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Abstract

This paper considers the ATM Network Installation Problem on a tree. To install such a

communication network, decisions concerning the location of hardware devices, the capacity

installation on links, and the routing of demands have to be made simultaneously. The

problem is shown to be NP-hard. By exploiting the tree structure we show that the problem

can be solved to optimality using a pseudo-polynomial time dynamic programming algorithm.

Computational experiments on real-life problem instances indicate that the algorithm is

highly e�cient.

1 Introduction

Modern telecommunication networks are capable of processing multiple telecommunication ser-
vices on a single physical network. These so-called broadband networks usually consist of several
hierarchical network layers. At the top layer (often referred to as the Backbone), large capacity
nodes serve large geographical areas. These areas are decomposed into smaller regions, each of
which is served by nodes located in lower layers of the network. In the Backbone, connectivity
between nodes is usually fairly high. This is due both to high tra�c requirements, which make
the installation of direct links between nodes economically attractive, and to reliability consid-
erations, which coerce that in case of a calamity in the network (the breakdown of a node or a
link), alternative routing between pairs of nodes must be available. In lower levels of the network
both the intensity of tra�c and the need for reliability decrease, and the structure commonly
used here is thus a tree. For a detailed description of telecommunication networks, as well as an
explanatory visualization, see Balakrishnan et al. [1].

In order to send information of di�erent types of services over the same broadband network,
a structured protocol is required. Nowadays ATM (Asynchronous Transfer Mode) is widely
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accepted as the standard protocol for (future) broadband networks. In the ATM protocol, a
message that needs to be sent from its source to its destination is decomposed into small units
of information which are stored in ATM cells. In addition to a part of the message, an ATM
cell also contains certain routing information, which enables the cell to be routed through the
network from source to destination. At the destination node, the di�erent units are combined
to reconstruct the original message. To implement the ATM protocol on the telecommunication
network, certain hardware devices have to be installed, connections between these devices have
to be made, and customers must be connected to these devices. As such, an ATM network
topology is built upon an existing network structure. The problem of designing and maintaining
telecommunication networks typically involves simultaneous decisions regarding the location of
hardware devices, the capacity of these devices, the capacity installation on connections between
devices, and the routing of messages over these connections. Since these problems are by far too
complex to be handled at once, they are often decomposed.

One way to decompose network problems is to consider location, capacity installation and rout-
ing problems separately. Gavish [10] schematizes the decomposition of the overall network
design process and gives references to literature on the individual problems. More recently,
combined routing and capacity installation problems have been studied, although most studies
are restricted to the Backbone network. Gavish and Altinkemer [11] consider a nonlinear model
incorporating queueing costs as well as �xed and variable transportation costs on connections,
and use a Lagrangean decomposition approach to tackle the problem. Brockm�uller, G�unl�uk
and Wolsey [5] use an integer linear formulation and apply polyhedral techniques in a branch-
and-cut framework. Both models assume that each commodity (i.e. a demand which must be
sent from its source node to its destination node) should be routed via a single path (so called
non-bifurcated routing). In constrast, Magnanti, Mirchandani and Vachani [13],[14] allow for
the demand of a commodity to be split among di�erent paths, thereby generating 
ow models
(bifurcated routing). In all of the aforementioned models, the required capacity on an edge is
the sum of the required capacities in both directions. Instead, Bienstock and G�unl�uk [4], and
Bienstock et al. [3] consider capacities which are bi-directional, i.e. the required capacity on an
edge is the maximum of the required capacities in the two directions. All of the above models
assume that the topology in the Backbone is already given and they do not treat the location
problem.

Other papers focus on Local Access Networks (LANs) (see for instance Gavish [9], Balakrish-
nan et al. [1]). LANs are of particular interest since they account for a large portion of the
total investments in telecommunication networks. Hence, even marginal improvements in the
LAN design can lead to signi�cant overall savings. Balakrishnan, Magnanti and Wong [2] use
decomposition and polyhedral techniques to tackle the Local Access Network Expansion Prob-
lem, while Cho and Shaw [6] employ a column generation approach. Flippo et al. [7] show
that the problem can be solved to optimality in pseudopolynomial time, by using a dynamic
programming algorithm.

In this paper we discuss the ATM Network Installation Problem (denoted ANIP in the sequel)
on a given tree, which consists of all the nodes in the area being served by the same Backbone
node. The root of the tree is thus a node in the Backbone, in which an ATM hardware device is
installed by default. Tra�c demand between pairs of nodes in the tree are also given (these are
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called commodities). To enable communication between the endpoints of a commodity, capacity
has to be installed on the edges of a walk in the tree between the nodes involved. Note that
a walk is de�ned here as a path in which edge repetition is allowed. The reason for this edge
repetition will become clear in Section 2. By installing a hardware device (called an ATM cross
connect) in a node, ATM signals can be combined such that the required capacity on the edges
can be reduced. The key issue in ANIP is thus to �nd a trade-o� between costs of capacity
installation on edges on the one hand, and costs of installing ATM cross connects in nodes on
the other hand, such that all demand is met and total costs are minimized.

In the sequel, ANIP is shown to be NP-hard, as it contains SUBSET SUM as a special case.
We state a pseudo-polynomial time dynamic programming algorithm which runs in O(nB4) and
requires O(nB2) storage space. Here, n refers to the number of nodes in the tree, and B to
an upperbound on the capacity of an ATM cross connect. Although the algorithm can easily
be applied when demand is non-symmetric, for ease of exposition we will assume throughout
this paper that demand is indeed symmetric. Computational experiments indicate that our
algorithm runs e�ciently on real-life problem instances, made available to us by KPN Research,
Leidschendam, The Netherlands.

The remainder of this paper is organized as follows. In Section 2 we give a detailed description
of di�erent aspects of the functionality of ATM networks and its components, for as far as
they are relevant for the problem at hand. The notation used throughout this paper and a
mathematical formulation of the problem are stated in Section 3. In Section 4 two families
of subproblems are de�ned, and the relations between these subproblems are discussed. The
dynamic programming algorithm and its use as an ATM network planning tool are the subject
of Section 5. Computational results conclude the paper in Section 6.

