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STRATEGY-PROOF PREFERENCE RULES

by Ton Storcken1

ABSTRACT

By virtue of the Kemeny distance strategy-proofness of preference rules is defined. It

is shown that a preference rule, which assigns a complete relation to every profile of

complete relations is non-imposed and strategy-proof if and only if it is pairwise voting

in committees. So, non-imposedness and strategy-proofness together imply the

independence of irrelevant alternatives condition. Furthermore, it is shown that in this

setting pairwise voting in committees coincides with coordinatewise veto voting. Taking

acyclic preference rules into consideration, which assign an acyclic complete relation

to every profile of acyclic complete relations, it follows that under strategy-proofness

and non-imposition the independence of irrelevant alternatives is equivalent to

indifference monotonicity. Now it follows that an acyclic preference rule is non-imposed,

strategy-proof and indifference monotonic if and only if it is coordinatewise veto voting

with respect to a cycle free assignment of disagreements.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6941844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


— 2 —

§ 1. STRATEGY PROOFNESS

The vulnerability for strategic behavior of a collective decision rule is and was

an important issue. This is for several reasons e.g. a right decision is more likely to

evolve from the right individual opinions than from strategically pretended ones. Also,

it may be regarded as ethically unfair that the benefit obtained by some due to their

strategic behavior is on the expense of others who did not act strategically or who were

less fortunate with their pretended behavior. Furthermore, a strategy-proof rule is

simple because strategic behavior of others need not be taken into account and the

best individual action is straightforward truth telling.

There are many earlier contributions on this subject (see for instance

Gibbard [1973], Satterthwaite [1975], Gärdenfors [1976], Barberà [1977], Kelly [1977],

Feldman [1979], Dutta [1982], Bandyopadhyay [1983] among many others; surveys on

this subject are for instance Pattanaik [1978] and Sen [1986]). In all these approaches

the collective decision rules under consideration are either social choice funcions

yielding as outcomes single alternatives or social choice correspondences yielding as

outcomes nonempty subsets of alternatives. In Bossert and Storcken [1992] strategy-

proofness is discussed with respect to an other type of collective decision rules, namely

social welfare functions. These functions aggregate the individual points of view into

a "social" preference ordering.

The importance of the impossibility of manipulation in this latter framework can

be illustrated by the following. Suppose the group of agents does not have a specific

choice situation in mind and therefore applies a certain social welfare function. By this

a social ranking of the alternatives is achievable which can be used to determine the

group choice at any choice situation. Suppose furthermore, that at the time the social

ranking of all alternatives is determined it is unknown which paricular subset of the set

of alternatives becomes feasible. Then not only the best alternative of the social

ranking is important but the whole ranking. Consequently, the whole ranking is to be

considered and strategic behavior becomes an interesting issue for such social welfare

funcions. In Bossert and Storcken [1992] an explicit example for those situations is

provided.

Strategy-proofness for collective decision rules means that an agent cannot

benefit from insincere preference revelation. As the outcomes of a social welfare

function are orderings, we have to make assumptions about how agents can order the
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outcomes of a social welfare function. Consequently, we have to define a way in which

agents are able to compare the possible social rankings. Of course these comparisons

depend on the individual orderings of the agents. Like in Bossert and Storcken [1992],

this comparison is based on the Kemeny distance, see e.g. Kemeny and Snell [1962]. It

is assumed that an individual prefers social ranking R above social ranking R' if the

distance between his (sincere) preference relation and R is smaller than the distance

between his preference relation and R'.

In Bossert and Storcken [1992] it is assumed that the social ranking as well as

the individual preferences are linear orderings, i.e. antisymmetric, complete and

transitive relations. In this setting they found that only dictatorial welfare functions are

strategy-proof, non-imposed and weakly extrema indepent if in addition there are four

alternatives. Here we will study two other sets of orderings.

The first set of orderings under consideration is the set of complete relations. In

this model we assume that the social rankings as well as the individual orderings are

complete relations. So, no transitivity or acyclicity condition is imposed on neither the

individual orderings nor on the social ranking. It appears that complete relations can

be represented by points in a lattice in a Euclidean Space, where the distance between

two relations is equal to the lattice-distance of their corresponding lattice points.

Therefore, the preferences over the social rankings are single peaked. It means that

there is a single best (lattice) point and that preference decreases when the (lattice)

distance to this point increases. There is a whole strand of literature on collective

decision rules when the individual preferences are single peaked on a Euclidean

Space. Without being complete see e.g. Black [1948], Moulin [1980],

Border and Jordan [1983], Kim and Roush [1984], Barberà and Peleg [1990],

Barberà, Gul and Stacchetti [1993], Barberà, Massó and Neme [1992] and Peters, v.d.

