
Bettina Klaus 
 
The Role of Replication-Invariance: Two 
Answers Concerning the Problem of Fair 
Division when Preferences are Single-Peaked 
 
RM/07/029 
 
 
JEL code: D63, D71 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Maastricht research school of Economics 
of TEchnology and ORganizations 
 
Universiteit Maastricht 
Faculty of Economics and Business Administration 
P.O. Box 616 
NL - 6200 MD Maastricht 
 
phone : ++31 43 388 3830 
fax : ++31 43 388 4873 



 
 
 
 
 



The Role of Replication-Invariance:

Two Answers Concerning the Problem of Fair

Division when Preferences are Single-Peaked∗

Bettina Klaus†

July 2007

Abstract

We consider the problem of allocating an infinitely divisible commodity among a group of
agents with single-peaked preferences. A rule that has played a central role in the previous
analysis of the problem is the so-called uniform rule. Thomson (1995a) proved that the
uniform rule is the only rule satisfying Pareto optimality, no-envy, one-sided population-
monotonicity, and replication-invariance. Replacing one-sided population-monotonicity
by one-sided replacement-domination yields another characterization of the uniform rule
(Thomson, 1997a). Until now, the independence of replication-invariance from the other
properties in these characterizations was an open problem. In this note we prove this
independence by means of a single example.
Keywords: Fair allocation, single-peaked preferences, population-monotonicity,
replacement-domination, replication-invariance.
JEL classification: D63, D71.

1 Introduction

We consider the division of some perfectly divisible commodity among a group of agents with
single-peaked preferences. This means that each agent has a most preferred amount below
which and above which his welfare is decreasing. A typical example is rationing in a two-good
exchange economy when prices are in disequilibrium (e.g., Benassy, 1982): if the preferences of
the agents over the two-dimensional space of bundles are strictly convex, then the restrictions
of these preferences to the budget lines are single-peaked. In this context Benassy (1982)
considered the uniform rationing scheme. For the more general class of division problems
with single-peaked preferences, this solution is known as the uniform rule. Sprumont (1991)
initiated the axiomatic analysis of this class of problems and proved that the uniform rule is
the only rule that satisfies Pareto optimality, no-envy, and strategy-proofness. Since then a
wide literature has been concerned with the search for and analysis of rules with appealing
properties. We refer the interested reader to a survey of fair allocation when preferences are
single-peaked by Thomson (1997b).

∗The first version of this note was written while the author was visiting the University of Rochester in
1997. I acknowledge the hospitality of the Department of Economics at the University of Rochester and wish
to thank William Thomson for many helpful comments. Furthermore, I thank the Netherlands Organisation
for Scientific Research (NWO) for its support under grant VIDI-452-06-013.

†Department of Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands;
e-mail: B.Klaus@algec.unimaas.nl
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In this note we answer some questions asked by William Thomson (1995a,1997a). Thom-
son (1995a) proves that the uniform rule is the only rule satisfying Pareto optimality, no-
envy, replication-invariance, and one-sided population-monotonicity. Replacing one-sided
population-monotonicity by one-sided replacement-domination yields another characteriza-
tion of the uniform rule (Thomson, 1997a). Until now, the independence of replication-
invariance from the other properties in the characterizations mentioned above was an open
problem. In this note we prove this independence by means of a single rule that satisfies the
properties named in the characterizations but not replication-invariance.

2 The Model

In this section we introduce the problem of fair division when preferences are single-peaked
and the properties for rules that will play a central role in this paper.

There is an infinite population of potential agents, indexed by the natural numbers N.
Each agent i ∈ N is equipped with a continuous and single-peaked preference relation Ri

defined over the non-negative real numbers R+. Single-peakedness of Ri means that there
exists a point p(Ri) ∈ R+, called agent i’s peak amount, with the following property: for all
x, y ∈ R+ with x < y ≤ p(Ri) or x > y ≥ p(Ri), we have y Pi x.1 Each preference relation
Ri can be described in terms of the indifference function ri : R+ → R+ ∪ {∞} that is defined
as follows. If x ≤ p(Ri), then ri(x) ≥ p(Ri) and either ri(x) Ii x (if such a point exists) or
ri(x) = ∞. If x ≥ p(Ri), then ri(x) ≤ p(Ri) and ri(x) Ii x (if such a point exists) or ri(x) = 0.