2 ATM functionality

In this section we give a detailed description of an ATM tree network and the hardware devices it
may contain. We con�ne ourselves to those functionalities which are important for the problem
at hand. An ATM tree network consists of ATM cross connects (to be referred to as concentrators
henceforth) that can be installed in the nodes of the tree, and cables between these concentrators
(usually referred to as connections). If a connection is installed between two concentrators, it
actually requires capacity installation on each edge of the (unique) path between the end points
of the connection. We consider two types of connections, viz. 34Mb/s and 155Mb/s connections
(of course the model can be extended to incorporate other types of connections as well). The
capacity of a connection is bi-directional, i.e. a 34Mb/s connection can accomodate 34Mb/s
in both directions simultaneously. Connections can be used to transport information between
demand nodes (nodes in the underlying tree structure) and concentrators on the one hand,
and between concentrators themselves on the other. We assume that all nodes in the tree are
demand nodes, that is each node in the tree is the source (and by symmetry of demand also the
destination) of a commodity. If necessary, the demand of certain commodities can be set equal
to zero.
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A concentrator contains a given number of slots (cf. Figure 1(c)). In each of these slots an
interface card of a certain type can be installed. As for connections, we consider two types of
interface cards, viz. 34Mb/s and 155Mb/s interface cards. Each type of card has a number
of input/output gates which equals the number of connections that can be connected to the
interface card. Obviously, 34Mb/s (155Mb/s) connections can only be connected to 34Mb/s
(155Mb/s) cards. Di�erent types of concentrators are available, which for our purpose only
di�er in the number of slots they provide. This number of slots determines a concentrator's
capacity. Apart from slots a concentrator also contains a routing table. An ATM cell that
enters a concentrator via an input/output gate of one of the interface cards installed, is passed
through the routing table, which evaluates the routing information in the cell to determine
on which connection the cell should leave the concentrator. This gives the concentrator the
capability to separate two (or more) commodities which enter the concentrator via the same
connection by sending them out on di�erent connections. Of course the reverse, i.e. bundling of
commodities, is also possible.

The overall ATM tree network should now be constructed in such a way that each commodity
is routed from its source node to its destination node. This route may pass several ATM cross
connects on its way. A connection must be installed on this route in any of three cases : on
the unique path between each pair of consecutive ATM cross connects on this route, between
the source of a commodity and its nearest ATM cross connect on the route, and between the
destination of the commodity and its nearest ATM cross connect. Furthermore, a su�cient
number of interface cards should be installed in the ATM cross connects in order to connect
the connections to the ATM cross connects. Since the complete route from source node to
destination node for a commodity is thus a concatenation of connections, the route is often
called a virtual path in telecommunication literature. However, since the concatenation of paths
(which itself do not allow for edge repetition) implies that on the complete route itself edge
repetition might occur when a speci�c edge occurs in more than one of these paths, from a
graph theoretical point of view it should really be referred to as a walk (which by de�nition
allows for edge repetition). To explain the above in more detail, consider the illustration in
Figure 1.

In order to enable communication between demand nodes s; t and u, all of these nodes must be
connected to a concentrator. The concentrator to which a demand node is connected is called
its \homing node" (or \homing concentrator"). Suppose that a concentrator is installed in the
parent node of node s and t, serving as a homing node for nodes s and t, that a concentrator
is installed in u which is the homing node for node u, and that a �nal concentrator is installed
in the root. This con�guration is depicted in Figure 1(b), where squared boxes indicate the
installation of a concentrator. If the origin and destination of a commodity have a di�erent
homing node, a virtual walk (as explained in the above) between the two homing nodes must
be installed. In general, this walk may pass other concentrators. Figure 1(c) shows what type
of connections may be added to enable the desired communication between nodes s; t and u
(the proposed con�guration is not claimed to be optimal). Commodity (s; u) enters the homing
concentrator of s on a 34Mb/s connection, and the same holds for commodity (t; u). Next, the
two commodities are bundled and transferred to the concentrator in the root on a single 155Mb/s
connection. There the commodities are simply passed on, again via a 155Mb/s connection,
towards the concentrator in node u. This connection passes two edges in the underlying graph,
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and therefore requires capacity installation on both edges. Finally the commodities are delivered
at node u via a 155Mb/s connection. Note that to route the commodities from a demand node
to its homing concentrator, and to separate/combine commodities at a demand node, some
hardware device other than a concentrator must be installed at the demand node as well. In
general, such hardware devices must be installed at every demand node. Therefore, these devices
do not in
uence the design problem, and are left out of consideration. The reverse walk can be
used for commodity (u; s) and (u; t). The reader may note that 34Mb/s (155Mb/s) interface
cards have two (one) input/output gates. We will say more about the in
uence of the number
of input/ouput gates in Section 3.

In the solution described in the above and depicted in Figure 1, no edge repetition occurs.
Suppose however, that no concentrator was installed in the parent node of demand nodes s and
t, and that the concentrator in the root node would serve as their homing node. Furthermore,
assume that there would be a positive demand commodity to be routed from origin node s to
destination node t. From the origin node s, the commodity would be routed to its homing node
in the root of the tree (using the unique path between node s and the root node). Next, the
commodity would be routed via the unique path between the root node and destination node t.
The reader may observe that in this case the concatenation of these two paths does imply edge
repetition on the complete route from origin to destination for the commodity, since the edge
between the root node and the parent node of s and t is passed two times.

Network planners often impose certain restrictions on the layout of telecommunication networks.
Some of these restrictions may be due to technical requirements, whereas others are considered
to be economically sensible, or practicle for operational convenience regarding maintenance and
repair. For ANIP, the following restrictions apply.

1. Upward homing of demand nodes: a demand node always homes on the �rst concen-
trator located on the unique path from the demand node to the root of the tree (both
endpoints including);

2. Upward homing of concentrators: connections between two concentrators are only pos-
sible if one concentrator \homes" on the other, where a concentrator in node v (other
than the root node) always homes on the �rst concentrator located on the path from (but
excluding) v to the root. For example in Figure 1, the concentrator in node u is said to
be homing on the concentrator in the root node, and the same holds for the concentrator
located in the parent node of node s and t.

The reader may observe that the ATM network proposed in the example instance satis�es both
routing restrictions.

Next, it needs to be stated that a commodity may not be split over di�erent connections. This
implies that 3 commodities, each with a demand of 20 Mb/s, cannot be routed on two 34Mb/s
connections (although the total capacity seems to su�ce), since it would require one of the
commodities to be split over two connections. De�ne Ju as the set of possible connections
between a demand node u and its homing concentrator. For example, if the largest capacity
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concentrator contains 10 slots, and the number of input/ouput gates on a 34Mb/s and 155Mb/s
interface card equals two and one, respectively, then Ju consists of twenty 34Mb/s connections
and ten 155Mb/s connections. Furthermore, let Du be the set of commodities which are to be
sent from a demand node u to its homing concentrator (all in the same direction). Finally, de�ne
the following decision variables and parameters.

mj
u =

�
1 if connection j is used
0 otherwise

(j 2 Ju)

tiju =

�
1 if commodity i is assigned to connection j
0 otherwise

(i 2 Du; j 2 Ju)

�iu = demand of commodity i (i 2 Du)

capju = capacity of connection j (j 2 Ju)

Then the collection of connections required to route the commodities of demand node u to its
homing concentrator should satisfy the following restrictions:

P
j2Ju t

ij
u = 1 8i 2 Du (1)P

i2Du
�iu � t

ij
u � capju �m

j
u 8j 2 Ju (2)

mj
u 2 f0; 1g; t

ij
u 2 f0; 1g 8i 2 Du; 8j 2 Ju (3)

Likewise, for all commodities which must be routed from a concentrator to its homing concen-
trator, the required collection of connections involved should satisfy a similar set of constraints.
This problem is referred to as the bin-packing problem of commodities on connections. We will
return to this issue in Section 3, after we have given a mathematical formulation of the problem.

