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Abstract

This paper is the �rst to introduce an algorithm to compute stationary equilib-

ria in stochastic games, and shows convergence of the algorithm for almost all such

games. Moreover, since in general the number of stationary equilibria is overwhelm-

ing, we pay attention to the issue of equilibrium selection. We do this by extending

the linear tracing procedure to the class of stochastic games, called the stochastic

tracing procedure.

From a computational point of view, the class of stochastic games possesses sub-

stantial di�culties compared to normal form games. Apart from technical di�culties,

there are also conceptual di�culties, for instance the question how to extend the lin-

ear tracing procedure to the environment of stochastic games.

We prove that there is a generic subclass of the class of stochastic games for which

the stochastic tracing procedure is a compact one-dimensional piecewise di�erentiable

manifold with boundary. Furthermore, we prove that the stochastic tracing procedure

generates a unique path leading from any exogenously speci�ed prior belief, to a

stationary equilibrium.

A well-chosen transformation of variables is used to formulate an everywhere

di�erentiable homotopy function, whose zeros describe the (unique) path generated

by the stochastic tracing procedure. Because of di�erentiability we are able to follow

this path using standard path-following techniques. This yields a globally convergent

algorithm that is easily and robustly implemented on a computer using existing

software routines.

As a by-product of our results, we extend a recent result on the generic �niteness

of stationary equilibria in stochastic games to oddness of equilibria.
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1 Introduction

Many economic situations of interest can be modeled as a stochastic game. Recent work of

for instance Olley and Pakes (1996), Pakes and Ericson (1998), Pakes and McGuire (1996),

and Bergemann and V�alim�aki (1996) is devoted to the application of stochastic games to

problems emerging in the industrial organization literature. In our opinion, further progress

in this research program can be made by developing methods to solve stochastic games

numerically. Numerical solution methods allow researchers to go back and forth between

the implications of economic theory and the characteristics of alternative datasets. See

also Judd (1997) and McKelvey and McLennan (1996) for an expression of the important

role of computational methods in the further development of economic theory.

The aim of this paper is to present an algorithm to compute a stationary equilibrium

for an arbitrary �nite n-person discounted stochastic game. Even though such a game

may possess many non-stationary equilibria, there are good reasons to focus on stationary

equilibria. Several motivations for analyzing stationary equilibria can be found in Maskin

and Tirole (1997). Stationary strategies prescribe the simplest form of behavior that is

consistent with rationality, stationarity captures the notion that `bygones are bygones'

more completely than does the concept of subgame-perfect equilibrium, and it embodies

the principle that `minor causes should have minor e�ects', that is, only those aspects of the

past that are `signi�cant' should have an appreciable inuence on behavior. The pragmatic

motivations they give are that in applied theory, the focus on stationary strategies allows for

clean, unobstructed analysis of the inuence of the state variables, that stationary strategies

substantially reduce the number of parameters to be estimated in dynamic (econometric)

models, and that stationary models can be simulated.

For many normal form games there is a vast multiplicity of equilibria, see McLennan

(1999). There is no reason to expect that the situation is di�erent for the multiplicity of

stationary equilibria in stochastic games. For this reason, we also �nd it essential to provide

an algorithm that selects a particular stationary equilibrium. We introduce a variant of

the tracing procedure which allows selection within the class of stationary equilibria of

stochastic games. Finally, the algorithm should be fast in that it allows for the computation

of a stationary equilibrium for non-trivial stochastic games within reasonable time limits.

Stochastic games were introduced by Shapley (1953). He considered both �nite and

in�nite horizon two-person zero-sum stochastic games with �nite state space and �nite

action spaces. Shapley proved that such games have a value and that both players possess

optimal stationary strategies with respect to the discounted payo� criterion.

Fink (1964), Takahashi (1964), and Sobel (1971) extended Shapley's model to general
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n-person stochastic games. For the model with �nite state space and �nite action spaces

they showed the existence of a stationary equilibrium. In Breton, Filar, Haurie, and Schultz

(1986), Schultz (1986), Filar, Schultz, Thuijsman, and Vrieze (1991), and Breton (1991)

the problem of �nding discounted stationary equilibria in the general n-person stochastic

game is reduced to that of �nding a global minimum in a nonlinear program with linear

constraints. Solving this nonlinear program is equivalent to solving a certain nonlinear

system for which it is known that the objective value in the global minimum is zero. But,

as is noted in Breton (1991), the convergence of an optimization algorithm to the global

optimum is not guaranteed.

In this paper we propose an algorithm that is shown to converge to a stationary equilib-

rium for a generic n-person stochastic game. This algorithm is the �rst globally convergent

algorithm to solve for an equilibrium in an arbitrary n-person stochastic game. The algo-

rithm also deals with the equilibrium selection problem in that it computes the stationary

equilibrium selected by a natural extension of the linear tracing procedure of Harsanyi and

Selten (1988), which we call the stochastic tracing procedure.

In Harsanyi and Selten (1988) the tracing procedure is de�ned for normal form games

and for extensive form games with a perfect recall information structure. Algorithms to

compute the Nash equilibrium selected by the tracing procedure in normal form games

are proposed in van den Elzen and Talman (1999), Herings and van den Elzen (1998),

and Herings and Peeters (1999). For extensive form games, Harsanyi and Selten (1988)

�rst transform the game into one in standard form and subsequently de�ne the tracing

procedure for that class of games. Computation of the Nash equilibrium selected by the

tracing procedure in extensive form games is the topic of von Stengel, van den Elzen, and

Talman (1996), who invoke the sequence form to calculate such equilibria e�ciently. Since

expected utility in stationary strategies does not hold in stochastic games, it is not possible

to transform a stochastic game into one in standard form. The way to extend the tracing

procedure to the class of stochastic games is neither straightforward nor unique.

The algorithm belongs to the class of homotopy methods. The formulation as a dif-

ferentiable homotopy makes it possible to apply standard path-following techniques that

are available in professionally programmed software. This makes implementation on a

computer an easy exercise. As a by-product of the proof that the algorithm converges

for a generic stochastic game, we obtain the result that for a generic stochastic game the

stochastic tracing procedure yields a path leading to a unique stationary equilibrium.

As another by-product of our convergence proof, we obtain an extension of a recent

result of Haller and Laguno� (2000). Their main result is that the set of stationary equi-

libria in a stochastic game is generically �nite. A corollary to our main result is that this
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�nite number of equilibria is odd.

The paper has been organized as follows. In Section 2 we describe the model of the

�nite discounted stochastic game. In Section 3 the restriction to stationary strategies is

made and the set of stationary equilibrium strategies is characterized. The de�nition of

the stochastic tracing procedure is given in Section 4. In Section 5, the properties of

the stochastic tracing procedure are studied. It is shown that for almost every stochastic

game, the stochastic tracing procedure is formed by a �nite union of arcs and loops. Using a

well-chosen transformation of variables, the stochastic tracing procedure is described by the

zeros of an everywhere di�erentiable homotopy function in Section 6. Section 7 discusses

the implementation of the homotopy algorithm and provides some numerical results.

2 Finite Discounted Stochastic Games

In this paper we study �nite discounted stochastic games. Such a game is de�ned as

follows.

De�nition 2.1 A �nite discounted stochastic game is an ordered sextuple

� =


N;
; fSi

!g(i;!)2N�
; fu
igi2N ; �; �

�
;

where N , 
 and S
i
! are �nite non-empty sets, S! = Xi2NS

i
!, u

i is a real-valued function

on the set H = f(!; s!) j! 2 
; s! 2 S!g, where � is a map � : H ! �(
) with �(
) the

family of probability distributions on the space 
 and � is a discount factor.

The game parameters have the following meaning.

� N = f1; : : : ; ng is the player set.

� 
 = f!1; : : : ; !zg is the state space.

� S
i
! = fsi!1; : : : ; s

i
!mi

!
g is the action set of player i 2 N in state ! 2 
.

� u
i : H ! R is the payo� function of player i 2 N ; if in state ! 2 
 the players action

choices are s! = (s1!; : : : ; s
n
!) 2 S! = Xi2NS

i
!, then player i gets an instantaneous

payo� of ui(!; s!).