Stel and Storcken [1992]. A well-known result is that taking the coordinate-wise

medians of the individual optima, eventually supplemented with some fixed "phantom"

optima, yields a strategy-proof and unanimous collective decision rule. In various

papers it is shown that for specific (sub)sets of single peaked preferences this type of

collective decision rule is the only decision rule which satisfies strategy-proofness and

some extra conditions such as unanimity, Pareto-optimality and continuity. Here we will

prove that the coordinatewise veto rules which form a slightly more general class of

rules than the coordinatewise median rules are the only collective decision rules which
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are strategy-proof and non-imposed. An important step in this analysis is that strategy-

proofness and non-imposedness imply independence of irrelevant alternatives. In this

setting this well-known property boiles down to coordinatewiseness. Furthermore, it is

shown that in this setting the coordinatewise veto preference rule is actually a so called

binary game in constitutional form and resembles voting by committees where

suspension is allowed. In Barberà, Sonnenschein and Zhou [1991] voting by

committees is analysed. There for every alternative x there is a monotonic simple game

of winning coalitions, meaning that x is chosen if, and only if, the voters for x form such

a winning coalition. Hence, there suspending x equals rejection of x. Here, however,

the voting is about the preference between two alternatives, in which indifferences are

allowed. Interpreting indifference neither as rejecting nor as accepting alternatives,

hence suspension of the decision, it is clear that the decision rule is just a refinement

of voting by committees. In fact, by adding a set of blocking coalitions to every set of

winning coalitions it is possible to describe these coordinatewise veto preference rules

by voting by committees.

Binary games in constitutional form describe decisiveness power of a coalition

over all ordered pairs of alternatives at a given preference rule. To every ordered pair

<a,b> of alternatives a set of winning coalitions is assigned, meaning that if such a

coalition unanimously strictly prefers a to b then collectively a is strictly preferred to b.

Hence, for each pair <a,b> of alternatives we have a simple game. This notion can be

traced back to Bloomfield [1976]. But others have also used simple games in order to

describe these decisiveness powers of collective decision rules, see e.g. Peleg [1978]

and [1984], Nakamura [1979], Moulin [1985], Le Breton [1987],

Andjiga and Moulen [1988] and Trouchon [1993] to cite only a few. It is clear that this

description is only useful if the preference rule is independent of irrelevant alternatives.

Furthermore, for arbitrary preference rules which satisfy this independence condition

it is not required that the simple games are monotonic, i.e. if S is winning then T is

winning for S d T. However, here as in Barberà, Sonnenschein and Zhou [1991], these

games are monotonic. Therefore we call this type of preference rule voting by

committees. Here we also want to point out that the complement of a set of losing

coalitions over a pair <a,b> is the set of coalitions which can block the strict preference:

a strictly preferred to b. Therefore, this latter set is called the set of blocking coalitions.

It completely determines the set of winning coalitions. For some pairs <a,b>, instead

of the set of winning coalitions the set of blocking coalitions is used.
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In Barberà, Gul and Stacchetti [1993] as well as in Barberà, Massó and

Neme [1992] models with single peaked preferences on a network are considered.

Although parts of their results coincide with parts of the results here it seems not

possible to exploit their results here because of some basic differences in the

assumptions underlying the model. We will come to that at the end of section 3.

The second set of orderings under consideration is the set of complete and

acyclical relations also called the set of acyclic relations. These relations form a

(sub)network of the lattice of complete relations. Nevertheless, it is shown that a

collective decision rule is independent of irrelevant alternatives, if we add an extra

condition called indifference monotonicity to the two already imposed before, i.e.

strategy-proofness and unanimity. It follows that these rules are also coordinatewise

median rules. Finally, we characterize all coordinatewise median rules which yield

acyclic outcomes only. In literature many characterizations of social welfare functions

satisfying the independence of irrelevant alternatives, Pareto-optimality and eventually

some extra conditions, yielding acyclic relations can be found. Without intending to be

exhaustive see e.g. Blair and Pollack [1982], Mas-Colell and Sonnenschein [1972],

Brown [1975], Blau and Deb [1977], Kelsey [1985], Moulin [1985] and Trouchon [1993].

In fact our characterization presented here is similar to Trouchon [1993].