The costs of an ATM network structure stem from concentrators and connections. The following
assumptions are made regarding to the costs:

� the costs of a concentrator are fully determined by the number of connections of each type
connected to it, and by the node in which it is installed;

� the costs of a connection equal the sum of the costs on the edges on the connection (path);

� the costs of the concentrators are independent of the costs of the connections.

Note that these assumptions allow for very general costs structures, and encompass the typical
�xed-charge cost functions observed in practice. Now all ingredients for the ANIP are discussed
in words, a formal description can be given.
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3 Notation and Mathematical Formulation

We introduce the following problem parameters:

G(V,E) = tree G, where V represents the node set and E the undirected edge set;
the nodes are numbered in a depth �rst order with the root numbered 0;
the edges are also numbered in a depth �rst order such that edge v is
the edge between node v and its unique parent

dv = the number of children of node v; the children are denoted by s1v; : : : ; s
dv
v

T [v; i] = subtree induced by v, its �rst i children and all successors of these children
V [v; i] = set of nodes in subtree T [v; i]
E[v; i] = set of edges in subtree T [v; i]
V (u;w) = set of all nodes on the path from u to w, including both endpoints
E(u;w) = set of all edges on the path from u to w
Xu = set of possible homing nodes for a demand node u, i.e. Xu = V (u; 0)
Yu = set of possible homing nodes for a concentrator located in u, i.e. Yu = V (u; 0)nfug
T = set of available capacities (interface cards), e.g. T = f34; 155g

let t = jT j denote the cardinality of T
Kw(kw) = costs of a concentrator located in w if kw represents the number of connections

that are connected to this concentrator (kw 2 lN
t); Kw(0) corresponds to the

situation where no concentrator is installed in node w
Le(`e) = costs on an edge e 2 E if `e represents the number of connections over

edge e (`e 2 lN
t)


 = number of input/output gates on interface cards (
 2 lN
t)

B = number of slots available in the largest capacity concentrator
Du = set of commodities with source node u
Pu = set of commodities with its source node located in T [u; du]

and with destination node outside T [u; du]
Ju = set of available connections between demand node u and its homing

concentrator; let Ju = [�2TJ
�
u

Hu = set of available connections between a concentrator in u (given that a concentrator
is installed there) and its homing concentrator; let Hu = [�2TH

�
u

�iu = demand of commodity i 2 Du

capju = capacity of connection j 2 Ju or Hu

Note that T [v; i] = T [v; i� 1] [ T [siv; dsiv ] [ fs
i
v; vg, which will be exploited throughout the rest

of this paper frequently. Moreover, note that Pu = ; for u = 0, and de�ne Hu = ;, for u = 0.
Next we introduce the following decision variables :

xuw =

8<
:

1 if demand node u is homing on a
concentrator in node w

0 otherwise
(u 2 V; w 2 Xu)

yuw =

8<
:

1 if a concentrator in u is homing on a
concentrator in w

0 otherwise
(u 2 V n f0g; w 2 Yu)
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mj
u =

�
1 if connection j is used
0 otherwise

(u 2 V; j 2 Ju)

tiju =

�
1 if commodity i is assigned to connection j
0 otherwise

(u 2 V; i 2 Du; j 2 Ju)

nju =

�
1 if connection j is used
0 otherwise

(u 2 V; j 2 Hu)

ziju =

�
1 if commodity i is assigned to connection j
0 otherwise

(u 2 V; i 2 Pu; j 2 Hu)

k�w = number of connections of type � incident to node w (w 2 V; � = 1; : : : ; t)

`�e = number of connections of type � on edge e (e 2 E ; � = 1; : : : ; t)

The ANIP is now given by the following mathematical formulation :

min
P

w2V Kw(kw) +
P

e2E Le(`e) (4)

s.t.
P

w2Xu
xuw = 1 8u 2 V (5)

xu0w � xuw 8u; u0; w 2 V : w 2 Yu; u
0 2 V (u;w)nfug (6)P

w2Yu
yuw = xuu 8u 2 V n f0g (7)

yuw � xu0w 8u; u0; w 2 V : w 2 Yu; u
0 2 V (u;w)nfug (8)P

j2Ju t
ij
u = 1 8u 2 V;8i 2 Du (9)P

i2Du
�iu � t

ij
u � capju �m

j
u 8u 2 V;8j 2 Ju (10)P

j2Hu
ziju = xuu 8u 2 V;8i 2 Pu (11)P

i2Du
�iu � z

ij
u � capju � n

j
u 8u 2 V;8j 2 Hu (12)

k�w =
P

u2V(
P

j2J�u
mj

uxuw +
P

j2H�
u
njuyuw)

+
P

j2H�
w
njwxww 8w 2 V; � = 1; : : : ; t (13)

`�e =
P

u;w2V:e2E(u;w)(
P

j2J�u
mj

uxuw +
P

j2H�
u
njuyuw)

8e 2 E ; � = 1; : : : ; t (14)

xuw 2 f0; 1g 8u 2 V;8w 2 Xu (15)

yuw 2 f0; 1g 8u 2 V n f0g;8w 2 Yu (16)

kw; `e � 0 8w 2 V;8e 2 E (17)

mj
u; n

j
u; t

ij
u ; z

ij
u 2 f0; 1g 8u 2 V;8i 2 Du; Pu; 8j 2 Ju;Hu (18)

