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Abstract

In this survey we analyze, and compare, various sufficient epistemic conditions for back-
ward induction that have been proposed in the literature. To this purpose we present a
simple epistemic base model for games with perfect information, and translate the different
models into the language of this base model. As such, we formulate the various sufficient con-
ditions for backward induction in a uniform language, which enables us to explictly analyze
their differences and similarities.
Keywords: Backward induction, epistemic game theory, belief revision.

1. Introduction

Backward induction constitutes one of the oldest concepts in game theory. Its algorithmic
definition, which goes back at least to Zermelo (1913), seems so natural at first sight that one
might be tempted to argue that every player “should” reason in accordance with backward
induction in every game with perfect information. However, on a decision theoretic level the
concept is no longer as uncontroversial as it may seem. The problem is that the backward
induction algorithm, when applied from a certain decision node on, completely ignores the
history that has led to this decision node, as it works from the terminal nodes towards this
decision node. At the same time, the beliefs that the player at this decision node has about
his opponents’ future behavior may well be affected by the history he has observed so far. For
instance, a player who observes that an opponent has not chosen in accordance with backward
induction in the past may have a valid reason to believe that this same opponent will continue
this pattern in the game that lies ahead. However, such belief revision policies are likely to
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induce choices that contradict backward induction. We therefore need to impose some non-
trivial conditions on the players’ belief revision policies in order to arrive at backward induction.

During the last decade or so, the game-theoretic literature has provided us with various epis-
temic models for dynamic games in which sufficient epistemic conditions for backward induction
have been formulated. The objective of this survey is to discuss these conditions individually,
and to explicitly compare the different conditions with each other. The latter task is particu-
larly difficult since the literature exhibits a large variety of epistemic models, each with its own
language, assumptions and epistemic operators. Some models are syntactic while others are
semantic, and among the semantic models some are based on the notion of states of the world
while others use types instead. As to the epistemic operators, some models apply knowledge
operators while others use belief operators, and there is also a difference with respect to the
“timing” of these operators. Are players entitled to revise their knowledge or belief during the
course of the game, and if so, at which instances can they do so? Different models provide
different answers to these, and other, questions.

As to overcome these problems we present in Section 2 an epistemic base model, which will
be used as a kind of “uniform language” into which all other models can be translated. In
Section 3 we then provide for each of the papers to be discussed a brief description of the model,
followed by a translation of its epistemic conditions for backward induction in terms of our base
model. By doing so we formulate all sufficient conditions for backward induction in the same
language, which makes it possible to explictly analyze the differences and similarities between
the various conditions.

Finally, a word about the limitations of this paper. In this survey, we restrict attention
to epistemic conditions that lead to the backward induction strategies for all players. There
are alternative models that lead to the backward induction outcome, but not necessarily to the
backward induction strategy for each player. For instance, Battigalli and Siniscalchi (2002)
and Brandenburger, Friedenberg and Keisler (2004) provide epistemic models for extensive form
rationalizability (Pearce (1984), Battigalli (1997)) and iterated maximal elimination of weakly
dominated strategies, respectively, which always lead to the backward induction outcome in every
generic game with perfect information, but not necessarily to the backward induction strategy
profile. We also focus exclusively on sufficient conditions that apply to all generic games with
perfect information. There are other interesting papers that deal with the logic of backward
induction in specific classes of games, such as Rosenthals’s centipede game (Rosenthal (1981))
and the finitely repeated prisoner’s dilemma. See, among others, Binmore (1987), Stalnaker
(1996), Aumann (1998), Rabinowicz (1998), Broome and Rabinowicz (1999), Carroll (2000) and
Priest (2000). We shall, however, not discuss these papers here. Even with the limitations
outlined above, we do not claim to offer an exhaustive list of epistemic models for backward
induction. We do believe, however, that the list of models treated here will give the reader a
good impression of the various epistemic conditions for backward induction that exist in the
literature.
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2. An Epistemic Base Model

2.1. Games with Perfect Information

A dynamic game is said to be with perfect information if every player, at each instance of the
game, observes the opponents’ moves that have been made until then. Formally, an extensive
form structure S with perfect information consists of a finite game tree, a finite set I of players,
for every player i a finite set Hi of information sets, for every information set hi ∈ Hi a finite set
A(hi) of available actions, and a finite set Z of terminal nodes. By h0 we denote the beginning
of the game, and we write H∗

i = Hi ∪ {h0}. Perfect information is modeled by the assumption
that each decision node by itself constitutes an information set. By A we denote the set of all
actions, whereas H denotes the collection of all information sets. We assume that no chance
moves occur. The definition of a strategy we shall employ coincides with the concept of a
plan of action, as discussed in Rubinstein (1991). The difference with the usual definition is
that we require a strategy only to prescribe an action at those information sets that the same
strategy does not avoid. Formally, let H̃i ⊆ Hi be a collection of player i information sets, not
necessarily containing all information sets, and let si : H̃i → A be a mapping prescribing at every
hi ∈ H̃i some available action si(hi) ∈ A(hi). For a given information set h ∈ H, not necessarily
belonging to player i, we say that si avoids h if there is some hi ∈ H̃i on the path to h at which
the prescibed action si(hi) deviates from the path to h. Such a mapping si : H̃i → A is called
a strategy for player i if H̃i is exactly the collection of player i information sets not avoided by
si. Obviously, every strategy si can be obtained by first prescribing an action at all player i
information sets, that is, constructing a strategy in the classical sense, and then deleting from
its domain those player i information sets that are avoided by it. For a given strategy si ∈ Si,
we denote by Hi(si) the collection of player i information sets that are not avoided by si. Let
Si be the set of player i strategies. For a given information set h ∈ H and player i, we denote
by Si(h) the set of player i strategies that do not avoid h. Then, it is clear that a profile (si)i∈I
of strategies reaches an information set h if and only if si ∈ Si(h) for all players i.

2.2. Preferences, Beliefs and Types

The basic assumption is that every player has a strict preference relation over the terminal
nodes, and holds at each of his information sets a conditional belief about the opponents’ strategy
choices and preference relations. In particular, we allow for the fact that players may revise their
beliefs about the opponents’ preferences as the game proceeds. In order to keep our model as
“weak” as possible, we assume that this conditional belief can be expressed by a set of opponents’
strategies and preference relations. This set represents the strategies and preference relations
that the player deems possible at his information set. We thus do not consider probabilities, and
it is therefore sufficient to specify the players’ ordinal preferences over terminal nodes. Not only
does a player hold first-order conditional beliefs about the opponents’ choices and preferences,
he also holds second-order conditional beliefs about the opponents’ possible first-order beliefs
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at each of his information sets. A second-order belief may thus contain expressions of the
form “player i considers it possible at information set hi that player j considers it possible at
information set hj that player k chooses strategy sk and has preference relation Pk”. Recursively,
one may define higher-order conditional beliefs for the players. A possible way to represent such
hierarchies of conditional beliefs is by means of the following model.

Definition 2.1. (Epistemic base model) Let S be an extensive form structure with perfect
information. An epistemic base model for S is a tuple

M = ((Ti)i∈I , (Bij)j 6=i, (Pi)i∈I)

where
(1) Ti is a set of types for player i;
(2) Pi is a function that assigns to every ti ∈ Ti some strict preference relation Pi(ti) over the
terminal nodes;
(3) Bij is a function that assigns to every ti ∈ Ti and every information set hi ∈ H∗

i some subset
Bij(ti, hi) ⊆ Sj(hi)× Tj .

From an epistemic base model, conditional beliefs of any order can be derived. For instance,
type ti’s belief at hi about player j’s choice is given by the projection of Bij(ti, hi) on Sj . Let
Bij(ti, hi|Sj) denote this projection, and let Bij(ti, hi|Tj) denote its projection on Tj . Then, type
ti’s belief at hi about player j’s belief at hj about player k’s choice is given by[

tj∈Bij(ti,hi|Tj)
Bjk(tj , hj |Sk).

In a similar fashion, higher order beliefs can be derived.