By R we denote the class of all continuous, single-peaked preference relations over R+

and by Rb ( R the subclass of preferences Ri ∈ Rb such that the corresponding indifference
function ri is bounded, i.e., ri(0) < ∞. By N we denote the class of non-empty and finite
subsets of N. For N ∈ N , RN denotes the set of (preference) profiles R = (Ri)i∈N such that
for all i ∈ N , Ri ∈ R; RN

b has a similar meaning.
Now, an economy can be formalized as follows. Let Ω ∈ R+ be the amount of an infinitely

divisible commodity, the (social) endowment, that has to be distributed among a group of
agents N ∈ N with profile R ∈ RN .2 We call a pair e = (R,Ω) ∈ RN × R+ an economy.
Let EN = RN × R+ be the class of all economies for N ∈ N . Similarly, let EN

b = RN
b × R+.

A feasible allocation for e = (R,Ω) ∈ EN is a vector x ∈ RN
+ such that

∑
N xi = Ω. A

(allocation) rule is a function ϕ that assigns to every N ∈ N and every e ∈ EN a feasible
allocation, denoted ϕ(e). Given i ∈ N , we call ϕi(e) the allotment of agent i.

A standard requirement is Pareto optimality : an allocation assigned by the rule cannot
be changed in such a way that no agent is worse off and some agent is better off.

Pareto optimality: For all N ∈ N and all e ∈ EN , there is no feasible allocation x ∈ RN
+

such that for all i ∈ N , xi Ri ϕi(e) and for some j ∈ N , xj Pj ϕj(e).

By the single-peakedness of the preferences it is easy to show that a rule is Pareto optimal
if and only if it is same-sided, that is: for all N ∈ N and all e ∈ EN , either [for all i ∈ N ,
ϕi(e) ≤ p(Ri)] or [for all i ∈ N , ϕi(e) ≥ p(Ri)]. Sprumont (1991) uses same-sidedness as
definition of Pareto optimality.

1Pi denotes the strict preference relation associated with Ri and Ii the indifference relation.
2Note that free disposal of the commodity is not allowed.
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The following well-known property of no-envy states that no agent strictly prefers the
allotment of another agent to his own allotment.

No-envy: For all N ∈ N , all e ∈ EN , and all i, j ∈ N , ϕi(e) Ri ϕj(e).

Next, we discuss so-called “solidarity properties” that describe the effect of certain changes
in a single parameter of the economy while the other parameters are kept fixed, e.g., the
population or the preferences.

Thomson (1995a,1997a) shows that these properties are generally incompatible with the
properties we introduced above. However, he shows that these incompatibilities only occur
when the change in the parameter is such that it turns an economy in which there is “too
much” to divide into an economy in which there is “too little” to divide, or vice versa. We
call a change where this does not occur one-sided: let N, N̄ ∈ N , e = (R,Ω) ∈ EN , and
ē = (R̄, Ω̄) ∈ EN̄ . If either [

∑
N p(Ri) ≥ Ω and

∑
N̄ p(R̄i) ≥ Ω̄] or [

∑
N p(Ri) ≤ Ω and∑

N̄ p(R̄i) ≤ Ω̄], then ē is a one-sided change of e.
Thomson shows that a wide class of rules satisfies one or even several “one-sided” versions

of the solidarity properties, i.e., solidarity is only required for one-sided changes.
First, we consider arrivals of new agents such that the implied change in the initial econ-

omy is one-sided, keeping the preferences of the remaining agents and the endowment fixed
(Thomson, 1995a). One-sided population-monotonicity states that either all agents initially
present (weakly) lose or all (weakly) gain.3

Let N,M ∈ N , N ⊆ M , and R ∈ RM . Then, the restriction (Ri)i∈N ∈ RN of R to N
is denoted by RN .