The organization of this paper is as follows. In section 2 we define the model and

provide some basic notions and results. In section 3 we characterize all non-imposed

and strategy-proof preference rules. Finally, in section 4 we discuss non-imposed,

strategy-proof and indifference monotonic rules which assign an acyclic ranking to

every profile of individual acyclic preferences.
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§ 2. DEFINITIONS AND PRELIMINARY RESULTS

Throughout this paper A is the finite and nonempty set of alternatives and

N = {1,2,...,n} the finite and nonempty set of individuals. Let C be the set of complete

and therefore reflexive relations on A. Let R be a relation in C. Let x,y 0 A. Then

<x,y> 0 R is interpreted as x is at least as good as y at relation R. The asymmetric part of

R is denoted by "R. Consequently <x,y> 0 "R means that x is strictly preferred to y at

relation R. The symmetric part of R is denoted by FR. If <x,y> 0 FR, then we say that x

and y are indifferent at relation R. The relation R is acyclic if for all x ,x ,...,x  0 A, such1 2 k

that <x ,x >,<x ,x >, <x ,x >...<x ,x > 0 "R, we have that <x ,x > 0 R. The set of1 2 2 3 3 4 k—1 k 1 k

complete and acyclic relations on A is denoted by A. Clearly we have the following

inclusion A d C. Let C  and A  be sets of preference profiles p which assignN N

respectively a complete or complete and acyclic relation p(i) to each individual i 0 N.

So, if p 0 A , then p is a function from N to A and p(1) up to p(n) are acyclic. AN

preference rule or social welfare function is a mapping F from C  to C. It is anN

aggregation mechanism assigning a complete relation F(p) to every possible

combination of individual complete relations p 0 C . An acyclic preference rule is aN

mapping F from A  to A with a similar interpretation.N

Next we will discuss a metric on C, which then is also a metric on A.By virtue of

this metric we are able to define strategy-proofness for preference rules. Let X ª Y

denote the symmetric difference between set X and set Y. So,

X ª Y := (X — Y) c (Y — X), where X — Y = {x 0 X * x ó Y}. Denote the cardinality of

a set X by #X. Let R  and R  be complete relations in C. The distance between R  and R ,1 2 1 2

denoted by *(R ,R ), is equal to the cardinality of the symmetric difference between R1 2 1

and R . So,2

*(R ,R ) := #(R  ª R ).1 2 1 2

It is straightforward to prove that * is a distance function on C. Bogart [1973] shows

that * is a distance function on the set of quasi-transitive orderings. In fact Kemeny and

Snell [1962] introduced this distance function for complete and transitive relations.

Hence, the distance function defined here is just an extension of that of

Kemeny and Snell [1962]. Therefore it is also referred to as the Kemeny distance. Other

authors have also discussed this distance see e.g. Farkas and Nitzan [1979],

Campbell and Nitzan [1986], Kendall [1970] and Baigent [1987]. For other approaches
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see e.g. Stehling [1978] and Lerer and Nitzan [1985].

In Bossert and Storcken [1992] strategy-proofness is defined by virtue of the

distance function *. Here we follow the same approach. For a non-empty subset S of

N and a profile p 0 C  the restriction of p to S is denoted by p* . A preference rule FN
S

from C  to C is said to be (strictly) strategy-proof if for all individuals i in N and allN

profiles p and q in C  such that p*  = q*  and F(p) � F(q)N
N—{i} N—{i}

*(p(i),F(p)) < *(p(i),F(q)). (1)

In words, strict strategy-proofness means that deviations by a single individual i from

a profile p yield outcomes which are either the same as at p or are strictly worser than

that at p for that individual i. Here, of course, a social ranking F(p) is preferred to

another different ranking F(q) if the distance from i's preference p(i) to F(p) is smaller

than that to F(q). In Bossert and Storcken [1992] strategy-proofness is defined for

coalitions on linear preference orderings such that the strict inequality at (1) is replaced

by a weak inequality "#". Furthermore, their results seem to hold even for a weaker

strategy-proofness condition, namely intermediate strategy-proofness. This latter

condition (discussed later) is equivalent to strategy-proofness (with "#"). Therefore, it

is fair to say that here we use a slightly stronger condition than actually needed in

Bossert and Storcken [1992]. Essentially, we changed a weak inequality in a strict

inequality. This at first sight minor change is of vital importance, because with the

weaker strategy-proofness condition we were not able to prove lemma 2.5 and 2.6,

which form the basic ingredient of the rest of the proofs.

