESj(f, wi1

j , pk
j) ≥ Eπj(w

i2
j , pk

j)− wi1
j ESj(f, wi2

j , pk
j) (6)

are implied by the subset of constraints where i2 = i1 + 1.

A similar effect can be shown for the “reverse” incentive constraints, i.e., the above

constraints for i3 < i2 < i1, where i1, i2, i3 ∈ {1, . . . , mj}. Again, out of all constraints of the

type

Eπj(w
i1
j , pk

j)− wi1
j ESj(f, wi1

j , pk
j) ≥ Eπj(w

i2
j , pk

j)− wi1
j ESj(f, wi2

j , pk
j), (7)

only those with i2 = i1 − 1 are necessary.

Similarly, out of all constraints of the type

Eπj(w
i
j, p

k1
j)− wi

jESj(f, wi
j, p

k1
j) ≥ Eπj(w

i
j, p

k2
j)− wi

jESj(f, wi
j, p

k2
j), (8)

for i ∈ {1, . . . , mj}, k1, k2 ∈ {1, . . . , qj}, k1 < k2 only those with k2 = k1 + 1 are necessary.

For any types (wi1
j , pk1

j),(wi2
j , pk2

j) with i1 < i2 and k1 < k2 the corresponding “diagonal”

constraint

Eπj(w
i1
j , pk1

j)− wi1
j ESj(f, wi1

j , pk1
j) ≥ Eπj(w

i2
j , pk2

j)− wi1
j ESj(f, wi2

j , pk2
j)

follows by adding up the corresponding constraints of type (8) and (6)

Eπj(w
i1
j , pk1

j)− wi1
j ESj(f, wi1

j , pk1
j) ≥ Eπj(w

i1
j , pk2

j)− wi1
j ESj(f, wi1

j , pk2
j)

and

Eπj(w
i1
j , pk2

j)− wi1
j ESj(f, wi1

j , pk2
j) ≥ Eπj(w

i2
j , pk2

j)− wi1
j ESj(f, wi2

j , pk2
j).

For any (wi1
j , pk1

j),(wi2
j , pk2

j) with i2 < i1 and k1 < k2, the corresponding “diagonal” constraint

follows by adding up the appropriate constraints of type (8) and (7). ¤
Lemma 2 is in fact a generalization of decomposition monotonicity as discussed for the

1-dimensional case.

We define the reduced type graph of agent j, which contains only arcs that are necessary

in the sense of Lemma 2. These arcs are:

• an arc from type (wi
j, p

k
j) to (wi+1

j , pk
j) for all i ∈ {1, . . . , mj} and k ∈ {1, . . . , qj}

• an arc from type (wi+1
j , pk

j) to (wi
j, p

k
j) for all i ∈ {1, . . . , mj − 1} and k ∈ {1, . . . , qj}

17

• an arc from type (wi
j, p

k
j) to (wi

j, p
k+1
j) for all i ∈ {1, . . . , mj} and k ∈ {1, . . . , qj − 1}.

A sketch of the reduced type graph is given in Figure 1. Expected payments correspond to

node potentials in the reduced type graph. Whenever we refer to the type graph Tf for a

monotonic allocation rule f in the following, the reduced type graph is meant. The reduced

type graph comes handy particularly when considering our (counter) examples in the next

subsection.

w1

j , p
1

j
w

mj

j , p1

j

w
mj

j , p
qj

j
w1

j , p
qj

j

tdj

Figure 1: reduced type graph

We finally give the characterization of Bayes-Nash incentive compatible allocation rules

for the 2-dimensional setting.

Theorem 3 An allocation rule f is Bayes-Nash incentive compatible in the 2-dimensional

setting if and only if it satisfies monotonicity with respect to weights.

Proof. Implementability implies monotonicity as before. The claim reduces to showing

that in the (reduced) type graph of any agent j the non-negative cycle property is equivalent

to the non-negative two-cycle property. After the reduction, every cycle in Tf consists of

a finite number of two-cycles. Hence the non-negative cycle property is equivalent to the

non-negative two-cycle property.

¤

4.3 On Optimal Mechanisms

We start by reviewing an approach to two-dimensional optimal mechanism design studied

in Malakhov and Vohra (2007). Here, the authors regard a multi-item auction, where each

agent’s type (i, j) is given by a marginal valuation i per item and a capacity j. Above that

capacity, the agent has zero valuation for each additional item. Agents can only overstate

their capacity. The goal is revenue maximization. Bayes-Nash implementability is equivalent

18

to the expected amount of items allocated to an agent being monotone in his reported value

for i. Malakhov and Vohra (2007) use the type graph approach as follows.

First, they regard a subset of all allocation rules - namely those that are monotone in

j as well. It turns out that all those rules have the same shortest path tree, namely the

“up-first-then-right” tree (see Figure 2 for a 3× 3 example).

1, 1 3, 1

3, 31, 3

td

Figure 2: up-first-then-right tree

Second, the path lengths in this tree yield optimal payments to every job for every type.

From that, the optimal revenue for a particular allocation rule is obtained as closed formula

in terms of modified marginal valuations.

Third, the obtained expression for the revenue is maximized over all allocation rules. The

resulting allocation rule is a modification of the efficient allocation rule. In addition, this

rule turns out to be monotone in j, similar as in the proof of Theorem 2. Hence, its shortest

path tree is the up-first-then-right tree.

In the last step, the monotonicity assumption in j is relaxed as follows. For any allocation

rule – not necessarily monotone in j – the up-first-then-right tree yields an individual upper

bound on the revenue for that specific allocation rule. By maximizing the individual upper

bounds over all allocation rules, a global upper bound for the revenue is achieved. But this

upper bound is assumed by the modified efficient allocation rule derived before, which yields

hence an optimal mechanism.