One-sided population-monotonicity: For all N, N̄ ∈ N , all e = (R,Ω) ∈ EN , and all
ē = (R̄,Ω) ∈ EN̄ , if N ⊆ N̄ , R = R̄N , and ē is a one-sided change of e, then either [for all
i ∈ N , ϕi(e) Ri ϕi(ē)] or [for all i ∈ N , ϕi(ē) Ri ϕi(e)].

Next, we consider a one-sided change of one agent’s preference relation, keeping the pref-
erences of the remaining agents, the set of agents, and the endowment fixed (Thomson,
1997a). Welfare-domination under preference-replacement, or replacement-domination for
short, states that either all remaining agents (weakly) lose or all (weakly) gain.4

For N,M ∈ N with N ⊆ M let M\N := {i ∈ M | i /∈ N}. Let N ∈ N , R, R̄ ∈ RN , and
j ∈ N . If RN\{j} = R̄N\{j} and Rj 6= R̄j , then we call R̄ a j-deviation from R.

One-sided replacement-domination: For all N ∈ N , all e = (R,Ω), ē = (R̄,Ω) ∈ EN ,
and all j ∈ N , if R̄ is a j-deviation from R and ē is a one-sided change of e, then either [for
all i ∈ N\{j}, ϕi(e) Ri ϕi(ē)] or [for all i ∈ N\{j}, ϕi(ē) Ri ϕi(e)].

As a last property we introduce replication-invariance (Thomson, 1995a,1997a).
Replication-invariance states that if an economy is replicated, i.e., the amount to divide and
the preference profile are replicated, then the replica of the allocation assigned by the rule
for the initial economy equals the allocation assigned by the rule for the replicated economy.

3For a survey on population-monotonicity we refer to Thomson (1995b).
4Replacement-domination has been studied in a variety of settings and we refer the interested reader to a

recent review of the literature by Thomson (1999).
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Since replication-invariance is a well-known property and its formal description is somewhat
cumbersome, for a formal statement we refer to Thomson (1995a,1997a). We call an economy
ē, obtained by replication of an economy e, a replica of e. Similarly, we call an allocation x̄
obtained by replication of an allocation x, a replica of x.

Replication-invariance: For all N, N̄ ∈ N and all e = (R,Ω) ∈ EN , ē = (R̄, Ω̄) ∈ EN̄ , if
ē is a replica of e, then ϕ(ē) is a replica of ϕ(e).

3 Replication-Invariance and the Uniform Rule

In this section we first introduce the uniform rule and the characterizations of this rule that
lead to the question whether replication-invariance in these characterizations is independent
from the other properties.

The uniform rule

The following rule, known as the uniform rule, has played a central role in the literature of
fair division when preferences are single-peaked.

Uniform rule U : For all N ∈ N , all e = (R,Ω) ∈ EN , and all j ∈ N ,

Uj(e) :=
{

min{p(Rj), λ} if
∑

N p(Ri) ≥ Ω,
max{p(Rj), λ} if

∑
N p(Ri) ≤ Ω,

where λ solves
∑

N Ui(e) = Ω.

So, in case of excess demand, i.e.,
∑

N p(Ri) ≥ Ω, each agent either receives his peak
amount or his allotment is greater than or equal to the allotment of each other agent. Similarly,
in case of excess supply, i.e.,

∑
N p(Ri) ≤ Ω, each agent either receives his peak amount or

his allotment is smaller than or equal to the allotment of each other agent.
Another interpretation of this rule is the following “Walrasian interpretation”. All agents

are asked to maximize their preferences subject to a common upper or lower “budget bound”
that is chosen such that feasibility is obtained for this list of maximizers.5

Two characterizations of the uniform rule and two questions

Thomson establishes the following characterization of the uniform rule (Thomson, 1995a,
Theorem 4).

Theorem 1 (Thomson, 1995a).
On the domain

⋃
N∈N EN

b , the uniform rule is the only rule that satisfies Pareto optimality,
no-envy, one-sided population-monotonicity, and replication-invariance.