As mentioned before (strict) strategy-proofness is equivalent to intermediate

(strict) strategy-proofness. The latter condition means that a unanimous coalition

cannot benefit by deviating. Formally, a preference rule F from C to C  is intermediateN

(strictly) strategy-proof if for all coalitions S d N, S � i, all R 0 C and all profiles p,q 0 CN

such that p*  = q* , F(p) � F(q) and p(i) = R for all i 0 S we haveN—S N—S

*(R,F(p)) < *(R,F(q)).

Intermediate (strictly) strategy-proofness was introduced by Peters, v.d. Stel and

Storcken [1992]. Clearly, by taking S = {i}, intermediate (strict) strategy-proofness

implies (strict) strategy-proofness. The reverse implication also holds. The proof of this

is treated in the following lemma. It is an adaptation of lemma 2.4 of the latter reference

to the model here.
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LEMMA 2.1 Let F : C  6 C be a preference rule. Then (i) and (ii) are equivalent,N

where: (i) F is strictly strategy-proof, and

(ii) F is intermediate strictly strategy-proof.

PROOF The implication (ii) Y (i) is evident. For the converse let S d N, S � i,

R 0 C, p,q 0 C , such that p(i) = R for all i 0 S, and p*  = q* . Without loss ofN
N—S N—S

generality suppose S = {1,2,...,s}. Take p ,p ,...,p  0 C  such that for all i 0 N and0 1 s N

t 0 {0,1,...,s}

: p(i) if t < i=p (i) = ;t

=< q(i) if t $ i

Hence p  = p and p  = q. By strictly strategy-proofness it follows for all i 0 S:0 s

F(p ) = F(p ) or *(R,F(p )) < *(R,F(p )).i—1 i i—1 i

Hence, F(p) = F(q) or *(R,F(p)) < *(R,F(q)).

�

From now on by strategy-proofness is meant strictly strategy-proofness as well

as intermediate strictly strategy-proofness. Furthermore, strategy-proofness can be

defined in an obvious way for acyclic preference rules. Therefore we will use this

condition without further specification.

There is a geometrical nice way to represent the metric space (C,*). We will

describe this representation hereafter. Let A = {a ,...,a }. Then there are1 m

M := ½m(m—1) tuples of the kind {a ,a } with i � j. Consider the M-dimensionali j

Euclidean space ú . Assign to each tuple {a ,a } with i < j a coordinate axis, such thatM
i j

different tuples are assigned to different coordinate axes. To avoid extra variables

coordinates are not as usual indicated by one number but by a pair. For instance ij,

where 1 # i # j # m, indicates the coordinate axis assigned to the tuple {a ,a }.i j

Furthermore, e  is the vector whose ij  coordinate is equal to one and all its others areij
th

zero. So, {e  * 1 # i # j # m} is a standard basis of ú .ij
M

Let R 0 C then we assign a vector v(R) to R whose ij  coordinate v(R)  for allth
ij

1 # i # j # m is defined as follows.

:  1 if <a ,a > 0 "R,i j=v(R)   = ;  0 if <a ,a > 0 FR, andij i j=< —1 if <a ,a > 0 "R.j i

So, v(R) = ji=1  jmj=i+1 v(R)ijeij.m—1

Of course every relation R has its unique vector representation v(R) in ú . For instanceM
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consider I := A x A 0 C (the total indifference). Clearly v(I) = <0,0,...,0> is the nil vector

in ú . Moreover, every vector < in {1,0,—1}  corresponds to a relation R in C such thatM M

< = v(R). For instance, e  = v(E ) where E  = A x A — {<a ,a >} for all 1 # i < j # m. Letij ij ij j i

—E  = A x A — {<a,a>} for all 1 # i < j # m. Then v(—E ) = —e . Clearly {—1,0,1}  canij i j ij ij
M

be seen as a lattice. Because for all R ,R  0 C1 2

*(R ,R ) = j1 2 1 2i=1  jmj=i+1 * v(R )ij — v(R )ij *,m—1

it follows that *(R ,R ) is equal to the lattice distance between the corresponding lattice1 2

points.

Now we formulate several conditions for preference rules. Then we end this section by

developing some consequences of strategy-proofness of preference rules.

Let F from C  to C be a preference rule. Then F is said to be non-imposed if forN

all R 0 C there is a profile p 0 C  such that F(p) = R. This surjectivity condition is well-N

known and needs no further discussion just as the following unanimity condition. F is

unanimous if for all R 0 C   F(R ) = R. Here R  is a profile where every individual hasN N

preference R. Similarly, for S d N, R  is a profile in C  such that all individuals in SS S

have preference R.