It turns out that the described approach is doomed to fail in our setting. Especially,

one cannot find any tree B ⊆ Tf – as e.g. the up-first-then-right tree above – such that

the allocation rule optimizing the expected total payment computed on the basis of B in

turn has B as a shortest path tree. Note that the approach described above and also our

approach for the 1-dimensional setting focus on one agent and the corresponding type graph.

Hence any allocation rule derived by the described approach is necessarily a modified Smith’s

rule with modified weights that can be computed from the characteristics (type report and

19

distribution) of the agent itself similar as in Lemma 1. Such an allocation rule satisfies the

following IIA property.

Definition 7 We say that an allocation rule f satisfies independence of irrelevant alterna-

tives (IIA) if the relative order of any two jobs j1 and j2 is the same in the schedules f(t1)

and f(t2) for any two type profiles t1, t2 ∈ T that differ only in the types of agents from

J \ {j1, j2}.

In other words, the relative order of two jobs is independent of all other jobs. For the 2-d

setting, this is not necessarily the case for optimal mechanisms.

Theorem 4 The optimal allocation rule for the 2-dimensional setting does in general not

satisfy IIA.

Proof. Consider the following instance with three jobs. Job 1 has type (1, 1), job 2 has

type (2, 2) and job 3 has type space {1.9, 2} × {1, 2}. The probabilities for job 3’s types are

ϕ3(1.9, 1) = 0.8, ϕ3(2, 2) = 0.2 and ϕ3(1.9, 2) = ϕ3(2, 1) = 0 respectively. We will show that

the best allocation rule that satisfies IIA achieves a minimum expected total payment of at

least 5.6, whereas there exists an allocation rule – violating IIA – with an expected total

payment of 4.88. The following argumentation would still work if we assumed small positive

probabilities for types (1.9, 2) and (2, 1) as well, but everything would become much more

technical.

There are six possible schedules for three jobs, where we denote e.g. by 312 the schedule

where job 3 comes first and job 2 last. There are only two cases that occur with positive

probability: job 3 has type (1.9, 1), which we refer to as case a, and job 3 has type (2, 2),

which we refer to as case b. An allocation rule that satisfies IIA must schedule job 1 and 2 in

the same relative order in case a and b. Therefore, any such rule must either choose a schedule

from {123, 132, 312} or from {213, 231, 321} in both cases. As an example, we compute a lower

bound on the optimal payment Pmin(f) for the case where f chooses schedule 123 in case a

and schedule 132 in case b. Since there is only one possible type for job 1 and 2, only individual

rationality matters for the optimal payments to those jobs and hence πf
1 (1, 1) = 0 and

πf
2 (2, 2) = 2(0.8 ·1+0.2 · (1+2)) = 2.8. For job 3, we take individual rationality into account

as well as the incentive constraint πf
3 (1.9, 1) − 1.9 · ES3(1.9, 1) ≥ πf

3 (2, 2) − 1.9 · ES3(2, 2).

While individual rationality requires πf
3 (1.9, 1) ≥ 1.9 · 3 = 5.7 and πf

3 (2, 2) ≥ 2, the latter is

equivalent to πf
3 (1.9, 1) ≥ πf

3 (2, 2) + 3.8. Therefore, πf
3 (2, 2) ≥ 2 and πf

3 (1.9, 1) ≥ 5.8. Hence

Pmin(f) ≥ 2.8 + 0.8 · 5.8 + 0.2 · 2 = 7.84. Note that this is only a lower bound, since for the

20

exact value of Pmin(f), we must additionally consider the incentive constraints that result

from the two types (1.9, 2) and (2, 1), which have zero probability, but are in the type space

of job 3.

In total, there are 18 allocation rules that satisfy IIA. We list the corresponding lower

bounds (LB) on Pmin(f) in the following table.

f(a) f(b) πf
1 πf

2 LB πf
3 (1.9, 1) LB πf

3 (2, 2) LB Pmin(f)

123 123 0 2 6 6 8
123 132 0 2.8 5.8 2 7.84
123 312 0.4 2.8 5.7 0 7.76
132 123 0 3.6 2.2 6 6.56
132 132 0 4.4 2 2 6.4
132 312 0.4 4.4 1.9 0 6.32
312 123 0.8 3.6 0.3 6 5.84
312 132 0.8 4.4 0.1 2 5.68
312 312 1.2 4.4 0 0 5.6

123 123 2 0 6 6 8
123 123 2.4 0 5.9 4 7.92
123 123 2.4 0.8 5.7 0 7.76
123 123 2.8 0 4.1 6 7.28
123 123 3.2 0 4 4 7.2
123 123 3.2 0.8 3.8 0 7.04
123 123 2.8 1.6 0.3 6 5.84
123 123 3.2 1.6 0.2 4 5.76
123 123 3.2 2.4 0 0 5.6

Hence, 5.6 is a lower bound for the expected total payment made by any IIA mechanism.