Question 1: Following the proof of this Theorem, Thomson asks whether replication-
invariance is independent from the other characterizing properties (see Thomson, 1995a,

5I wish to thank William Thomson for bringing this “Walrasian interpretation”of the uniform rule to my
attention.
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page 242).6

The next characterization of the uniform rule is due to Thomson (1997a, Theorem 1).

Theorem 2 (Thomson, 1997a).
On the domain

⋃
N∈N EN , the uniform rule is the only rule that satisfies Pareto optimality,

no-envy, one-sided replacement-domination, and replication-invariance.

Question 2: Following the proof of this Theorem, Thomson asks whether replication-
invariance is independent from the other characterizing properties (see Thomson, 1997a,
page 161).

We give the answers to Questions 1 and 2 by means of a single rule, unequal to the uniform
rule, that satisfies Pareto optimality, no-envy, one-sided population-monotonicity, one-sided
replacement-domination, but not replication-invariance.

Before we define the “absorbing agent” rule, we introduce some notation. Let N ∈ N .
Then, by AN ( EN we denote the following subclass of economies: for e = (R,Ω) ∈ AN we
have that (i) there is too much to distribute, i.e., z(e) < 0 and (ii) there is exactly one agent,
namely agent j ∈ N , with a relatively large peak amount p(Rj) > Ω

2 (see Figure 1). For such
an economy e ∈ AN , we construct the allocation assigned at e as follows.

Figure 1: An economy e ∈ AN .
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We start from the uniform allocation U(e) and let agent j “absorb” some part of the excess
supply the remaining agents, i ∈ N\{j}, experience at their uniform allotments, denoted by
the list (Ui(e))i∈N\{j}. We denote the excess supply of the agents in N\{j} at the allocation
U(e) by sj(e) =

∑
N\{j}(Ui(e)− p(Ri)).

Note that in order to preserve same-sidedness, we let agent j absorb at most sj(e). How-
ever, when we let agent j absorb part, or even the whole, of the excess supply sj(e), we
do not want him to envy the other agents. Therefore, we introduce the sufficiently small
upper bound rj(Ω

2 ) for agent j’s allotment. Recall that either rj(Ω
2 ) Ij

Ω
2 or rj(Ω

2 ) = ∞. Note
that the allotments of all other agents are smaller than Ω

2 and therefore, as long as agent j’s
allotment is between his peak amount p(Rj) and rj(Ω

2 ), he does not envy the other agents.

6Thomson also asks the question whether the uniform rule is the only rule that satisfies Pareto optimality,
individual rationality from equal division, one-sided population-monotonicity, and replication-invariance.

The answer is that there is a large class of rules satisfying the properties mentioned in the question. Exam-
ples are the “proportional reallocation rule” Prr operated from equal division and the “maximally satiating
reallocation rule” operated from equal division (Klaus, 1998; Klaus, Peters, and Storcken, 1998).
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Summarizing, if N ∈ N and e = (R,Ω) ∈ AN , then we obtain the allocation as-
signed by the absorbing agent rule from U(e) by letting agent j absorb the amount
a(e) := min{sj(e), rj(Ω

2 ) − p(Rj)} and subtracting this amount as equally as possible (with
the agents’ peak amount as lower bounds) from the uniform allotments of the other agents
(see Figures 2 and 3). We denote this allocation by ϕa(e). If N ∈ N and e = (R,Ω) /∈ AN ,
then we apply the uniform rule.

Figure 2: The rule ϕa for an economy e ∈ AN with a(e) = sj(e).
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The absorbing agent rule ϕa : For all N ∈ N and all e = (R,Ω) ∈ AN , let j ∈ N be
such that p(Rj) > Ω

2 . 7 Then, for all i ∈ N ,

ϕa
i (e) =

{
p(Rj) + a(e) if i = j,
Ui(RN\{j},Ω− ϕa

j (e)) if i ∈ N\{j}.