2.3. Common Belief

LetM = ((Ti)i∈I , (Pi)i∈I , (Bij)i6=j) be an epistemic base model, and E ⊆ ∪i∈ITi a set of types,
or event. We say that type ti believes in E at information set hi ∈ H∗

i if Bij(ti, hi|Tj) ⊆ E for
all j 6= i. We say that ti initially believes in E if ti believes in E at h0. Common belief in the
event E is defined by the following recursive procedure:

B1i (E) = {ti ∈ Ti | ti ∈ E}

for all i ∈ I, and

Bk+1
i (E) = {ti ∈ Bk

i (E) | Bij(ti, hi|Tj) ⊆ Bk
j (E) for all j 6= i and all hi ∈ H∗

i }

for all i ∈ I and all k ≥ 2.
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Definition 2.2. (Common belief) A type ti ∈ Ti is said to respect common belief in the event
E if ti ∈ Bk

i (E) for all k.

Hence, ti respects common belief in E if ti belongs to E, believes throughout the game that
opponents’ types belong to E, believes throughout the game that opponents believe throughout
the game that the other players’ types belong to E, and so on. Common initial belief in the
event E is defined as follows:

IB1i (E) = {ti ∈ Ti | ti ∈ E}

for all i ∈ I, and

IBk+1
i (E) = {ti ∈ IBk

i (E) | Bi(ti, h0|Tj) ⊆ IBk
j (E) for all j 6= i}

for all i ∈ I and all k ≥ 2.

Definition 2.3. (Common initial belief) A type ti ∈ Ti is said to respect common initial belief
in the event E if ti ∈ IBk

i (E) for all k.

2.4. Belief in the Opponents’ Rationality

All the epistemic foundations for backward induction to be discussed here make assumptions
about the beliefs that players have about the rationality of their opponents. More precisely, all
foundations require that players initially believe that each opponent chooses rationally at every
information set. However, the various foundations differ as to how players would revise their
beliefs upon observing that their initial belief about the opponents was incorrect. In order to
translate these different belief revision procedures into our base model, we need the following
definitions.

We first define what it means that a strategy is rational for a type at a given information
set. For a strategy si, an opponents’ strategy profile s−i ∈ ×j 6=iSj , and an information set
hi ∈ Hi, let z(si, s−i|hi) be the terminal node that would be reached from hi if (si, s−i) were to
be executed by the players.

Definition 2.4. (Rationality at an information set) A strategy si is rational for type ti at
information set hi ∈ Hi(si) if there is no s0i ∈ Si(hi) such that Pi(ti) ranks z(s0i, s−i|hi) strictly
over z(si, s−i|hi) for all s−i ∈ ×j 6=iBij(ti, hi|Sj).

We shall now define various restrictions on the beliefs that players have about the opponents’
rationality. We need one more definition to this purpose. For a given type ti ∈ Ti, information
set hi ∈ H∗

i , and some opponent’s information set hj ∈ Hj following hi, we say ti believes hj to
be reached from hi if Bik(ti, hi|Sk) ⊆ Sk(hj) for all k 6= i.
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Definition 2.5. (Belief in the opponents’ rationality)
(1) Type ti believes at information set hi ∈ H∗

i that player j chooses rationally at information
set hj ∈ Hj if for every (sj , tj) ∈ Bij(ti, hi) it is true that sj is rational for tj at hj .
(2) Type ti initially believes in rationality at all information sets if ti believes at h0 that every
opponent j chooses rationally at all hj ∈ Hj .
(3) Type ti always believes in rationality at all future information sets if ti believes at every
hi ∈ H∗

i that every opponent j chooses rationally at every hj ∈ Hj that follows hi.
(4) Type ti always believes in rationality at future information sets that are believed to be reached
if ti believes at every hi ∈ H∗

i that every opponent j chooses rationally at all those hj ∈ Hj

following hi which ti believes to be reached from hi.
(5) Type ti always believes in rationality at all future and parallel information sets if ti believes
at every hi ∈ H∗

i that every opponent j chooses rationally at every hj ∈ Hj that does not
precede hi.
(6) Type ti always believes in rationality at all information sets if ti believes at every hi ∈ H∗

i

that every opponent j chooses rationally at every hj ∈ Hj .

Combined with the definition of common belief, we may thus construct phrases as “type ti
respects common belief in the event that all types initially believe in rationality at all information
sets”. Some of the epistemic foundations for backward induction, however, use a condition that
cannot be expressed in this form, since it relies on a notion that is different from common belief.
In order to formalize this condition, we consider the following recursive procedure:

FBSR1i (hi) = {ti ∈ Ti | ti believes at hi that every j 6= i chooses rationally

at all hj that follow hi}

for all i ∈ I and all hi ∈ H∗
i , and

FBSRk
i (hi) = {ti ∈ Ti | Bij(ti, hi|Tj) ⊆ FBSRk−1

j (hj) for all j 6= i and

all hj that follow hi}

for all i ∈ I, hi ∈ H∗
i and k ≥ 2.

Definition 2.6. (Forward belief in substantive rationality) A type ti is said to respect forward
belief in substantive rationality if ti ∈ FBSRk

i (hi) for all k and all hi ∈ H∗
i .

That is, ti respects forward belief in substantive rationality if ti (1) always believes that every
opponent is rational at every future information set, (2) always believes that every opponent, at
every future information set, believes that every opponent is rational at every future information
set, (3) always believes that every opponent, at every future information set, believes that every
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opponent, at every future information set, believes that every opponent is rational at every
future information set, and so on.

We also present a weaker version of forward belief in rationality, which we call forward belief
in material rationality. Let Hj(ti, hi) be the set of those player j information sets hj following
hi which ti believes to be reached from hi. Consider the following recursive procedure:

FBMR1i (hi) = {ti ∈ Ti | ti believes at hi that every j 6= i chooses rationally

at all hj in Hj(ti, hi)}

for all i ∈ I and all hi ∈ H∗
i , and

FBMRk
i (hi) = {ti ∈ Ti | Bij(ti, hi|Tj) ⊆ FBMRk−1

j (hj) for all j 6= i and

all hj in Hj(ti, hi)}

for all i ∈ I, hi ∈ H∗
i and k ≥ 2.

Definition 2.7. (Forward belief in material rationality) A type ti is said to respect forward
belief in material rationality if ti ∈ FBMRk

i (hi) for all k and all hi ∈ H∗
i .

The crucial difference with forward belief in substantive rationality is thus that a type only
believes his opponents to choose rationally at future information sets which he believes to be
reached. And a type only believes the opponents’ types to believe so at future information sets
which he believes to be reached, and so on.

3. Epistemic Foundations for Backward Induction

In this section we provide an overview of various epistemic foundations that have been offered
in the literature for backward induction. A comparison between these foundations is difficult,
since the models used by these foundations differ on many aspects.

A first important difference lies in the way the players’ beliefs about the opponents are
expressed. Some models express the players’ beliefs directly by means of logical propositions in
some formal language. Other models represent the players’ beliefs indirectly by a set of states of
the world, and assign to each state and every player some strategy choice for this player, together
with a belief that the player holds at this state about the state of the world. From this model we
can derive the higher-order beliefs that players hold about the opponents’ choices and beliefs.
There are yet some other models that represent the players’ beliefs indirectly by means of types,
and assign to every type some belief about the other players’ choices and types. Similarly to
the previous approach, the players’ higher-order beliefs can be derived from this model. We
refer to these three approaches as the syntactic model, the state-based semantic model and the
type-based syntactic model. Note that our base model from the previous section belongs to the
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last category. This choice is somewhat arbitrary, since we could as well have chosen a syntactic
or state-based semantic base model.

Even within the state-based semantic model, the various papers differ on the precise for-
malization of the beliefs that players have about the state of the world. Similarly, within the
type-based model different papers use different belief operators expressing the players’ beliefs
about the opponents’ choices and types.

Finally, some models impose additional conditions on the extensive form structure, such as
one information set per player, or the presence of only two players, whereas other papers do not.

In spite of these differences, all foundations have two aspects in common. First, all models
provide a theorem, say Theorem A, which gives a sufficient condition for backward induction.
Hence, Theorem A states that if player i’s belief revision procedure about the other players’
choices, preferences and beliefs satisfies some condition BR, then his unique optimal choice is
his backward induction choice. Secondly, all models guarantee that this sufficient condition BR
is possible. That is, each paper provides a second result, say Theorem B, which states that for
every player i there is some model in which player i’s belief revision procedure satisfies condition
BR. As we will see, the various foundations differ in the sufficient condition BR that is being
employed.