Let R ,R ,R  0 C. Then R  is between R  and R  if (R  1 R ) d R  d (R  c R ). It is1 2 3 2 1 3 1 3 2 1 3

straightforward to prove the following lemma which can also be found in for instance

Bogart [1973], Mirkin [1979] and Barthélemy and Monjardin [1981]; therefore it is stated

without proof. The lemma identifies the cases where the triangle inequality is equality.
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LEMMA 2.2 Let R ,R ,R  0 C then (i) and (ii) are equivalent where:1 2 3

(i) R  is between R  and R2 1 3

(ii) *(R ,R ) = *(R ,R ) + *(R ,R ).1 3 1 2 2 3

A preference rule F from C  to C is said to be monotonic if for all profiles p,q 0 C  suchN N

that for all i 0 N   q(i) is between p(i) and F(p) it follows that F(p) = F(q). Monotonicity

means that changes towards the outcome have no effect.

The following condition is Arrow's well-known independence condition,see e.g.

Arrow [1963]. A preference rule F from C  to C is said to be independent of irrelevantN

alternatives if for all x,y 0 A and all p,q 0 C  such that for all i 0 NN

<x,y> 0 p(i) ] <x,y> 0 q(i) and

<y,x> 0 p(i) ] <y,x> 0 q(i), it follows that <x,y> 0 F(p) ] <x,y> 0 F(q).

The last condition which is discussed here is a relaxation of the independence of

irrelevant alternatives. It says that if individuals change a strict preference over x and

y into an indifference between x and y and all the other pairs are left unchanged, then

this change has no effect on the collective indifference between any pair a and b not

equal to x and y. Hence, indifferences between a and b on the collective level cannot

be resolved (into strict preferences) by introducing more indifferences between other

pairs on the individual level. A preference rule F from C  to C is said to be indifferenceN

monotonic if, for all x,y,a,b 0 A, with {x,y} � {a,b}, and for all p,q 0 C , such that for allN

i 0 N either p(i) c {<x,y>,<y,x>} = q(i) or p(i) = q(i), it follows that <a,b> 0 FF(p) implies

<a,b> 0 FF(q). Obviously, the independence of irrelevant alternatives implies

indifference monotonicity, but clearly not the other way around.

Moreover, the antidictatorial rule which determines the collective preference by

reversing all preferences of the antidictator i is a preference rule which is independent

of irrelevant alternatives, hence indifference monotonic, and non-imposed. But it is

neither strategy-proof, nor unanimous, nor monotonic. An example of a preference rule

which is strategy-proof but not independent of irrelevant alternatives is e.g. as follows.

Let R  = A x A — {<a ,a >,<a ,a >,<a ,a >} and1
2 1 3 1 3 2

R  = A x A — {<a ,a >,<a ,a >}. Now define F : C  6 C for all p 0 C  as follows.2 N N
2 1 2 3

: R  if *(p(1),R ) < *(p(1),R )1 1 2

=
F(p) = ; =< R  if *(p(1),R ) < *(p(1),R ).2 2 1
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Since *(R ,R ) = 3 and there are only cycles of even length in the lattice it follows1 2

straightforwardly that F is well-defined and strategy-proof. Let p,q 0 C  such thatN

p*  = q* , p(1) = E  and q(1) = I. Then <a ,a > 0 Fp(1), <a ,a > 0 Fq(1),N—{1} N—{1} 13 2 3 2 3

<a ,a > 0 "F(p) = "R  and <a ,a > 0 "F(q) = "R . Hence, F is not independent of2 3 3 2
1 2

irrelevant alternatives.

In the following section it is proved that non-imposed and strategy-proof

preference rules are independent of irrelevant alternatives. Furthermore, if we adapt

the conditions stated above to acyclic preference rules, then in the last section it is

proved that for non-imposed and strategy-proof acyclic preference rules independence

of irrelevant alternatives is equivalent to indifference monotonicity. This clarifies several

of the logical relations between the various conditions introduced above, but not all. For

instance it is not clear whether there exist strategy-proof and indifference monotonic

acyclic preference rules which are not independent of irrelevant alternatives. The

following lemma is an analogon of Lemma 3.1 in Peters, v.d. Stel and Storcken [1992].

LEMMA 2.3 Let F be a strategy-proof preference rule. Then F is monotonic.

PROOF Let i 0 N and p,q 0 C  (A ) such that p*  = q*  and q(i) is betweenN N
N—{i} N—{i}

p(i) and F(p). It is sufficient to prove that F(p) = F(q).