On the other hand, regard the allocation rule that chooses schedule 132 in case a and schedule

231 in case b. We extend the allocation rule to the zero probability type such that it chooses

schedule 132 for type (2, 1) and schedule 231 for type (1.9, 2). Clearly, this allocation rule

violates IIA. The optimal payments to job 1 and 2 are πf
1 (1, 1) = 0.8 and πf

2 (2, 2) = 1.6

respectively. For the optimal payment to job 3, we depict the type graph with associated

arc lengths in Figure 3. The shortest path lengths from (1.9, 1) and (2, 2) to the dummy

node are −2.1 and −4, respectively. Hence, πf
3 (1.9, 1) = 2.1 and πf

3 (2, 2) = 4. Consequently,

Pmin(f) = 0.8 + 1.6 + 0.8 · 2.1 + 0.2 · 4 = 4.88. This proves the claim. ¤

21

0

0

0

0

1.9 2

−2

−4

1.9, 1 2, 1

1.9, 2 2, 2

td
3

Figure 3: type graph job 3

Theorem 4 shows that any kind of priority based algorithm or list scheduling algorithm

where the priority of a job can be computed from the characteristics of the job itself cannot

be optimal in general. Moreover, the type graph approach must fail, since it focusses on a

single agent. Hence, optimal mechanism design for our 2-dimensional setting is considerably

more complicated than for the 1-dimensional setting and for traditional auction settings as

described in Myerson (1981) and Malakhov and Vohra (2007). One explanation for this com-

plication may lie in the fact that the 2-d setting considered here in fact entails informational

externalities, as opposed to the auction setting in (Malakhov and Vohra 2007). On the other

hand, the informational externalities introduced by private processing times are not the only

cause for complications in the 2-dimensional setting: Consider the 1-dimensional setting,

where only the processing times are private, but the weights are public information. It turns

out that all allocation rules are implementable, even when we allow that jobs understate

their processing times. The optimal payment to a job j that reports processing time pk
j is

equal to wjESj(f, pk
j), and therefore the total payment to jobs for allocation rule f is equal

to Pmin(f) =
∑

j∈J

∑qj

k=1 ϕj(p
k
j)wjESj(f, pk

j). This is minimized by Smith’s rule.

When there are only two agents present, then IIA is trivially satisfied. Recall that in

the 1-dimensional case the optimal mechanism is efficient for symmetric agents and regular

distributions and that the uniform distribution is regular. This is contrasted by the following

theorem.

Theorem 5 Even for two symmetric agents, 2× 2-type spaces and uniform probability dis-

tributions, the optimal mechanism is not efficient.

Proof. Consider the following example with two jobs, W1 = W2 = {1, 2} and P1 = P2 =

{1, 2}. We assume that ϕ1(i, k) = ϕ2(i, k) = 1
4

for i, k ∈ {1, 2}. On one hand, consider the

efficient allocation rule fe, which schedules the job with higher weight over processing time

ratio first. On the other hand, regard the so-called w-rule, fw, that schedules the job with

22

-3/4

3/2

-3/4

3/2

0 0

0

0

1, 1 2, 1

1, 2 2, 2

td
1

-3/4

3/2

-3/4

3/2

0 0

-3/2

-3/2

1, 1 2, 1

1, 2 2, 2

td
2

Figure 4: type graphs for the w-rule for jobs 1 and 2

the higher weight first. In case of ties, both rules schedule job 1 first. The expected start

times are listed below.

ES1(fw, 1, 1) = ES1(fw, 1, 2) = 3/4

ES1(fw, 2, 1) = ES1(fw, 2, 2) = 0

ES1(fe, 1, 1) = ES1(fe, 2, 2) = 1/4,

ES1(fe, 1, 2) = 1,

ES1(fe, 2, 1) = 0,

ES2(fw, 1, 1) = ES2(fw, 1, 2) = 3/2

ES2(fw, 2, 1) = ES2(fw, 2, 2) = 3/4

ES2(fe, 1, 1) = ES2(fe, 2, 2) = 1,

ES2(fe, 1, 2) = 3/2,

ES2(fe, 2, 1) = 1/4.

The type graphs corresponding to fw for job 1 and 2 respectively are shown in Figure 4.

From this, the optimal payments can be computed as:

πfw

1 (2, 1) = πfw

1 (2, 2) = 0,

πfw

1 (1, 1) = πfw

1 (1, 2) = 3/4,

πfw

2 (2, 1) = πfw

2 (2, 2) = 3/2,

πfw

2 (1, 1) = πfw

2 (1, 2) = 9/4.

Hence the (minimum) total expected payment for the w-rule is:

Pmin(fw) =
1

4

∑
j

∑

(i,k)

πfw

j (i, k) = 9/4.

The type graphs corresponding to fe for agent 1 and 2 respectively are shown in Figure 5.

From this, the node potentials that minimize payment can be computed as:

23

-3/4

3/2

-1/4

1/2

3/4 1/2

0

-1/2

1, 1 2, 1

1, 2 2, 2

td
1

-1/2

1

-3/4

3/2

1/2 3/2

-1/2

-2

1, 1 2, 1

1, 2 2, 2

td
2

Figure 5: type graphs for the efficient rule for job 1 and 2

πfe

1 (1, 1) = πfe

1 (2, 2) = 1/2,

πfe

1 (2, 1) = 0

πfe

1 (1, 2) = 5/4,

πfe

2 (1, 1) = πfe

2 (2, 2) = 2,

πfe

2 (1, 2) = 5/2,

πfe

2 (2, 1) = 1/2.

Hence the (minimum) total expected payment in the efficient rule is:

Pmin(fe) =
1

4

∑
j

∑

(i,k)

πj(i, k) = 37/16.