� � : H ! �(
) is the transition map. For each (!; s!) 2 H, we can identify �(!; s!)

with the vector (�(!1 j!; s!); : : : ; �(!z j!; s!)). Here �(�! j!; s!) represents the prob-

ability that the system jumps to state �! if in state ! the strategy-tuple s! is played.

Hence, �(�! j!; s!) � 0 and
P

�!2
 �(�! j!; s!) = 1.
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� � 2 (0; 1) is the discount factor and is used to discount future payo�s.

Such a stochastic game corresponds to a dynamic system which can be in di�erent states

and where at certain stages the players can inuence the course of the play. We consider

the in�nite horizon model and the set of stages is assumed to be identical with the set

N = f0; 1; : : :g. Players know the game itself and that this knowledge is common knowledge

among all the players. Moreover, the initial state !0 at stage k = 0 is common knowledge

to the players.

For further analysis the following notations are introduced: S� =
S

(i;!)2N�
 S
i
!, S =

X(i;!)2N�
S
i
!, m

� = jS�j =
P

(i;!)2N�
m
i
!, and m = jSj =

Q
(i;!)2N�
m

i
!. The game pro-

ceeds as follows. All players i select at the initial state, simultaneously and independently

of each other (possibly by a chance experiment) an action s
i
!0

2 S
i
!0
. Now two things

happen, both depending on the current state !0 and the action choices s1
!0
; : : : ; s

n
!0
,

(a) player i earns ui(!0
; s!0),

(b) the system jumps to the next state !1 according to the outcome of a chance experi-

ment. The probability that the next state will be �! equals �(�! j!0
; s!0).

Subsequently, prior to the next stage k = 1, all players are informed about the previous

actions chosen by the players, and of the new state !1. At stage k = 1, the above procedure

is repeated, starting from the state !1.

We assume that the game is of perfect recall, i.e., at each stage each player remembers

all past actions chosen by all players and all past states that have occurred. Note that for

�nite stochastic games, each stage game resembles a normal form game. However, contrary

to the situation with normal form games, the game does not consist of a single play, but

jumps according to the probability measure �(� j!; s!) to the next state and continues

dynamically. In choosing an action in a certain state, a player not only takes into account

the immediate payo�, but also his opportunities in future states.

Like in normal form games, the players are allowed to randomize their pure actions. A

mixed strategy of player i in state ! is a probability distribution on S
i
!. We identify the

set of all probability distributions on S
i
! with �i

! = f�i! 2 R
mi
!

+ j
P

si!j2S
i
!
�
i
!j = 1g. For

�
i
! 2 �i

!, the probability assigned to pure strategy s
i
!j is given by �

i
!j. The strategy space

of the normal form game in state ! is therefore equal to �! = Xi2N�
i
!. Given a mixed

strategy combination �! 2 �! and a strategy ��i! 2 �i
!, we denote by (��i! ; ��i!) the mixed

strategy that results from replacing �i! by ��i!. If a mixed strategy combination �! 2 �! is

played, then the instantaneous expected payo� of player i is denoted by u
i(!; �!) and the

expected transition to state �! by �(�! j!; �!).
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At the di�erent stages this randomization may depend on the history of the game up

to that stage.

De�nition 2.2 A history up to a stage k is a sequence hk = (!0
; s!0 ; !

1
; s!1 ; : : : ; !

k�1
; s!k�1)

that could have occurred up to time k, k � 1. Here !� represents the state and s!� the

actions of the players at stage �, � = 0; : : : ; k � 1.

Obviously, the set of histories up to time k equals Hk = X
k�1
�=0H, i.e., the k-fold Cartesian

product of H.

A behavior strategy �
ik of player i speci�es for each stage k, each state !k at time k,

and each history hk a probability distribution �ik(hk; !k) on the action space Si
!k

of player

i in state !k. Then �
ik(si

!k
j hk; !k) is the probability with which player i chooses action

s
i
!k
2 S

i
!k

at time k if state !k and history h
k have occurred.

A stationary strategy for player i is a behavior strategy for which �
ik(hk; !k) is of the

form �
i(!k), i.e., a stationary strategy is a history and time independent strategy which

depends on the state only. In the sequel, a stationary strategy for player i will be denoted

by the symbol �i. We de�ne �i = (�i!1 ; : : : ; �
i
!z
), where �i! is a probability measure on the

action space S
i
! for each ! 2 
. So �

i
! 2 �i

!. If player i decides to play the stationary

strategy �
i, then every time that the system is in state !, player i selects his pure action

according to �i!.

The above concepts lead to the following de�nition.

De�nition 2.3 A behavior strategy �
i for player i is a sequence �

i0
; �

i1
; : : : where �i0 2

�i := X!2
�
i
! and �

ik : Hk ! �i for all k � 1. A stationary strategy �
i for player i is an

element of �i.

Given initial state ! and strategy �, the stream of expected payo�s is evaluated by

U
i(!; �) :=

P1

k=0�
k � U ik(!; �);

where U
ik(!; �) denotes the expected instantaneous utility at stage k. Here, U i(!; �)

equals the total discounted expected payo� of player i when the discount factor equals �,

the starting state is ! and the strategy-tuple � is played. Since the state and action spaces

are assumed to be �nite, U i(!; �) exists.

De�nition 2.4 A strategy-tuple � is an equilibrium if and only if �i is a best response to

�
�i for all i 2 N .

If n = 2 and the payo�s are zero-sum, then the de�nition characterizes a minimax solution

(see Shapley (1953)).
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3 Stationary Equilibria

In the sequel of this paper we will restrict ourselves to stationary strategies.1 Suppose that

! is the initial state and the players decide to play a stationary strategy-tuple �. The total

discounted expected payo� of player i is denoted by U
i(!; �). The instantaneous payo�

player i obtains in stage k = 0 equals ui(!; �!). The probability that at the next stage the

state will be �! equals �(�! j!; �!). This gives rise to the following theorem (see e.g. Fink

(1964)).

Theorem 3.1 When � is a stationary strategy-tuple and ! is the initial state, the expected

payo�s are given by the following recursive formula

U
i(!; �) = u

i(!; �) + � �
P

�!2
�(�! j!; �!)U
i(�!; �):

De�nition 3.2 A stationary strategy-combination � 2 � is a stationary equilibrium if it

is a Nash equilibrium in stationary strategies.

It is a very well-known result that there exists a stationary best response to stationary

strategies ��i. Therefore, the following theorem holds.

Theorem 3.3 A stationary strategy-combination �� 2 � is a stationary equilibrium if for

all i and all !

U
i(!; ��) � U

i(!; ���i; �i); �
i 2 �i

:

Another famous result, see Fink (1964), Takahashi (1964), or Sobel (1971), is the existence

of a stationary equilibrium.

Theorem 3.4 Every �nite discounted stochastic game has a stationary equilibrium.

The remainder of this section is devoted to the characterization of the set of stationary

equilibria that is useful for numerical computations. Given that the other players play ��i

and the initial state is �!, player i faces the Markov decision problem of maximizing

U
i(�!; ��i; �i)

subject to

�
i
!j � 0 (si!j 2 S

i
!; ! 2 
);P

si!j2S
i
!
�
i
!j � 1 = 0 (! 2 
);

1In fact, we restrict ourselves to a class which is even tighter. Namely, the one of perfect stationary

strategies, where the strategy chosen is as if each state is reached or might be the initial state.
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for all possible initial states �! 2 
. If we de�ne by �
i
!(k) the present value of the total

expected payo� for a system in state ! with k transitions remaining, we obtain the basic

recurrence relation

�
i
!(k + 1) = u

i(!; �!) + � �
P

�!2
�(�! j!; �!)�
i
�!(k)

or in vector form

�
i(k + 1) = u

i(�) + ��(�)�i(k):

Note that2

�
i = lim

k!1
�
i(k) = lim

k!1
(
Pk�1

`=0 (��(�))
`
u
i(�) + (��(�))k�i(0))

=
P1

`=0(��(�))
`
u
i(�) = [I � ��(�)]�1ui(�):

The vector �i may be called the vector of present values of player i, because each of its

elements �i! is the present value of an in�nite number of future expected payo�s discounted

by the discount factor � with ! the initial state.

