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Abstract

We show that, when a group takes independent majority votes on intercon-
nected propositions, the outcome is consistent once the pro�le of individual
judgment sets respects appropriate structural conditions. We introduce several
such conditions on pro�les, based on ordering the propositions or ordering the
individuals, and we clarify the relations between these conditions. By restrict-
ing the conditions to appropriate subagendas, we obtain local conditions that
are less demanding but still guarantee consistent majority judgments. By ap-
plying the conditions to agendas representing preference aggregation problems,
we show parallels of some conditions to existing social-choice-theoretic condi-
tions, speci�cally to order restriction and intermediateness, restricted to triples
of alternatives in the case of our local conditions.

1 Introduction

We consider a group of individuals having to decide which of di¤erent logically
interrelated propositions (statements) to jointly accept (believe1). Taking an
independent majority vote on each proposition is known to cause problems. For
instance, suppose a group decides by separate majority votes on whether to be-
lieve a : "CO2 emissions exceed threshold X"; whether to believe b : "Global
warming will continue"; and whether to believe the implication a ! b ("if a
then b"). Even if each individual holds a consistent set of beliefs (her judgment
set), the resulting set of group beliefs (the group�s judgment set) may be log-
ically inconsistent: the group�s judgment set is fa; a ! b;:bg if the judgment
sets fa; a ! b; bg, fa;:(a ! b);:bg and f:a; a ! b;:bg are each held by a
third of the individuals. A second example is the famous Condorcet paradox,
reinterpreted as a logical inconsistency under majority voting on the proposi-
tions xPy; yPz; zPx in a suitable predicate logic with a binary predicate P
for strict preference, constants x; y; z for options, and axioms for the rationality

1Standardly in judgment aggregation, "accepting" a proposition means "believing" it, so
that the goal is to reach consistent group beliefs on propositions. (If "accepting" means
"desiring", the goal is to reach consistent group desires, typically on di¤erent propositions
than those relevant in belief aggregation.) The motivation might lay in the need for group
action based on consistent (non-probabilistic) group beliefs. Propositions can be descriptive
(e.g. "Policy X leads to a budget de�cit") or normative (e.g. "A budget de�cit should be
avoided").



conditions like transitivity, as de�ned in Dietrich and List (forthcoming); see
also List and Pettit (2004).
In standard social choice theory, which is concerned with aggregating prefer-

ences over alternatives, an extensive literature investigates which conditions on
preference pro�les guarantee acyclic majority preferences. One can broadly dis-
tinguish between conditions based on ordering the alternatives (notably Black�s
1948 single-peakedness and Inada�s 1964 single-cavedness), and conditions based
on ordering the individuals (notably Grandmont�s 1978 intermediateness and
Rothstein�s 1990/1991 order restriction with its special case of single-crossingness,
e.g. Roberts 1977, Saporiti and Tohmé 2006, Saporiti forthcoming).2 The posi-
tion of an alternative/individual in the ordering could be interpreted as its/her
position on some issue dimension, e.g. a political left-to-right dimension, or an
economical socialist-to-libertarian dimension.
Our �rst goal is to show that in judgment aggregation a number of conditions

on (judgment) pro�les exist which guarantee the logical consistency of major-
ity judgments. Some of the conditions are based on ordering the individuals,
with analogies to known conditions if preference aggregation. Other conditions
are based on ordering the propositions, without obvious analogies to existing
conditions in preference aggregation. While ordering individuals could be given
similar interpretations to those in preference aggregation, ordering propositions
should be distinguished conceptually from ordering alternatives: propositions
are (usually non-exclusive) statements about the world, whereas alternatives
are exclusive descriptions of the world. From this perspective, it might appear
surprising that ordered propositions lead to consistency results under majority
voting.
Our second goal is to show that in judgment aggregation we can formu-

late local conditions for majority consistency: conditions of (judgment) pro�les
relative to certain subagendas. In preference aggregation, local conditions like
single-peakedness on all triples of alternatives (i.e. on all subagendas of size 3)
are known to guarantee acyclic majority preferences. In judgment aggregation,
it is not obvious which subagendas to consider. Considering all subagendas of a
certain size will not do: majority consistency cannot be ensured by restricting
people�s judgments within any subagenda of a certain size. We show how the
subagendas should be selected. Again, we relate those local conditions based
on ordering the individuals to local conditions in preference aggregation.
So far the only condition known to guarantee consistent majority judgments

is List�s (2003 and corrigendum) unidimensional alignment, a global condition
based on ordering the individuals. The �eld of judgment aggregation emerged
from law and political philosophy (e.g. Kornhauser and Sager 1986 and Pettit
2001), and is formalised social-choice-theoretically by List and Pettit (2002).
The observation that majority judgments can be logically inconsistent gener-

2Sen�s (1966) value restriction does not fall into these categories. In a private-good context,
not the social alternatives but individual shares are ordered; e.g. Klaus, Peters and Storcken
(1997).
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alises to several impossibility results (e.g. List and Pettit 2002 and 2004, Pauly
and van Hees forthcoming, Dietrich 2006, Gärdenfors forthcoming, Nehring and
Puppe 2006, van Hees forthcoming, Mongin 2005, Dietrich and List forthcom-
ing, and Dokow and Holzman 2005). Other impossibility results follow from
Nehring and Puppe�s (2002) strategy-proofness results on property spaces. A
liberal-paradox-type impossibility is derived in Dietrich and List (forthcoming).
Giving up propositionwise aggregation, possibilities can be obtained by sequen-
tial rules (List forthcoming) and fusion operators (Pigozzi forthcoming). Voter
manipulation is analysed in Dietrich and List (2004a). Here we use Dietrich�s
(forthcoming) generalised model, which allows the propositions to be expressed
in rich logical languages.

2 Model

We consider a set of individuals N (2 � jN j <1).