The objective function in (4) de�nes the total costs for a solution (x; y;m; t; n; z; k; l) and re
ects
the decomposability of the costs on concentrators installed in nodes and connections passing over
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edges. Constraint (5) implies that every demand node has exactly one homing node, and by the
de�nition of Xu, it follows that a concentrator is installed in the root node. Constraint (6) en-
forces the upward homing condition of demand nodes, whereas constraint (7) and (8) guarantee
the upward homing of concentrators. The bin-packing problem of commodities on connections
is modelled by constraints (9) and (10) for a demand node and its homing concentrator, and
by constraints (11) and (12) for commodities between a concentrator and its homing concentra-
tor, respectively. Constraints (13) and (14) simply de�ne the resulting number of connections
connected to a concentrator in a node, and the number of connections which pass over an edge,
respectively. The integrality and non-negativity constraints in (15){(18) complete the formu-
lation. Note that we have not listed a constraint which restricts the number of connections
incident to a concentrator, which could have been formulated as

Pt
�=1dk

�
w=


�e � B 8w 2 V (19)

For ease of exposition, (19) will be stated as kw � B in the sequel, and should be interpreted
as \the number of connections kw �ts on the largest capacity concentrator". Note that if a
given number of connections kw would require more slots than there are available in the largest
capacity concentrator, this infeasibility can easily be incorporated in the objective function by
setting the corresponding Kw(kw) equal to in�nity. Hence, constraint (19) is not part of our
model. In Section 5 however, the number B will be shown to be an important determinant for
the running time of our algorithm.

The objective function (4) may encompass very general costs structures. For the typical �xed
cost structure arising in practice, the objective function can be speci�ed as follows. Let � refer
to the di�erent types of concentrators available, B� denote its capacity, and F̂w(�) represent the
�xed costs of installing a concentrator of type � in node w, and ��w be the costs of an interface
card of type � in node w. Then

Kw(kw) =

(
min

�:kw�B�
fF̂w(�) +

Pt
�=1 �

�
w � dk

�
w=


�eg kw 6= 0

0 kw = 0
(20)

with the minimum over an empty set de�ned as in�nity. Throughout this paper, we will assume
that large capacity concentrators are available (since this is also the case in all real-life problem
instances), which implies that a feasible solution always exists. Moreover, if ��e denotes the costs
of installing a connection of type � on an individual edge e, then

Le(`e) =

tX
�=1

��e � `
�
e (21)

The reader may notice that for a given choice of the variables xuw; yuw, the remaining variables
tiju ; z

ij
u ;m

j
u; n

j
u only interact with the previous mentioned variables via the objective function,
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since constraints (13) and (14) merely de�ne the variables kw and `e. For general objective func-
tions (as well as parameter values), this interaction may of course imply that the optimal values
of the two classes of decision variables cannot be determined independently. Next, we derive
conditions (which are ful�lled in the practical problem instances obtained from KPN Research,
Leidschendam, The Netherlands), under which the number of connections used between a de-
mand node and its homing concentrator (variables tiju ;m

j
u), as well as the number of connections

used between a concentrator and its homing concentrator (variables ziju ; n
j
u), can be determined

optimally beforehand, that is, independently of the choice of the remaining variables.

Lemma 3.1 Consider ANIP with objective function as de�ned by (4), (20) and (21), and with
t = 2, i.e. two types of connections (interface cards), viz. 34Mb/s and 155Mb/s. If

� the interface card costs are independent of its type and positive, i.e. ��w = �w > 0 for all
� and for all w 2 V

� the costs of installing two 34Mb/s connections on an edge are at least the costs of installing
one 155Mb/s connection on an edge, and positive, i.e. 2 � �34e � �155e > 0, for all e 2 E

� the number of input/output gates on a 34Mb/s and 155Mb/s interface card is two and one,
respectively, i.e. 
34 = 2; 
155 = 1

then there exists an optimal solution (x; y;m; t; n; z; k; l) for ANIP in which each demand node is
connected to its homing concentrator using at most one 34Mb/s connection, i.e.

P
j2J34

u
mj

u � 1,

8u 2 V, and each concentrator is connected with its homing concentrator using at most one
34Mb/s connection, i.e.

P
j2H34

u
nju � 1, 8u 2 V n f0g.

Proof. Suppose we are given a solution for ANIP in which a demand node u is connected to
its homing concentrator using more than one 34Mb/s connection. Then replacing two of these
34Mb/s connections by one 155Mb/s connection, as well as replacing a 34Mb/s interface card
by a 155Mb/s interface card in the concentrator, again yields a feasible solution, for which the
costs have not increased. Repeating this argument yields the �rst part of the result. The second
part of our claim can be veri�ed similarly. �

Lemma 3.2 (i). Consider the bin-packing problem for a demand node u as de�ned by con-
straints (9) and (10), and with objective function

min
P

j2Ju �j �m
j
u (22)

with 2 � �34 � �155 > 0. Let (~t; ~m) represent an optimal solution for this bin-packing
problem. If the conditions of Lemma 3.1 are satis�ed, then there exists an optimal solution
(�x; �y; �k; �l; �t; �m; �z; �n) for ANIP with �t = ~t; �m = ~m.
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(ii). Consider the bin-packing problem for a potential concentrator node u 6= 0 as de�ned by
constraints (11) and (12), and with objective function

min
P

j2Hu
�j � n

j
u (23)

with 2 � �34 � �155 > 0. Let (~z; ~n) represent an optimal solution for this bin-packing
problem. If the conditions of Lemma 3.1 are satis�ed, and there exists an optimal solution
for ANIP with a concentrator installed in node u, then there exists an optimal solution
(�x; �y; �k; �l; �t; �m; �z; �n) for ANIP with �z = ~z; �n = ~n.

Proof. Let (~t; ~m) represent an optimal solution of the bin-packing problem and (�x; �y; �k; �l; �t; �m; �z; �n)
be an optimal solution for ANIP. Now suppose that ~m 6= �m. De�ne

~b�u =
X
j2J�u

~mj
u

to be the number of connections of type � used in the optimal bin-packing solution, and let �b�u be
de�ned similarly to be the number of connections of type � used in the optimal ANIP solution.
We consider 8 cases.

(i). ~b34u = �b34u ;~b155u > �b155u ; then a simple exchange argument makes it is easy to verify that ~m
cannot be an optimal solution for the bin-packing problem.

(ii). ~b34u = �b34u ;~b155u < �b155u ; then �m is not an optimal solution for ANIP.

(iii). ~b34u > �b34u ;~b155u = �b155u ; then ~m is not an optimal solution for the binpacking problem.

(iv). ~b34u < �b34u ;~b155u = �b155u ; then �m is not an optimal solution for ANIP.

(v). ~b34u > �b34u ;~b155u > �b155u ; then ~m is not an optimal solution for the binpacking problem.

(vi). ~b34u < �b34u ;~b155u < �b155u ; then �m is not an optimal solution for ANIP.