For all N ∈ N and all e = (R,Ω) ∈ EN\AN ,

ϕa(e) = U(e).

The rule ϕa is by construction same-sided and therefore Pareto optimal. Since, we either
assign the uniform allocation to an economy or change the uniform allocation in such a way
that envy cannot arise, ϕa satisfies no-envy.8

The following remark implies that the rule ϕa does not satisfy replication-invariance.

Remark 1. Note that for all N ∈ N , all e = (R,Ω) ∈ EN , all k ∈ N, k ≥ 2, and all k-replica
ē = (R̄, Ω̄) ∈ EN̄ of e, if e ∈ AN , then ē /∈ AN̄ and ϕa(ē) is not a k-replica of ϕa(e). 2

Finally, by the following lemmas, we complete the proof that replication-invariance in
Theorems 1 and 2 is independent from the other properties.

7Recall that the absorbing agent j is unique and that a(e) := min{sj(e), rj(
Ω
2
)− p(Rj)}.

8The absorbing agent rule ϕa satisfies other well-known properties, such as anonymity and individual
rationality from equal division. It follows easily that ϕa satisfies none of the properties strategy-proofness,
peak-onliness, one-sided resource-monotonicity, consistency, and converse consistency. For a more detailed
discussion, we refer to Klaus (1998).
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Figure 3: The rule ϕa for an economy e ∈ AN with a(e) = rj(Ω
2 )− p(Rj).
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Lemma 1. The rule ϕa satisfies one-sided population-monotonicity.

Lemma 2. The rule ϕa satisfies one-sided replacement-domination.

Before we prove Lemmas 1 and 2, we introduce the solidarity property one-sided
resource-monotonicity (Thomson, 1994). One-sided resource-monotonicity states that after
a one-sided change of an economy that is induced by a change in the social endowment,
either all agents (weakly) lose or all (weakly) gain.

One-sided resource-monotonicity: For all N ∈ N and all e = (R,Ω), ē = (R, Ω̄) ∈ EN ,
if ē is a one-sided change of e, then either [for all i ∈ N , ϕi(e) Ri ϕi(ē)] or [for all i ∈ N ,
ϕi(ē) Ri ϕi(e)].

The uniform rule satisfies one-sided resource-monotonicity (Thomson, 1994).

Proof of Lemma 1. Let N, N̄ ∈ N , e = (R,Ω) ∈ EN , and ē = (R̄,Ω) ∈ EN̄ be such
that N ⊆ N̄ and R = R̄N . Now, it is sufficient to show that, if ē is a one-sided change of e,
then either (i) [for all i ∈ N , ϕa

i (e) Ri ϕ
a
i (ē)] or (ii) [for all i ∈ N , ϕa

i (ē) Ri ϕ
a
i (e)]. Let ē be a

one-sided change of e.
Case 1: e /∈ AN , ē /∈ AN̄ . Then, ϕa(e) = U(e) and ϕa(ē) = U(ē). Since, the uniform rule
is one-sided population-monotonic, either (i) or (ii) holds.
Case 2: e ∈ AN , ē /∈ AN̄ . Hence, z(ē) ≤ 0, z(e) < 0, and there exists j ∈ N such that
p(Rj) > Ω

2 . Since ē /∈ AN̄ , we have z(ē) = 0. So, by Pareto optimality, for all i ∈ N ,
ϕa

i (ē) = p(Ri). This implies (ii).

Case 3: e /∈ AN , ē ∈ AN̄ . Hence, z(e) ≤ z(ē) < 0 and there exists j ∈ N̄\N such that
p(R̄j) > Ω

2 . Let R′ = R̄N̄\{j} ∈ RN̄\{j}. Then, for all i ∈ N,

ϕa
i (e) = Ui(e) and ϕa

i (ē) = Ui(R′,Ω− ϕa
j (ē)). (1)
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Since the uniform rule is one-sided resource-monotonic and (R′,Ω), (R′,Ω− ϕa
j (ē)) ∈ EN̄\{j}

are such that
∑

N̄\{j} p(R′
i) ≤ Ω− ϕa

j (ē) < Ω, it follows that for all i ∈ N ⊆ N̄\{j},

Ui(R′,Ω− ϕa
j (ē))Ri Ui(R′,Ω). (2)