Formal logic. The group considers propositions expressed in a formal language
L. L is a non-empty set of formal expressions (propositions), representing state-
ments, such that if L contains p then L contains :p ("not p"). L is endowed
with an entailment relation � (� P(L) � L ), representing logical relations,
where for all A � L and p 2 L "A � p" means "A entails p".3 For instance,
L = fa; a ! b;:(c ^ d); :::g, where fa; a ! bg � b, fa; bg � a ^ b, fag 2 a ^ b,
...; or (if L is a predicate language) L = f3 + x � y; (8v1)(v1 � 0); :::g, where
f(8v1)(v1 � 0)g � x � 0, ... The language can be more or less expressive,
depending on the decision problem at hand.4 A set A � L is inconsistent if
there is a p 2 L such that A � p and A � :p, and consistent otherwise. A p 2 L
is a contradiction if fpg is inconsistent, a tautology if f:pg is inconsistent, and
contingent if fpg and f:pg are consistent. To ensure that � is well-behaved,
we require three conditions satis�ed in most familiar logics (including most
propositional, predicate or modal, and some fuzzy logics):

3� can be interpreted as semantic entailment or as syntactic derivability (often denoted
by `), depending on whether we want to model a semantic or syntactic notion of rationality.

4In the simple case of classical propositional logic, L is the (smallest) set such that (i) L
contains certain "atomic propositions" a; b; c; ::: and (ii) if p; q 2 L then :p 2 L and (p^q) 2 L;
and A � p if and only if every truth-function making all q 2 A true makes p true, where a
truth-function is a function v : L! fT; Fg, assigning truth-values to propositions, such that,
for all p; q 2 L, v(:p) = T , v(p) = F and v(p ^ q) = T , v(p) = v(q) = T . We may enrich
the language by introducing other connectives than : and ^, e.g. a modal necessity operator
� (�p means "necessarily p", by some notion of necessity), or a moral "ought" operator O
(leading to a deontic logic) or a subjunctive implication ! (p ! q means "if p then q", in
the subjunctive sense relevant, say, in our global warming example). Of course, entailment �
then has to be extended to the richer language (see Dietrich forthcoming). Our examples will
either use the connectives :;^;! or use a predicate logic to repersent preference aggregation
problems. Notationally, we drop brackets when there is no ambiguity, e.g. a ^ b ^ (b ! c)
stands for ((a ^ b) ^ (b! c)).
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L1 for all p 2 L, fpg � p (self-entailment)
L2 for all p 2 L and A � B � L, if A � p then B � p (monotonicity);
L3 ; is consistent, and each consistent set A � L has a consistent superset

B � L containing a member of each pair p;:p 2 L (completability).

The agenda. The agenda is a non-empty �nite5 set X � L of proposi-
tions under decision, where X is a union of pairs fp;:pg (with p not itself
a negated proposition). For instance, our global warming example has agenda
X = fa;:a; b;:b; a ! b;:(a ! b)g. Hereafter, when we write ":q" and
q = :p 2 X then ":q" stands for p rather than ::p (so double-negations
cancel each other out).

Judgment sets. A judgment set (held by an individual or the group) is a subset
A � X, where p 2 A stands for �the person/group accepts proposition p�. We
will focus mainly on whether a judgment set A is consistent, and occasionally
on whether it is complete (i.e. contains a member of each pair p;:p 2 X).
We will mostly not require individuals to hold complete judgment sets: they
may abstain on some or even all pairs p;:p 2 X. It has been argued (e.g.
Gärdenfors forthcoming) that individual completeness is a severe constraint, as
people need opinions on all issues. As most of the literature studies impossibility
results, the assumption of individual completeness was natural: it shrinks the
domain, hence strengthens (most) impossibilities. However, we are interested
in possibilities, which are strengthened by allowing individual incompleteness.

Aggregation rules. A pro�le is an n-tuple (A1; : : : ; An) of (individual) judg-
ment sets Ai � X. A (judgment) aggregation rule is a function F that maps
each pro�le (A1; : : : ; An) in a given non-empty domain to a (group) judgment
set F (A1; : : : ; An) = A � X; it is consistent/complete if it generates a con-
sistent/complete judgment set for each pro�le in the domain. The majority
outcome on (A1; :::; An) (a pro�le) is the judgment set

fp 2 X : there are more individuals i with p 2 Ai than with p =2 Aig.

Majority rule on D (a set of pro�les) is the aggregation rule with domain D
generating the majority outcome on each pro�le. We will investigate on which
domains D majority rule is consistent. Other aggregation rules (not studied
here) are dictatorial rules, supermajority rules, and premise-based or conclusion-
based rules.

5The �niteness assumption is mainly for proof convenience. Without it, the results con-
tinue to hold as such or under an additional compactness assumption on the logic.

4



3 Global conditions for majority consistency

3.1 Conditions based on ordering the propositions

Throughout the paper, by an order on a set S we mean a re�exive, transitive,
complete and antisymmetric binary relation � on S.6

De�nition 1 Consider an order � on X (i.e. an order of the propositions).
(a) A judgment set A is single-plateaued relative to � if A = fp : pleft �

p � prightg for some pleft; pright 2 X, and single-canyoned relative to � if
A = Xnfp : pleft � p � prightg for some pleft; pright 2 X.7

(b) If each Ai in a pro�le (A1; :::; An) is single-plateaued (-canyoned) relative
to �, (A1; :::; An) is single-plateaued (-canyoned) relative to �, or simply
single-plateaued (-canyoned).

(c) In (a) and (b) we refer to � as a (possibly non-unique) structuring order.

For instance, for an agenda containing scienti�c propositions (hypotheses)
related to global warming, individuals might hold single-plateaued judgment
sets relative to an order of the propositions from "most pessimistic" on the
climate front to "most optimistic"; the location of an individual i�s plateau
re�ects i�s scienti�c position. Or, if the agenda contains hypotheses about
the e¤ects of potential taxation or budget measures, these hypotheses might
be ordered from left-most economic views to right-most economic views. Or,
if the agenda contains scienti�c hypotheses about some animal species, the
propositions might be ordered from "closest to theory X" to "closest to theory
Y" (where X and Y are competing theories, say evolutionary and a creationist
ones).
We now prove that on single-plateaued pro�les majority voting preserves

consistency; and we show that single-canyoned pro�les are actually special
single-plateaued pro�les with the property that majority voting preserves not
only consistency but also single-canyonedness. To see that a single-canyoned
pro�le is single-plateaued, we will reorder the propositions so as to "glue to-
gether" each person�s two extreme sets of propositions into a single plateau.

Proposition 2 For any pro�le (A1; :::; An) of consistent judgment sets,
(a) if (A1; :::; An) is single-plateaued, the majority outcome is consistent;
(b) if (A1; :::; An) is single-canyoned, (A1; :::; An) is single-plateaued;
(c) if (A1; :::; An) is single-canyoned, the majority outcome is consistent and

single-canyoned (relative to the same structuring order).