In order to explicitly compare the different foundations for backward induction, we attempt
to “translate” the various conditions BR used by the different models in a unified language,
namely the language of our base model. By doing so, we translate the Theorems A and B used
by the various foundations into the following standardized form:

Theorem A: Let S be an extensive form structure with perfect information, and letM =
((Ti)i∈I , (Pi)i∈I , (Bij)i6=j) be an epistemic base model for S. Let (P̃i)i∈I be a profile of strict
preference relations over the terminal nodes. If type ti ∈ Ti has preference relation P̃i, and if
ti’s conditional belief vector about the opponents’ strategy choices and types satisfies condition
BR, then there is a unique strategy that is rational for ti at all information sets, namely his
backward induction strategy in the game given by (P̃i)i∈I .

Theorem B: Let S be an extensive form structure with perfect information, and let i be
a player. Then, there is some epistemic base model M = ((Ti)i∈I , (Pi)i∈I , (Bij)i6=j) for S and
some type ti ∈ Ti such that ti’s conditional belief vector satisfies BR.

In the overview that follows, we provide a brief description of every model, identify the
condition BR that is being used, and explain how this condition may be translated into the
language of our base model. The models are put in alphabetical order.

3.1. Asheim’s Model

Asheim (2002) uses a type-based semantic model, restricted to the case of two players, in which
the players’ beliefs are modelled by lexicographic probability distributions. Formally, an Asheim-
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model is given by a tuple
M = ((Ti)i∈I , (λi)i∈I , (vi)i∈I)

where Ti is a finite set of types, vi is a function that assigns to every ti some vNM-utility
function vi(ti) over the set of terminal nodes, and λi is a function that assigns to every type
ti some lexicographic probability system λi(ti) on Sj × Tj with full support on Sj . Such a

lexicographic probability system (or LPS) λi(ti) is given by a vector (λ1i (ti), ..., λ
Ki(ti)
i (ti)) of

probability distributions on Sj × Tj . The interpretation is that λ1i (ti), ..., λ
Ki(ti)
i (ti) represent

different degrees of beliefs, and that the k-th degree belief λki (ti) is infinitely more important
than the (k + 1)-th degree belief λk+1i (ti), without completely discarding the latter. The LPS
λi(ti) induces in a natural way first-order conditional beliefs about player j’s choices, as defined
in our base model. Namely, for every hi ∈ H∗

i , let ki(ti, hi) be the first k such that λ
k
i (ti) assigns

positive probability some strategy sj ∈ Sj(hi), and let B̂ij(ti, hi) ⊆ Sj(hi) be the set of strategies

in Sj(hi) to which λ
ki(ti,hi)
i (ti) assigns positive probability. Then, ti induces the conditional belief

vector (B̂ij(ti, hi))hi∈H∗i about player j’s strategy choice. For every hi, let T̂ij(ti, hi) ⊆ Tj be the

set of types to which λ
ki(ti,hi)
i (ti) assigns positive probability. Then, the induced second-order

belief of ti at hi about player j’s belief at hj about player i’s choice is given by the union of the
sets B̂ji(tj , hj) with tj ∈ T̂ij(ti, hi). Similarly, higher-order beliefs about strategy choices can be
derived from Asheim’s model.

In Asheim’s model, a strategy si is called rational for type ti ∈ Ti at information set hi if
si is optimal with respect to the utility function vi(ti) and the LPS λi(ti|hi), where λi(ti|hi)
denotes the conditional of the LPS λi(ti) on Sj(hi)×Tj . In particular, if si is rational for ti at hi
then si is rational with respect to the preference relation P̂i and the set-valued belief B̂ij(ti, hi),
as defined above, where P̂i is the preference relation on terminal nodes induced by vi(ti).

Asheim’s sufficient condition for backward induction is based on the notion of admissible
subgame consistency. A type ti in an Asheim-model is said to be admissible subgame consistent
with respect to a given profile (ṽi)i∈I of utility functions if (1) vi(ti) = ṽi, and (2) for every
hi ∈ H∗

i , the probability distribution λ
ki(ti,hi)
i (ti) only assigns positive probability to strategy-

type pairs (sj , tj) such that sj is rational for tj at all hj ∈ Hj that follow hi. In terms of our
base model, this condition can be translated as: (1’) Pi(ti) = P̃i, and (2’) ti always believes in
rationality at all future information sets. In fact, condition (2’) is weaker than condition (2)
since the notion of rationality in (2’) is weaker than the notion of rationality in (2), but condition
(2’) would have sufficed to prove Asheim’s theorem on backward induction.

In Proposition 7, Asheim shows that if a type ti respects common certain belief in the event
that types are admissible subgame consistent with respect to (ṽi)i∈I , then ti has a unique strategy
that is rational at all information sets, namely his backward induction strategy with respect to
(ṽi)i∈I . Here, “certain belief in an event E” means that type ti, in each of his probability
distributions λki (ti), only assigns positive probability to types in E. In terms of our base model,
this means that the type believes the event E at each of his information sets. In Proposition
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8, Asheim shows that common certain belief in admissible subgame consistency is possible.
Translated in terms of our base model, Asheim’s sufficient condition for backward induction
may thus be written as follows:

Asheim’s condition BR: Type ti respects common belief in the events that (1) types hold
preference relations as specified by (P̃i)i∈I , and (2) types always believe in rationality at all
future information sets.

3.2. Asheim & Perea’s Model

Asheim and Perea (2005) propose a type-based semantic model that is very similar to Asheim’s.
Attention is restricted to two-player games, and an Asheim-Perea-model corresponds to a tuple

M = ((Ti)i∈I , (λi)i∈I , ( i)i∈I , (vi)i∈I),

where Ti, vi and λi are as in Asheim’s model, and i is a function that to every type ti and
event E ⊆ Sj×Tj assigns some number i(ti, E) ∈ {1, ...,Ki(ti)}. (Recall that Ki(ti) denotes the
number of probability distributions in λi(ti)). The interpretation of i is that i(ti, E) specifies
the number of probability distributions in λi(ti) that are to be used in order to derive the
conditional LPS of λi(ti) on E. The function i, however, is not relevant for our purpose here,
and hence we will not elaborate more on it.

The sufficient condition for backward induction is based on the event that types induce for
every opponent’s type a sequentially rational behavior strategy. Consider a type ti, and let T

ti
j be

the set of types to which the LPS λi(ti) assigns positive probability (in some of its probability
distributions). Asheim and Perea assume that for every tj ∈ T ti

j and every sj ∈ Sj , the LPS
λi(ti) assigns positive probability to (sj , tj). For every information set hj ∈ Hj and action
a ∈ A(hj), let Sj(hj , a) be the set of strategies in Sj(hj) that select action a at hj . Define for
every type tj ∈ T ti

j , hj ∈ Hj and a ∈ A(hj)

σ
ti|tj
j (hj)(a) :=

λki (ti)(Sj(hj , a)× {tj})
λki (ti)(Sj(hj)× {tj})

,

where k is the first number such that λki (ti)(Sj(hj)× {tj}) > 0. The vector

σ
ti|tj
j = (σ

ti|tj
j (hj)(a))hj∈Hj ,a∈A(hj)

is called the behavior strategy induced by ti for tj . My interpretation of σ
ti|tj
j (hj)(a) is that type

ti believes at every information set hi that type tj at information hj chooses action a with

probability σti|tjj (hj)(a), unless hj comes before hi. If hj comes before hi, namely, then there is
a unique action a∗ at hj that leads to hi, and hence ti must believe at hi that tj has chosen a∗

at hj , whereas σ
ti|tj
j (hj)(a

∗) may be less than one (in fact, may be zero). In all other cases, the
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information that the game has reached hi does not give type ti additional information about the
action choice of tj at hj , and hence σ

ti|tj
j (hj) provides an intuitive candidate for the conditional

belief of ti at hi about tj ’s behavior at hj .

For every information set hj ∈ Hj , let σ
ti|tj
j |hj be the behavioral strategy that assigns prob-

ability one to all player j actions preceding hj , and coincides with σ
ti|tj
j otherwise. The induced

behavior strategy σ
ti|tj
j is said to be sequentially rational for tj if at every information set

hj ∈ Hj , the behavior strategy σ
ti|tj
j |hj only assigns positive probability to strategies in Sj(hj)

that are rational for tj at hj (in the sense of Asheim’s model above). Type ti is said to induce for
every opponent’s type a sequentially rational behavior strategy if for every tj ∈ T ti

j it is true that

σ
ti|tj
j is sequentially rational for tj . As we have seen above, σ

ti|tj
j represents for every hi ∈ H∗

i

type ti’s conditional belief at hi about player j’s behavior at future and parallel information
sets. The requirement that σti|tjj always be sequentially rational for tj thus means that ti always
believes in rationality at all future and parallel information sets.