(vii). ~b34u > �b34u ;~b155u < �b155u ; from Lemma 3.1 it follows that we may assume w.l.o.g. that
~b34u = 1;�b34u = 0. Next, if �b155u � ~b155u + 2, then �bu cannot be optimal for ANIP, so assume
that �b155u = ~b155u + 1. But then it holds that replacing the connections �mu by connections
~mu yields a feasible solution for ANIP with lower costs, hence �mu is not optimal for ANIP.

(viii). ~b34u < �b34u ;~b155u > �b155u ; from Lemma 3.1 it follows that we may assume w.l.o.g. that
~b34u = 0;�b34u = 1. Next, if �b155u � ~b155u � 2, then ~bu cannot be optimal for the bin-packing
problem, so assume that �b155u = ~b155u � 1. But then it holds that replacing the connections
~mu by connections �mu yields a feasible solution for the bin-packing problem with lower
costs, hence ~mu is not optimal for the bin-packing problem.

12



This shows that indeed �mu = ~mu must hold. Its also easy to see that �t = ~t, since the same
assignment of the commodities can be used for both problems. Similarly, one can prove the
second part of the Lemma. �

Under the conditions of Lemma 3.1, the optimal values of the variables tiju ; z
ij
u ;m

j
u; n

j
u can thus

be determined independently of the homing and routing decisions, by using the bin-packing
problems as de�ned in Lemma 3.2. Hence, the optimal number of connections between a demand
node u and its homing concentrator (denoted bu) can be obtained beforehand (although it
requires solving an NP-hard problem):

b�u =
X
j2J�u

mj
u

with mj
u the optimal value of the corresponding bin-packing problem. Similarly, the optimal

number of connections between a concentrator and its homing concentrator (denoted pu) can be
determined beforehand :

p�u =
X
j2H�

u

nju

with nju the optimal value of the corresponding bin-packing problem, and the sum over an empty
set de�ned equal to zero. Thus, under the conditions of Lemma 3.2 ANIP can be formulated as
follows (denoted ANIP� in the sequel):

min
P

w2V Kw(kw) +
P

e2E Le(`e) (24)P
w2Xu

xuw = 1 8u 2 V (25)

xu0w � xuw 8u; u0; w 2 V : w 2 Xu; u
0 2 V (u;w)nfug (26)P

w2Yu
yuw = xuu 8u 2 V n f0g (27)

yuw � xu0w 8u; u0; w 2 V : w 2 Yu; u
0 2 V (u;w)nfug (28)

k�w =
P

u2V(b
�
uxuw + p�uyuw) + p�wxww 8w 2 V; � = 1; : : : ; t (29)

`�e =
P

u;w2V:e2E(u;w)(b
�
uxuw + p�uyuw) 8e 2 E ; � = 1; : : : ; t (30)

xuw 2 f0; 1g 8u 2 V;8w 2 Xu (31)

yuw 2 f0; 1g 8u 2 V n f0g;8w 2 Yu (32)

k�w; `
�
e � 0 8w 2 V; 8e 2 E ; � = 1; : : : ; t (33)

Unless stated otherwise, in the sequel we will assume that the conditions of Lemma 3.2 are
satis�ed, hence the latter formulation of ANIP� will be used.
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Now we show that the decision version of ANIP� is NP-complete, which implies that an exact
algorithm running in pseudo-polynomial time is the best one may expect, unless P=NP. To do
so, we state the following problem de�nitions:

SUBSET SUM (see Garey and Johnson [8])
INSTANCE: Finite set A, size s(a) 2 lN for every a 2 A, and a positive integer D.
QUESTION: Is there a subset A0 � A such that the sum of the sizes of the elements in A0 is
equal to D?

ANIP�

INSTANCE: Tree G = (V; E), an integer B, a number t 2 lN, a demand b�u 2 lN for ev-
ery u 2 V; � = 1; : : : ; t, a number pu 2 lN for every u 2 V; � = 1; : : : ; t, and cost functions
Kw(kw) : ��f0; : : : ; 


� �Bg ! lN, for all w 2 V and Le(`e) : ��f0; : : : ; 

� �Bg ! lN, for all e 2 E ,

and a positive integer F .
QUESTION: Does there exist a solution (x; y; k; `) for ANIP as de�ned by (24){(33) with ob-
jective value at most F ?

Theorem 3.1 ANIP� is NP-complete (assuming that for each kw, `e and F ,
P

wKw(kw) +P
e Le(`e) � F can be veri�ed in polynomial time).

Proof. It can easily be checked that ANIP� is in NP (given the mild assumption that the
objective value can be veri�ed in polynomial time). Hence it su�ces to show that SUBSET
SUM reduces to ANIP�. Given an instance for SUBSET SUM, we de�ne an instance for ANIP�

as follows. Let V = A [ f0g contain a node for each item in A and a node which will be the
root of the tree. Let E = ff0; agja 2 Ag be the set of edges where each node in A is connected
to the root. Next, we let t = 1 and 
t = 1 (only one type of connection and the number of slots
equals the number of connections which can be connected to a concentrator). De�ne ba = s(a)
for all a 2 A and b0 = 0, pa = 0 for all a 2 A [ f0g, B =

P
a2A s(a), and F = 1. Finally, edge

costs Le(`e) = 0 for all e 2 E , and Kw(kw) = 0 for w 6= 0, Kw(kw) = 1 for w = 0; kw = D, and
Kw(kw) = 2 for w = 0; kw 6= D. Note that this transformation can be done in polynomial time.
It remains to show that the two problem instances are equivalent.

First, assume that there exists a subset A0 � A with an aggregated size equal to D. By installing
a large concentrator in the nodes corresponding to items in A n A0, as well as in the root, we
obtain a feasible solution for ANIP� with objective value equal to one. Conversely, if there exists
a solution for ANIP� with solution value less than or equal to one, it must be equal to one, since
the concentrator costs in the root are at least one. But then the load on the concentrator in
the root must equal D, which in turn implies that the set of nodes in which no concentrator is
installed has a cumulative demand equal to D. �
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4 De�ning Subproblems for ANIP

In this section we introduce two families of subproblems which are de�ned on subtrees T [v; i].
These subtrees were introduced by Johnson and Niemi [12] to improve the running time of a
dynamic programming algorithm for partially ordered knapsack problems. The main idea is that
a subtree T [v; i] can be decomposed into two smaller subtrees T [v; i� 1] and T [siv; dsiv ] (provided
i � 1). By combining optimal solutions for problems de�ned on the latter subtrees, one may
be able to obtain an optimal solution for the former. The main di�culty (as is the case for all
dynamic programming algorithms) is to �nd an appropriate parametrization of the problem at
hand.