Proof. Let each Ai be consistent. The following notation is used in this and
other proofs. Let A be the majority outcome. Put Np := fi : p 2 Aig 8p 2 X.

6Re�exivity: x � x 8x 2 S. Transitivity: x � y&y � z ) x � z 8x; y; z 2 S. Com-
pleteness: x 6= y ) [x � y or y � x] 8x; y 2 S. Antisymmetry: x 6= y ) [x 6� y or y 6� x]
8x; y 2 S.

7We do not require pleft � pright, i.e. fp : pleft � p � prightg may be empty.
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Whenever we consider an order � of X, let [p; q] := fr 2 X : p � r � qg
8p; q 2 X. An order � is sometimes identi�ed with the corresponding ascending
list of propositions p1:::p2k where 2k is the size of X (which is even as X is a
union of pairs fp;:pg).
(a) Assume single-plateauedness, say relative to �. Among all propositions

in A, let p and q be the smallest resp. largest one w.r.t. �. So A � [p; q]. As
Np and Nq each contain a majority of the individuals, Np \Nq 6= ;; so there is
an i 2 Np \Nq. As Ai is single-plateaued and p; q 2 Ai, we have [p; q] � Ai. So
A � Ai. So A is consistent.
(b) Let (A1; :::; An) be single-canyoned, say relative to the order p1:::p2k. We

consider any Ai and show that Ai is single-plateaued relative to the new order
pk+1:::p2kp1:::pk. By assumption, (*) Ai = fp1; :::pjg [ fpj0 ; :::; p2kg for some
0 � j � j0 � 2k + 1. As Ai is consistent, Ai contains no pair p;:p 2 X;
so jAij � jXj=2 = k, whence (**) j � k and j0 � k + 1. Using both (*)
and (**), one can check that Ai is, as desired, an interval relative to the new
order pk+1:::p2kp1:::pk: Ai = [pj0 ; pj] if j 6= 0&j0 6= 2k + 1, Ai = [p1; pj] if
j 6= 0&j0 = 2k + 1, Ai = [pj0 ; p2k] if j = 0&j0 6= 2k + 1, and Ai = ; if
j = 0&j0 = 2k + 1.
(c) Let (A1; :::; An) be single-canyoned, say relative to �. By (a)-(b), A is

consistent. As one easily checks A is single-canyoned relative to � if and only if
for all p 2 A we have fq : q � pg � A or fq : q � pg � A. So it su¢ ces to show
the latter. Consider any p 2 A. Check that either (i) jfq : q � pgj � k < jfq :
p � qgj or (ii) jfq : p � qgj � k < jfq : q � pgj. We assume (i) and show that
fq : q � pg � A (analogously, if (ii) then fq : p � qg � A). For each i 2 Np,
single-canyonedness implies that fq : q � pg � Ai or fq : p � qg � Ai. But the
latter is impossible: otherwise jAij > k by (i), so that Ai would contain a pair
p;:p, hence be inconsistent. So we have fq : q � pg � Ai for all i 2 Np, hence
for a majority of the individuals. It follows that fq : q � pg � A, as desired. �

3.2 Conditions based on ordering the individuals

For orders of the individuals we use the symbol 
 (while � is used to order
propositions). Moreover, for any sets of individuals N 0; N 00 � N; we write
N 0
N 00 if i
j for all i 2 N 0 and j 2 N 00.

De�nition 3 Consider an order 
 on N (i.e. an order of the individuals).
(a) A pro�le (A1; :::; An) such that, for all p 2 X, fi : p 2 Aig = fi :

ileft
i
irightg for some ileft; iright 2 N , is unidimensionally ordered relative
to 
, or simply unidimensionally ordered.8

(b) (List 2003) A pro�le (A1; :::; An) such that for all p 2 X fi : p 2 Aig
fi :
p =2 Aig or fi : p =2 Aig
fi : p 2 Aig is unidimensionally aligned relative
to 
, or simply unidimensionally aligned.

(c) In (a) and (b) we refer to 
 as a (possibly non-unique) structuring order.

8We do not require ileft
iright, i.e. fi : ileft
i
irightg may be empty.
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Unidimensional alignment relative to 
 is in fact a special case of unidi-
mensional orderedness relative to 
: that where for all p 2 X at least one of
ileft; iright is "extreme", i.e. the minimum or maximum of 
.

Proposition 4 For any pro�le (A1; :::; An) of consistent judgment sets,
(a) if (A1; :::; An) is unidimensionally ordered, the majority outcome A is con-

sistent, and A � Am (if n is even) resp. A � Am1 \ Am2 (if n is odd),
where m resp. (m1;m2) is the middle individual resp. pair of individuals
in any structuring order 
.

(b) if (A1; :::; An) is unidimensionally aligned, (A1; :::; An) is unidimensionally
ordered;

(c) (List 2003) if (A1; :::; An) is unidimensionally aligned, the majority out-
come A is consistent, and A = Am (if n is even) resp. A = Am1 \Am2 (if
n is odd), where m resp. (m1;m2) is as in part (a).

Proof. Let each Ai be consistent. We use earlier proof notation.
(a) Suppose unidimensional orderedness, say relative to 
. For all p 2 A, by

unidimensional orderedness Np is some interval [ileft; iright], which by jNpj > n=2
is long enough to necessarily contain the median individual m (if n is odd) or
the median pair of individuals m1;m2 (if n is even); so that p 2 Am (if n is
odd) or p 2 Am1 \ Am2 (if n is even). Hence, as desired, A � Am (if n is odd)
or A � Am1 \ Am2 (if n is even). In particular, A is consistent.
(b) See the remark above.
(c) See List (2003), or check that in the proof of (a) the converse inclu-

sions Am � A (if n is odd) or Am1 \ Am2 � A (if n is even) also hold under
unidimensional alignment. �

We now show that unidimensional alignment can be related to Rothstein�s
(1990/1991) order restriction, and unidimensional orderedness can be related to
(the one-dimensional case of) Grandmont�s (1978) intermediateness. For this
we apply our conditions to special agendas X: so-called preference agendas,
which represent standard (strict) preference aggregation problems. First recall
that, if K is a set of alternatives with 3 � jKj < 1, and if (�1; :::;�n) is a
pro�le of (strict) preference relation onK (i.e. of a binary relation �i� K�K),
then9