Suppose F(p) � F(q). Then by strategy-proofness we have

*(p(i),F(p)) < *(p(i),F(q)) and (2)

*(q(i),F(q)) < *(q(i),F(p)). (3)

Because q(i) is between p(i) and F(p), it follows that

*(p(i),q(i)) + *(q(i),F(p)) = *(p(i),F(p)) (4)

Using (2), (3), (4) and the triangle inequality yields

*(p(i),F(q)) # *(p(i),q(i)) + *(q(i),F(q))

< *(p(i),q(i)) + *(q(i),F(p))

= *(p(i),F(p))

< *(p(i),F(q)).

Clearly we have a contradiction. So, F(p) = F(q).

�

Because for all relations R ,R  0 C   R  is between R  and R , by the foregoing lemma1 2 1 1 2
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it follows for strategy-proof preference rules F that for all p 0 C  F((F(p)) ) = F(p).N N

Hence, as a consequence we have the following well-known result (see e.g.

Gibbard [1973]).

CORROLARY 2.4 Let F be a non-imposed and strategy-proof preference rule. Then

F is unanimous.

We end this section with two lemmas which are used later on. The following lemma

says that for specific profiles the outcome of a preference rule is Pareto-optimal.

LEMMA 2.5 Let F be a non-imposed and strategy-proof preference rule. Let R ,R  and1 2

R  be (acyclic and) complete relations on A such that R  ª R  d {<x,y>},3 1 2

R  ª R  d {<y,x>}, R  d R  and R  d R  for some x,y 0 A. Let S,T,U be a partition of N.2 3 1 2 3 2

Then F(R ,R ,R ) 0 {R ,R ,R }.1 2 3 1 2 3
S T U

Furthermore, if #{R ,R ,R } = 3 and F(R ,R ) = R , then F(R ,R ,R ) = R1 2 3 1 2 1 1 2 3 1
S TcU S T U

PROOF By unanimity it is without loss of generality to suppose that R  � R .1 2

Hence *(R ,R ) = 1 and *(R ,R ) # 1. So, we have the following two situations1 2 2 3

illustrated by the following two diagrams.

             1                                                1                        1
R  ))))))) R  = R              R  ))))))) R  ))))))) R1 2 3 1 2 3

Let F(R ,R ,R ) = R .1 2 3 4
S T U

Then by the assumption on R , R  and R  it follows that there is a relation1 2 3

R 0 {R ,R ,R } such that R is between R  and R  for all i 0 {1,2,3}. So, by monotonicity1 2 3 4 i

we have F(R ) = R . By unanimity it follows that R = R . Hence, R  0 {R ,R ,R }.N
4 4 4 1 2 3

The furthermore part now follows straightforwardly by strategy-proofness.
�

The following lemma appears to be a powerful tool for the subsequent sections. It reads

as follows. Let R ,R ,R  and R  be a "square" in the lattice. Let S be a coalition that is1 2 3 4

decisive at a "side", i.e. F(R ,R ) = R . Then S is decisive at the opposite "side", so1 2 1
S N—S

F(R ,R ) = R .3 4 3
S N—S

LEMMA 2.6 Let F be a non-imposed and strategy-proof (acyclic) preference rule. Let
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R ,R ,R ,R  be (acyclic) complete relations, such that for some x,y,a,b 0 A, with1 2 3 4

{x,y} � {a,b}, x � y and a � b, R  ª R  = R  ª R  = {<x,y>} and1 2 3 4

R  ª R  = R  ª R  = {<a,b>}.1 4 2 3

Let S f N such that F(R ,R ) = R . Then F(R ,R ) = R .1 2 1 3 4 3
S N—S S N—S

PROOF Because of the assumption *(R ,R ) = *(R ,R ) = *(R ,R ) = = *(R ,R ) = 11 2 2 3 3 4 1 4

and #{R ,R ,R ,R } = 4.1 2 3 4

Hence, we have the following diagram.

                        1
     R   ))))))))))  R1 2

       *                               *
       *                               *
     1*                               * 1
       *                               *
       *                               *
                        1
     R   ))))))))))  R3 4

Let R  := F(R ,R ). We distinguish two cases.5 3 2
S N—S

Case 1 R  � R . Then by strategy-proofness we have *(R ,R ) < *(R ,R ) = 1.5 1 5 3 1 3

Hence, in that case R  = R . So, by monotonicity it follows that F(R ,R ) = R .5 3 3 4 3
S N—S

Case 2 R  = R . Let R  = F(R ,R ). By strategy-proofness it follows that5 1 6 3 4
S N—S

R  � R . Since by lemma 2.5 R  0 {R ,R } it follows that R  = R .6 4 6 3 4 6 3

�

The relations R ,R ,R  and R  as defined in the previous lemma form a "square" in the1 2 3 4

lattice. These play an important rôle later on, therefore we will refer to these 4

points/relations by elementary square.