The �rst family of subproblems we de�ne are denoted by g(v; i; s). They represent the minimal
costs restricted to the subtree T [v; i], among all solutions in which a concentrator is installed
in node v. Furthermore, the vector s 2 lN

t denotes the connections between the concentrator
in node v and nodes in V [v; dv ] n V [v; i] (see Figure 2(a)). More formally, for (v; i) with v 2 V,
0 � i � dv, s � 0 and s+ bv + pv � B we de�ne g(v; i; s) to be

min
P

w2V [v;i]nfvgKw(kw) +Kv(kv + s) +
P

e2E[v;i]Le(`e) (34)

s.t.
P

w2Xu\V [v;i] xuw = 1 8u 2 V [v; i] (35)

xu0w � xuw 8u 2 V [v; i];8w 2 Xu \ V [v; i];

8u0 2 V (u;w) n fug (36)P
w2Yu\V [v;i] yuw = xuu 8u 2 V [v; i] n fvg (37)

yuw � xu0w 8u 2 V [v; i];8w 2 Yu \ V [v; i];

8u0 2 V (u;w) n fug (38)

k�w =
P

u2V [v;i](b
�
uxuw + p�uyuw) + p�wxww 8w 2 V [v; i]; � = 1; : : : ; t (39)

`�e =
P

u;w2V [v;i]:e2E(u;w)(b
�
uxuw + p�uyuw) 8e 2 E[v; i]; � = 1; : : : ; t (40)

xuw 2 f0; 1g 8u 2 V [v; i];8w 2 V [v; i] \Xu (41)

yuw 2 f0; 1g 8u 2 V [v; i] n fvg;8w 2 V [v; i] \ Yu (42)

k�w; `
�
e � 0 8w 2 V [v; i];8e 2 E[v; i]; � = 1; : : : ; t (43)

The second family of subproblems h(v; i; r) represents the minimal costs restricted to the subtree
T [v; i], among all solutions for which no concentrator is installed in node v. The vector r
represents the connections between nodes in T [v; i] and a concentrator located outside T [v; i].
In order to have such a homing node for node v (as well as the endpoint outside T [v; i] for
the connections of the vector r), we introduce an arti�cial node q to be a predecessor of node
v, in which a concentrator is installed (see Figure 2(b)). More formally, for (v; i) with v 2 V,
0 � i � dv and bv � r� B we de�ne h(v; i; r) to be
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(b) h(v,i,r)

Figure 2: subproblems

min
P

w2V [v;i]Kw(kw) +
P

e2E[v;i]Le(`e) (44)

s.t.
P

w2Xu\V [v;i] xuw + xuq = 1 8u 2 V [v; i] [ fqg (45)

xvv = 0 (46)

xu0w � xuw 8u 2 V [v; i];8w 2 (Xu \ V [v; i]) [ fqg;

8u0 2 V (u;w) n fug (47)P
w2Yu\V [v;i] yuw + yuq = xuu 8u 2 V [v; i] (48)

yu0w � xuw 8u 2 V [v; i];8w 2 (Yu \ V [v; i]) [ fqg;

8u0 2 V (u;w) n fug (49)

k�w =
P

u2V [v;i](b
�
uxuw + p�uyuw) + p�wxww

8w 2 V [v; i] [ fqg; � = 1; : : : ; t (50)

`�e =
P

u;w2V [v;i][fqg:e2E(u;w)(b
�
uxuw + p�uyuw)

8e 2 E[v; i] [ fvg; � = 1; : : : ; t (51)

`�v = r� � = 1; : : : ; t (52)

xuw 2 f0; 1g 8u 2 V [v; i];8w 2 (V [v; i] \Xu) [ fqg (53)

yuw 2 f0; 1g 8u 2 V [v; i];8w 2 (V [v; i] \ Yu) [ fqg (54)

k�w; `
�
e � 0 8w 2 V [v; i];8e 2 E[v; i]; � = 1; : : : ; t (55)

During our dynamic programming algorithm, solutions for subtree T [v; i� 1] and T [siv; dsiv ] will
be combined to obtain a solution for subtree T [v; i]. We will therefore focus on the relations
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between the subproblems we have just de�ned. In Section 4.1 we show how the problem g(v; i; s)
for i > 0 can be decomposed to problems on subtrees T [v; i� 1] and T [siv; dsiv ], whereas Sec-
tion 4.2 reports on similar relations for h(v; i; r). In Section 4.3 it is shown how g(v; i; s) and
h(v; i; r) should be determined in case i = 0, i.e. if the subtree consists of a single node. These
relations form the starting point of the dynamic programming algorithm for ANIP�.

4.1 Recursive relations for g(v; i; s).

The set of feasible solutions for g(v; i; s) can be partitioned into a set of solutions for which
xsivsiv = 1 (representing the situation in which a concentrator is installed in node siv), and a set

of solutions for which xsivsiv = 0 (no concentrator is installed in node siv). Let � 2 lN
t denote the

number of connections between a concentrator in node v and nodes in V [v; i] n V [v; i � 1] in a
feasible solution for ANIP with xvv = 1, hence for g(v; i; s). For a feasible solution in the case
that xsivsiv = 1, � must equal psiv . The set of feasible solutions in the case that xsivsiv = 0, can
be partitioned into smaller sets by considering all possible values of �. Because of the partition,
the optimal value for g(v; i; s) can be determined as the minimum of the optimal values over all
subsets of feasible solutions. Therefore, one can show that the optimal value for g(v; i; s) can be
obtained from the aforementioned subsets of feasible solutions.

Lemma 4.1 Consider (v; i) with v 2 V and i > 0. Let (x; y; k; `) be an optimal solution for
g(v; i; s) with xsivsiv = 1. Then

g(v; i; s) = g(siv ; dsiv ; 0) + g(v; i � 1; s+ psiv) + Lsiv
(psiv) (56)

Proof. From xsivsiv = 1 it follows that xuv = 0 for all u 2 V [siv; dsiv ], and yuv = 0 for all

u 2 V [siv; dsiv ] n fs
i
vg. But then constraints (35){(43) of g(v; i; s) can be formulated as follows:

P
w2Xu\V [v;i�1] xuw = 1 8u 2 V [v; i � 1]P
w2Xu\V [siv;dsiv

] xuw = 1 8u 2 V [siv; dsiv ]

xu0w � xuw 8u 2 V [v; i � 1];8w 2 Xu \ V [v; i � 1]

8u0 2 V (u;w) n fug

xu0w � xuw 8u 2 V [siv; dsiv ];8w 2 Xu \ V [siv; dsiv ]

8u0 2 V (u;w) n fugP
w2Yu\V [v;i�1] yuw = xuu 8u 2 V [v; i � 1] n fvgP
w2Yu\V [siv;dsiv