- (�1; :::;�n) is order restricted if there is an order 
 of the individuals such
that for all x; y 2 X fi : x �i yg
fi : y �i xg or fi : y �i xg
fi : x �i yg
(Rothstein 1990/1991);
- (�1; :::;�n) is (one-dimensionally) intermediate if there is an order 
 of

the individuals such that for all x; y 2 X and all i; j; k 2 N with i
j
k, if
x �i y&x �k y then x �j y (Grandmont 1978).
Following Dietrich and List (forthcoming), we now de�ne the (strict) pref-

erence agenda for K as XK = fxPy;:xPy 2 L : x; y 2 Kg, formed in the
9Rothstein and Grandmont formulate their de�nitions more generally for weak preferences

�i.
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predicate language L that is given by (i) a single predicate P which is binary
(and represents strict preference), (ii) a set of constants K (representing al-
ternatives), (iii) no function symbols, and (iv) as usually, a quanti�er 8 and
variables v1; v2; v3; ::: Entailment on L is given, for all A � L and p 2 L, by

A � p , A [ Z entails p in the standard sense of predicate logic,

where Z is the set of rationality conditions on strict preferences.10

There is a correspondence between (strict) preference relations �, i.e. arbi-
trary binary relations on K, and judgment sets A � XK that are decisive, i.e.
contain exactly one member of each pair p;:p 2 XK :
- to any preference relation � corresponds the decisive judgment set

A� := fxPy : x; y 2 K&x � yg [ f:xPy : x; y 2 K&x 6� yg; (1)

- to any decisive judgment set A � XK corresponds the preference relation

x �A y :, xPy 2 A (, :xPy =2 A) 8x; y 2 K.

Moreover, a preference relation � is fully rational (i.e. asymmetric, transi-
tive and connected) if and only if A� is (logically) consistent, because we have
built the set of rationality conditions Z as axioms into the logic. In short,
irrationalities of � become inconsistencies of A�.
As one easily checks, � is order restricted if and only if A� is unidimen-

sionally aligned. But ��s intermediateness is not quite equivalent to A��s uni-
dimensional orderedness: the former requires fi : xPy 2 Aig to be an interval
for all x; y 2 K, and the latter requires fi : xPy 2 Aig and fi : :xPy 2 Aig
to be intervals for all x; y 2 K. We will now give a di¤erent, also plausible,
de�nition of A�, under which ��s intermediateness becomes equivalent to A��s
unidimensional orderedness (and ��s order restriction stays equivalent to A��s
unidimensional alignment). But �rst we need to motivate the new de�nition.
While A� is under (1) by construction decisive, a general judgment sets

A � XK need not be decisive: it can be incomplete, even empty. How should
we understand this? If for a given pair x; y 2 K a preference relation � satis�es
x 6� y, two subtly di¤erent interpretations are possible. We could read x 6� y
either as "not viewing x better than y", or as "viewing x as not better than
y". This distinction does not appeal to whether y � x, but to the di¤erence
between "not believing p" and "believing :p", where p is "x is better than y".
The de�nition (1) of A� implicitly assumes the second interpretation of x 6� y,
because A� contains :xPy whenever x 6� y. While a preference relation ��
K �K is ambiguous between the two interpretations, a judgment set A � XK

opts for one or the other interpretation: if xPy =2 A then x is "not viewed

10Z consists of (8v1)(8v2)(v1Pv2 ! :v2Pv1) (asymmetry), (8v1)(8v2)(8v3)((v1Pv2 ^
v2Pv3) ! v1Pv3) (transitivity), (8v1)(8v2)(: v1 = v2 ! (v1Pv2 _ v2Pv1)) (connectedness)
and, for each pair of distinct constants x; y 2 K, :x = y (exclusiveness of alternatives).

8



better" than y, and only if moreover :xPy 2 A then x is "viewed not better"
than y. For any distinct x; y 2 K, a preference relation � can display 4 di¤erent
patterns: x � y&y 6� x, x 6� y&y � x, x 6� y&y 6� x, or x � y&y � x; but
a judgment set A � XK can display 24 = 16 di¤erent patterns, depending on
which of xPy;:xPy; yPx;:yPx are contained in A: all four, any three, any
two, any one, or none.
Under the other interpretation of x 6� y, we have to de�ne A� not by (1)

but as
A� := fxPy : x; y 2 K&x � yg, (2)

a typically incomplete judgment set because A� contains none of xPy;:xPy if
x 6� y. Under this de�nition, a preference relation � is fully rational (i.e. asym-
metric, transitive and connected) if and only if A� is consistent and contains a
member of each pair xPy; yPx 2 X with x 6= y. As one easily checks, under
the new de�nition (2), the (one-dimensional) intermediateness of � translates
into the unidimensional orderedness of A�.
The two parallels can be summarised as follows.

Remark 5 Consider the preference agenda XK.
(a) A pro�le (�1; :::;�n) of (strict preference) relations on K is intermediate

if and only if the associated judgment pro�le (A�1 ; :::; A�n), de�ned by (2),
is unidimensionally ordered.

(b) A pro�le (�1; :::;�n) of (strict preference) relations on K is order re-
stricted if and only if the associated judgment pro�le (A�1 ; :::; A�n), de-
�ned by (1) or (2), is unidimensionally aligned.

3.3 Relations between ordering propositions and order-
ing individuals

A natural question to ask is whether conditions based on ordering the agenda
are related to conditions based on ordering the group. To some extent they are,
as we now show.11

Proposition 6 Consider the four conditions on pro�les.
(a) Restricted to pro�les of consistent judgment sets,

� unidimensional alignment implies any of the three other conditions;
� single-canyonedness implies single-plateauedness;
� there are no other implications between two conditions.

(b) Restricted to pro�les of consistent and complete (or just decisive) judgment
sets, the four conditions are equivalent.

11Of course, the non-implication claims in (a) do not refer to a �xed agenda X and group
size n, but to the existence of an agenda and a group size (in fact, of many ones) for which one
condition holds without the other one. (For special agendas or group sizes, like X = fp;:pg
or n = 2, all conditions hold trivially.)