Hence, Pmin(fe) > Pmin(fw). This is even true if we break ties randomly. Thus, the efficient

allocation is for some instances dominated by at least the w-rule and consequently does

not correspond to the optimal mechanism even in the most symmetric case possible in this

setting. ¤

5 Optimal Mechanisms for the Continuous Setting

For this section, we impose the following changes on the discrete setting described in the

previous sections. For every job j, let the weight wj be a continuous random variable with

publicly known support [mj,Mj], probability density function ϕj, and cumulative distribution

function Φj. Probability distributions are assumed to be independent between jobs. We will

prove some results for general probability distributions and others for uniform distribution

of weights. The latter has Φj(x) = (x − mj)/(Mj − mj) and ϕj(x) = 1/(Mj − mj) for all

j ∈ J and x ∈ [mj,Mj]. Again, the actual weight is private information of an agent, whereas

the processing time pj of an agent j is fixed and common knowledge. We will refer to the

definitions of Section 2, unless we give a new definition here.

In the following, we show that the characterization of Bayes-Nash implementable alloca-

24

tion rules from the previous section also applies to the continuous case. In addition, revenue

equivalence holds. We show that Smith’s rule with respect to certain modified weights and

payments computed from the network approach is again an optimal mechanism under regu-

larity. If the regularity condition is satisfied and agents are symmetric, then this mechanism

is efficient, as before. The regularity condition is satisfied for instance by the uniform distri-

bution. If mj = 0 for j = 1, . . . , n and if the weights of all agents are distributed uniformly

over their respective (not necessarily equal) intervals [0,Mj], then this optimal mechanism is

even efficient if the processing times differ among agents.

Hartline and Karlin (2007) discuss optimal mechanism design for a similar setting as the

continuous setting at hand. They derive optimal mechanisms subject to dominant strategy

implementability and thus mechanisms that are optimal in a more restricted class of mecha-

nisms. The allocation rule of the optimal mechanism that we derive turns out to be dominant

strategy implementable as well, but is optimal within the larger class of Bayes-Nash incen-

tive compatible mechanisms. Strictly speaking, our results are therefore not implied by the

results in Hartline and Karlin (2007). On the other hand, looking at the techniques de-

scribed in Hartline and Karlin (2007), our optimal mechanism could be derived using these

techniques, too. Although our optimal payments and regularity conditions differ from those

in Hartline and Karlin (2007), these differences are completely due to the fact that in our

case agents are paid by the mechanism and therefore individual rationality requires adding

different constants.

5.1 Bayes-Nash Implementability and Revenue Equivalence

We make use of the type graph as before. Note that for continuous distribution of weights, the

type graph has uncountably many nodes. We do not introduce an extra dummy node here,

but we will account for individual rationality explicitly when deriving optimal mechanisms.

In the continuous case, the following holds:

Theorem 6 An allocation rule f is Bayes-Nash incentive compatible in the continuous set-

ting if and only if it satisfies monotonicity.

The proof of Theorem 6 is almost identical to the proof of Theorem 1. Note that even

in an infinite type graph we only need to consider finite cycles. We do not repeat the proof

here.

Theorem 7 In the continuous setting, every Bayes-Nash implementable allocation rule f

satisfies revenue equivalence.

25

Proof. We use the characterization of revenue equivalence given in Heydenreich, Müller,

Uetz, and Vohra (2008). Fix a Bayes-Nash implementable allocation rule f and agent j and

consider the type graph Tf . Let w, z ∈ [mj,Mj] be two types of agent j. Using the same

notation as before, we derive the following for the distance from w to z.

dist(w, z) = inf
(w=a0,...,akp=z)∈P(w,z)

kp−1∑
i=0

`aiai+1

= inf
(w=a0<···<akp=z)∈P(w,z)

kp−1∑
i=0

`aiai+1

= inf
(w=a0<···<akp=z)∈P(w,z)

kp−1∑
i=0

ai[ESj(f, ai+1)− ESj(f, ai)]

= inf
(w=a0<···<akp=z)∈P(w,z)

(
−wESj(f, w) + zESj(f, z) +

kp∑
i=2

(ai−1 − ai)ESj(f, ai)

)

= −wESj(f, w) + zESj(f, z)−
∫ z

w

ESj(f, x)dx.

Here, we use decomposition monotonicity and the nonnegative two-cycle property for the

second equality. The last equality follows from decomposition monotonicity and the fact

that ESj(f, ·) is a non-increasing function and therefore Riemann integrable. Similarly, we

get

dist(z, w) = wESj(f, w)− zESj(f, z)−
∫ w

z

ESj(f, x)dx,

and therefore dist(w, z) = −dist(z, w). According to Theorem ??, f satisfies revenue equiv-

alence. ¤

5.2 Optimal Mechanisms

As in the discrete case, we design a mechanism which assigns the payments to agents only

on the basis of their reports, no matter what the announced types of the other agents are

and no matter how therefore the actual allocation looks like. The goal is to minimize the

expected total payment made to jobs.

The following lemma gives payments that minimize the expected total payment made to

jobs for a given allocation rule.

26

Lemma 3 For a Bayes-Nash implementable allocation rule f , the payment scheme

πf
j (wj) = wjESj(f, wj) +

∫ Mj

wj

ESj(f, x) dx for j ∈ J, wj ∈ [mj,Mj]

is incentive compatible, individual rational and minimizes the expected total payment made

to agents. The expected total payment is then given by

Pmin(f) =
∑
j∈J

∫

W

Sj(f(w))wjϕ(w)dw,

where the modified weights wj are defined as

wj := wj +
Φj(wj)

ϕj(wj)
for wj ∈ [mj,Mj].

Proof. The given payment scheme is equal to

πf
j (wj) = −dist(wj,Mj) + MjESj(f, Mj) for j ∈ J, wj ∈ [mj,Mj].