In Proposition 11, Asheim and Perea show that if a type ti respects common certain belief in
the events that (1) types have utility functions as specified by (ṽi)i∈I , and (2) types induce for
every opponent’s type a sequentially rational behavior strategy, then ti has a unique strategy
that is rational at all information sets, namely his backward induction strategy with respect
to (ṽi)i∈I . The existence of such types follows from their Proposition 4 and the existence of a
sequential equilibrium. In terms of our base model, Asheim and Perea’s sufficient condition may
thus be stated as follows:

Asheim & Perea’s condition BR: Type ti respects common belief in the events that (1)
types hold preference relations as specified by (P̃i)i∈I , and (2) types always believe in rationality
at all future and parallel information sets.

3.3. Aumann’s Model

Aumann (1995) proposes a state-based semantic model for extensive form structures with perfect
information. An Aumann-model is a tuple

M = (Ω, (Bi)i∈I , (fi)i∈I , (vi)i∈I)

where Ω represents the set of states of the world, Bi is a function that assigns to every state
ω ∈ Ω some subset Bi(ω) of states, fi is a function that assigns to every state ω some strategy
fi(ω) ∈ Si, and vi is a function that assigns to every ω some vNM utility function vi(ω) on the set
of terminal nodes. The functions Bi must have the property that ω ∈ Bi(ω) for all ω, and for all
ω, ω0 ∈ Ω it must hold that Bi(ω) and Bi(ω

0) are either identical, or have an empty intersection.
Hence, the set {Bi(ω)|ω ∈ Ω} is a partition of Ω. The interpretation is that at state ω, player i
believes that the true state is in Bi(ω). Aumann uses the term “knows” rather than “believes”,
but for the sake of uniformity we stick to the notion of belief here. The functions fi and vi
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must be measurable with respect to Bi, meaning that fi(ω0) = fi(ω) whenever ω0 ∈ Bi(ω), and
similarly for vi. The reason is that player i cannot distinguish between states ω and ω0, and
hence his choice and preferences must be the same at both states.

It is problematic, however, to formally translate this model into conditional beliefs of our
base model. Consider, for instance, a game with three players, in which players 1, 2 and 3
sequentially choose between Stay and Leave, and where Leave terminates the game. Consider
a state ω where f1(ω) = Leave and B2(ω) = {ω}. Then, at player 2’s information set, player
2 must conclude that the state cannot be ω, but must be some state ω0 with f1(ω

0) = Stay.
However, there may be many such states ω0, and hence it is not clear how player 2 should revise
his belief about the state at his information set. Since his revised belief about the state will
determine his revised belief about player 3’s choice, it is not clear how to define player 2’s revised
belief about player 3’s choice from Aumann’s model.

It therefore seems necessary to carry out a somewhat informal translation into our base
model, based on an interpretation of Aumann’s main ideas. Aumann’s model is essentially a
static model, since for very state ω and every player i, his belief Bi(ω) is only defined at a single
moment in time, presumably at the beginning of the game. At the same time, the static nature
of the model suggests that players, upon observing that one of their information sets has been
reached, do not revise more than “strictly necessary”. In fact, the only beliefs that must be
revised by player i when finding out that his information set hi has been reached are, possibly,
his beliefs about the opponents’ choices at information sets preceding hi. That is, if player 2 in
the example above finds out that player 1 has chosen Stay, then this should not be a reason
to change his belief about player 3’s choice. Even stronger, player 2 only changes his belief
about player 1’s choice, while maintaining all his other beliefs, including his beliefs about the
opponents’ beliefs. That is, if we translate the nature of Aumann’s model into our base model,
then every type is supposed to never revise his belief about the opponents’ choices, nor about
the opponents’ beliefs at future and parallel information sets. A type ti, when arriving at some
information set hi, may only revise his belief about the opponents’ choices at information sets
that precede hi (but not about their types). For further reference, we call this condition the “no
substantial belief revision condition”.

The sufficient condition for backward induction presented by Aumann is common knowledge
of rationality. Let ω be a state, i a player and hi an information set controlled by i. At state
ω, player i is said to be rational at information set hi if there is no si ∈ Si such that for every
ω0 ∈ Bi(ω) it holds that

vi(ω)(z(si, (fj(ω
0))j 6=i|hi)) > vi(ω)(z(fi(ω), (fj(ω

0))j 6=i|hi)),

where z(si, (fj(ω0))j 6=i|hi) is the terminal node that is reached if the game would start at hi,
and the players would choose in accordance with (si, (fj(ω0))j 6=i). In terms of our base model,
this means that strategy fi(ω) is rational for player i at hi with respect to the utility function
vi(ω) and his first-order belief {(fj(ω0)j 6=i | ω0 ∈ Bi(ω)} about the opponents’ choices after hi.
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Let Ωrat be the set of states ω such that at ω all players are rational at each of their information
sets.

Common knowledge of rationality can now be defined by the following recursive procedure:

CKR1 = Ωrat;

CKRk = {ω ∈ CKRk−1 | Bi(ω) ⊆ CKRk−1 for all players i}
for k ≥ 2. Then, common knowledge of rationality is said to hold at ω if ω ∈ CKRk for all k.
In Theorem A, Aumann proves that for every profile (ṽi)i∈I of utility functions, for every state
ω at which common knowledge of (ṽi)i∈I and common knowledge of rationality hold, and for
every player i, the strategy fi(ω) is the backward induction strategy for player i with respect to
(ṽi)i∈I . In Theorem B, Aumann proves that there is an Aumann-model and a state ω at which
common knowledge of (ṽi)i∈I and common knowledge of rationality hold.

Since the beliefs Bi(ω) in Aumann’s model correspond to initial belief in our base model,
common knowledge of rationality corresponds to common initial belief in rationality at all infor-
mation sets in our base model. By the latter we mean that a type (1) initially believes that all
players choose rationally at all information sets, (2) initially believes that every type initially be-
lieves that all players choose rationally at all information sets, and so on. Together with the “no
substantial belief revision condition” above, this implies that a type always believes that types
initially believe that all players choose rationally at all information sets, and that a type always
believes that types always believe that types initially believe that players choose rationally at all
information sets, and so on. That is, Aumann’s condition of common knowledge of rationality,
together with the “no substantial belief revision condition”, leads in our base model to common
belief in the event that players initially believe in rationality at all information sets. Similarly,
common knowledge of (ṽi)i∈I , together with the “no substantial belief revision condition”, leads
to common belief in the event that types have preferences according to (P̃i)i∈I , where P̃i is the
preference relation that corresponds to ṽi. That is, Aumann’s sufficient conditions for backward
induction may be translated into our base model as follows:

Aumann’s condition BR: Type ti respects common belief in the events that (1) types
hold preferences as specified by (P̃i)i∈I , (2) types initially believe in rationality at all information
sets, and (3) types never revise their beliefs about the opponents’ choices and beliefs at future
and parallel information sets.

Clausing (2003) basically provides a reformulation of Aumann’s model and definitions in a
syntactic framework. Clausing’s sufficient condition for backward induction is a little weaker
than Aumann’s, since Clausing only requires “true (k − 1)th level belief” in rationality at all
information sets, where k is the maximal length of a path in the game tree, which is weaker
than common knowledge of rationality as defined by Aumann. Quesada (2003) proves, in his
Propositions 3.3 and 3.4, that Aumann’s backward induction theorem can also be shown by
taking Aumann’s model and weakening some conditions imposed on the knowledge operators.
However, since both models are identical in spirit to Aumann’s, we omit a formal discussion of
Clausing (2003) and Quesada (2003) in this overview.
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3.4. Balkenborg & Winter’s Model

Balkenborg and Winter (1997) present a state-based semantic model that is almost identical
to Aumann’s model, so we do not repeat it here. The only difference is that Balkenborg and
Winter restrict attention to extensive form structures in which every player controls only one
information set. In particular, the Balkenborg-Winter model also implies the “no substantial
belief revision condition”, as defined above, when translating it into terms of our base model.
However, the sufficient conditions given for backward induction are different from Aumann’s
conditions, as they are based on the notion of forward knowledge of rationality rather than
common knowledge of rationality.