9



Proof. We use again earlier proof notation, and abbreviations like "SP" for
"single-plateaued(ness)".
(a) Under 1 we show the claimed implications, and under 2 the non-implications.
1. Already by Proposition 2, SC implies SP. By Propositions 2-4, to show

that UA implies all other conditions it su¢ ces to show that it implies SC. So
let (A1; :::; An) be a pro�le of consistent judgment sets, and suppose UA, for
simplicity relative to the order 1; 2; :::; n (i.e. 1
2
:::
n). We show SC relative
to �; where � is the order p1p2:::p2k that
- begins with the propositions p 2 X with Np = f1; :::; ng,
- followed by the propositions p 2 X with Np = f1; :::; n� 1g,
...
- followed by the propositions p 2 X with Np = f1g,
- followed by the propositions p 2 X with Np = ;,
- followed by the propositions p 2 X with Np = fng,
- followed by the propositions p 2 X with Np = fn� 1; ng,
- followed by the propositions p 2 X with Np = fn� 2; :::; ng,
...
- ending with the propositions p 2 X with Np = f2; :::; ng.

1 2 3 4 5
p1 Y Y Y Y Y
p2 Y Y Y Y
p3 Y
p4
p5 Y
p6 Y Y Y Y

Table 1: Example of the order p1; :::; p2k for n = 5 individuals and 2k = 6
propositions; a "Y" indicates acceptance of the row proposition by the column
individual

This procedure to construct p1:::p2k is well-de�ned, as by UA each p 2 X
is of one of the forms considered in the procedure. In the example pro�le of
Table 1, it is obvious that (A1; :::; An) is SC relative to p1:::p2k: A1 = Xn[p4; p6],
A2 = A3 = A4 = Xn[p3; p5] and A4 = A5 = Xn[p2; p4].
For the general proof, consider any Ah (1 � h � n) and let us show that

Ah is SC relative to �. To show this it su¢ ces to prove that, for all p 2 X,
either [p1; p] � Ah or [p; p2k] � Ah. So consider any p 2 X. By UA, either Np =
f1; :::; kg for some k, or Np = fk; :::; ng for some k � 2. By construction of the
order p1:::p2k, in the �rst case [p1; p] � Ah and in the second case [p; p2k] � Ah,
as desired.
2. We now show all claimed non-implications by counterexamples.
SP 6) SC. Consider an agenda X and a pro�le (A1; :::; An) consisting of

pairwise disjoint consistent judgment sets, at least three of which are non-empty.
The pro�le is SP, namely relative to an order starting with the propositions in
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A1; followed by those in A2; ..., ending with those in An. But the pro�le is not
SC: if it were, say relative to an ordering �, then each non-empty Ai would
contain an extreme (i.e. left- or right-most) proposition, hence there would be
at least three extreme propositions (since the Ais are disjoint and at least three
Ais are non-empty).
SC 6) UO. Consider an agenda X, group N and pro�le (A1; :::; An) such

that n = 4, A1 = fp; p0; q; q0g; A2 = fp; p0g, A3 = fq; q0g, A4 = fp; qg, where
p; p0; q; q0 2 X are pairwise distinct. This pro�le is SC: consider an order � such
that p � p0 � ::: � q0 � q (where ":::" contains all remaining propositions).
Suppose for a contradiction UO holds, say relative to the order i1:::in. As
Np0 = f1; 2g, individuals 1 and 2 are neighbours (in i1:::in) As Nq0 = f1; 3g,
1 and 3 are neighbours. So 1 is "surrounded" by 2 and 3, i.e. i1:::in contains
the sublist 213 or 312; suppose it contains the sublist 213 (the proof continues
analogously for the sublist 312). Further, as Np = f1; 2; 4g, 4 is a neighbour of
1 or of 2; as 4 cannot be a neighbour of 1 (which is surrounded by 2 and 3), it is
a neighbour of 2. So i1:::in contains the sublist 4213. Finally, as Nq = f1; 3; 4g,
4 is a neighbour of 1 or 3, which is not the case since i1:::in contains the sublist
4213.
SC 6) UA. This follows from SC 6) UO by UO ) UA.
SP 6) UO. This follows from SC 6) UO by SC ) SP.
SP 6) UA. This follows from SC 6) UA by SC ) SP.
UO 6) UA. Consider an agenda X, group N and pro�le (A1; :::; An) such

n � 3 and the Ais are pairwise disjoint and singleton. As each Np; p 2 X, is
empty or singleton, the pro�le is UO (relative to any order of N). It is not UA:
if it were, say relative to the order 
 of N , then each i 2 N would have to be
extreme, i.e. smallest or largest in 
 (as i is the only individual accepting the
proposition in Ai), which is not possible as there are n � 3 individuals but only
two extreme positions.
UO 6) SP. Consider a group, agenda X and pro�le (A1; :::; An) with n = 3

and A1 = fp; p1g, A2 = fp; p2g and A3 = fp; p3g, where p; p1; p2; p3 2 X are
pairwise distinct. This pro�le is UO, relative to any order of N . But it is not
SP: if it were, say relative to an order p1:::p2k of X, then in this order p must
be a neighbour of p1 (by A1 = fp; p1g), one of p2 (by A2 = fp; p2g) and one of
p3 (by A3 = fp; p3g), a contradiction.
UO 6) SC. This follows from UO 6) SP by SC ) SP.
(b) Now let (A1; :::; An) be a pro�le of consistent and complete (or just

decisive) judgment sets. Then each Ai contains exactly k = jXj=2 propositions.
As by part (a) UA ) SC and SC ) SP, the equivalence of all four conditions
follows from the following additional implications, which we now prove using
that jAij = k for all i.
SP ) UO. Suppose SP, say relative to the order p1:::p2k. Then for all i there

is (using jAij = k) an index j(i) 2 f1; :::; 2kg such that Ai = [pj(i); pj(i)+k�1].
Consider an order of the individuals i1:::in such that j(i1) � j(i2) � ::: � j(in).
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To check UO relative to i1:::in, note that for all p = pl 2 X we have

fi : pl 2 Aig = fi : pl 2 [pj(i); pj(i)+k�1]g = fi : j(i) � l < j(i) + kg
= fi : �l � �j(i) < k � lg = fi : l � k < j(i) � lg,

which is an interval of the order i1:::in, as desired.
UO ) UA. Let (A1; :::; An) be UO, say relative to the order 
. To see that