— 14 —

§ 3. VOTING BY COMMITTEES

In this section we characterize all strategy-proof and non-imposed preference rules F

from C  to C. First we show that the coordinatewise veto rules, a generalization of theN

coordinatewise median rule, coincide with voting by comittees. These rules appear to

be non-imposed and strategy-proof. Then we show that non-imposed and strategy-

proof preference rules are independent of irrelevant alternatives. Hence, they are

coordinatewise. By this it is shown that these preference rules are voting by

committees.

A (monotonic) simple game is a pair <N,W> such that W is a subset of the powerset of

N, i ó W, N 0 W and for all S,T d N, with S d T, S 0 W implies T 0 W. The set W

consists of all winning coalitions. Simple games are well-known in game theory and

social choice theory they have many applications see e.g. Peleg [1978] and [1984],

Barberà, Sonnenschein and Zhou [1991] and Ramamurthy [1990]. A preference rule

F from C  to C is said to be voting in committees (see also Barberà, Sonnenschein andN

Zhou [1991], Bloomfield [1976] and Trouchon [1993]) if for all 1 # i < j # m there are

simple games <N,W > and <N,B > such that W  d B  and for all profiles p 0 Cij ij ij ij
N

: —1 if {t0N * p(t)  = —1} 0 Wij ij==v(F(p))  := ;  0 if {t0N * p(t)  = —1} ó W  and {t0N * p(t)  # 0} 0 Bij ij ij ij ij==<  1 if {t0N * p(t)  # 0} ó Bij ij

Indicating such a collection of simple games by w, such a preference rule is denoted

by F . So, <a ,a > 0 "F (p) if the coalition of individuals strictly preferring a  to a  at p,w 2 1 w 2 1

i.e. {t 0 N * p(t)  = —1}, is winning in simple game <N,W >. Interpreting coalitions in12 12

B  as blocking coalitions we obtain <a ,a > 0 FF(p) if the coalition of individuals strictlyij 2 1

preferring a  to a  is not winning in game <N,W > and the coalition of individuals2 1 12

weakly preferring a  to a  is blocking i.e. winning in game <N,B >. If this latter coalition2 1 12

is not blocking, then <a ,a > 0 "F(p).1 2

A map 8 from 2 , the powerset of N to {—1,0,1}  is an assignment of disagreements if forN M

all 1 # i < j # m and all S d T d N, 8(N)  = —1, 8(i)  = 1 and 8(S)  $ 8(T) . A preferenceij ij ij ij

rule F from C  to C is coordinatewise veto voting if there is an assignment ofN

disagreements 8 such that for all 1 # i < j # M and all profiles p 0 CN

v(F(p))  = min  max ({v(p(t))  * t 0 S} c {8(S) }).ij ij ij

SdN

These rules were introduced by Border and Jordan [1983]. Having an assignment of
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disagreements 8 the corresponding coordinatewise veto voting preference rule is

denoted by F .8

Consider a profile p and a coordinate ij, such that v(p(t))  = —1 for all t 0 S andij

v(p(t))  = +1 for all t 0 N—S, for some coalition S. Then v(F (p))  = 8(S) . So, at aij 8 ij ij

maximal conflict between S and N—S over the preference between a  and a , 8(S)  isi j ij

the outcome. In some sence 8(s)  indicates the decision power of S over the pair ofij

alternatives a  and a .i j

For an arbitrary profile p and an arbitrary coalition S, by the definition of F  it follows8

that v(F (p))  # max({v(p(t))  * t 0 S} c {8(S) }) for all coordinates ij. So, S can veto all8 ij ij ij

points greater than this maximum with respect to coordinate ij.

For example, let v(p(n))  # v(p(n—1))  #  ...  # v(p(2))  # v(p(1)) . Let S  = i, S  = {1},ij ij ij ij 0 1

 S  = {1,2}, ... and S  = N. Then v(F (p))  is the median of2 n 8 ij

{v(p(n)) ,v(p(n—1)) ,...,v(p(1)) ,8(S ) ,...,8(S ) }.ij ij ij 0 ij n ij

Special choices of 8 yield interesting subclasses of the class of coordinatewise veto

voting. For instance, the dictatorial rule with dictator 2 is obtained in the following way

: —1 if 2 0 S, and=
8(S)  = ;ij =<  1 if 2 ó S.