Because we are interested in the sequential decision process for large k (in fact for k

equal to in�nity), we substitute the present values �i! = limk!1 �
i
!(k) for the quantities

�
i
!(k) to obtain the recursive relation

�
i
! = u

i(!; �!) + � �
P

�!2
�(�! j!; �!)�
i
�!:

Given that the other players play �
�i, player i maximizes �i! subject to �

i
! 2 �i

! for all

! 2 
.

Because player i maximizes each �
i
! for ! 2 
, he also maximizes

P
!2
 �

i
!. Given that

the other players play �
�i, player i maximizes

P
!2
�

i
!

subject to

u
i(!; ��i! ; �

i
!) + � �

P
�!2
�(�! j!; �

�i
! ; �

i
!)�

i
�! � �

i
! = 0 (! 2 
);P

si!j2S
i
!
�
i
!j � 1 = 0 (! 2 
);

�
i
!j � 0 (si!j 2 S

i
!; ! 2 
):

2By Hadamard's theorem all eigenvalues of the matrix between the squared brackets have absolute

value larger than 0. Thus zero is not an eigenvalue of that matrix and the inverse exists. Furthermore, the

spectral radius of ��(�) is less than one. Therefore it holds that [I���(�)]�1 =
P

1

k=0 �
k�(�)k. From this

it is easily seen that the value of element (i; j) of the matrix [I � ��(�)]�1 gives the discounted expected

number of times that the state is j when i is the initial state and � is played.
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The necessary and su�cient �rst-order conditions for this maximization problem are

�
i
!

�
u
i(!; ��i! ; s

i
!j) + � �

P
�!2
�(�! j!; �

�i
! ; s

i
!j)�

i
�!

	
+ 

i
!j � �

i
! = 0

(si!j 2 S
i
!; ! 2 
);


i
!j � 0; �

i
!j � 0; 

i
!j�

i
!j = 0 (si!j 2 S

i
!; ! 2 
);P

si
!j
2Si!

�
i
!j � 1 = 0 (! 2 
);

u
i(!; ��i! ; �

i
!) + � �

P
�!2
�(�! j!; �

�i
! ; �

i
!)�

i
�! � �

i
! = 0 (! 2 
);

�
i[I � ��(��i; �i)] = 11:

Here, �, � and  are the Lagrange multipliers of the �rst, second and third set of constraints,

and 11 denotes the vector containing ones only. Then, for �i a best response to ��i,

0 = �
i
!

�
u
i(!; ��i! ; �

i
!) + � �

P
�!2
�(�! j!; �

�i
! ; �

i
!)�

i
�!

	
+
P

si!j2S
i
!

i
!j�

i
!j �

P
si!j2S

i
!
�
i
!�

i
!j

= �
i
!�

i
! � �

i
! (! 2 
):

Therefore, since �i = [I � ��(��i; �i)]�111 = 1
1��

11� 0,3

�
i
!

�i
!

= �
i
!:

After division by �
i
!, the following necessary and su�cient conditions remain, where �i!j

is de�ned as the ratio of i!j and �
i
!

u
i(!; ��i! ; s

i
!j) + � �

P
�!2
�(�! j!; �

�i
! ; s

i
!j)�

i
�! + �

i
!j � �

i
! = 0 (si!j 2 S

i
!; ! 2 
);

�
i
!j � 0; �

i
!j � 0; �

i
!j�

i
!j = 0 (si!j 2 S

i
!; ! 2 
);P

si!j2S
i
!
�
i
!j � 1 = 0 (! 2 
):

Here, �i!j is the shadowprice of playing strategy s
i
!j, i.e., the disutility from a one-shot

deviation at t = 0 of a marginal increase in the probability �i!j by which pure strategy si!j

is played, and �i! is the expected payo� of player i when the initial state is !, �
�i is played by

his opponents, and player i chooses a best response. The last equality,
P

si!j2S
i
!
�
i
!j�1 = 0,

makes sure that �i! is a member of �i
! for all ! 2 
.

Since for a stationary equilibrium it holds that a strategy-tuple constitutes mutually

best responses, we have found that the set of stationary equilibria can be fully characterized

by the system of equalities and inequalities in Theorem 3.5.

3Since the value of element (i; j) of the matrix [I � ��(�)]�1 gives the discounted expected number of

times that the state is j when i is the initial state and � is played, the rows sum up to 1
1��

, which is larger

than 0 (even large than 1).
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Theorem 3.5 A strategy � 2 � is a stationary equilibrium if and only if it is part of a

solution to

u
i(!; ��i! ; s

i
!j) + � �

P
�!2
�(�! j!; �

�i
! ; s

i
!j)�

i
�! + �

i
!j � �

i
! = 0

(si!j 2 S
i
!; ! 2 
; i 2 N);

�
i
!j � 0 �

i
!j � 0; �

i
!j�

i
!j = 0 (si!j 2 S

i
!; ! 2 
; i 2 N);P

si!j2S
i
!
�
i
!j � 1 = 0 (! 2 
; i 2 N):

The system above suggests that only one-shot deviations have to be considered. We explain

intuitively the reason of this surprising phenomenon.

Suppose the other players play stationary strategies ��i and suppose that �i is the best

stationary response of player i. If player i is not able to improve his utility by a deviation

to his strategy �
i in one stage only, then it follows by a backward induction argument,

that neither �nitely many deviations to his strategy will make player i better o�. Suppose

now that player i can improve his utility by in�nitely many changes. Then, by a pro�t-to-

go argument, player i can also increase his payo� by �nitely many changes, which is not

possible.4

We end this section with an example in which it is shown that expected utility in

stationary strategies does not hold for the class of stochastic games. This causes a number

of technical di�culties for the convergence proof of our algorithm.

Example 3.6 The stochastic game of Figure 1 is a game in which there are two states pH

and pL and one player. In each state the player can choose between actions qH and qL. In

the upper-left corner of each square the intermediate payo� of the player is displayed. In

the lower-right corner the transition probabilities are given. So, if the player chooses qH

when the state is pH , then he earns 1 today and the next state will be pL with probability

1. If the player chooses qL when the state is pL, then he earns 1 today and the next state

will be pH for sure. Future payo�s are discounted by a factor 1/2.

Consider the strategies �� = (qL; qH) and �
+ = (qH ; qL).

5 Then U(pL; �
�) = U(pH ; �

�) =

1, U(pL; �
+) = 2=3 and U(pH ; �

+) = 4=3. However,

U(pH ;
1
2
�
� + 1

2
�
+) = 6

5
6= 7

6
= 1

2
� 1 + 1

2
� 4
3
= 1

2
U(pH ; �

�) + 1
2
U(pH ; �

+);

U(pL;
1
2
�
� + 1

2
�
+) = 4

5
6= 5

6
= 1

2
� 1 + 1

2
� 2
3
= 1

2
U(pL; �

�) + 1
2
U(pL; �

+):

4De�ne M = max(i;!;s!) ju
i(!; s!)j. Then the maximum payo� a player can earn from time k on is

bounded from above by �k(1+�+�2+: : :)M = �k

1��
M , the so-called maximum `pro�t-to-go' value. Suppose

player i is able to improve his utility by " by means of in�nitely many changes. When k grows large the

pro�t-to-go value is at a certain point less then " (this is when k > log(
"(1��)

M
)= log(�)). This means that

the utility improvement by changes until time k (�nitely many changes) was positive.
5The �rst argument is the strategy when the state is pH and the second when the state is pL.

10



pH

qH

qL

1
(0; 1)

1
2

(1
2
;
1
2
)

pL

qH

qL

1
2

(1
2
;
1
2
)

0
(1; 0)

� = 1
2

Figure 1: Example.

So, expected utility does not hold. �

In the literature on the computation of Nash equilibria in normal form games, a distinction

is made between 2-player games on the one hand and 3 or more players on the other

hand. For the class of 2-player games exact algorithms are possible, because of the bilinear

structure of such games (see, for instance the algorithm of Lemke and Howson (1964)).