(A1; :::; An) is also UA relative to the same order 
, consider any p 2 X. As
each Ai contains exactly one member of each pair p;:p 2 X, N:p = NnNp.
Further, by UA Np and N:p are (
-)intervals. So Np and NnNp are intervals.
Hence Np
NnNp or NnNp
Np, as desired. �

4 Local conditions for majority consistency

The four conditions discussed so far are, for many agendas, stronger than neces-
sary. Our goal is now to introduce a move similar to that from single-peakedness
to single-peakedness on triples in preference aggregation. Speci�cally, we will
require our conditions to hold not on the entire agenda X but on appropriate
subagendas. Identifying the right subagendas is not obvious. Choosing them
according to their size (e.g. subagendas of size less than x) or to the syntactic
form of their member propositions (e.g. subagendas whose propositions con-
taining only a certain type or number logical connectives) does not work. The
analysis of this chapter is guided by two aims.
1. The subagendas should be chosen such that once inconsistencies (under
majority rule) are excluded within these subagendas, inconsistencies are
excluded in general (just like for strict preferences acyclicity on each triple
implies general acyclicity);

2. If possible, there should be few and small subagendas, so as to make our
local domain conditions weak.

4.1 General form of the local conditions

The following de�nitions set out the type of local conditions to be analysed,
where the choice of subagendas Z is the topic of the following subsections.
De�nition 7 is based on ordering propositions, and De�nition 8 is based on
ordering individuals.

De�nition 7 (a) A subagenda is a non-empty subset of X closed under nega-
tion (hence itself an agenda).

(b) For any subagenda Z, a judgment set A is single-plateaued (-canyoned)
on Z relative to �, an order on Z, if A \ Z, seen as a judgment set for
the agenda Z, is single-plateaued (-canyoned) relative to �.

(c) For any subagenda Z, if each Ai in a pro�le (A1; :::; An) is single-plateaued
(-canyoned) on Z relative to �, an order on Z, (A1; :::; An) is single-
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plateaued (-canyoned) on Z relative to �, or simply single-plateaued (-
canyoned) on Z.

(d) For any set Z of subagendas, if a pro�le (A1; :::; An) is for each Z 2 Z
single-plateaued (-canyoned) on Z relative to �Z, an order on Z, then
(A1; :::; An) is single-plateaued (-canyoned) on Z relative to (�Z)Z2Z , or
simply single-plateaued (-canyoned) on Z.

(e) In (b) and (c) � is called a (Z-)structuring order, and in (d) (�Z)Z2Z is
called a (Z-)family of structuring orders.

De�nition 8 (a) For any subagenda Z, a pro�le (A1; :::; An) is unidimen-
sionally ordered (aligned) on Z relative to 
, an order on N , or simply
unidimensionally ordered (aligned) on Z, if (A1 \ Z; :::; An \ Z), seen as
a pro�le for the agenda Z, is unidimensionally ordered (aligned) relative
to �.

(b) For any set Z of subagendas, if a pro�le (A1; :::; An) is for each Z 2 Z
unidimensionally ordered (aligned) on Z relative to 
Z, an order on N ,
then (A1; :::; An) is unidimensionally ordered (aligned) on Z relative to
(
Z)Z2Z , or simply unidimensionally ordered (aligned) on Z.

(c) In (a) 
 is called a (Z-)structuring order, and in (b) (
Z)Z2Z is called a
(Z-)family of structuring orders.

Single-plateauedness on X is of course equivalent to single-plateauedness
simpliciter, and single-plateauedness on Z (� X) implies single-plateauedness
on any subagenda Z 0 � Z. Analogous remarks apply to the three other condi-
tions.
Any implications and equivalences between our global conditions (see Propo-

sition 6) also hold for their local versions, because the local conditions are de-
�ned by the validity on subagendas of the global conditions. So Proposition 6
has the following corollary.

Corollary 9 Consider the four local conditions on pro�les in De�nitions 7-8.
(a) Restricted to pro�les of consistent judgment sets,

� unidimensional alignment on Z implies any of the three other con-
ditions;

� single-canyonedness on Z implies single-plateauedness on Z.
(b) Restricted to pro�les of consistent and complete (or just decisive) judgment

sets, the four conditions are equivalent.

Whether the non-implications of Propositions 6 continue to hold for the
local conditions depends on the speci�cation of Z. For the two speci�cations
analysed below the non-implications do indeed hold (e.g. single-plateauedness
on Z does not imply single-canyonedness on Z), because the counterexamples
constructed in the proof of Proposition 6 work also as counterexamples for the
local conditions if we moreover assume the agenda X to be such that each
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global condition is equivalent to its local variant, an assumption that is possible
without loss of generality.12

4.2 Conditions based on minimal inconsistent sets

In De�nitions 7-8, what class of subagendas Z should be chosen? This subsec-
tion takes the following approach. Note that a (collective) judgment set A � X
is inconsistent if and only if it has a subset Y � X that is minimal inconsistent
(i.e. is inconsistent and every proper subset of Y is consistent). So a consistent
majority outcome can be ensured by requiring a local structural condition, e.g.
single-plateauedness on Z, where

Z := ffp;:p : p 2 Y g : Y is a minimal inconsistent subset of Xg: (3)

Proposition 10 Let Z be the class of subagendas (3), and consider a pro�le
(A1; :::; An) of consistent judgment sets.
(a) If (A1; :::; An) satis�es any of the four local structural conditions of De�-

nitions 7-8, the majority outcome is consistent.
(b) If (A1; :::; An) is unidimensionally aligned on Z, the majority outcome is

[Z2Z�(AmZ
\ Z) (if n is even) or [Z2Z(AmZ

\ Am0
Z
\ Z) (if n is odd),

where
� Z� � Z is any subset of subagendas with [Z2Z�Z = X (e.g. Z� =
Z);

� for all Z 2 Z�, mZ is the middle individual (if n is odd) or (mZ ;m
0
Z)

is the middle pair of individuals (if n is even) in any Z-structuring
order.