Similar to the previous section, it can easily be checked that this payment scheme satisfies

the incentive constraints. For any allocation rule f , the expected payment to any agent

j ∈ J is fixed up to a constant due to Theorem 7. The constant must be chosen high

enough such that individual rationality is satisfied, but also low enough, such that the total

expected payment is minimized. Observe that the expected utility for type Mj is equal to

−MjES(f, Mj)+Eπf
j (Mj) = 0, therefore adding a negative constant would violate individual

rationality at type Mj. On the other hand, for any type wj ∈ [mj,Mj], the expected utility

is equal to −wjES(f, wj) + Eπf
j (wj) =

∫ Mj

wj
ESj(f, x) dx ≥ 0, thus individual rationality is

satisfied. Hence, adding a positive constant would make the expected payment non-minimum.

Consequently, the above payment scheme is incentive compatible, individual rational and

minimizes the expected payment for every type of every job. Hence, it also minimizes the

expected total payment to agents.

Next, we derive an expression for the expected total payment.

Pmin(f) =
∑
j∈J

∫ Mj

mj

ϕj(wj)π
f
j (wj) dwj

=
∑
j∈J

∫ Mj

mj

ϕj(wj) (−dist(wj,Mj) + MjESj(f,Mj)) dwj

27

=
∑
j∈J

∫ Mj

mj

ϕj(wj)

(
wjESj(f, wj) +

∫ Mj

wj

ESj(f, x) dx

)
dwj

=
∑
j∈J

∫ Mj

mj

wjESj(f, wj)ϕj(wj) dwj +
∑
j∈J

∫ Mj

mj

∫ Mj

wj

ESj(f, x)ϕj(wj) dx dwj

Recall that Sj(f(wj, w−j)) denotes the start time of job j, when other jobs report w−j and

that W = Πn
i=1[mj,Mj]. The summands of the first sum can be written as

∫ Mj

mj

wjESj(f, wj)ϕj(wj) dwj

=

∫

W

wjSj(f(wj, w−j))ϕ1(w1) . . . ϕj(wj) · · ·ϕn(wn)dw1 · · · dwj . . . dwn

=

∫

W

wjSj(f(w))ϕ(w)dw,

where ϕ(·) is the joint distribution function of all agents. The summands in the second sum

can be rewritten as follows

∫ Mj

mj

∫ Mj

wj

ESj(f, x)ϕj(wj) dx dwj

=

∫ Mj

mj

∫ x

mj

ESj(f, x)ϕj(wj) dwj dx

=

∫ Mj

mj

ESj(f, x)Φj(x)dx

=

∫ Mj

mj

ESj(f, wj)Φj(wj)dwj

=

∫

W

Sj(f(wj, w−j))Φj(wj)ϕ1(w1) . . . ϕj−1(wj−1)ϕj+1(wj+1) . . . ϕn(wn)dw1 . . . dwj . . . dwn

=

∫

W

Sj(w)
Φj(wj)

ϕj(wj)
ϕ(w)dw.

Hence, we get for the total payment

Pmin(f) =
∑
j∈J

∫

W

Sj(f(w))

(
wj +

Φj(wj)

ϕj(wj)

)
ϕ(w)dw

=
∑
j∈J

∫

W

Sj(f(w))wjϕ(w)dw,

28

where wj := wj + Φj(wj)/ϕj(wj) defines the modified weight for job j. ¤
As in the discrete case, Pmin(f) can be minimized for arbitrary distributions of weights

by applying Smith’s rule with respect to the modified weights. The resulting mechanism will

be Bayes-Nash incentive compatible if the following regularity condition holds.

Definition 8 The regularity condition holds in the continuous case if for j ∈ J and w, z ∈
[mj,Mj], w < z:

w +
Φj(w)

ϕj(w)
≤ z +

Φj(z)

ϕj(z)
.

We get the following result.

Theorem 8 Let the modified weights and the payment scheme πf be defined as in Lemma3.

Let f be the allocation rule that schedules jobs in order of non-increasing ratios wj/pj. If

regularity holds, then (f, πf) is an optimal mechanism.

Proof. As mentioned above, Smith’s rule minimizes
∑

j∈J Sj(f(w))wj for every type pro-

file w ∈ W . Therefore, it also minimizes the total expected payment. As in the discrete

case, the regularity condition ensure that modified weights be non-decreasing in the original

weights. As ESj(wj) is non-increasing in the modified weight wj under Smith’s rule with

respect to modified weights, it is non-increasing in the original weight wj for every j ∈ J if

regularity holds. Hence, under regularity weak monotonicity and consequently Bayes-Nash

implementability is satisfied. ¤
The following theorem gives two important cases, when this optimal mechanism is effi-

cient.

Theorem 9 The optimal mechanism is efficient in the following two cases.

1) Agents are symmetric, i.e., have identically distributed weights and equal processing times

and the regularity condition holds for the distribution functions.

2) Agents’ weights are distributed uniformly over [0,Mj] for j = 1, ..., n. Processing times

can be arbitrary.

Proof. 1) Smith’s rule with respect to modified weights is equivalent to Smith’s rule with

respect to the original weights as in the discrete case. Regularity ensures weak monotonicity

and hence Bayes-Nash incentive compatibility.

2) For the uniform distribution, we get for the virtual weights

w +
Φj(w)

ϕj(w)
= w +

w/Mj

1/Mj

= 2w,

29

which is increasing and linear in w and the linear relationship does not depend on the agent.

Hence, Smith’s rule with respect to virtual weights is equivalent to Smith’s rule with respect

to original weights, no matter what the processing times are. ¤

6 Optimal Mechanisms via Standard Auction Formats

After having derived an optimal mechanism for the continuous case, we are interested whether

standard auction formats also yield optimal mechanisms for our scheduling setting. We study

the VCG mechanism and a mechanism that corresponds to the first price auction.