Since the uniform rule is one-sided population-monotonic and e = (R,Ω) ∈ EN , (R′,Ω) ∈
EN̄\{j} are such that N ⊆ N̄\{j}, R = R′

N , and
∑

N̄\{j} p(R′
i) ≤ Ω, it follows that for all

i ∈ N ,
Ui(R′,Ω) Ri Ui(e). (3)

Thus, (1), (2), and (3) together imply that for all i ∈ N , ϕa
i (ē) Ri ϕ

a
i (e). Hence, (ii) holds.

Case 4: e ∈ AN , ē ∈ AN̄ . Hence, z(e) ≤ z(ē) < 0 and there exists j ∈ N ⊆ N̄ such that
p(Rj) > Ω

2 . Let R′ = RN\{j} ∈ RN\{j} and R̄′ = R̄N̄\{j} ∈ RN̄\{j}. Then,

ϕa
i (e) =

{
p(Rj) + a(e) if i = j,
Ui(R′,Ω− ϕa

j (e)) if i ∈ N\{j}, (4)

ϕa
i (ē) =

{
p(Rj) + a(ē) if i = j,
Ui(R̄′,Ω− ϕa

j (ē)) if i ∈ N̄\{j}.

Note that Uj(e) = p(Rj) = Uj(ē). Therefore, Ω− Uj(e) =
∑

N\{j} Ui(e) =
∑

N̄\{j} Ui(ē) and
sj(e) ≥ sj(ē). Hence, a(e) ≥ a(ē) and p(Rj) ≤ ϕa

j (ē) ≤ ϕa
j (e). Thus,

ϕa
j (ē) Rj ϕa

j (e). (5)

Now, we have either
(a) a(ē) = sj(ē) or
(b) a(ē) = rj(Ω

2 )− p(Rj).
Suppose (a) holds. Then, for all i ∈ N\{j}, ϕa

i (ē) = p(Ri). Thus, for all i ∈ N\{j},

ϕa
i (ē) Ri ϕ

a
i (e). (6)

Hence, (5) and (6) imply (ii).
Suppose (b) holds. Then, a(ē) = a(e) and Ω− ϕa

j (ē) = Ω− ϕa
j (e). Since the uniform rule

is one-sided population-monotonic and (R′,Ω−ϕa
j (e)) ∈ EN\{j}, (R̄′,Ω−ϕa

j (ē)) ∈ EN̄\{j} are
such that N\{j} ⊆ N̄\{j}, R′ = R̄′

N\{j}, and
∑

N̄\{j} p(R̄i) ≤ Ω − ϕa
j (e), it follows that for

all i ∈ N\{j},
Ui(R̄′,Ω− ϕa

j (ē))Ri Ui(R′,Ω− ϕa
j (e)). (7)

Thus, by (4), for all i ∈ N\{j},
ϕa

i (ē) Ri ϕ
a
i (e). (8)

Hence, (5) and (8) imply (ii). 2

Proof of Lemma 2. Let N ∈ N , e = (R,Ω) ∈ EN , ē = (R̄,Ω) ∈ EN , and k ∈ N be such
that R̄ is a k-deviation from R. It is sufficient to show that if ē is a one-sided change of e,
then either (i) [for all i ∈ N\{k}, ϕi(e) Ri ϕi(ē)] or (ii) [for all i ∈ N\{k}, ϕa

i (ē) Ri ϕ
a
i (e)].