For every player i, let hi be the unique information set controlled by player i. The definition
of player i being rational at hi is the same as in Aumann’s model. Let Ωrati be the set of states
ω such that at ω, player i is rational at hi. We say that player j comes after player i if hj
comes after hi. Forward knowledge of rationality can now be defined by the following recursive
procedure. For every player i define:

FKR1i = Ωrati ;

FKRk
i = {ω ∈ FKRk−1

i | Bi(ω) ⊆ FKRk−1
j for all j that come after i},

for every k ≥ 2. Then, forward knowledge of rationality is said to hold at state ω if ω ∈ FKRk
i

for all i and all k. In Theorem 2.1, Balkenborg and Winter prove that for every profile (ṽi)i∈I of
utility functions, for every state ω at which common knowledge of (ṽi)i∈I and forward knowledge
of rationality hold, and for every player i, the strategy fi(ω) is the backward induction strategy
for player i with respect to (ṽi)i∈I .

Since Balkenborg and Winter’s model is essentially a static model, the belief Bi(ω) of player
i at ω must be interpreted as his initial belief, when reasoning in terms of our base model. If
we assume that every player controls one information set, the notion of forward knowledge of
rationality may thus be translated as follows into our base model: (1) type ti ∈ Ti initially
believes that every player j coming after i chooses rationally at hj , (2) ti initially believes that
every player j coming after i believes initially that every player k coming after j chooses rationally
at hk, and so on. Together with the “no substantial belief revision condition”, these conditions
lead to the following event: (1) ti always believes that every player j coming after i chooses
rationally at hj , (2) ti always believes that every player j coming after i always believes that
every player k coming after j chooses rationally at hk, and so on. However, if one extends this
notion to the case where players may control more than one information set, then one obtains
the definition of forward belief in substantive rationality as given in Definition 2.6. As such,
Balkenborg and Winter’s condition of forward knowledge of rationality, together with the “no
substantial belief revision condition”, corresponds to forward belief in substantive rationality in
our base model. Balkenborg and Winter’s sufficient condition for backward induction, phrased
in terms of our base model, is thus as follows:
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Balkenborg & Winter’s condition BR: Type ti (1) respects common belief in the event
that types hold preferences as specified by (P̃i)i∈I , (2) respects forward belief in substantive
rationality, and (3) respects common belief in the event that types never revise their beliefs
about the opponents’ choices and beliefs at future and parallel information sets.

Quesada (2003) proves, in his Proposition 3.1, that Balkenborg and Winter’s sufficient con-
dition for backward induction would still be sufficient if some conditions on the knowledge
operators would be weakened.

3.5. Clausing’s Model

Clausing (2004) presents a syntactic model for games with perfect information. For our purposes
here it is not necessary to discuss the complete formalism of Clausing’s model, and therefore we
restrict ourselves to presenting only the key ingredients. A Clausing-model is a tuple

M = (L, (B̂i)i∈I , (vi)i∈I)

where L is a language, or set of statements, B̂i is a function that assigns to every statement
f ∈ L some subset B̂i(f) ⊆ L of statements, and vi is a utility function for player i on the set
of terminal nodes. By “g ∈ B̂i(f)” we mean the statement that “player i believes statement g
upon learning that f holds”. It is assumed that L contains all statements of the form “player i
chooses strategy si”, and that it is closed under the operations ¬ (not), ∧ (and) and B̂i. By the
latter, we mean that if f and g are statements in L, then so are the statements “¬f”, “f ∧ g”
and “g ∈ B̂i(f)”.

Clausing’s sufficient condition for backward induction is forward belief from the root to all
information sets h in rationality at h. We say that strategy si is rational for player i at infor-
mation set hi if there is no other strategy s0i ∈ Si(hi) such that player i would believe, upon
learning that hi has been reached, that s0i would lead to a higher utility than si. Formally,
there should be no s0i ∈ Si(hi) and no statement f ∈ L about the opponents’ strategy choices
such that (1) player i believes f upon learning that all opponents j have chosen a strategy in
Sj(hi), and (2) for every opponents’ strategy profile s−i compatible with f it would be true that
vi(z(s

0
i, s−i|hi)) > vi(z(si, s−i|hi)). Player i is said to believe at hi that player j is rational at hj

if, upon learning that hi has been reached, player i believes the statement “player j chooses a
strategy that is rational for j at hj”. Forward belief from the root to all information sets h in
rationality at h can now be defined by the following sequence of statements:

FB1i (hi) = “player i believes, upon learning that hi has been reached, that every opponent j

will be rational at all hj that follow hi”

for all players i and all hi ∈ H∗
i , and

FBk
i (hi) = “player i believes, upon learning that hi has been reached, the statement

FBk−1
j (hj) for all opponents j and all hj that follow hi”
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for all players i, hi ∈ H∗
i and k ≥ 2. Player i is said to respect forward belief from the root to all

information sets h in rationality at h if for every hi, player i believes, upon learning that hi has
been reached, the statements FBk

j (hj) for all k, all opponents j and all hj ∈ Hj that follow hi.
In Proposition 2, Clausing shows that this condition implies backward induction, whereas his
Proposition 3 demonstrates that this condition is possible. In the language of our base model,
Clausing’s condition clearly corresponds to forward belief in substantive rationality.

Clausing’s condition BR: Type ti (1) respects common belief in the event that types hold
preferences as specified by (P̃i)i∈I , and (2) respects forward belief in substantive rationality.

3.6. Feinberg’s Model

Feinberg (2005) provides a syntactic model for dynamic games, with or without perfect infor-
mation, which is similar to Clausing’s model. Since a full treatment of Feinberg’s model would
take us too far afield, we present a highly condensed version of his model here, which will serve
for our restricted purposes. A Feinberg-model is a tuple

M = (L, (Ci)i∈I , (vi)i∈I)

where L is a language, or set of statements, Ci is a function that selects for every information
set hi ∈ H∗

i a set Ci(hi) ⊆ L of statements, and vi is a utility function for player i on the set
of terminal nodes. The interpretation of f ∈ Ci(hi) is that player i is confident of statement f
at information set hi. The language L must contain all statements of the form “player i chooses
strategy si”, and must be closed under the application of the operators ¬ (not), ∧ (and) and
Ci(hi). By the latter, we mean that, if f is a statement in L, then the statement “f ∈ Ci(hi)”
must also be in L.

Feinberg presents two different sufficient conditions for backward induction, namely common
confidence of hypothetical rationality and iterated future confidence of rationality. Strategy si is
said to be rational for player i at hi if there is no other strategy s0i ∈ Si(hi) such that player i
would be confident at hi that s0i would lead to a higher utility than si. By the latter, we mean
that there should be no s0i ∈ Si(hi), and no statement f about the opponents’ strategy choices,
such that (1) i is confident of f at hi, and (2) for every opponents’ strategy profile s−i compatible
with f it would hold that vi(z(s0i, s−i)|hi) > vi(z(si, s−i)|hi). We say that i is confident at hi
that j is rational at hj if the statement “player j chooses a strategy that is rational for j at hj”
belongs to Ci(hi). Common confidence in hypothetical rationality can now be defined recursively
be the following sequence of statements:

CCHR1 = “every player i is confident at every hi that every opponent j

will be rational at every hj not preceding hi”

and, for every k ≥ 2,
CCHRk = “every player i is confident at every hi of CCHRk−1”.

16



Player i is said to respect common confidence in hypothetical rationality if, for every hi and every
k, player i is confident at hi of CCHRk. In Proposition 10, Feinberg shows that this condition is
possible, and implies backward induction. In terms of our base model, this condition corresponds
exactly to our definition of common belief in the event that types always believe in rationality
at all future and parallel information sets.

Feinberg’s first condition BR: Type ti respects common belief in the events that (1)
types hold preference relations as specified by (P̃i)i∈I , and (2) types always believe in rationality
at all future and parallel information sets.

Iterated future confidence of rationality can be defined by means of the following sequence
of statements:

IFCR1i (hi) = “player i is confident at hi that all opponents j will

be rational at all hj that follow hi”

for all i ∈ I and all hi ∈ H∗
i , and

IFCRk
i (hi) = “player i is confident at hi of IFCRk−1

j (hj) for all opponents j

and all hj that follow hi”

for all i ∈ I, hi ∈ H∗
i and k ≥ 2. Player i is said to respect iterated future confidence of rationality

if, for every k, every hi, every opponent j, and every hj following hi, player i is confident at hi
of IFCRk

j (hj). Feinberg shows in his Proposition 11 that this condition is possible and leads to
backward induction. Translated into our base model, this condition corresponds to our definition
of forward belief in substantive rationality.

Feinberg’s second condition BR: Type ti (1) respects common belief in the event that
types hold preferences as specified by (P̃i)i∈I , and (2) respects forward belief in substantive
rationality.