6.1 The Generalized VCG Mechanism

Recall that for the discrete setting, the generalized VCG mechanism was not optimal, even in

cases when the optimal mechanism allocates efficiently. In the continuous setting, however,

revenue equivalence implies that the expected payments to agent j in all Bayes-Nash incentive

compatible mechanisms that allocate efficiently are the same up to a constant. As the optimal

mechanism proposed in Section 5 allocates efficiently in the case of symmetric agents and

regularity, also the VCG mechanism can be used in this case to derive an optimal mechanism

by adding an appropriate constant to the payments of every agent.

Theorem 10 For symmetric agents under regularity, the VCG mechanism with payments

πV CG
j (w) = pj

∑

k∈J
σk<σj

wk.

is optimal. Here, σ denotes the efficient schedule.

Proof. Assume symmetric agents with weights identically distributed over [m,M] accord-

ing to density function ϕ1 and cumulative distribution function Φ1. The distributions are

assumed to satisfy regularity. Without loss of generality, let the processing times be equal to

one. The result already follows from revenue equivalence and the fact that under the VCG

mechanism, any agent with type equal to his maximum possible type M has expected start

time equal to zero and hence zero expected utility, just as in the optimal mechanism from

Section 5.

Nevertheless, we check the equality of the expected payments under the VCG and the

optimal mechanism explicitly for illustrative purposes. Since jobs have equal processing

30

times, the VCG mechanism allocates in order of non-increasing weights. The payment made

to an agent j under the VCG mechanism is the sum of the weights of all agents processed

before j. To derive the expected payment to agent j announcing type wj, we notice that any

other agent k is scheduled before j if k’s weight x is larger than wj. In this case, x is paid to

j. The expected payment at type wj is therefore

EπV CG
j (wj) = (n− 1)

∫ M

wj

xϕ1(x)dx.

In the optimal mechanism proposed in Section 5, the payment for type wj and any w−j is

equal to

πf
j (wj, w−j) = wjESj(f, wj) +

∫ M

wj

ESj(f, x)dx.

The start time when announcing type wj is a binomially distributed random variable with

parameters n− 1 and 1−Φ1(wj), as the placement of any of the n− 1 other jobs in front of

j can be seen as a binomial trial with success probability 1−Φ1(wj). The start time counts

the number of ”successes”. Therefore, ESj(f, wj) = (n − 1)(1 − Φ1(wj)). We get for the

payments

Eπf
j (wj) = wj(n− 1)(1− Φ1(wj)) + (n− 1)

∫ M

wj

(1− Φ1(x))dx

= wj(n− 1)(1− Φ1(wj)) + (n− 1)

∫ M

wj

∫ M

x

ϕ1(y) dy dx

= wj(n− 1)(1− Φ1(wj)) + (n− 1)

∫ M

wj

∫ y

wj

ϕ1(y) dx dy

= wj(n− 1)(1− Φ1(wj)) + (n− 1)

∫ M

wj

ϕ1(y)(y − wj) dy

= wj(n− 1)(1− Φ1(wj))− (n− 1)wj(1− Φ1(wj)) + (n− 1)

∫ M

wj

yϕ1(y) dy

= (n− 1)

∫ M

wj

xϕ1(x) dx

= EπV CG
j (wj).

Hence, Eπf
j (wj) = EπV CG

j (wj) for all j ∈ J and all types wj. Therefore, the total expected

payments of the optimal and the VCG mechanism are equal, too. Hence, the VCG mechanism

is optimal. ¤

31

Remarkably, the payment under πf depends only on the reported type of an agent and is

constant over all reports of the other agents’ and therefore over all allocations. In contrast,

πV CG depends only on the allocation and not on the specific report of the agent. Nevertheless,

both yield the same expected payments.

6.2 The First-Price Equivalent

In the first price auction, the highest bidder wins the object and has to pay the amount of

his bid. In this auction, truthful reporting does not necessarily maximize a bidder’s expected

utility. On the other hand, there is a strictly increasing and differentiable bidding function

β such that bidding according to β for all agents is a Bayes-Nash equilibrium. This result

can e.g. be found in Myerson (1991). Especially, for uniformly distributed valuations for the

object, the bidding function β scales the true valuation down by a factor of (n− 1)/n.

We do a similar analysis for the continuous case of our scheduling problem. For symmetric

agents, we derive a strictly increasing and differentiable function β yielding a symmetric

Bayes-Nash equilibrium in which all agents report according to β. From that, it is easy to

construct another optimal mechanism for the continuous case. We furthermore show that for

two agents with different processing times, there is no such function β.

The Mechanism for the Symmetric Case. Suppose, the jobs in J are symmet-

ric and their weights are drawn independently and identically distributed from the interval

[0,M] with probability density function ϕ1 and cumulative distribution function Φ1. Suppose

ϕ1(·) > 0 on [0,M]. Processing times are all equal to one. The proposed mechanism (f, π)

works as follows. Schedule jobs in order of non-increasing weights and pay to each job an

amount equal to his actual start time times his announced weight. A bidding function β is

a function β : [0,M] → R+. Recall the definition of a Bayes-Nash equilibrium.

Definition 9 Reporting according to β : [0,M] → R+ is a Bayes-Nash equilibrium if any

agent j with weight wj maximizes his expected utility by reporting β(wj) given that all other

agents report according to β, too.

Let us assume that there is a symmetric Bayes-Nash equilibrium in which agents report

according to the same strictly increasing and differentiable bidding function β. We will first

derive a functional form for β and then show that reporting according to β is a Bayes-Nash

equilibrium.