Proof. Let Z and (A1; :::; An) be as speci�ed, with majority outcome A.
(a) To prove A�s consistency, it su¢ ces to prove that A has no minimal

inconsistent subset, hence to prove that A \ Z is consistent for all Z 2 Z.
So consider any subagenda Z 2 Z. As the pro�le is, say, single-plateaued
on Z (the proof is similar for single-canyonedness or unidimensinoal ordered-
ness/alignment), (A1\Z; :::; An\Z) is single-plateaued for the agenda Z, hence
has a consistent majority outcome by Proposition 2. But this majority outcome
is A \ Z. So A \ Z is consistent, as desired.
(b) Let Z� and the individuals (mZ)Z2Z� (if n is odd) or (mZ;1;m

0
Z)Z2Z� (if

n is even) be as speci�ed. To show that A is [Z2Z�(AmZ
\ Z) (if n is even) or

[Z2Z(AmZ
\Am0

Z
\Z) (if n is odd), it is by A = [Z2Z�(A\Z su¢ cient to show

that, for all Z 2 Z�, A \ Z is AmZ
\ Z (if n is even) or AmZ

\ Am0
Z
\ Z (if n

12To see why the assumption is possible, check �rst that the assumption holds if Z contains
only the trivial subagendas X and fp;:pg, p 2 X. Second, it has to be checked that such a
special class Z can indeed arise under the speci�cations analysed below. (For instance, if Z
is given by (3), Z can take the special form: let the only minimal inconsistent sets Y � X
be (i) a subset Y � X containing a member of each pair p;:p 2 X, and (ii) the binary sets
fp;:pg � X.)
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is odd). The latter follows from part (c) of Proposition 4 using that, for any
given agenda Z 2 Z�, A \ Z is the majority outcome on the unidimensionally
aligned pro�le (A1 \ Z; :::; An \ Z). �

How do our local conditions look if applied to the (strict) preference agenda
XK := fxPy;:xPx : x; y 2 Kg discussed in Section 3.2? To answer this
question, we have to identify the set Z for XK . Note that, by de�nition of our
preference logic, for any distinct x; y 2 K, :xPy and yPx are equivalent, i.e.
entail each other. Call two judgment sets "essentially identical" if one arises
from the other by (zero, one or more) replacements of propositions by equivalent
propositions. For distinct options x1; :::; xk 2 K (k � 1), the cycle x1 � x2 �
::: � xk � x1 can be represented by the set fx1Px2; x2Px3; :::; xk�1Pxk; xkPx1g;
we call such a set, and any set essentially identical to it, a cycle, or more precisely
a k-cycle.

Remark 11 Consider the preference agenda XK.
(a) The minimal inconsistent sets Y � XK are the cycles.
(b) So the class of subagendas (3) is Z = ffp;:p : p 2 Y g : Y � XK is a

cycleg:

Proof. Part (b) follows from part (a). Part (a) follows by the de�nition of the
logic L. First, any cycle is obviously minimal inconsistent in L. Second, suppose
Y � XK is minimal inconsistent. One may check that, by Y �s inconsistency,
some subset Y � � Y is a cycle. By minimal inconsistency, then, Y = Y �. �

4.3 Conditions based on irreducible inconsistent sets

The last subsection�s class Z of subagendas is often large. This is for instance
re�ected in the fact that, for a preference agenda XK , all cycles Y � X (also
4-cycles, 5-cycles etc.) are minimal inconsistent, hence give rise to a subagenda
in Z (see part (b) of Remark 11). As a consequence, for instance unidimensional
alignment on Z, applied to preference agendas, is stronger than Rothstein�s or-
der restriction on triples, essentially because Z contains subagendas involving
more than three alternatives. Using such a rich class of subagendas Z was nec-
essary because we wanted to guarantee majority consistency even if individuals
hold incomplete judgment sets (whereas order restriction on triples does not
guarantees acyclic majority preferences if individual incompleteness is allowed).
We now show that, if individuals hold complete judgment sets, we can use

a much slimmer class of subagendas Z, which in the case of a preference XK

involves no more than three alternatives. We obtain the new subagendas by
focussing not on minimal inconsistent sets but on irreducible inconsistent sets,
i.e. by de�ning

Z := ffp;:p : p 2 Y g : Y is an irreducible inconsistent subset of Xg; (4)

where irreducibility is the notion to be introduced and studied now.
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De�nition 12 (i) For two inconsistent sets Y; Z � X, Z is a reduction of Y
(and Y is reducible to Z) if jZj < jY j and each p 2 ZnY is entailed by some
subset V � Y with jY nV j � 2.
(ii) An inconsistent set Y � X is irreducible if it has no reduction.13

For instance, the inconsistent set fa; a ! b; b ! c;:cg (where a; b; c are
distinct atomic propositions) is reducible to Z = fb; b! c;:cg, as b is entailed
by fa; a! bg. In the de�nition of reducibility, the clause jY nV j � 2 is essential.
Notably, only requiring jY nV j � 1 would render all inconsistent sets Y � X
with jY j � 3 reducible, namely to any pair fp;:pg with p 2 Y : :p is entailed
by Y nfpg (assuming non-paraconsistency L4).

As every non-minimal inconsistent set is reducible to any of its inconsistent
subsets, the following holds.

Lemma 13 Every irreducible inconsistent set Y � X is minimal inconsistent.

In particular, the class of subagendas Z de�ned by (4) is, as desired, con-
tained in that de�ned by (3).
Conversely, many minimal inconsistent sets Y � X, like the set fa; a !

b; b ! c;:cg mentioned above, are reducible. As another example, if X is the
(strict) preference agenda XK de�ned in Section 3.2 (for a set of options K),
then any k-cycle

Y = fx1Px2; x2Px3; :::; xk�1Pxk; xkPx1g

with k � 4 is reducible, e.g. to the 3-cycle fx1Px2; x2Px3; x3Px1g, as x3Px1 is
entailed by fx3Px4; x4Px5; :::; xkPx1g. The full characterisation of irreducible
inconsistent sets Y � XK is given in Remark 16 below.
In the light of the �rst aim stated at the beginning of Section 4, the following

result is crucial.

Proposition 14 Every complete and inconsistent judgment set A � X has an
irreducible inconsistent subset.

The reason why we need individual completeness is now apparent: this
guarantees that the majority outcome is complete (or close to complete if n is
even), so that Proposition 14 applies.