Let ē be a one-sided change of e.
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Case 1: e /∈ AN , ē /∈ AN . Then, ϕa(e) = U(e) and ϕa(ē) = U(ē). Since, the uniform rule
satisfies one-sided replacement-domination, either (i) or (ii) holds.
Case 2: e /∈ AN , ē ∈ AN . Hence, R̄ and R are such that p(Rk) ≤ Ω

2 , p(R̄k) > Ω
2 , and

z(e) ≤ z(ē) < 0. Thus, Uk(e) ≤ Ω
2 < p(R̄k) ≤ ϕa

k(R̄,Ω). Let R′ = RN\{k} ∈ RN\{k}. Then,
for all i ∈ N\{k},

ϕa
i (e) = Ui(e) = Ui(R′,Ω− Uk(e)) and ϕa

i (ē) = Ui(R′,Ω− ϕa
k(ē)). (9)

Since the uniform rule is one-sided resource-monotonic and (R′,Ω−Uk(e)), (R′,Ω−ϕa
k(ē)) ∈

EN\{k} are such that
∑

N\{k} p(Ri) ≤ Ω−ϕa
k(ē) ≤ Ω−Uk(e), it follows that for all i ∈ N\{k},

Ui(R′,Ω− ϕa
k(ē))Ri Ui(R′,Ω− Uk(e)). (10)

Hence, (9) and (10) imply (ii).
Case 3: e ∈ AN , ē /∈ AN . Similar to Case 2 by interchanging the roles of R̄ and R.
Case 4: e ∈ AN , ē ∈ AN . Without loss of generality we assume that R̄ is a k-deviation
from R such that p(R̄k) ≥ p(Rk). Hence, z(e) ≤ z(ē) < 0 and there exists j ∈ N such that
p(Rj) > Ω

2 and p(R̄j) > Ω
2 . Let R′ = RN\{j} ∈ RN\{j} and R̄′ = R̄N\{j} ∈ RN\{j}. Then,

ϕa
i (e) =

{
p(Rj) + a(e) if i = j,
Ui(R′,Ω− ϕa

j (e)) if i ∈ N\{j}, (11)

ϕa
i (ē) =

{
p(R̄j) + a(ē) if i = j,
Ui(R̄′,Ω− ϕa

j (ē)) if i ∈ N\{j}.

Case 4.1: k = j. Since the uniform rule is one-sided resource-monotonic and (R′,Ω−ϕa
j (e)),

(R̄′,Ω−ϕa
j (ē)) ∈ EN\{j} are such that R′ = R̄′ and z(R′,Ω−ϕa

j (e)) ≤ 0 and z((R̄′,Ω−ϕa
j (ē)) ≤

0, it follows that for all i ∈ N\{j}, either (i) or (ii).
Case 4.2: k 6= j. Since p(R̄k) ≥ p(Rk), it follows that sj(e) ≥ sj(ē). Hence, a(e) ≥ a(ē)
and ϕa

j (ē) ≤ ϕa
j (e). Thus,

ϕa
j (ē) Rj ϕa

j (e). (12)

Now, we have either
(a) a(ē) = sj(ē) or
(b) a(ē) = rj(Ω

2 )− p(Rj).
Suppose (a) holds. Hence, for all i ∈ N\{j}, ϕa

i (ē) = p(Ri). Thus, for all i ∈ N\{j, k},

ϕa
i (ē) Ri ϕ

a
i (e). (13)

Hence, (12) and (13) imply (ii).
Suppose (b) holds. Hence, a(ē) = a(e) and Ω − ϕa

j (ē) = Ω − ϕa
j (e). Since the uniform

rule satisfies one-sided replacement-domination and (R′,Ω−ϕa
j (e)), (R̄′,Ω−ϕa

j (ē)) ∈ EN\{j},
k ∈ N , are such that p(R̄k) ≥ p(Rk) and R′

N ′\{k} = R̄′
N ′\{k}, it follows that for all i ∈

N ′\{k} = N\{j, k},
Ui(R̄′,Ω− ϕa

j (ē))Ri Ui(R′,Ω− ϕa
j (e)). (14)

Thus, by (11) and (14), for all i ∈ N\{j, k},

ϕa
i (ē) Ri ϕ

a
i (e). (15)

Hence, (12) and (15) imply (ii). 2

Now, Remark 1, together with Lemmas 1 and 2 establish the answers to Questions 1 and 2.
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