For stochastic games this distinction disappears. The system of equations of Theorem 3.5

is not bilinear, even for 2-player games. The paper of Parthasarathy and Raghavan (1981)

presents an example of a 2-player stochastic game with only rational numbers of payo�s and

transition probabilities. The unique Nash equilibrium involves strategies with irrational

probabilities. This means that the ordered �eld property does not hold. A straightforward

application of a Lemke-Howson type algorithm to 2-player stochastic games is therefore

not possible. This shows one more time that the class of stochastic games is considerably

more di�cult than the class of normal form games.

4 The Stochastic Tracing Procedure

The linear tracing procedure as presented in Harsanyi and Selten (1988) models a process

of convergent expectations by which rational players will come to adopt, and expect each

other to adopt, a particular equilibrium as a solution for a given game. Before applying

the tracing procedure, every player is assumed to have a subjective probability distribution

expressing his expectation about the strategic choices of the other players. Each player is

assumed to use the same theory to determine his subjective probability distributions, which

makes that all players have the same expectations about the other players. This common

subjective probability distribution is called the prior. In the naive Bayesian approach,

all players choose best responses to their prior beliefs and would in this way reach a

strategy-combination that does not constitute an equilibrium in general. In the linear

11



tracing procedure, the information on the best responses is only gradually fed back into

the expectations of the players. As the linear tracing procedure proceeds, both the priors

and their best responses will gradually change until both converge to some equilibrium of

the game.

In Harsanyi and Selten (1988) the linear tracing procedure is de�ned for normal form

games and for extensive form games with a perfect recall information structure. For a

normal form game � = hN; fSigi2N ; fu
igi2Ni and a prior p 2 � the linear tracing pro-

cedure is de�ned by tracing a curve in the set of Nash equilibria of the games �t =

hN; fSigi2N ; fv
i(t)gi2Ni for t 2 [0; 1], where vi(t; s) = (1� t)ui(p�i; si) + tu

i(s). For exten-

sive form games, they �rst transform the game into one in standard form and subsequently

de�ne the tracing procedure for that class of games. They did not de�ne the tracing pro-

cedure for stochastic games, which are games with instantaneous payo�s and in�nite time

horizon. Since expected utility in stationary strategies does not hold in stochastic games

(see Example 3.6) it is not possible to transform this game into one in standard form. The

extension of the tracing procedure to the class of stochastic games is far from obvious.

There are at least four ways to extend the tracing procedure of Harsanyi and Selten to

the setting of stochastic games. Choices have to be made whether a player holds correlated

beliefs within a state or not, and whether a player holds correlated beliefs across time or

not. For the extension of the linear tracing procedure to stochastic games that we study

in this paper, we assume that beliefs are correlated within states and that they are not

correlated across time.

Correlation within states means that when a player knows that some opponent plays

according to the prior (which he expects with probability 1� t), he expects all opponents

to play according to the prior. This is equivalent to the way Harsanyi and Selten de�ne

the tracing procedure for normal form games.

Absence of correlation across time means that even when a player knows that his oppo-

nents are playing according to the prior today, these opponents might not play according

to the prior in future stages. In all future events he faces independent lotteries which as-

signs probability 1� t to play against the prior strategies of his opponents. Assuming that

beliefs are not correlated across time captures the assumption of stationarity. The beliefs

of a player depend only on the state reached and not on the time at which it is reached.

Consider some stochastic game � and some prior p 2 �. For every t 2 [0; 1], the

stochastic tracing procedure generates a stationary equilibrium of the stochastic game

�t = hN;
; fSi
!g!2
;i2N ; fv

i(t)gi2N ; ~�(t); �i, where the instantaneous payo� function vi(t) :

12




� S ! R of player i is de�ned by

v
i(t;!; s!) = (1� t)ui(!; p�i! ; s

i
!) + tu

i(!; s!)

and where the transition mapping ~�(t) is de�ned by

~�(t; �! j!; s!) = (1� t)�(�! j!; p�i! ; s
i
!) + t�(�! j!; s!):

Note that ~�(t) may be di�erent for di�erent players when t < 1. This is consistent with the

fact that the tracing procedure should be thought of as a reasoning process. The mapping

~�(t) should be thought of as what the players think that the transition probabilities are

in the stochastic game �t. The expected payo� of player i is easily shown to satisfy the

recursive relation

V
i(t;!; �) = v

i(t;!; �!) + � �
P

�!2
~�(t; �! j!; �!)V
i(t; �!; �):

The stochastic game �0 corresponds to a trivial stochastic game, where all players believe

that all their opponents play with probability 1 according to the prior belief. The stochastic

game �1 coincides with the original stochastic game �. A best response against a strategy

combination �
�i 2 ��i in the stochastic game �t corresponds to a best response against

the stationary probability distribution (1� t)[p�i]+ t[��i] on S
�i in the stochastic game �.

The stochastic tracing procedure S(�; p) is de�ned as the set of pairs (t; �) for which it

holds that � is a stationary equilibrium of the stochastic game �t, i.e.,

S(�; p) =
n
(t; �) 2 [0; 1]� �

��� � is a stationary equilibrium of �t
o
:

The stochastic tracing procedure is said to be feasible if there exists a path in S(�; p)

connecting a best response against the prior to a stationary equilibrium of the stochastic

game �, i.e., there exists a continuous function  : [0; 1] ! S(�; p) such that (0) 2

S(�; p) \ (f0g � �) and (1) 2 S(�; p) \ (f1g � �). In general there may be many

trajectories ([0; 1]) that link a stationary equilibrium of �0 to a stationary equilibrium

of �1. If this trajectory is unique, then the stochastic tracing procedure is said to be

well-de�ned. If the stochastic tracing procedure is well-de�ned, then it selects a unique

stationary equilibrium of the stochastic game �.

For a simple proof of the feasibility of the linear tracing procedure for normal form

games see Herings (2000) and for the well-de�nedness see Herings and Peeters (1999). The

derivation of such properties for the stochastic tracing procedure is part of present paper.
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5 Structure of the Stochastic Tracing Procedure

The size of any stochastic game � can be characterized by a vector � = (n; z; fmi
!g

i=1;:::;n
!=1;:::;z),

specifying the number of players, the number of states, and the number of pure strategies

available to a player in a state. We will call � the size vector of a stochastic game �. For

any possible size vector �, transition map � consistent with � and discount factor �, the

set G(�; �; �) of all stochastic games � possessing � as their size vector, having � as their

transition map, and � as discount factor, is called the size class generated by (�; �; �).

Every stochastic game � in the size class G(�; �; �) is characterized by a vector u(�)

that contains exactly nm payo�s. We identify a stochastic game � with the vector u(�),

and we identify the size class G(�; �; �) with the set of all possible real vectors of size nm,

that is, with an nm-dimensional Euclidean space. It is now possible to de�ne the distance

%(�;�0) between two stochastic games and the Lebesgue measure of a set of stochastic

games.

A given mathematical statement Z is said to be true for an open set of (almost all,

set of generic) stochastic games if, for every possible size class G(�; �; �), the set ~G(Z) of

all stochastic games � in G(�; �; �) for which the statement Z is true is open (has full

Lebesgue measure, is open and of full Lebesgue measure) with respect to G(�; �; �).

Note that we �x �, � and �. It is possible to �x only �, and to de�ne open sets of (almost

all, generic sets of) games if these properties hold for every possible size class G(�). All

our proofs can be readily adapted to get results corresponding to these de�nitions.

Let a subset B� of S� be given with the property that for every player i and for every

state ! there is at least one pure strategy si!j in B
�, so Bi

! = B
� \Si

! 6= ;, for every player

i, for every state !. Such a set B� is called admissible. The sets B� are used to decompose

S(�; p) in subsets S(�; p; B�), each having a di�erentiable manifold structure. The set

S(�; p; B�) contains those elements of S(�; p) where only strategies in B
� are played with

positive probability. It is de�ned by

S(�; p; B�) =
n
(t; �) 2 S(�; p)

���
s
i
!j 62 B

� ) �
i
!j = 0

s
i
!j 2 B

� ) s
i
!j 2 argmaxsi

!`
2Si!

V
i(t;!; ��i; �i�!; s

i
!`)

o
:

It follows that

S(�; p) =
S

B�S(�; p; B�):

Two sets S(�; p; B�) and S(�; p; �B�) can only have a point (t; �) in common if there is a
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player i and a strategy s
i
!j such that �i!j = 0 and s

i
!j 2 argmaxsi

!`
2Si!