] yuw = xuu 8u 2 V [siv; dsiv ] n fs
i
vg

ysivv = xsivsiv = 1

yuw � xu0w 8u 2 V [v; i � 1];8w 2 Yu \ V [v; i� 1]
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8u0 2 V (u;w) n fug

yuw � xu0w 8u 2 V [siv; dsiv ];8w 2 Yu \ V [siv; dsiv ]

8u0 2 V (u;w) n fug

k�w =
P

u2V [v;i�1](b
�
uxuw + p�uyuw) + p�wxww 8w 2 V [v; i� 1] n fvg; � = 1; : : : ; t

k�w =
P

u2V [siv;dsiv
](b

�
uxuw + p�uyuw) + p�wxww 8w 2 V [siv; dsiv ]; � = 1; : : : ; t

k�v =
P

u2V [v;i�1](b
�
uxuw + p�uyuw) + p�vxvv + p�

siv
� = 1; : : : ; t

`�e =
P

u;w2V [v;i�1]:e2E(u;w)(b
�
uxuw + p�uyuw) 8e 2 E[v; i � 1]; � = 1; : : : ; t

`�e =
P

u;w2V [siv;dsiv
]:e2E(u;w)(b

�
uxuw + p�uyuw) 8e 2 E[siv; dsiv ]; � = 1; : : : ; t

`�
siv
= p�

siv
� = 1; : : : ; t

xuw 2 f0; 1g 8u 2 V [v; i � 1];

8w 2 V [v; i� 1] \Xu

xuw 2 f0; 1g 8u 2 V [siv; dsiv ];

8w 2 V [siv; dsiv ] \Xu

yuw 2 f0; 1g 8u 2 V [v; i � 1] n fvg;

8w 2 V [v; i� 1] \ Yu

yuw 2 f0; 1g 8u 2 V [siv; dsiv ] n fs
i
vg;

8w 2 V [siv; dsiv ] \ Yu

k�w; `
�
e � 0 8w 2 V [v; i� 1];

8e 2 E[v; i � 1]� = 1; : : : ; t

k�w; `
�
e � 0 8w 2 V [siv; dsiv ];

8e 2 E[siv; dsiv ]� = 1; : : : ; t

This shows that the constraints can be separated into two sets, one set containing the constraints
on the subtree T [v; i� 1], and one set containing the constraints on the subtree T [siv; dsiv ].
Since the objective function is also separable, it directly follows that the problem g(v; i; s)
decomposes into the problem g(siv; dsiv ; 0) on subtree T [siv; dsiv ], problem g(v; i � 1; s + psiv) on

subtree T [v; i� 1], and the individual edge siv for which `siv = psiv . �

Lemma 4.2 Consider (v; i) with v 2 V and i > 0. Let (x; y; k; `) be an optimal solution for
g(v; i; s) with xsivsiv = 0 and `siv = �. Then

g(v; i; s) = h(siv ; dsiv ; �) + g(v; i � 1; s+ �) + Lsiv
(�) (57)

Proof. Similar. �
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4.2 Recursive relations for h(v; i; r).

In this section we use a similar partition of the set of feasible solutions for h(v; i; r) to obtain its
optimal value and solution. Since the proofs of the lemmas are similar to the one in the previous
section, they are left to the reader.

Lemma 4.3 Consider (v; i) with v 2 V and i > 0. Let (x; y; k; `) be an optimal solution for
h(v; i; r) with xsivsiv = 1. Then

h(v; i; r) = g(siv ; dsiv ; 0) + h(v; i � 1; r � psiv) + Lsiv
(psiv) (58)

Lemma 4.4 Consider (v; i) with v 2 V and i > 0. Let (x; y; k; `) be an optimal solution for
h(v; i; r) with xsivsiv = 0 and `siv = �. Then

h(v; i; r) = h(siv; dsiv ; �) + h(v; i � 1; r � �) + Lsiv
(�) (59)

4.3 Starting point of dynamic programming algorithm.

In this section we show how the coe�cients g(v; i; s) and h(v; i; r) can be determined if i = 0,
i.e. if the tree T [v; i] consists of a single node.

Proposition 4.1 Consider (v; i) with v 2 V and i = 0. For s 2 lN
t such that s+ bv + pv � B

it holds that

g(v; i; s) = Kv(s+ bv + pv) (60)

Proof. It is easy to see that under the condition posed in the proposition there exists a solution
for g(v; 0; s). Since V [v; 0] = fvg, it follows that xvv = 1. Furthermore,

k�v =
P

u2V [v;0](b
�
u � xuv + p�u � yuv) + p�v � xvv

= b�v � xvv + p�v � xvv

= b�v + p�v

The objective function in (34) thus amounts to Kv(s+ bv + pv). �

Proposition 4.2 Consider (v; i) with v 2 V and i = 0. Then

h(v; i; r) =

(
Kv(0) if r = bv

1 otherwise
(61)
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Proof. From V [v; 0] = fvg, xvv = 0 and (52) it follows that r = bv. Finally, the objective
function in (44) amounts to Kv(0). �

5 Dynamic Programming Algorithm

Based on the relations which are derived in the preceding section, we are now able to formulate
a dynamic programming algorithm. Recall that g(v; i; s) is only de�ned for (v; i) with v 2 V,
0 � i � dv and 0 � s and s+ bv + pv � B, whereas h(v; i; r) is de�ned on (v; i) pairs with v 6= 0
and bv � r � B.

DYNAMIC PROGRAMMING ALGORITHM FOR ANIP

forall (v; i; s) with v 2 V, 0 � i � dv and 0 � s and s+ bv + pv � B do

g(v; i; s) =1; /* initialization g*/

forall (v; i; r) with v 2 V, 0 � i � dv and bv � r � B do

h(v; i; r) =1; /* initialization h*/

forall v = n downto 0 do begin

forall s with 0 � s and s+ bv + pv � B do

g(v; 0; s) = Kv(s+ bv + pv);

if (v 6= 0) then

h(v; 0; rv) = Kv(0);

forall i = 1 to dv do begin

forall s with 0 � s and s+ bv + pv � B do

g(v; i; s) = minfg(siv ; dsiv ; 0) + g(v; i � 1; s+ psiv) + Lsiv
(psiv),

min�fh(s
i
v; dsiv ; �) + g(v; i � 1; s+ �) + Lsiv

(�)gg;

forall r with bv � r � B do

h(v; i; r) = minfg(siv ; dsiv ; 0) + h(v; i � 1; r � psiv) + Lsiv
(psiv),

min�fh(s
i
v; dsiv ; �) + h(v; i � 1; r � �) + Lsiv

(�)gg;

end;

end;

When determining the coe�cients g(v; i; s) and h(v; i; r) for i > 0, one needs to know all possible
values of � which may occur. Weak bounds can be given, such as � � 0, since obviously
`siv must be nonnegative, and � � B, since all connections which pass the same edge are
connected to the same concentrator, and hence, must �t the capacity of that concentrator. Of
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course, the running time of the algorithm can be improved by exploiting better bounds. Since
� must at least encompass the connections from demand node siv, � � bsiv would be a valid

lowerbound. Furthermore, when determining g(v; i; s), all connections on edge siv must �t on
the concentrator in node v. But the same holds for connections from vector s, the demand from
node v itself, and the connections between the concentrator in v and its homing concentrator.
Hence, � + s + bv + pv � B yields a valid upperbound on � for this case. Finally, when
determining h(v; i; r), the connections on edge siv together with the demand from node v are
only a part of the total number of connections r, hence, � + bv � r imply a valid upperbound
for � in this case.