3.7. Perea’s Model

Perea (2005) proposes a type-based semantic model that is very similar to our base model. The
difference is that in Perea (2005) the players’ initial and revised beliefs are assumed to be point-
beliefs, that is, contain exactly one strategy-type pair for each opponent. Moreover, in Perea
(2005) the model is assumed to be complete, which will be defined below. A Perea-model is a
tuple

M = ((Ti)i∈I , (B̂ij)j 6=i, (Pi)i∈I)

where Ti is player i’s set of types, Pi assigns to every type ti ∈ Ti a strict preference relation
Pi(ti) over the terminal nodes, B̂ij assigns to every type ti ∈ Ti and every information set
hi ∈ H∗

i a belief B̂ij(ti, hi) ⊆ Sj(hi) × Tj consisting of only one strategy-type pair, and the
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model M is complete. By complete, we mean that for every player i, every strict preference
relation P̂i and every belief vector (B̃ij)j 6=i, assigning to every opponent j and hi some point
belief B̃ij(hi) ∈ Sj(hi)× Tj , there is some type ti ∈ Ti with Pi(ti) = P̂i and B̂ij(ti, hi) = B̃ij(hi)
for all j and hi.

Perea’s sufficient condition for backward induction is common belief in the events that (1)
players initially believe in (P̃i)i∈I , (2) players initially believe in rationality at all information
sets, and (3) the players’ belief revision procedures satisfy some form of minimal belief revision.
The crucial difference with the other models discussed here is that condition (1) allows players
to revise their belief about the opponents’ preference relations as the game proceeds. On the
other hand, conditions (2) and (3) together imply that players should always believe that every
opponent chooses rationally at all information sets; a condition that cannot be realized in general
if players do not revise their beliefs about the opponents’ preference relations.

A type ti is said to initially believe in (P̃i)i∈I if for every opponent j, the initial belief
B̂ij(ti, h0) consists of a strategy-type pair (sj , tj) where Pj(tj) = P̃j . In order to formalize
condition (3), we need the definition of an elementary statement. A first-order elementary
statement about player i is a statement of the form “player i has a certain preference relation”
or “player i believes at hi that opponent j chooses a certain strategy”. Recursively, one can
define, for every k ≥ 2, a k-th order elementary statement about player i as a statement of the
form “player i believes at hi that ϕ” where ϕ is a (k − 1)-th order elementary statement. An
elementary statement about player i is then an elementary statement about player i of some
order k. Now, let hi ∈ Hi\h0, and let h0i be the information set in H∗

i that precedes hi and for
which no other player i information set is between h0i and hi. For every opponent j, let (s

0
j , t

0
j) be

the strategy-type pair in B̂ij(ti, h
0
i), and let (sj , tj) be the strategy-type pair in B̂ij(ti, hi). Type

ti is said to satisfy minimal belief revision at hi if for every opponent j the strategy-type pair
(sj , tj) is such that (1) sj is rational for tj at all information sets, (2) there is no other strategy
type pair (s00j , t

00
j ) in Sj(hi)× Tj satisfying (1) such that t00j and t0j disagree on fewer elementary

statements about player j than tj and t0j do, and (3) there is no other strategy-type pair (s
00
j , t

00
j )

in Sj(hi)× Tj satisfying (1) and (2) such Pj(t
00
j ) and Pj(t

0
j) disagree on fewer pairwise rankings

of terminal nodes than Pj(tj) and Pj(t
0
j) do. In particular, minimal belief revision requires

that a type always believes that his opponents choose rationally at all information sets. Note
that for the definition of minimal belief revision it is very important that the model M is
assumed to complete. Theorem 5.1 in Perea (2005) shows that there is a Perea-model which
satisfies the sufficient condition listed above. Theorem 5.2 in that paper demonstrates that
this sufficient condition leads to backward induction. As such, Perea’s sufficient condition for
backward induction can be stated as follows in terms of our base model:

Perea’s condition BR: Type ti respects common belief in the events that (1) types hold
point-beliefs, (2) types initially believe in (P̃i)i∈I , (3) types always believe in rationality at all
information sets, and (4) types satisfy minimal belief revision.
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3.8. Quesada’s Model

Quesada (2002) presents a model for games with perfect information which is neither semantic
nor syntactic. The key ingredient is to model the players’ uncertainty by means of Bonanno-
belief systems (Bonanno (1992)). A Bonnano-belief system is a profile β = (βi)i∈I , where βi is a
belief vector that assigns to every information set h (not necessarily controlled by player i) some
terminal node βi(h) which follows h. The interpretation is that player i, upon learning that the
game has reached information set h, believes that he and his opponents will act in such a way
that terminal node βi(h) will be reached. A Quesada-model is a pair

M = (B, (vi)i∈I)

where B is a set of Bonnano-belief systems, and vi is a utility function for player i over the
terminal nodes. Quesada’s sufficient condition for backward induction states that every belief
system in B should be rational, and that every belief system in B should be justifiable by other
belief systems in B. Formally, a belief system β = (βi)i∈I is said to be rational if for every
player i and every information set hi ∈ Hi it holds that vi(βi(hi)) ≥ vi(βi((hi, a))) for every
action a ∈ A(hi), where (hi, a) denotes the information set that immediately follows action a at
hi. We say that belief system β = (βi)i∈I in B is justifiable by other belief systems in B if for
every player i, every hi ∈ Hi, every opponent j, and every hj ∈ Hj between hi and βi(hi) there
is some belief system β0 = (β0i)i∈I in B such that β0j(hj) = βi(hi). A belief system β = (βi)i∈I
is called the backward induction belief system if for every player i and every information set
h, βi(h) is the terminal node which is reached by applying the backward induction procedure
(with respect to (vi)i∈I) from h onwards. In Proposition 1, Quesada shows that there is one,
and only one, set B which satisfies the two conditions above, namely the set containing only the
backward induction belief system.

We shall now translate these conditions into our base model. Take a set B of belief systems
such every belief system in B is justifiable by other belief systems in B (and thus satisfies
Quesada’s second condition above). Then, every belief vector βi in B induces, for every hi,
a point-belief about the opponents’ strategy choices as follows: For every hi there is some
opponents’ strategy profile s−i(βi, hi) ∈ S−i(hi) such that, for every action a ∈ A(hi), the
action a followed by s−i(βi, hi) leads to the terminal node βi(hi, a). Hence, s−i(βi, hi) may be
interpreted as βi’s conditional point-belief at hi about the opponents’ strategy choices. (Note
that this belief need not be unique, as βi does not restrict player i’s beliefs at hi about opponents’
choices at parallel information sets). The belief vector βi also induces, for every hi, a conditional
point-belief about the opponents’ belief vectors β0j in B. Consider, namely, an information set
hi ∈ Hi, some opponent j and an information set hj between hi and the terminal node βi(hi)
such that there is no further player j information set between hi and hj . Since B satisfies
Quesada’s justifiability condition, there is some player j belief vector βj(βi, hi) in B such that
βj(βi, hi)(hj) = βi(hi). (Again, this choice need not be unique). This belief vector βj(βi, hi)may
then serve as βi’s conditional point-belief at hi about player j’s belief vector. Summarizing, every
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belief vector βi induces, at every hi, a conditional point-belief about the opponents’ strategy
choices and the opponents’ belief vectors.

Now, if we interpret every belief vector βi in B as a type ti(βi) in our base model, then,
by the insights above, every type ti(βi) induces, at every hi, a conditional point-belief about
the opponents’ strategy choices and types tj(βj). Hence, similarly to Perea’s model, Quesada’s
model can be translated into our base model by imposing common belief in the event that types
hold point-beliefs. Let Ti(B) denote the set of all such types ti(βi) induced by some belief vector
βi in B. A combination of Quesada’s rationality condition and justifiability condition implies
that, whenever βi in B believes at hi that player j chooses action a at some hj between hi
and βi(hi) (with no player j information set between hi and hj), then there is some rational
belief vector βj(βi, hi) in B such that βj(βi, hi)(hj) = βi(hi). In particular, action a must be
part of the rational belief vector βj(βi, hi), and hence action a must be optimal with respect
to βj(βi, hi). In terms of our base model, this means that, whenever type ti(βi) believes at
hi that information set hj will be reached in the future, and believes at hi that player j will
choose action a at hj , then ti(βi) must believe at hi that player j is of some type tj(βj) for
which a is rational. In other words, every type ti(βi) in Ti(B) always believes in rationality at
future information sets that are believed to be reached. However, since ti(βi) believes at every
information set that every opponent j is of some type tj(βj) in Tj(B), it follows that every ti(βi)
in Ti(B) always believes in the event that all types believe in rationality at future information
sets that believed to be reached. By recursively applying this argument, one may conclude that
every ti(βi) in Ti(B) respects common belief in the event that types always believe in rationality
at future information sets that are believed to be reached. Quesada’s sufficient condition can
thus be formulated as follows in terms of our base model:

Quesada’s condition BR: Type ti respects common belief in the events that (1) types hold
preferences as specified by (P̃i)i∈I , (2) types hold point-beliefs, and (3) types always believe in
rationality at future information sets that are believed to be reached.