Fix agent j with actual weight wj and suppose that every other agent k with true weight

wk reports β(wk). Suppose, j reports some weight bj. Then his expected utility is (bj − wj)

32

times his expected start time. If j bids bj ≤ β(0) then he will get the last position with

probability one and therefore has utility (n− 1)(bj − wj) ≤ (n− 1)(β(0)− wj). This utility

is maximized at β(0) and j will never bid strictly less than β(0). Reporting more than

β(M) leads to an expected start time of 0 for agent j and hence to an expected utility of

0. Reporting any wj ≤ bj ≤ β(M) leads to a non-negative expected utility. Hence we can

assume bj ≤ β(M) without loss of generality. Consequently, β(0) ≤ bj ≤ β(M). As β is

continuous and strictly increasing, we can compute β−1(bj) =: w̃j. Scheduling in order of

non-increasing reports β(wk) is equivalent to scheduling in order of non-increasing reports wk,

as β is increasing. Therefore, j’s start time when reporting bj = β(w̃j) is again a binomially

distributed random variable with parameters n− 1 and 1− Φ1(w̃j) and expected value

ESj(f, bj) = (n− 1)(1− Φ1(w̃j)).

Job j’s expected utility is then equal to

(bj − wj)(n− 1)(1− Φ1(w̃j)) = (bj − wj)(n− 1)(1− Φ1(β
−1(bj))).

Differentiating with respect to bj yields

(n− 1)(1− Φ1(β
−1(bj)))− (n− 1)(bj − wj)

ϕ1(β
−1(bj))

β′(β−1(bj))
.

The expected utility should be maximized at bj = β(wj). We apply the first order condition.

(1− Φ1(wj))− (β(wj)− wj)
ϕ1(wj)

β′(wj)
= 0

⇔ β′(wj)(1− Φ1(wj))− β(wj)ϕ1(wj) = −wjϕ1(wj).

This should be true for any true weight x ∈ [0, M]. Hence, we can write for x ∈ [0,M]

d

dx
(β(x)(1− Φ1(x))) = −xϕ1(x).

Integrating both sides from wj to M yields

β(M)(1− Φ1(M))− β(wj)(1− Φ1(wj)) = −
∫ M

wj

xϕ1(x)dx

33

⇔ β(wj) =
1

1− Φ1(wj)

∫ M

wj

xϕ1(x)dx.

The report β(M) is obtained by taking the limit limx→M β(x). Note that β is differentiable

and strictly increasing if ϕ is strictly positive on [0,M]. Unlike in the first price auction, the

bidding function is independent of the number of agents.

Next, we show that agents indeed maximize their expected utility by reporting according

to β.

Theorem 11 Let f be the allocation rule that schedules in order of non-increasing reported

weights. Let π be such, that every agent gets a payment equal to his announced weight times

his actual start time. Then, in the mechanism (f, π), reporting according to β : [0,M] → R+,

with

β(wj) =
1

1− Φ1(wj)

∫ M

wj

xϕ1(x)dx.

is a Bayes-Nash equilibrium.

Proof. Fix agent j with true weight wj and suppose that all other agents report according to

β. We show that reporting β(wj) indeed maximizes j’s expected utility. Suppose, j reports

bj. Let Euj(bj, wj) be the expected utility for j when reporting bj while having actual weight

wj. As we already have seen, there is no loss of generality in assuming β(0) ≤ bj ≤ β(M).

Hence, β(w̃j) = bj for some w̃j ∈ [0,M]. The expected utility from reporting β(w̃j) is equal

to

Euj(bj, wj) = (β(w̃j)− wj)(n− 1)(1− Φ1(w̃j))

⇔ 1

n− 1
Euj(bj, wj) =

∫ M

w̃j

xϕ1(x)dx− wj(1− Φ1(w̃j))

= [xΦ1(x)]Mw̃j
−

∫ M

w̃j

Φ1(x)dx− wj(1− Φ1(w̃j))

= M − w̃jΦ1(w̃j)−
∫ M

w̃j

Φ1(x)dx− wj(1− Φ1(w̃j))

= (M − wj) + (wj − w̃j)Φ1(w̃j)−
∫ M

w̃j

Φ1(x)dx.

Hence,

1

n− 1
[Euj(β(wj), wj)− Euj(β(w̃j), wj)] =

∫ wj

w̃j

Φ1(x)dx− (wj − w̃j)Φ1(w̃j) ≥ 0.

34

This completes the proof. ¤
We give two examples of explicit bidding functions for the exponential and the uniform

distribution.

Example 4 (Exponential distribution) Let Φ1(w) = 1 − e−λw for some λ > 0. The

interval is [0,∞). Then

β(w) =
1

e−λw
λ

∫ ∞

w

xe−λxdx

=
1

e−λw

(
[−xe−λx]∞w +

∫ ∞

w

e−λxdx

)

=
1

e−λw

(
we−λw +

[
−e−λx

λ

]∞

w

)

= w +
1

λ
.

Thus, if weights are exponentially distributed, an agent has to add the mean weight 1/λ to

his actual weight in the equilibrium.

Example 5 (Uniform distribution) Let agents’ weights be uniformly distributed over [0,M].

That is ϕ1(w) = 1/M and Φ1(w) = w/M . Thus,

β(w) =
1

1− w
M

∫ M

w

x

M
dx =

1

M − w

[
x2

2

]M

w

=
M + w

2
.

Taking the limit w → M yields additionally β(M) = M .

Hence, for uniform distributions, an agent reports the mean of his true weight and the

maximum weight M .

From the above analysis, we get the following Bayes-Nash incentive compatible and op-

timal mechanism.