Proof. Let A � X be complete and inconsistent. Among all inconsistent
subsets of A, let B be one of smallest size jBj. As C+ is compact, jBj < 1.
We show that B is irreducible. Suppose for a contradiction that B is reducible
to C � X. We will de�ne an inconsistent subset of A smaller than B, in

13The condition that V � p could be weakened without a¤ecting our results to the con-
dition that V [ f:pg is inconsistent. (The two conditions are equivalent if the logic is non-
paraconsistent in the sense of condition L4 in Dietrich forthcoming.)
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contradiction to the choice of B. By jCj < jBj and the choice of B, we have
C ( A. So there is a p 2 CnA. Since A is complete, we have :p 2 A. As C is
a reduction of B, there is a subset B� � B with jBnB�j � 2 and B� � p. Now
B� [ f:pg is an inconsistent subset of A smaller than B:
- B� [ f:pg is a subset of A by B� � B � A and :p 2 A.
- B� [ f:pg is inconsistent by B� � p;
- jB� [ f:pgj � jB�j+ 1 = jBj � jBnB�j+ 1 � jBj � 2 + 1 < jBj. �

We are now in a position to prove our central result: if individuals hold not
only consistent but also complete judgment sets, the local conditions based on
irreducible sets guarantee majority consistency.

Proposition 15 If a pro�le of complete and consistent judgment sets satis�es
one (hence by Corollary 9 all) of the four local conditions in De�nitions 7-8,
with Z given by (4), the majority outcome is consistent.

Proof. We consider a pro�le (A1; :::; An) of the speci�ed kind, and we use
earlier proof notation.
Case 1: n is odd. Then A is complete. So, by Proposition 14, to prove A�s

consistency, it su¢ ces to prove that A has no irreducible inconsistent subset,
hence to prove that A \ Z is consistent for all Z 2 Z. The latter follows by an
argument analogous to the one in the proof of part (a) of Proposition 10.
Case 2: n is even. Let An+1 be any complete and consistent judgment

set such that (A1; :::; An+1) is still satis�es the local condition, e.g. single-
plateauedness on Z, now for group size n+1 (one might take An+1 := A1). By
case 1 the majority outcome on (A1; :::; An+1) is a consistent judgment set eA.
Check that A � eA. So A is consistent, as desired. �
Finally, to illustrate that the class of subagendas Z has shrunk �and our

local conditions have become weaker �by de�ning Z by (4) rather than (3),
we again consider preference agendas. A pro�le (�1; :::;�n) of strict preference
relations on K is order restricted on triples (Rothstein 1990/1991) resp. (one-
dimensionally) intermediate on triples (Grandmont�s 1978) if, for every sub-
agenda K 0 � K with jK 0j = 3, the pro�le restricted to K, (�1 jK0 ; :::;�n jK0),
is order restricted resp. intermediate (as de�ned in Section 3.2).

Remark 16 Consider the preference agenda XK.
(a) The irreducible inconsistent sets Y � XK are the 1- or 2- or 3-cycles.
(b) So the class of subagendas (4) is Z = ffp;:p : p 2 Y g : Y � XK is a 1-

or 2- or 3-cycleg.
(c) A pro�le (�1; :::;�n) of strict linear orders14 on K is intermediate (equiv-

alently, order restricted) on triples if and only if the associated judgment
pro�le (A�1 ; :::; A�n), given by (1), is unidimensionally ordered (equiva-
lently, aligned) on Z, with Z given by (4).

14 i.e. of asymmetric, transitive and connected relations
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Proof. (a) First, consider a 1- or 2- or 3-cycle Y . If Y is a 1-cycle, i.e.
Y = fxPxg for some x 2 K, or a 2-cycle, say Y = fxPy; yPxg with dis-
tinct x; y 2 K, then Y is obviously irreducible. Now let Y be a 3-cycle, say
Y = fxPy; yPz; zPxg for distinct x; y; z 2 K. Suppose for a contradiction
that Y is reducible, say to Z � X. Then jZj � 2. Moreover each p 2 Z is
entailed by a single member of Y , i.e. by one of xPy; yPz; zPx. But the only
proposition (in X) entailed by xPy is xPy (and the logically equivalent :yPx),
and similarly for yPz and zPx. So each p 2 Z is one of xPy; yPz; zPx (or one
of :yPx;:zPy;:xPz). Hence Z is (essentially identical to) a proper subset of
Y = fxPy; yPz; xPxg. So Z is consistent, a contradiction.
Second, suppose Y � XK is irreducible inconsistent. By Lemma 13, Y is

minimal inconsistent. So, by part (a) of Remark 11, Y is a cycle, hence (es-
sentially identical to) a set of type fx1Px2; x2Px3; ::; xk�1Pxk; xkPx1g (k � 1).
Now k � 3, as otherwise Y would be reducible to Z := fx1Px2; x2Px3; x3Px1g.
So Y is a 1- or 2- or 3-cycle.
(b) follows immediately from (a).
(c): Let (�1; :::;�n) be as speci�ed. For all i, as �i is is a strict linear order,

we have, for all x; y 2 K, x �i y , y 6�i x; so for (�1; :::;�n) intermediateness
on triples is indeed equivalent to order restriction on triples. Moreover, as each
Ai is complete and consistent, for (A1; :::; An) unidimensional orderedness on Z
is indeed equivalent to unidimensional alignment on Z (see Corollary 9). So
it remains to show that (�1; :::;�n) is intermediate on triples if and only if
(A1; :::; An) is unidimensionally ordered on Z.
To prove the latter, note �rst that (A�1 ; :::; A�n) is trivially unidimen-

sional ordered on any 1-cycle Z = fxPx;:xPxg, and also on any 2-cycle
Z = fxPy;:xPy; yPx;:yPxg (consider an order of N beginning with the
individuals i with x �i y, and followed by the individuals i with y �i x). For
this reason, and by part (b), unidimensional orderedness on Z is equivalent to
unidimensional orderedness on

Z 0 : = ffp;:p : p 2 Y g : Y � XK is a 3-cycleg
= ffxPy;:xPy; yPz;:yPz; zPx;:zPxg : x; y; z 2 K all distinctg.

Now unidimensional orderedness on Z 0 is equivalent to unidimensional ordered-
ness on

Z 00 := ffxPy; yPx; yPz; zPy; zPx; xPzg : x; y; z 2 K all distinctg

(where Z 00 arises from Z 0 by replacing any :xPy in any Y 2 Z 0 by yPx),
because :xPy is equivalent to yPx in the logic L, so that each Ai contains
:xPy if and only if it contains yPx (as Ai is complete and consistent). One
easily checks that (�1; :::;�n) is intermediate on triples if and only if (A1; :::; An)
is unidimensionally ordered on Z 00, as desired. �
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