V
i(t;!; ��i; �i�!; s

i
!`),

so si!j is a best response to (�
�i
; �

i
�!) that is played with probability zero.

To analyze the structure of S(�; p) and the sets S(�; p; B�); we design systems of

equalities and inequalities whose solutions characterize these sets. By Theorem 3.5, an

element (t; �) belongs to S(�; p) if and only if it is part of a solution to

v
i(t;!; ��i! ; s

i
!j) + � �

P
�!2
~�(t; �! j!; �

�i
! ; s

i
!j)�

i
�! + �

i
!j � �

i
! = 0

(si!j 2 S
i
!; ! 2 
; i 2 N);

�
i
!j � 0; �

i
!j � 0; �

i
!j�

i
!j = 0 (si!j 2 S

i
!; ! 2 
; i 2 N);P

si!j2S
i
!
�
i
!j � 1 = 0 (! 2 
; i 2 N):

Given an admissible subset B�, we de�ne O(�; p; B�) as the set of solutions (t; �; �; �) to

the following system of equalities and inequalities:

(1) v
i(t;!; ��i! ; s

i
!j) + � �

P
�!2
~�(t; �! j!; �

�i
! ; s

i
!j)�

i
�! + �

i
!j � �

i
! = 0

(si!j 2 S
i
!; ! 2 
; i 2 N);

(2) �
i
!j = 0 (si!j 62 B

i
!; ! 2 
; i 2 N);

(3) �
i
!j = 0 (si!j 2 B

i
!; ! 2 
; i 2 N);

(4)
P

si!j2S
i
!
�
i
!j � 1 = 0 (! 2 
; i 2 N);

(5) �
i
!j � 0 (si!j 2 B

i
!; ! 2 
; i 2 N);

(6) �
i
!j � 0 (si!j 62 B

i
!; ! 2 
; i 2 N);

(7) t � 0;

(8) 1� t � 0:

The fact that for stochastic games the system of equalities and inequalities di�ers from the

case of normal form games, is not the only di�culty. Since expected utility does not hold,

we can not use any property that is derived from it. In particular, it is not even obvious

that there is a unique best response to the prior in pure stationary strategies.

Theorem 5.1 implies that (t; �) 2 S(�; p; B�) if and only if there exists � 2 R
m�

and

� 2 R
nz such that the equalities (1)-(4) and the inequalities (5)-(8) are satis�ed.

Theorem 5.1 Let a stochastic game � 2 G(�) and a prior p 2 � be given. For all

admissible subsets B� of S�, the sets S(�; p; B�) and O(�; p; B�) are C1 di�eomorphic.

Proof Let B� be an admissible subset of S�. For every i 2 N and ! 2 
 we take an element

�si! 2 B
�. We de�ne a function f : [0; 1]��! R �R

m�

�R
m�

�R
nz by f(t; �) = (t; �; �; �),

where (in vector form with a slight abuse of notation) �i = [I�� � ~�(t; ��i; �si)]�1vi(t; ��i; �si)
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and �
i
!` = �

i
!�v

i(t;!; ��i! ; s
i
!`)� � �

P
�!2
 ~�(t; �! j!; ��i! ; s

i
!`)�

i
�!. Then f(t; �) 2 O(�; p; B�)

if and only if (t; �) 2 S(�; p; B�). Note that f de�ned in this way is a C1 di�eomorphism.

2

From Theorem 5.1 it follows that for all (t; �) 2 S(�; p; B�) there is a unique � and a

unique � such that (t; �; �; �) 2 O(�; p; B�). Vice versa, for all (t; �; �; �) 2 O(�; p; B�) it

holds that (t; �) 2 S(�; p; B�).

The analysis of the system of equalities and inequalities (1)-(8) provides the following

result.

Theorem 5.2 For an open set of stochastic games and priors (�; p) 2 G(�) � � with

full Lebesgue measure, for all admissible subsets B
� of S�, S(�; p; B�) is a compact 1-

dimensional C1 manifold with boundary. Moreover, a boundary point (t; �) of S(�; p; B�)

is either

(i) not a boundary point of S(�; p; �B�) for all �B� 6= B
� and lies in f0; 1g � �, or

(ii) is a boundary point of exactly one S(�; p; �B�) with �B� 6= B
� and belongs to (0; 1)��.

Moreover, B� and �B� di�er in exactly one element, say s
i
!j, for which �

i
!j = 0 and

s
i
!j is a best response to � in �t.

Proof The proof of this theorem is analogous to the proofs of Theorems 3.2 and 3.3 of

Herings and Peeters (1999), and involves three lemmas. The only thing left to do is to

prove those lemmas for the stochastic game situation, which is done in the Appendix. The

inference is then analogously to the proofs of Herings and Peeters (1999), since it only uses

the structural manifold properties of the lemmas.

In Lemma A.1, we prove that the set of solutions to (1)-(8) is one-dimensional if the

inequalities are strict. Then in Lemma A.2, we prove that the set of solutions to (1)-(8)

is zero-dimensional if exactly one of the inequalities is binding. Finally, it is proved in

Lemma A.3 that there is no solution to (1)-(8) with more than one binding inequality.

It follows that O(�; p; B�) is a 1-dimensional manifold with boundary, and a point in

O(�; p; B�) is a boundary point if and only if exactly one of the inequalities in (5)-(8) holds

with equality. By Theorem 5.1 these properties carry over to S(�; p; B�).

It is easily seen that for a boundary point alternative (i) holds when the binding in-

equality comes from (7) or (8) and that alternative (ii) holds when the binding inequality

comes from (5) or (6). 2

This theorem implies that, for almost every � and p, for all admissible sets B� of S� the
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set S(�; p; B�) consists of a �nite number of smooth arcs and loops.6 Each arc has two

boundary points. The structure of S(�; p; B�) is therefore a simple one; all kinds of com-

plications like bifurcations, spirals, higher dimensional solution sets, diverging behavior,

etc. are excluded.

If S(�; p; B�) has a boundary point in (0; 1) � �, then there is a unique admissible

subset �B� such that S(�; p; �B�) has this boundary point in common with S(�; p; B�). The

cardinality of �B� is one less or one greater than the cardinality of B�, depending on whether

in the common boundary point a strategy in B� is played with probability zero, or whether

a strategy not in B
� is a best response. The uniqueness of the set �B� implies that the sets

S(�; p; B�) and S(�; p; �B�) are nicely linked to each other.

If S(�; p; B�) has a boundary point in f0; 1g��, then this point does not belong to any

other set S(�; p; B�). This implies that such a boundary point is also a boundary point of

S(�; p).

Formally, the structure of S(�; p) is as follows.

Theorem 5.3 For an open set of stochastic games � 2 G(�) and priors p 2 � with

full Lebesgue measure, S(�; p) is a compact 1-dimensional piecewise C
1 manifold with

boundary. The boundary of S(�; p) is given by the intersection of S(�; p) and f0; 1g � �.

There is a unique boundary point in f0g � � which corresponds to a strategy-combination

in pure strategies.

Proof The intuition of the proof of the �rst part of this theorem is given in the text above

the theorem. A rigorous proof can be given using the Lemke-Howson argument. For a

rigorous development of this argument, see for instance Herings and Peeters (1999).

The second part of the theorem, that there is generically a unique boundary point in

f0g � � and that this boundary point is in pure strategies, remains to be shown.

Suppose there is a best response ��i to the prior in mixed strategies. Then for some

state ! player i plays under ��i at least two pure strategies with positive probability mass,

say s
i
!1 and s

i
!2. Since ��i is an optimal strategy it is part of a solution to the necessary

and su�cient conditions above Theorem 3.5. So,

�
i
!1 = �

i
!2 = 0 and

u
i(!; p�i! ; s

i
!1) + � �

P
�!2
�(�! j!; p

�i
! ; s

i
!1)�

i
�! = �

i
! =

= u
i(!; p�i! ; s

i
!2) + � �

P
�!2
�(�! j!; p

�i
! ; s

i
!2)�

i
�!:

6Let X be a topological space. It is called an arc if it is homeomorphic to the closed unit interval [0; 1]
and it has two boundary points in this case; it is called a loop if it is homeomorphic to the unit circle in

R
2 and it has no boundary points in that case.
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It follows that every strategy �
i with �

i
!1; �

i
!2 � 0 and �

i
�f!1;!2g = ��i

�f!1;!2g is a best

response to the prior. This contradicts the local �niteness of the number of solutions at

t = 0. Therefore, generically, all best responses are in pure strategies.

