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Abstract

In this paper we prove the following fixed point theorem. Consider a non-empty bounded

polyhedron P and a function f : P → P such that for every x ∈ P for which f(x) 6= x there

exists δ > 0 such that for all y, z ∈ B(x, δ) ∩ P it holds that

(f(y)− y)>(f(z)− z) ≥ 0,

where B(x, δ) is the ball in IRn centered at x with radius δ. Then f has a fixed point,

i.e., there exists a point x∗ ∈ P satisfying f(x∗) = x∗. The condition allows for various

discontinuities and irregularities of the function. In case f is a continuous function, the

condition is automatically satisfied and thus the Brouwer fixed point theorem is implied

by the result. We illustrate that a function that satisfies the condition is not necessarily

upper or lower semi-continuous. A game-theoretic application is also discussed.
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1 Introduction

Almost one century ago Brouwer (1912) proved a remarkable result saying that any con-

tinuous function from the m-dimensional unit ball to itself has a fixed point, a point that is

mapped by the function into itself. The Brouwer fixed point theorem was one of the early

major achievements of algebraic topology. This celebrated theorem has been generalized

in several ways, for general surveys of the literature see, e.g., Smart (1974) and Istratescu

(1981). For instance, Schauder (1930) generalized the theorem to Banach spaces. Kakutani

(1942) gave an extension to upper semi-continuous point-to-set mappings.

Existence results of fixed points in case the function is not continuous were given by

Tarski (1955) and Caristi (1976). Tarski’s theorem is restricted to functions on a sublattice

satisfying some monotonicity condition. Caristi’s theorem concerns functions satisfying a

non-expansion condition. However, it should be noticed that both these theorems do

not cover Brouwer’s theorem, because a continuous function does not need to satisfy the

conditions in Tarski’s or Caristi’s theorem. Another major development during the last

few decades is about the computation of fixed points of a continuous function or upper

semi-continuous point-to-set mapping, see, e.g., Scarf (1973), Todd (1976), Allgower and

Georg (1990), and Yang (1999).

Nowadays, the Brouwer, Kakutani, and Tarski theorems have become the most often

used tools in economics and game theory, see, e.g., Arrow and Hahn (1971), Fudenberg

and Tirole (1991), and Herings (1996). Also on the practical frontier fixed point methods

are used by applied economists to analyse equilibrium models, for instance, to study the

effects of policy and technical changes, see e.g., Shoven and Whalley (1992).

In this paper, we give a general condition, to be called the locally gross direction

preserving property, under which a fixed point of a function from an arbitrary non-empty

convex polyhedron to itself exists. The condition says that at any point x not being a

fixed point of f it must hold that for any two points y and z in some neighborhood of x

the vectors f(y)− y and f(z)− z should point grossly in the same direction, i.e. the inner

product of f(y) − y and f(z) − z should be non-negative. Surprisingly, this allows for all

kinds of discontinuities and irregularities of the function, even at a fixed point. We show

that any continuous function is locally gross direction preserving, so that Brouwer’s fixed

point theorem is covered by our new theorem. We illustrate that a function that satisfies

the condition is not necessarily upper or lower semi-continuous. On the other hand, a

function satisfying the monotonicity condition of Tarski does not need to be locally gross

direction preserving. To our best knowledge, our new theorem seems to be the first of

such kind that both allows discontinuities and covers Brouwer’s theorem simultaneously

in the single-valued case. Discontinuities arise naturally in various fields of study, such as

engineering, economics and game theory. Here we also briefly discuss an application of our
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theorem in game theory.

This paper is organized as follows. Section 2 establishes the theorem and gives some

examples to illustrate its generality. Section 3 presents a game theoretic application.