In practical applications the number of di�erent types of connections is usually small (t = 2).
Furthermore if the applied cost structure is as indicated in Section 2, the general cost �gures
Kw(kw) and Le(`e) can be determined easily (that is in small running time). The overall running
time of the algorithm then equals O(nB4), since the number of T [v; i] trees we consider is O(n),
for each tree we determine O(B2) g-coe�cients and O(B2) h-coe�cients. Moreover, each of
these coe�cients can be determined in O(B2) time. The required storage space follows directly
from the number of coe�ecients to be determined and is O(nB2). This is formally stated in the
following theorem, which is the main result of this paper.

Theorem 5.1 Consider ANIP� as de�ned by (4){(18), and with objective function de�ned by
(20) and (21). If t = 2 (two types of connections and interface cards) and � � jVj (the number
of concentrators bounded by the number of nodes in the tree), then ANIP� can be solved by
a pseudopolynomial time dynamic programming algorithm which requires O(nB4) time, and
O(nB2) storage space.

When the algorithm is used as a tool in the planning phase of ATM network layout, there are
several features which may be added to the algorithm. First, if one is interested in the optimal
solution in which certain concentrators are already (pre)installed, one can easily incorporate
this into the algorithm by adopting the cost function Kw(kw) for these speci�c nodes. A similar
technique can of course be applied to prohibit the installation of concentrators in a node. Overall,
this gives the possibility to incorporate partial solutions as part of the input. This can very well
help to resolve many sensitivity questions which are extremely important in the planning of
network structures.

Secondly, given a solution, it is easy to show the actual number of slots being used in a con-
centrator, as well as the number of Mb/s 
owing over a set of connections. Hence, given a
network strucuture, one can determine to what extend concentrators and connections are being
used. This utilization level of the di�erent components of the network may give insight into the
stability of the network structure for future demand.

Thirdly, when one determines the optimal solution for the tree as a whole, but for di�erent
amounts of tra�c from outside the tree (i.e. not only zero), this amount of tra�c from outside
the tree may be viewed as the number of connections incident to the root node which are used
for routing in the Backbone. If the optimal solution is insensitive for this amount of tra�c,
this gives a justi�cation for the approach to solve ATM network problems for the Backbone and
trees separately.
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problem n dp aso 1 (s) value

aso 1 12 0.37 92
aso 2 26 1.14 141
aso 3 29 1.71 161
aso 4 35 1.45 178
aso 5 28 0.96 151
aso 6 12 0.67 85
aso 7 22 1.51 147
aso 8 31 1.15 146

Table 1: Computational results for the instances from KPN (time measured in CPU sec.).

Finally, in practice the number of connections used is, although small (usually equal to two),
of great importance for the running time of the algorithm, as it is proportional to the number
of types available. By only allowing one type of connection (say the largest capacity), an
approximation algorithm can be made which from a theoretical point of view may have a bad
performance, but from a practical point of view can be very useful. By only considering one
type of connection the running time decreases signi�cantly, whereas the solutions obtained are
feasible and usually capable of processing a somewhat larger demand than the demand which
forms the input of the algorithm.

6 Computational Results

To test our algorithm on real-life instances from the Dutch telecommunication company, we
implemented our algorithm in C++ on a DEC 2100 A500MP workstation with 128Mb of internal
memory. All problem instances we consider have a cost structure as the one proposed in Section 2
and Section 3. Table 1 reports on eight problem instances, for which three di�erent concentrators
were available, with capacities 3,10 and 20 slots, respectively.

Table 2 reports on the same instances but with the largest concentrator capacity being 50
instead of 20 (B increases). The results show that B is indeed an important determinant for the
running time of the algorithm. The optimal solutions have not changed, which only indicates
that capacity on the concentrators was not a restraining factor.

From the above results it follows that if extremely large trees are considered, together with even
larger capacity concentrators, the running times of the algorithm might become unacceptable.
Therefore we have also implemented an algorithm dp aso 2 in which only one type of connection
(155Mb/s connections) is considered (as explained in Section 5). This relaxation causes the
number of g and h-coe�cients which have to be determined to be reduced signi�cantly. Table 3
shows that the running times of the algorithm behave accordingly. More importantly, although
the algorithm does no longer need to provide an optimal solution, the solutions found by the
algorithm proved to be very similar to the optimal solutions and still usefull in practice.
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problem n dp aso 1 (s) value

aso 1 12 11.59 92
aso 2 26 29.57 141
aso 3 29 50.59 161
aso 4 35 37.83 178
aso 5 28 25.14 151
aso 6 12 18.53 85
aso 7 22 42.51 147
aso 8 31 31.68 146

Table 2: Computational results for the instances from KPN with larger capacity concentrator.

problem n dp aso 2 (s)

aso 1 12 0.02
aso 2 26 0.03
aso 3 29 0.03
aso 4 35 0.02
aso 5 28 0.02
aso 6 12 0.02
aso 7 22 0.02
aso 8 31 0.03

Table 3: Computational results for the instances from KPN with only one type of connections.

23



problem n dp aso 1 (s)

aso 17 34 9.05
aso 24 61 12.90
aso 58 59 10.74
aso 68 43 8.79

Table 4: Computational results for the instances from KPN with larger capacity concentrator.

Finally, some larger trees were considered. Table 4 states the results for these larger instances,
where again three concentrator capacities were considered, with capacities 3, 10, 30, respectively.

Concludingly, the algorithmic ideas presented in this paper prove to be very useful in practice.
The algorithm yields optimal solutions for real-life problem instances, which are of signi�cant
problem size. Moreover, additional features can be added to the planning tool if desired, making
the tool even more attractive as a decision support system in the network design planning phase.
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