Suppose there are two pure best responses ��i and �̂
i against the prior. Then ��i! = �̂

i
!

for all ! 2 
. Take �i = 1
2
��i+ 1

2
�̂
i, �i = ��i, and �i!j = 0 if �i!j > 0 and �i!j =

��i!j otherwise.

Now indeed the complementarity conditions are satis�ed and �
i is a member of �i.

Suppose �
i
!j > 0. Then it holds that ��i!j > 0 or �̂i!j > 0; suppose without loss of

generality that ��i!j > 0. Then

0 = u
i(!; p�i! ; s

i
!j) + � �

P
�!2
�(�! j!; p

�i
! ; s

i
!j)��

i
�! � ��i! =

= u
i(!; p�i! ; s

i
!j) + � �

P
�!2
�(�! j!; p

�i
! ; s

i
!j)�

i
�! + �

i
!j � �

i
!:

Suppose �i!j = 0. Then it holds that ��i!j = 0 and therefore �i!j =
��i!j. The equalities

above hold again.

It follows that �i is a best response to the prior. This contradicts that, generically, best

responses are pure. 2

For almost every � and p, the set S(�; p) consists of a �nite number of arcs and loops.

Although it is not necessarily the case that these arcs and loops are smooth, the number

of non-di�erentiabilities is �nite at most. Theorem 5.2 implies that all arcs in S(�; p) start

and end in f0; 1g � �. Each such path consists of a �nite sequence of smooth arcs of the

sets S(�; p; B�). A loop in S(�; p) consists either of a �nite sequence (at least two) of

di�erentiable arcs of the sets S(�; p; B�) or is a loop of a set S(�; p; B�). See Figure 2 for

an impression of the structure of S(�; p).

0 1t

�

� � ��

�

�

�
�

�

�

Figure 2: The structure of S(�; p).

Generically, each player i has a unique best response to the prior for all possible initial

states, so generically there is exactly one point of S(�; p) that belongs to f0g��. This point
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is both a corner point of f0g � � and a boundary point of S(�; p; B�), where B� consists

of the following nz strategies: for each possible initial state and for each player the best

response to the prior. Given some initial state !, the determination of the best response

against the prior in state !, involves the determination of the behavior in all other states

�! as well. So the nz independent strategies are found by solving n optimization problems,

as opposed to nz independent optimization problems. By Theorem 5.3 this point is the

starting point of a uniquely de�ned arc of S(�; p). This arc is the unique feasible path of

S(�; p) that transforms prior beliefs into (stationary) equilibrium beliefs.

Corollary 5.4 For an open set of stochastic games � 2 G(�) and priors p 2 � with full

Lebesgue measure, the stochastic tracing procedure is well-de�ned.

By following the feasible path starting in the unique point S(�; p) \ (f0g \ �) we �nd a

stationary equilibrium of the stochastic game �. The set S(�; p)\ (f1g��) consists of all

stationary equilibria of the stochastic game �. Precisely one of these stationary equilibria is

an element of the feasible path of S(�; p). Any other stationary equilibrium is a boundary

point of S(�; p) and is therefore part of some arc of S(�; p). A moment of reection makes

clear that the remaining stationary equilibria are pairwise connected by arcs from S(�; p),

and so the number of stationary equilibria is odd.

Corollary 5.5 For an open set of stochastic games � 2 G(�) with full Lebesgue measure,

the number of stationary equilibria is odd.

The generic oddness of the number of Nash equilibria in normal form games is a well-known

result of Rosenm�uller (1971), Wilson (1971), and Harsanyi (1973). The generic �niteness

of the number of stationary equilibria in stochastic games is a recent result of Haller and

Laguno� (2000). The corollary shows that Haller and Laguno�'s result can be sharpened

to oddness.

The observations made so far suggest the following algorithm for the computation of the

stationary equilibrium selected by the stochastic tracing procedure in n-person stochastic

games. De�ne the admissible set B� that contains for each player i the best response to

the prior for all possible initial states, and start with a point (0; �) in S(�; p; B�) such

that �i! is a best response of player i to the prior when ! is the initial state. Theorem 5.3

implies that B� and � are uniquely determined. The equalities (1)-(4) belonging to this

B
� determine at least a part of the feasible path. As long as the inequalities (5)-(8) hold

with strict inequality we do not change our B�. As soon as one of the inequalities from

(5) or (6) gets binding, we change B�. When the binding inequality belongs to (5), say

�
i
!j = 0 while si!j 2 B

�, we delete si!j out of B
�. Obviously, this cannot happen for the
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starting B�. If the binding inequality belongs to (6), say �
i
!j = 0 while si!j 62 B

�, we have

to add strategy s
i
!j to B

�. In both situations there is a strategy s
i
!j for which �

i
!j = 0

and �
i
!j = 0. In general this leads to a kink in the feasible path of the stochastic tracing

procedure. This procedure is repeated over and over again, until the inequality (8) is

binding and a stationary equilibrium is found. Note that inequality (7) is only binding in

the starting point.

6 Smoothing the Stochastic Tracing Procedure

The previous section presents a method that can be used for the computation of a sta-

tionary equilibrium. However, switching homotopies can be a serious problem in terms

of computing time. There are
Q

(i;!)2N�
(2
mi
! � 1) di�erent sets B�, whereas each one of

them may be generated several times in the course of the algorithm.

We follow a suggestion in Garcia and Zangwill (1981), also used in Herings and Peeters

(1999), and formulate one, everywhere di�erentiable, homotopy by using a well-chosen

transformation of variables. De�ne, for � 2 R
m�

,

�
i
!j(�) = [maxf0; �i

!jg]
2 and �

i
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2
:

After this transformation of variables, the system of equalities and inequalities becomes
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i
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; i 2 N):

Owing to the proposed transformation of variables, the conditions �i!j(�) � 0, �i!j(�) � 0

and �
i
!j(�)�

i
!j(�) = 0 are trivially satis�ed. We can reformulate the (in)equalities in (1)-

(8) that characterize the set O(�; p; B�) by considering solutions (t; �; �) 2 R �R
m�

�R
nz ,

with �
i
!j � 0 if si!j 2 B

� and �
i
!j � 0 if si!j 62 B

�, to

(a) v
i(t;!; ��i! (�); si!j) + � �

P
�!2
~�(t; �! j!; �

�i
! (�); si!j)�
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; i 2 N);

(b)
P

si!j2S
i
!
�
i
!j(�)� 1 = 0 (! 2 
; i 2 N);

(c) t � 0;

(d) � t+ 1 � 0:
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Notice that the same system of equalities and inequalities can be used, irrespective of the

set B�. The role of B� is taken over by the sign-combinations of the components of the

vector �.

Counting equations and unknowns in the system (a)-(d) shows that there is one degree

of freedom, and therefore one expects a 1-dimensional solution set. Consider any solution

(t; �; �) to (a)-(d). When �
i
!j = 0, then both �

i
!j(�) and �

i
!j(�) are zero. This implies

that we have exactly two admissible subsets of S� for which the set of (in)equalities (1)-(8)

are satis�ed. If along a solution curve �
i
!j is increasing while passing zero, then �

i
!j(�)

gets positive and B
�
new = B

�
old [ fs

i
!jg. If �

i
!j is decreasing while passing zero, then �

i
!j(�)

gets negative and B�
new = B

�
oldnfs

i
!jg. When �

i
!j passes zero, a kink appears in the method

proposed in Section 5.

The left-hand sides of the equalities (a)-(b) specify the homotopyH : [0; 1]�Rm�

�Rnz !

R
m�

� R
nz ,

H(t; �; �) =0
BB@
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1
CCA :

The homotopy function H is continuously di�erentiable. The inequalities (c) and (d) are

satis�ed as the homotopy takes [0; 1] as the domain for the variable t. Further, H has the

salient feature that its zeros describe the linear tracing procedure, (t; �; �) 2 H�1(f0g) if

and only if (t; �(�)) 2 S(�; p).