2 An existence theorem

Let P be a non-empty bounded polyhedron in the n-dimensional Euclidean space IRn and

let f be a function from P to P . We call x∗ ∈ P a fixed point of f if f(x∗) = x∗, i.e., f

maps x∗ into itself. Brouwer (1912) proved that if f is continuous on P, then f has a fixed

point. In this paper we provide a fixed point theorem that allows for discontinuities, even

at a fixed point itself. More precisely, the existence of a fixed point is guaranteed when f

satisfies the so-called locally gross direction preserving property. A discrete version of this

property was originally used in Yang (2004) to prove the existence of a fixed point in case

the domain is a discrete set. For x ∈ IRn and δ > 0, let B(x, δ) denote the n-dimensional

ball in IRn with center x and radius δ.

Definition 2.1 A function f : P → P is locally gross direction preserving when

for every x ∈ P for which f(x) 6= x, there exists δ > 0 satisfying that for every y,

z ∈ B(x, δ) ∩ P it holds that

(f(y)− y)>(f(z)− z) ≥ 0.

Throughout the paper, for h ∈ IN, let Ih denote the index set {1, . . . , h}. We now state

the main result of this paper.

Theorem 2.2 Let P be a non-empty bounded polyhedron in IRn and let the function

f : P → P satisfy the locally gross direction preserving property. Then f has a fixed point.

Proof: Take a sequence of simplicial subdivisions, (Tk)k∈IN, of P with mesh size tending

to zero if k goes to infinity, i.e., for each k ∈ IN, Tk is a finite collection of simplices whose

union is P and for which the intersection of any two simplices is either empty or a common

face of both. Since P is a bounded polyhedron (i.e., a polytope) and therefore the convex

hull of a finite number of points in IRn, such a sequence exists; see for example Talman and

Yamamoto (1989). For k ∈ IN, let f
k

denote the piecewise linear approximation of f with

respect to Tk, i.e., for x ∈ P,

f
k
(x) =

n+1∑
j=1

λjf(xj),
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where x1, . . . , xn+1 are the vertices of a simplex in Tk containing x, and λ1, . . . , λn+1 are

the unique non-negative numbers with sum equal to one satisfying

x =
n+1∑
j=1

λjx
j.

Since the function f
k

is piecewise linear and therefore continuous on P , the Brouwer fixed

point theorem implies that for every k ∈ IN there exists a fixed point xk of f
k
.

Next we consider the sequence of points (xk)k∈IN. Since this sequence is a sequence

of points in the compact set P , there exists a convergent subsequence. Without loss of

generality we assume that the sequence (xk)k∈IN itself converges to some x∗ ∈ P . For

k ∈ IN, let σk be an n-dimensional simplex in Tk with vertices xk,1, . . . , xk,n+1 containing

xk. Then there exist unique non-negative numbers λk
j , j ∈ In+1, with sum equal to 1,

satisfying

xk =
n+1∑
j=1

λk
j x

k,j and f
k
(xk) =

n+1∑
j=1

λk
j f(xk,j).

If f(x∗) = x∗, then x∗ is a fixed point of f and the theorem has been proved. Suppose

therefore that x∗ is not a fixed point of f . Then according to the condition of the theorem

there exists δ∗ > 0 such that for all y, z ∈ B(x∗, δ∗) ∩ P it holds that

(f(y)− y)>(f(z)− z) ≥ 0.

Since the sequence (xk)k∈IN converges to x∗ and the mesh size of Tk converges to zero when

k goes to infinity, we obtain that for every j ∈ In+1 the sequence (xk,j)k∈IN converges to

x∗. Hence, there exists k∗ ∈ IN such that for all k ≥ k∗ it holds that xk,j ∈ B(x∗, δ∗) ∩ P

for all j ∈ In+1 and therefore

(f(xk,i)− xk,i)>(f(xk,j)− xk,j) ≥ 0,

for all i, j ∈ In+1. On the other hand, since f
k
(xk) = xk, for all k ∈ IN, we have that

n+1∑
j=1

λk
j (f(xk,j)− xk,j) = 0n,

where 0n is the n-dimensional vector of zeros. Fix any k ≥ k∗. Since
∑n+1

j=1 λk
j = 1, there

exists j∗ ∈ In+1 satisfying λk
j∗ > 0. Clearly,

n+1∑
j=1

λk
j (f(xk,j∗)− xk,j∗)>(f(xk,j)− xk,j) = 0.