Theorem 12 Allocating jobs in order of non-increasing reported weights and paying to job

j with report wj and realized start time Sj the payment Sjβ(wj) is a Bayes-Nash incentive

compatible and optimal mechanism.

Proof. As β is increasing, scheduling jobs in order of non-increasing β(wj) is equivalent

to scheduling in order of non-increasing wj. If bidding according to β is a Bayes-Nash

equilibrium in the mechanism where a job j bidding wj is paid Sjwj, then truthful bidding

is a Bayes-Nash equilibrium in the mechanism where j is paid Sjβ(wj). Therefore, the

35

mechanism proposed in the theorem is Bayes-Nash incentive compatible. As the allocation is

again efficient, expected payments for each type coincide up to a constant with the expected

payments of the VCG mechanism and with those of the optimal mechanism described in the

previous two sections. The constant is zero, as also in this mechanism, a job with maximum

weight M has zero expected start time, zero payment and hence zero utility, just as in the

VCG mechanism and the optimal mechanism from Section 5. ¤

A Negative Result for Unequal Processing Times. In the case with two agents

that have unequal processing times, there is no bidding function β according to which both

agents report in a Bayes-Nash equilibrium.

Theorem 13 Suppose, there are two agents, whose weights are continuous random variables

with equal support [0,M]. If p1 6= p2, then there is no continuous bidding function β : [0,M] →
R+ according to which both agents report in a Bayes-Nash equilibrium. That is, there is no

symmetric Bayes-Nash equilibrium.

Note that the theorem holds for arbitrary continuous random weights with support [0,M].

Especially, we do not need to assume that weights are identically distributed.

Proof. Without loss of generality let p2 < p1. Assume β is a continuous equilibrium bidding

function. Let agent 2 bid according to β and look at agent 1. Let

b1 = min

{(
1

2
+

p1

2p2

)
β(0), β(M)

}
,

then b1 ∈ [β(0), β(M)]. There exists w1 ∈ [0,M] with β(w1) = b1, as β is continuous. Then

β(w1) = b1 ≤
(

1

2
+

p1

2p2

)
β(0)

⇔ p2β(w1) ≤
(p2

2
+

p1

2

)
β(0) < p1β(0)

⇔ β(w1)

p1

<
β(0)

p2

.

Bidding any b with b/p1 ≤ β(0)/p2 results in an expected start time of p2 for agent 1.

The expected utility is then (b − w1)p2 which is strictly larger at b = (p1/p2)β(0) than at

b = β(w1) < (p1/p2)β(0). Thus, β does not maximize the expected utility at w1. ¤

36

7 Discussion

We have seen that the graph theoretic approach is an intuitive tool for optimal mechanism

design and yields a closed formula for the optimal mechanism in the 1-dimensional case. The

results parallel Myerson’s results for single item auctions; although there are differences. It

is not hard to see that the optimal allocation rule – Smith’s rule with respect to modified

weights – is even dominant strategy implementable, with the same total expected payment

for the mechanism. In order to obtain a dominant strategy incentive compatible mechanism,

only the payment scheme has to be defined appropriately for each reported type profile.

In the discrete case, efficient mechanisms can be arbitrarily bad with respect to the total

payment made to agents. For symmetric agents, however, the optimal mechanism is efficient.

Even so, the payments of the generalized VCG mechanism can still be non-optimal. In the

continuous case, revenue equivalence holds and the generalized VCG mechanism as well as a

mechanism derived from the first price auction are optimal in those cases where the optimal

mechanisms allocates efficiently.

Moreover, we have seen that in the two-dimensional case the canonical approach does not

work and that optimal mechanism design seems to be considerably more complicated than in

the traditional auction models. We leave it as an open problem to identify (closed formulae

for) optimal mechanisms for the 2-d case. It is conceivable, however, that closed formulae

don’t exist.

References

Armstrong, M. (2000). Optimal multi-object auctions. Review of Economic Studies 67,

455–481.

Clarke, E. H. (1971). Multipart pricing of public goods. Public Choice 11 (1), 17–33.

Groves, T. (1973). Incentives in teams. Econometrica 41, 617–631.

Hartline, J. and A. Karlin (2007). Profit maximization in mechanism design. In N. Nisan,

T. Roughgarden, É. Tardos, and V. Vazirani (Eds.), Algorithmic Game Theory. Cam-

bridge University Press.

Heydenreich, B., R. Müller, M. Uetz, and R. Vohra (2008). Characterization of revenue

equivalence. Econometrica. to appear.

Krishna, V. (2002). Auction Theory. Academic Press.

37

Malakhov, A. and R. Vohra (2007). An optimal auction for capacity constrained bidders:

a network perspective. Economic Theory .

Mitra, M. (2001). Mechanism design in queueing problems. Economic Theory 17 (2), 277–

305.

Moulin, H. (2007). On scheduling fees to prevent merging, splitting, and transferring of

jobs. Mathematics of Operations Research 32, 266–283.

Müller, R., A. Perea, and S. Wolf (2007). Weak monotonicity and Bayes-Nash incentive

compatibility. Games and Economic Behavior 61 (2), 344–358.

Myerson, R. (1981). Optimal auction design. Mathematics of Operations Research 6 (1),

58–73.

Myerson, R. (1991). Game Theory: Analysis of Conflict. Harvard University Press.

Rochet, J.-C. (1987). A necessary and sufficient condition for rationalizability in a quasi-

linear context. Journal of Mathematical Economics 16 (2), 191–200.

Smith, W. (1956). Various optimizers for single stage production. Naval Research Logistics

Quarterly 3, 59–66.

Vickrey, W. (1961). Counterspeculation, auctions and competitive sealed tenders. Journal

of Finance 16, 8–37.

38