The set H�1(f0g) consists of �nitely many di�erentiable arcs and loops. All arcs start

and end in f0; 1g�Rm�

�Rnz . Loops have no points in common with f0; 1g�Rm�

�Rnz . There

is exactly one arc that starts in f0g�Rm�

�Rnz and that ends in f1g�Rm�

�Rnz . All other

arcs start and end in f1g�Rm�

�Rnz and connect two points inducing stationary equilibria

of the stochastic game �. Starting at the unique point (0; �0
; �

0) 2 H�1(f0g) at t = 0 and

following the path described by the zeros of H, we end up in a point (1; ~�; ~�) 2 H�1(f0g).

This point generates the stationary equilibrium �(~�) of � selected by the stochastic tracing

procedure. See Figure 3 for an impression of the structure of H�1(f0g).

The structure of H�1(f0g) is even simpler than the one of S(�; p). Not only are compli-

cations like bifurcations, spirals, higher dimensional solutions sets, diverging behavior, etc.,

excluded. The arcs and loops in H�1(f0g) are di�erentiable everywhere. It is the transfor-

mation of variables that smoothes out the kinks. As a direct consequence, it is possible to

calculate the derivative at each point of the feasible path, which makes it possible to follow

21



0 1t

�
�

�

�

Figure 3: The structure of H�1(f0g).

the path by means of many easily implementable numerical methods, including methods

to solve ordinary di�erential equations.

7 Implementation

The stochastic game �0 naturally decomposes into n mutually independent and separate

Markov decision problems, one for each player. We have shown that generically a Markov

decision problem yields a unique optimal pure stationary strategy. The combination of

all optimal strategies (for each player one) induces the starting point of our algorithm.

This point can be determined analytically since there are �nitely many pure stationary

strategies in each decision problem. We only have to compute the total discounted payo�s

for each pure stationary strategy of a player and observe which one generates the highest

payo�.

Once we have determined the starting point, the numerical process starts by following

the homotopy-path from that point on. We have programmed a number of Fortran-

subroutines belonging to the software-package Hompack7, a Fortran77 program (see

Watson, Billups and Morgan (1987)). Hompack provides three qualitative di�erent algo-

rithms for tracking the zero curve of the homotopy: ordinary di�erential equation-based,

normal ow, and augmented Jacobian matrix. In general, the �rst algorithm is the most

robust of the three algorithms, but is also the slowest, sometimes by a wide margin. Be-

ing risk-averse we used this algorithm, called fixpdf, for implementation. fixpdf is an

ordinary di�erential equation-based algorithm working with dense Jacobian matrices.

We parameterize the homotopy path by pathlength � . Thus t = t(�), � = �(�) and

� = �(�) along the homotopy path, and H(t(�); �(�); �(�)) = 0 identically in � . The

7http://www.netlib.org/hompack/index.html
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di�erential equation is characterized by

d

d�
H(t(�); �(�); �(�)) = @H(t(�); �(�); �(�)) �

0
@ dt=d�

d�=d�

d�=d�

1
A = 0;


�
dt

d�
;
d�

d�
;
d�

d�

�
2

= 1:

and initial conditions given by

(t(0); �(0); �(0)) = H�1(f0g) \ (f0g � R
m�

� R
nz );

so t(0) = 0 and (�(0); �(0)) corresponds to the best response to the prior. The homo-

topy path corresponds to the trajectory of this initial value problem. When t(�� ) = 1,

(�(��); �(��)) is a zeropoint of H and �(�(��)) is a stationary equilibrium of stochastic game

� with equilibrium payo� �(��). Complete details for solving the initial value problem are

given in Watson (1979) and Watson and Fenner (1980).

We have implemented the homotopy function as described in Section 6 for stochastic

games with 2 states, 3 players, with in each state 2 strategies for each player. It may be

possible to improve on computing times by rescaling utilities and probabilities, or by using

an �-transformation with a power di�erent from 2 (but larger than 1, to keep di�eren-

tiability) or multiplied by a positive scalar di�erent from 1. An extensive digress on the

optimal numerical implementation is beyond the aim of the current paper.

Within the class of stochastic games with 2 states, 3 players and for each player 2

strategies in each state, we have generated �ve randomly chosen stochastic games and

�ve randomly chosen priors. All payo�s, transition probabilities, and priors are chosen

independently from one another out of the uniform distribution on [0; 1]. The transition

probabilities and the priors are of course normalized to sum up to 1. The discount factor

is �xed at 0.95.

The maximal inaccuracy of our calculation amounts to 10�8, which means that the 2-

norm of the value of the homotopy function is less than 10�8 in the computed equilibrium.

In Table 1 the computing times to compute a stationary equilibrium for each game-prior

pair are displayed. The mean time to compute a stationary equilibrium is 1:26 seconds

with a standard deviation of 0:23 seconds. For the games we found on average 1:60 di�erent

equilibria with a standard deviation of 0:89 when 5 di�erent priors where used. So, the

algorithm is quite fast and multiple equilibria can be found.
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prior 1 prior 2 prior 3 prior 4 prior 5

game 1 1.31 1.09 1.21 1.38 1.32

game 2 0.82 1.37 1.27 1.43 1.10

game 3 1.59 1.21 1.43 1.31 1.42

game 4 1.27 1.15 1.27 1.65 0.93

game 5 1.54 0.77 0.88 1.26 1.48

Table 1: Computation times in seconds

A Proofs

To make the proofs as transparent as possible, we need some notations and de�nitions from

the theory of regular constraint sets as presented in Jongen, Jonker and Twilt (1983), see

also Herings (1997) for a �rst application of this theory in economics.

For some r � 1 a subsetM of Rm is called a k-dimensional Cr manifold with generalized

boundary (MGB), if for every �x 2 M there exists a Cr di�eomorphism � : U ! V , where

U is an open subset of Rm containing �x and V is open in Rm , and some integer `(�x) � 0,

such that �(�x) = 0 and �(U \M) equals fy 2 V j yi = 0; i = 1; : : : ; m� k; and yi � 0; i =

m� k+ 1; : : : ; m� k+ `(�x)g. If for every element �x of an MGB M it holds that `(�x) � 1,

then M is called a manifold with boundary and the set of elements �x for which `(�x) = 1 is

an (k � 1)-dimensional manifold, called the boundary of M .

One way to show that a set is an MGB is by showing that it is a regular constraint set.

Let J1 and J
2 be two �nite index sets and let gj for all j 2 J

1 and hj for all j 2 J
2, be Cr

functions de�ned on some open subset X of Rm . We de�ne

M [g; h] =
n
x 2 X

��� gj(x) = 0; 8j 2 J
1, and hj(x) � 0; 8j 2 J

2
o
:

For x 2 X we de�ne the set J0(x) = fj 2 J
2 j hj(x) = 0g. If for every �x 2M [g; h] it holds

that n
@xgj(�x)

��� j 2 J
1
o
[
n
@xhj(�x)

��� j 2 J
0(�x)

o

is a set of independent vectors, then M [g; h] is called a Cr regular constraint set (RCS). In

Jongen, Jonker and Twilt (1983) it is shown that every Cr RCS is an (m�jJ1j)-dimensional

C
r MGB with `(�x) = jJ0(�x)j for every �x 2M [g; h].

In this entire appendix, we �x a size vector �, a transition mapping �, a discount factor

�, and a prior p 2 �. For any tuple of utility functions u and any admissible subset B�, we

de�ne the functions gB
�;u : R1+2m�+nz ! R

2m�+nz and h
B�;u : R1+2m�+nz ! R

m�+2 in such

24



a way that gB
�;u equals the left-hand side of the equalities (1)-(4) and h

B�;u the left-hand

side of the inequalities (5)-(8),

g
B�;u(t; �; �; �) =

8>>>><
>>>>:

v
i(t;!; ��i! ; s

i
!j) + �

i
!j � �

i
!