Since every term in this summation is non-negative, every term must be zero. So, taking

j = j∗ we obtain that

(f(xk,j∗)− xk,j∗)>(f(xk,j∗)− xk,j∗) = 0,
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implying that f(xk,j∗) = xk,j∗ . Hence xk,j∗ is a fixed point of f . 2

Observe that basically the proof shows two possibilities, namely that the limit point x∗

of the convergent sequence (xk)k∈IN is a fixed point, or for k large enough, any simplex in

the converging sequence has at least one of its vertices as a fixed point. This also implies

that the result does not follow from applying the Kakutani fixed point theorem to the

mapping F defined as the convex closure of f . By definition of the convex closure, F is

upper semi-continuous and thus there exists a point x∗ satisfying x∗ ∈ F (x∗). However,

a fixed point of the convex closure F of f is not necessarily a fixed point of f . This

can be seen from the proof, since due to possible discontinuities of f , the limit point x∗

of the converging sequence (xk)k∈IN is not necessarily a fixed point of f , whereas in case

of applying the simplicial procedure to the upper semi-continuous convex closure F , the

limit point x∗ always is a fixed point of F . As a consequence, Theorem 2.2 is not an

application of Kakutani fixed point theorem. This can be also understood by observing

that Kakutani fixed point theorem generalizes Brouwer fixed point theorem only when

the mapping is multi-valued, and it is identical to Brouwer’s theorem when the mapping

is single-valued; in contrast, our Theorem 2.2 is a generalization of Brouwer’s theorem.

Indeed, a continuous function is locally gross direction preserving. Hence Theorem 2.2

implies that any continuous function from P to P has a fixed point, the Brouwer fixed

point theorem. This gives the following corollary.

Corollary 2.3 Let P be a non-empty bounded polyhedron in IRn and let f : P → P be

a continuous function. Then f has a fixed point in P .

Proof: Take any point x in P and suppose that f(x) 6= x. Clearly, (f(x)−x)>(f(x)−x) >

0. Consider the function g : P × P → IRn × IRn defined by

g(y, z) = (f(y)− y)>(f(z)− z).

Since f is continuous, g is continuous, so there exists δ > 0 so that for all y, z ∈ B(x, δ)∩P

it holds that g(y, z) > 0. Hence f is locally gross direction preserving and the result follows

from Theorem 2.2. 2

To illustrate and examine the locally gross direction preserving property, let us consider

the one-dimensional case, i.e. f : [0, 1] → [0, 1]. In this case we can interpret the function

as the description of an object’s movement in time-distance space. Let t ∈ [0, 1] denote

time and f(t) ∈ [0, 1] the position of the object at time t. This object could be physical,

non-physical or imaginary. We could for example think of the movement of a star or a

particle through space or the fluctuation of a stock price during time period [0, 1]. Any

fixed point of f represents a time-position combination (t, f(t)) on the diagonal in the
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two-dimensional square [0, 1]× [0, 1]. The locally gross direction preserving property says

that, when at time t the object does not lie on the diagonal, then there exists a time span

around t in which the object lies on the same side of the diagonal. If this holds, then the

theorem states that there exists at least one time-position combination on the diagonal.

In particular, in the physical world the theorem demonstrates that no matter how slowly

or quickly, and no matter how irregularly or regularly the object moves, it must hit the

diagonal at least once during its movement from time 0 to time 1.