3.9. Samet’s Model

Samet (1996) presents a state-based semantic model which is an extension of the models by
Aumann (1995) and Balkenborg and Winter (1997). A Samet-model is a tuple

M = (Ω, (Bi)i∈I , (fi)i∈I , (τ i)i∈I , (vi)i∈I),

where Ω, Bi, fi and vi are as in the Aumann-model, and τ i is a so-called hypothesis transformation
that assigns to every state ω and non-empty event E ⊆ Ω some new state ω0. My interpretation
of τ i is that if player i currently believes that the state is in Bi(ω), but later observes the event E,
then he will believe that the state is in Bi(ω

0)∩E. Samet defines the hypothesis transformation
in a different, but equivalent, way. In Samet’s terminology, a hypothesis transformation assigns
to every initial belief Bi(ω) and event E some new belief Bi(ω

0) for some ω0 ∈ Ω. However, this
definition is equivalent to the existence of a function τ i as described in our model. The function
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τ i must satisfy the following two conditions: (1) Bi(τ i(ω,E)) ∩E is nonempty for every ω and
E, and (2) τ i(ω,E) = ω whenever Bi(ω) has a nonempty intersection with E. These conditions
indicate that Bi(τ i(ω,E))∩E may be interpreted as a well-defined conditional belief for player
i at state ω when observing the event E.

As to the functions fi, mapping states to strategy choices, it is assumed that for every
terminal node z there is some state ω ∈ Ω such that the profile (fi(ω))i∈I of stategies reaches z.
This implies that for every information set hi, the event

[hi] = {ω ∈ Ω | (fi(ω))i∈I reaches hi}

is nonempty, and hence can be used as conditioning event for the hypothesis transformation τ i.
Samet assumes in his model a function ξ (instead of (fi)i∈I) mapping states to terminal nodes,
and assumes that for every terminal node z there is some ω ∈ Ω with ξ(ω) = z. However, he
shows that this function ξ induces, in some precise way, a profile (fi)i∈I of strategy functions,
as we use it. We work directly with the strategy functions here, in order to make the model as
similar as possible to the Aumann-model and the Balkenborg-Winter-model.

In contrast to Aumann’s model and Balkenborg and Winter’s model, every state ω in Samet’s
model formally induces a conditional belief vector in our base model. Namely, take some state
ω, a player i, and some information set hi ∈ H∗

i . Then,

B̂i(ω, hi) := Bi(τ i(ω, [hi])) ∩ [hi]

respresents player i’s conditional belief at hi about the state. Since every state ω0 induces for
player j a strategy choice fj(ω

0) and a conditional belief vector (B̂j(ω
0, hj))hj∈H∗j , first-order

conditional beliefs about the opponents’ strategies, and higher-order conditional beliefs about
the opponents’ conditional beliefs can be derived at every state with the help of the hypothesis
transformations τ i. Hence, Samet’s model can be directly and formally translated into our base
model.

Samet’s sufficient condition for backward induction is common hypothesis of node rationality.
At state ω, player i said to be rational at hi ∈ Hi if (1) ω ∈ [hi], and (2) there is no si ∈ Si such
that for every ω0 ∈ Bi(ω) ∩ [hi] it holds that

vi(ω)(z(si, (fj(ω
0))j 6=i|hi)) > vi(ω)(z(fi(ω), (fj(ω

0))j 6=i|hi)),

where the definition of this expression is as in Aumann’s model. Let [rati(hi)] denote the set
of states ω such that at ω, player i is rational at hi. Common hypothesis of node rationality
can now be defined by the following recursive procedure: For every player i and information set
hi ∈ H∗

i , let
CHNR(hi, hi) = [rati(hi)].

Note that, by condition (1) above, CHNR(hi, hi) only contains states at which hi is indeed
reached. Now, let k ≥ 0, and suppose that CHNR(hi, hj) has been defined for all information
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sets hi ∈ H∗
i , hj ∈ H∗

j such that hj comes after hi, and there are at most k information sets
between hi and hj . Suppose now that hj comes after hi, and that there are exactly k + 1
information sets between hi and hj . Let h be the unique information set that immediately
follows hi and precedes hj . Define

CHNR(hi, hj) = {ω ∈ Ω | Bi(τ i(ω, [h])) ∩ [h] ⊆ CHNR(h, hj)}.

Common hypothesis of node rationality is said to hold at state ω if ω ∈ CHNR(h0, h) for
all information sets h. Hence, the player at h0 believes that (1) every opponent j will choose
rationally at those information sets hj that immediately follows h0, and which he believes to be
reached from h0, (2) every such opponent j will believe at every such hj that every other player
k will choose rationally at those hk that immediately follows hj , and which he believes to be
reached from hj , and so on.

Samet shows in Theorem 5.3 that for every profile (vi)i∈I of utility functions, for every state
ω at which common knowledge of (vi)i∈I and common hypothesis of node rationality hold, the
strategy profile (fi(ω))i∈I leads to the backward induction outcome with respect to (vi)i∈I . In
particular, the player at h0 chooses the backward induction action at h0 with respect to (vi)i∈I .
In Theorem 5.4, Samet shows that there always exists some state ω at which common knowledge
of (vi)i∈I and common hypothesis of node rationality hold.

For a given state ω and information set hi ∈ H∗
i , say that common hypothesis of node

rationality at hi holds if ω ∈ CHNR(hi, h) for all information sets h that follow hi. Then,
Samet’s Theorem 5.3 can be generalized as follows: For every hi ∈ Hi and every ω at which
common knowledge of (vi)i∈I and common hypothesis of node rationality at hi hold, the strategy
fi(ω) chooses at hi the backward induction action with respect to hi.

In order to translate this sufficient condition into our base model, it is important to un-
derstand all implications of common hypothesis of node rationality. By definition, common
hypothesis of node rationality at hi implies that player i believes at hi that (1) every opponent
j will choose rationally at every information set hj that immediately follows hi, (2) every such
opponent j will believe at every such hj that every other player k will choose rationally at every
hk that immediately follows hj , and so on. However, there are more implications.

Consider namely an information set hj ∈ Hj that immediately follows hi and some infor-
mation set hk ∈ Hk which immediately follows hj such that Bi(τ i(ω, [hj ])) ⊆ [hk]. Hence, in
terms of our base model, player i believes at hi that hk will be reached. Suppose that state ω is
such that common hypothesis of node rationality at hi holds at ω. By (1) above, it holds that
(1’) Bi(τ i(ω, [hj ])) ∩ [hj ] ⊆ [ratj(hj)]. By (2) above, it holds for every ω0 ∈ Bi(τ i(ω, [hj ])) ∩ [hj ]
that (2’) Bj(τ j(ω

0, [hk])) ∩ [hk] ⊆ [ratk(hk)]. However, since Bi(τ i(ω, [hj ])) ⊆ [hk], it follows
that ω0 ∈ [hk] for every ω0 ∈ Bi(τ i(ω, [hj ])), and hence Bj(τ j(ω

0, [hk])) ∩ [hk] = Bj(ω
0) for

every ω0 ∈ Bi(τ i(ω, [hj ])) ∩ [hj ]. By (2’) it thus follows that Bj(ω
0) ⊆ [ratk(hk)] for every

ω0 ∈ Bi(τ i(ω, [hj ])) ∩ [hj ]. Since ω0 ∈ Bj(ω
0), it follows in particular, ω0 ∈ [ratk(hk)] for every

ω0 ∈ Bi(τ i(ω, [hj ])) ∩ [hj ], which means that player i believes at hi that player k chooses ratio-
nally at hk. Hence, we have shown that common hypothesis of node rationality at hi implies
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that player i believes at hi that player k chooses rationally at hk whenever (1) there is only
one information set between hi and hk, and (2) player i believes at hi that hk will be reached.
By induction, one can now show that common hypothesis of node rationality at hi implies that
player i believes at hi that player k chooses rationally at hk whenever (1) hk follows hi and (2)
player i believes at hi that hk can be reached.