+� �
P

�!2
~�(t; �! j!; �
�i
! ; s

i
!j)�

i
�! (si!j 2 S

i
!; ! 2 
; i 2 N)

�
i
!j (si!j 62 B

i
!; ! 2 
; i 2 N)

�
i
!j (si!j 2 B

i
!; ! 2 
; i 2 N)P

si!j2S
i
!
�
i
!j � 1 (! 2 
; i 2 N)

and

h
B�;u(t; �; �; �) =

8>><
>>:

�
i
!j (si!j 2 B

i
!; ! 2 
; i 2 N)

�
i
!j (si!j 62 B

i
!; ! 2 
; i 2 N)

t

�t+ 1

:

A point (t; �; �; �) 2 O(�; p; B�) is a solution of (1)-(8) if and only if gB
�;u(t; �; �; �) = 0

and h
B�;u(t; �; �; �) � 0.

Let the functions gB
�

: R1+2m�+nz� R
mn ! R

2m�+nz and h
B�

: R1+2m�+nz� R
mn !

R
m�+2 be de�ned such that g

B�

(t; �; �; �; u) = g
B�;u(t; �; �; �) and h

B�

(t; �; �; �; u) =

h
B�;u(t; �; �; �) for all u 2 R

mn . Figure 4 presents the matrix of derivatives of the functions

g
B�

and h
B�

with respect to all variables. The stars (?) in the matrix need not to be

speci�ed for our analysis.

Each row in Figure 4 corresponds to one of the equalities and inequalities in (1)-(8).

To make the �gure more clear, derivatives with respect to � are �rst taken for si!j 2 B
�.

The same applies to the derivatives with respect to � and the ordering of the equalities in

(1). From the properties listed below the matrix, it follows immediately that the matrices

@uv and E have full row rank.

The structure of the proof of Theorem 5.2 is as follows. First, it is shown that for

almost all games u, M [gB
�;u
; h

B�;u] is a regular constraint set, from which the manifold

structure of L(�; p; B�) follows immediately. Next it is shown that there is an open set

of full measure for which the manifold structure holds. For the �rst part of the proof, we

show that for almost all games u, for every �x 2M [gB
�;u
; h

B�;u],

n
@xg

B�;u
j (�x)

��� j 2 J
1
o
[
n
@xh

B�;u
j (�x)

��� j 2 J
0(�x)

o

is a set of independent vectors. To show this we need three lemmas, Lemmas A.1, A.2 and

A.3. Lemma A.1 handles points �x for which J
0(�x) = ;, Lemma A.2 deals with points �x

such that the cardinality of J0(�x) is one, and Lemma A.3 implies that J0(�x) contains one

element at most.
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

@t @�
B� S�nB�

@�
B� S�nB�

@� @u

B�

S�nB�
? ?m�

m�

nz

m�

1

1

1 m� m� nz mn

I 0

0 I
? @uv(�)

0 0 I 0 0 0

0 0 I 0 0 0

0 E 0 0 0

0 I 0 0 0 0

0 0 0 I 0 0

1 0 0 0 0

�1 0 0 0 0

where

E((i0; !0); si!j) =

�
1 if (i0; !0) = (i; !)

0 otherwise

@
ui
0 (!0;s�i

0

!0
;si

0

!0j0
)
v
i(t;!; ��i! ; s

i
!j) = 0 if si!j 6= s

i0

!0j0 for all s�i
0

!0 2 S
�i0

!0P
s
�i
! 2S

�i
!
@ui(!;s�i! ;si!j)

v
i(t;!; ��i! ; s

i
!j) = 1:

Figure 4: The matrix of partial derivatives of gB
�

and h
B�

.

Lemma A.1 Let a prior p 2 � and an admissible subset B� of S� be given. Then, for

almost all u, gB
�;u t>f0g:

Proof Consider a point (�t; ��; ��; ��; �u) such that gB
�

(�t; ��; ��; ��; �u) = 0. The matrix of partial

derivatives of gB
�

at (�t; ��; ��; ��; �u) is given by the rows (1)-(4) in Figure 4. We show �rst

that this matrix has full row rank, from which it follows that gB
�

t>f0g.

Since @uv(�) has full row rank and the derivative with respect to u in (2)-(4) is zero, it is

su�cient to show that the part of the matrix given by (2)-(4) has full row rank. Since the

derivative with respect to � in (3) has full row rank, whereas the derivative with respect to

� in (2) and (4) is zero, it is su�cient to show that the rows in (2) and (4) are independent.

The admissibility of B� implies that the derivative with respect to �B� in (4) has full row

rank. Since, the derivative with respect to �B� in (2) is zero, the only thing left to prove is

that (2) has independent rows, which is obvious from the derivative with respect to �S�nB� .

Consequently, gB
�

t>f0g.

By the transversality theorem (see, for example Mas-Colell (1985), theorem I.2.2) and

since gB
�

is a C1 function, it follows that the complement of the set
�
u 2 R

mn j gB
�;u t>f0g
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has Lebesgue measure zero. 2

Lemma A.2 Let a prior p 2 � and an admissible subset B� of S� be given. Moreover, let

an inequality j 0 2 f1; : : : ; m� + 2g be given. Then, for almost all u, (gB
�;u
; h

B�;u

j0 )t>f0g.

Proof Consider a point (�t; ��; ��; ��; �u) such that gB
�

(�t; ��; ��; ��; �u) = 0 and hB
�

j0 (�t; ��;
��; ��; �u) =

0. The matrix of partial derivatives of (gB
�

; h
B�

j0 ) at (�t; ��;
��; ��; �u) is given in Figure 4 by

the rows (1)-(4) and a single row related to hB
�

j0 in (5)-(8). We show �rst that this matrix

has full row rank, from which it follows that (gB
�

; h
B�

j0 )t>f0g.

If row j
0 belongs to (6), (7) or (8), then it follows from the derivative with respect to

�S�nB� or from the derivative with respect to t that row j
0 has rank 1. Since all other

derivatives in row j
0 are zero, it follows as in the proof of Lemma A.1 that the rows of

(1)-(4) together with row j
0 are independent. Consider the case where row j

0 belongs to

(5). Following the �rst part of the proof of Lemma A.1, it su�ces to prove that (2) and (4)

together with row j
0 are independent. Inequality h

B�

j0 states that �i!j0 � 0, si!j0 2 B
�, and

this inequality is now required to hold with equality. Since
P

si!j2S
i
!
�
i
!j � 1 = 0, it follows

that jBi
!j = jB� \ S

i
!j > 1. Then the row related to si!j0 together with (2) and (4) trivially

form an independent set. Consequently, (gB
�

; h
B�

j0 )t>f0g. By the transversality theorem it

follows that the complement of fu 2 R
mn j (gB

�;u
; h

B�;u

j0 )t>f0gg has Lebesgue measure zero.

2

Lemma A.3 Let a prior p 2 � and an admissible subset B� of S� be given. Moreover,

let inequalities j
0
; j
00 2 f1; : : : ; m� + 2g with j

0 6= j
00 be given. Then, for almost all u,

(gB
�;u
; h

B�;u

j0 ; h
B�;u

j00 )t>f0g.

Proof Consider a point (�t; ��; ��; ��; �u) such that gB
�

(�t; ��; ��; ��; �u) = 0, hB
�

j0 (�t; ��;
��; ��; �u) = 0,

and hB
�

j00 (�t; ��;
��; ��; �u) = 0. The matrix of partial derivatives of (gB

�

; h
B�

j0 ; h
B�

j00 ) at (�t; ��;
��; ��; �u)

is given in Figure 4 by the rows (1)-(4) and two rows related to hB
�

j0 and hB
�

j00 in (5)-(8). We

show �rst that this matrix has full row rank, from which it follows that (gB
�

; h
B�

j0 ; h
B�

j00 )t>f0g.

The case where the two rows are not equal to (7) and (8) is similar to the proof of

LemmaA.2. Rows (7) and (8) are not independent. However, they cannot be binding simul-

taneously, because then it holds that t = 0 and t = 1. Consequently, (gB
�

; h
B�

j0 ; h
B�

j00 )t>f0g.

It follows that the complement of the set fu 2 R
mn j(gB

�;u
; h

B�;u

j0 ; h
B�;u

j00 )t>f0gg has Lebesgue

measure zero. 2
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