A function f : [0, 1] → [0, 1] is said to be lower semi-continuous if for all sequences

(xk)k∈IN with xk ∈ [0, 1] for all k ∈ IN, such that xk → x it holds that lim infk→∞ f(xk) ≥
f(x). A function f : [0, 1] → [0, 1] is said to be upper semi-continuous if for all sequences

(xk)k∈IN with xk ∈ [0, 1] for all k ∈ IN, such that xk → x it holds that lim supk→∞ f(xk) ≤
f(x). Notice that Theorem 2.2 allows for various kinds of discontinuities of the function f.

It is clear from the example that the function f does not need to be lower semi-continuous

or upper semi-continuous.

Although the local gross direction preserving property allows for all kinds of disconti-

nuities, the property puts sufficient conditions to guarantee the existence of a fixed point.

This is clarified in the next example of a one-dimensional function on [0, 2], where at given

point x, f−(x) is the (lower) limit of f from the left and f+(x) the (upper) limit of f from

the right.

Example 2.4 Let f : [0, 2] → [0, 2] be continuous at any x ∈ [0, 2], except at x = 1.

Without loss of generality we assume that f(x) > x for all x < 1 (otherwise there is a fixed

point x∗ satisfying x∗ < 1). So, f−(1) ≥ 1. Now the locally gross direction preserving

condition requires that f(1) ≥ 1, since f(1) < 1 contradicts that for every y and z in

some B(1, δ) it holds that (f(y) − y)>(f(z) − z) ≥ 0. Further, when f+(1) > 1, then

there exists a fixed point x∗ > 1. So, suppose f+(1) ≤ 1. Then the locally gross direction

preserving property requires that either (i) f(1) = 1 and thus x∗ = 1 is a fixed point, or

(ii) f(1) > 1 and there exists some y, 1 < y ≤ 2, such that f(x) ≥ x for all 1 < x ≤ y. In

the latter case there is a fixed point x∗ > 1. In particular it may occur that f(x) = x for

all 1 < x ≤ y, corresponding to the case in the proof that for k large enough any simplex

in the converging sequence has at least one of it vertices as a fixed point. Observe that the

locally gross direction preserving property excludes that f(1) > 1 and f+(1) < 1 and that

f(1) < 1 and f−(1) > 1. 2

More generally, the locally gross direction preserving condition requires that if x is not

a fixed point of f there exists a neighborhood of x such that for any two points y and z in

this neighborhood it holds that the vectors f(y)− y and f(z)− z make a sharp angle with

each other or are orthogonal to each other, i.e., the direction of these two vectors is grossly
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preserved. This condition replaces continuity at x. If x is a fixed point of f nothing about

f around x is required.

Locally gross direction preserving does not require that the function is monotone non-

decreasing, which property is required by Tarski’s theorem. On the other hand, a function

satisfying Tarski’s theorem does not need to be locally gross direction preserving. For

example, if f(x) = 1
3
(x + 1) for 0 ≤ x ≤ 1 and f(x) = 1

3
(x + 3) for 1 < x ≤ 2, then f is

monotone increasing on the interval [0, 2], but f is not locally gross direction preserving at

x = 1.

Finally we wish to stress that Theorem 2.2 is restricted to a bounded polyhedron P .

Whether locally gross direction preserving is sufficient to guarantee the existence of a

fixed point on an arbitrary non-empty convex and compact set is still an open question.

The problem is that the proof makes use of a simplicial subdivision of P , which requires

the set to be a polyhedron. Although any arbitrary convex and compact set C can be

approximated by a sequence of polyhedra endowed with simplicial subdivisions with mesh

size going to zero, this is not enough to extend the proof to C, since the discontinuities of

f on the boundary of C prevent us from taking the limit of the sequence of polyhedra. So

to resolve this problem, a different approach is needed.