By a similar argument, one can show that common hypothesis of node rationality at hi
implies that player i believes at hi that common hypothesis of node rationality will hold at
every future information set hj which player i believes to be reached from hi. Together with
our previous insight, this means that common hypothesis of node rationality may be translated
into our base model by forward belief in material rationality (see our Definition 2.7). Samet’s
sufficient condition for backward induction, phrased in terms of our base model, is thus as
follows:

Samet’s condition BR: Type ti (1) respects common belief in the event that types hold
preferences as specified by (P̃i)i∈I , and (2) respects forward belief in material rationality.

3.10. Stalnaker’s Model

Stalnaker (1998) proposes a state-based semantic model for perfect information games in which
every information set is controlled by a different player. The model we present here is not an
exact copy of Stalnaker’s model, but captures its essential properties. A Stalnaker-model is a
tuple

M = (Ω, (λi)i∈I , (fi)i∈I , (vi)i∈I)

where Ω, fi and vi are as in the Aumann-model, and λi is a function that assigns to every
state ω some lexicographic probability system (see Asheim’s model) λi(ω) on Ω. That is, λi(ω)
is a sequence (λ1i (ω), ..., λ

Ki(ω)
i (ω)) where λki (ω) is a probability distribution on Ω. For every

information set h let [h] = {ω ∈ Ω | (fi(ω))i∈I reaches h}. We assume that [h] is non-empty
for all h, and that λi(ω) has full support on Ω. By the latter, we mean that for every ω ∈ Ω
there is some probability distribution λki (ω) in λi(ω) with λ

k
i (ω)(ω) > 0. As such, λi and (fj)j 6=i

induce, for every state ω, a probabilistic belief revision policy for player i in the following way.
For every hi ∈ H∗

i , let ki(ω, hi) be the first k such that λ
k
i (ω) assigns positive probability to [hi].

Then, the probability distribution µi(ω, hi) on [hi] given by

µi(ω, hi)(ω
0) =

λ
ki(ω,hi)
i (ω0)

λ
ki(ω,hi)
i ([hi])

for every ω0 ∈ [hi] represents player i’s revised belief at ω upon observing that hi has been
reached. More generally, for every event E ⊆ Ω, the probability distribution µi(ω,E) on E
given by

µi(ω,E)(ω
0) =

λ
ki(ω,E)
i (ω0)

λ
ki(ω,E)
i (E)
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for every ω0 ∈ E defines player i’s revised belief upon receiving information E. Here, ki(ω,E) is
the first k such that λki (ω) assigns positive probability to E. The LPS λi(ω) naturally induces,
for every information set hi ∈ H∗

i , the non-probabilistic conditional belief

B̂i(ω, hi) := suppµi(ω, hi),

and hence Stalnaker’s model can be translated directly into our base model.
Stalnaker’s sufficient condition for backward induction consists of common initial belief in

sequential rationality, and common belief in the event that players treat information about dif-
ferent players as epistemically independent. Player i is called sequentially rational at ω if at
every information set hi ∈ H∗

i , the strategy fi(ω) is optimal given the utility function vi(ω) and
the revised belief about the opponents’ strategy choices induced by µi(ω, hi) and (fj)j 6=i. Let
Ωsrat be the set of states at which all players are sequentially rational. Common initial belief in
sequential rationality can be defined by the following recursive procedure:

CIBSR1 = Ωsrat;

CIBSRk = {ω ∈ CIBSRk−1 | B̂i(ω, h0) ⊆ CIBSRk−1 for all players i}

for all k ≥ 2. Common initial belief in sequential rationality is said to hold at ω if ω ∈ CIBSRk

for all k. We say that two states ω and ω0 are indistinguishable for player i if fi(ω) = fi(ω
0),

vi(ω) = vi(ω
0) and µi(ω, hi) = µi(ω

0, hi) for all hi ∈ H∗
i . An event E is said to be about

player i if for every two states ω, ω0 that are indistinguishable for player i, either both ω and
ω0 are in E, or none is in E. We say that at ω player i treats information about different
players as epistemically independent if for every two different opponents j and k, for every
event Ej about player j and every event Ek about player k, it holds that µi(ω,Ej)(Ek) =
µi(ω,Ω\Ej)(Ek) and µi(ω,Ek)(Ej) = µi(ω,Ω\Ek)(Ej). In his theorem on page 43, Stalnaker
shows that common initial belief in sequential rationality and common belief in the event that
players treat information about different players as epistemically independent leads to backward
induction.

In terms of our base model, common initial belief in sequential rationality corresponds to the
condition that a type respects common initial belief in the event that types initially believe in
rationality at all information sets. The epistemic independence condition cannot be translated
that easily into our base model. The problem is that the base model only allows for beliefs
conditional on specific events, namely events in which some information set is reached. On the
other hand, in order to formalize the epistemic independence condition we need to condition
beliefs on more general events. There is, however, an important consequence of the epistemic
independence condition that can be translated into our base model, namely that the event of
reaching information set hi should not change player i’s belief about the actions and beliefs of
players that did not precede hi. In order to see this, choose a player j that precedes hi and a
player k that does not precede hi. Note that the event of player j choosing the action leading to

24



hi is an event about player j, and that the event of player k choosing a certain action and having
a certain belief vector is an event about player k. Hence, epistemic independence says that player
i’s belief about player k’s action and beliefs should not depend on whether player j has moved
the game towards hi or not. Moreover, it is exactly this consequence of epistemic independence
that drives Stalnaker’s backward induction result. In particular, if player i initially believes
that player k chooses rationally at his information set, then player i should continue to believe
so if he observes that hi has been reached. If we drop the assumption that every player only
controls one information set, the condition amounts to saying that a player should never revise
his belief about the actions and beliefs at future and parallel information sets. Together with
the condition of common initial belief in sequential rationality, this implies common belief in
the event that types initially believe in rationality at all information sets. (See the discussion
of Aumann’s model for a similar argument). In terms of our base model, Stalnaker’s sufficient
condition for backward induction can thus be stated as follows:

Stalnaker’s condition BR: Type ti respects common belief in the events that (1) types
hold preferences as specified by (P̃i)i∈I , (2) types initially believe in rationality at all information
sets, and (3) types do not change their belief about the opponents’ choices and beliefs at future
and parallel information sets.

3.11. Summary

The discussion of the various models and sufficient conditions for backward induction can be
summarized by Table 1. The table shows that several sufficient conditions for backward in-
duction, although formulated in completely different epistemic models, become equivalent once
they have been translated into the language of our base model. Note also that there is no
model assuming common belief in the events that (1) types always believe in rationality at all
information sets, and (2) types never revise their beliefs about the opponents’ preferences over
terminal nodes. This is no surprise, since the papers by Reny (1992, 1993) have illustrated
that these two events are in general incompatible. Perea’s model maintains condition (1) and
weakens condition (2), while the other models maintain condition (2) and weaken condition (1).
Finally observe that all models assume (at least) common belief in the event that types initially
believe in rationality at all information sets, plus some extra conditions on the players’ belief
revision procedures. If one would only assume the former, this would lead to the concept of
common certainty of rationality at the beginning of the game, as defined by Ben-Porath (1997).
This concept is considerably weaker than backward induction, as it may not even lead to the
backward induction outcome. Hence, additional conditions on the players’ belief revision policies
are needed in each model to arrive at backward induction.
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Ash A&P Aum B&W Cla Fei1 Fei2 Per Que Sam Sta
Common belief in
event that types ...
... initially believe in rat.

at all inf. sets
x x

... always believe in rat.
at future inf. sets that

are believed to be reached
x

... always believe in rat.
at all future inf. sets

x

... always believe in rat.
at all future and
parallel inf. sets

x x

... always believe in rat.
at all inf. sets

x

Forward belief in
substantive rat.

x x x

Forward belief in
material rat.

x

Common belief in
event that types ...
... never revise belief
about opponents’
pref. relations

x x x x x x x x x x

... do not revise belief
about opponents’
choices and beliefs at
fut. and par. inf. sets

x x x

... minimally revise belief
about opponents’

preferences and beliefs
x

... hold point-beliefs x x

Table 1: Overview of sufficient conditions for backward induction
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