3 A game-theoretic application

Discontinuities arise naturally in various fields of study, such as economics and game theory;

see, e.g., Arrow and Hahn (1971), Fudenberg and Tirole (1991), and Herings (1996). In

this section we give a non-cooperative game-theoretic application and state a sufficient

condition under which a Nash equilibrium exists for the case where discontinuities may

occur. A non-cooperative game consists of a finite number of players, say, N . Player i,

i ∈ IN , has available a set of actions, denoted by Si. For any i ∈ IN , the set Si is an

mi-dimensional bounded polyhedron in IRni for some non-negative integers mi and ni. The

cartesian product ΠN
i=1S

i is called the strategy space of the game and is denoted by S. An

element x = (x1, · · · , xN) of S is called a strategy combination. A strategy combination

x ∈ S yields a payoff ui(xi, x−i) to player i, where x−i = (xj)j 6=i denotes the actions

of players other than player i in strategy x. A strategy combination x∗ ∈ S is a Nash

equilibrium if for every player i ∈ IN action x∗i maximizes the payoff of player i given that

the other players choose x∗−i, i.e., for all i ∈ IN

ui(x
∗
i , x

∗
−i) ≥ ui(xi, x

∗
−i) for all xi ∈ Si.

For x−i ∈ Πj 6=iS
j, let bi(x−i) be a best reply of player i when the other players choose

action x−i, i.e., bi(x−i) maximizes ui(xi, x−i) over xi ∈ Si, i ∈ IN . Clearly, x∗ ∈ S is a Nash
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equilibrium if bi(x
∗
−i) = x∗i for all i ∈ IN . It is well-known that if all best reply functions bi,

i ∈ IN , are continuous, then there exists a Nash equilibrium, see e.g., Glicksberg (1952).

The conditions on the functions ui to guarantee that the best reply functions are continuous

are known to be rather strong. Here we show that a Nash equilibrium exists under the

following weaker condition on the best reply functions.

Theorem 3.1 Let S = ΠN
i=1S

i be the cartesian product of N non-empty bounded poly-

hedra and, for i ∈ IN , let bi : Πj 6=iS
j → Si be best reply functions such that for every x ∈ S

for which bj(x−j) 6= xj for some j ∈ IN there exists δ > 0 satisfying that for every y,

z ∈ B(x, δ) ∩ S we have

N∑
i=1

(bi(y−i)− yi)
>(bi(z−i)− zi) ≥ 0.

Then there exists a point x∗ ∈ S satisfying bi(x
∗
−i) = x∗i for all i ∈ IN .

Proof: For i ∈ IN , let Si be an mi-dimensional polyhedron in IRni . Define the function ri

from S to IRni by ri(x) = bi(x−i). The condition in the theorem implies that for all x ∈ S

there exists δ > 0 satisfying that for every y, z ∈ B(x, δ) ∩ S we have

N∑
i=1

(ri(y)− yi)
>(ri(z)− zi) ≥ 0.

For x ∈ S, define r(x) = (r1(x), · · · , rN(x)). Clearly, the set S is an m-dimensional bounded

polyhedron in IRn, with m =
∑N

j=1 mj and n =
∑N

j=1 nj. Then r is a function from S into

itself and for every x ∈ S for which r(x) 6= x there exists δ > 0 satisfying that for every y,

z ∈ B(x, δ) ∩ S we have

(r(y)− y)>(r(z)− z) ≥ 0,

i.e., the function r satisfies the conditions of Theorem 2.2 with P equal to S. Hence, the

function r has a fixed point x∗ on S, i.e., r(x∗) = x∗. Clearly, a fixed point x∗ of r satisfies

bi(x
∗
−i) = x∗i for all i ∈ IN . 2

Notice that if all functions bi are continuous, then the conditions in Theorem 3.1 are

automatically satisfied. Indeed, if bj(x−j) 6= xj for some j ∈ IN , then it holds that

N∑
i=1

(bi(x−i)− xi)
>(bi(x−i)− xi) > 0.

Hence, for such an x ∈ S there exists δ > 0 satisfying that for every y, z ∈ B(x, δ) ∩ S

N∑
i=1

(bi(y−i)− yi)
>(bi(z−i)− zi) ≥ 0.
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