An absolute pairwise majority rule, at which a strict preference between two alternatives

must be supported by more than half of the polulation (all other cases yieldindifference), is obtained by

: —1 if #S > #N—S==
8(S)  = ;  0 if #S = #N—Sij ==<  1 if #S < #N—S.

For more explanation see e.g. Peters, v.d. Stel and Storcken [1991].

Let w be a collection of simple games <N,W > and <N,B > for all 1 # i < j # M as above.ij ij

Now define 8  an assignment of disagreements for all S d N as follows.w

For all 1 # i < j # M
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: —1 if S 0 Wij==
8 (S) := ;  0 if S 0 B  — Ww ij ij ij==<  1 if S ó Bij

So, v(F (p))  = 8 (S)  if S = {t 0 N * <a,a > 0 "p(t)} and N — S = {t 0 N * <a ,a > 0 "p(t)}.w ij w ij j i i j

Because for all 1 # i < j # M   i ó B , N 0 W , W  d B  and <N,W > and <N,B > areij ij ij ij ij ij

monotonic, it follows that 8  is an assignment of disagreements.w

Moreover, by the following lemma it follows that F8 ww = F .

LEMMA 3.1 Let 1 # i < j # m and p 0 C .N

Then v(F8 ij w ijw(p))  = v(F (p)) .

PROOF Let S = {t 0 N * p(t)  = —1} and T = {t 0 N * p(t)  # 0}.ij ij

We distinguish three cases.

Case 1 v(F (p))  = —1. Then by definition S 0 W .w ij ij

Hence, max ({v(p(t))  * t 0 S} c {8 (S) }) = —1. So, v(Fij w ij 8 ijw(p))  = —1.

Case 2 v(F (p))  = 0. Then by definition S ó W  and T 0 B .w ij ij ij

Hence, max({v(p(t))  * t 0 T} c 8 (T) ) # 0. So, v(Fij w ij 8 ijw(p))  # 0.

If v(F8 ijw(p))  = —1, then by definition there is a subset X d N such that

max({v(p(t))  * t 0 X} c 8 (X) ) = v(Fij w ij 8 ij ww(p))  = —1. In that case X d S and 8 (X) = —1. This

however, is not possible. Therefore, v(F8 ijw(p))  = 0.

Case 3 v(F (p))  = 1. If v(Fw ij 8 ij ijw(p))  # 0, then it follows that for some X 0 B  max

({v(p(t))  * t 0 X} c {8 (X) }) # 0. Hence, X f T. This however, cannot be the case. Soij w ij

v(F8 ijw(p))  = 1.

�

So, every voting by committees preference rule is in fact a coordinatewise veto voting

preference rule. In order to show the reverse let 8 be an assignment of disagreements.

For all 1 # i < j # M and all S d N let W  and B  be defined as follows:8 8

ij ij

S 0 W  and S 0 B if 8(S)  = —1,8 8

ij ij ij

S ó W  and S 0 B if 8(S)  = 0, and8 8

ij ij ij

S ó W  and S ó B if 8(S)  = 1.8 8

ij ij ij

Clearly W  d B , N 0 W , i ó B  and for all S d T   S 0 W  implies T 0 W  and S 0 B8 8 8 8 8 8 8

ij ij ij ij ij ij ij

implies T 0 B . Let w  denote the collection of all simple games corresponding to these8

ij 8

sets W  and B . The following lemma shows that F  = F8 8

ij ij 8 W8.
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LEMMA 3.2 Let 1 # i < j # m and p 0 C .N

Then v(F (p))  = v(F8 ij w ij8(p)) .

PROOF Let S = {t 0 N * v(p(t))  = —1} and T = {t 0 N * v(p(t))  # 0}.ij ij

Let X be a subset in N such that

v(F (p))  = max ({v(p(t))  * t 0 X} c {8(x) }).8 ij ij ij

We distinguish three cases. Without loss of generality suppose S d X.

Case 1 v(F (p))  = —1. Then X = S and 8(X)  = —1. So, 8(S)  = —1 and S 0 W .8 ij ij ij ij
8

Hence, v(Fw ij
8
(p))  = —1.

Case 2 v(F (p))  = 0. Then 8(S)  $ 0. Hence, S ó W .8 ij ij ij
8

Furthermore, X d T and 8(X)  # 0. Hence, X 0 B . So, T 0 B .ij ij ij
8 8

Now v(Fw ij ij ij8(p))  = 0, because S ó W8 and T 0 B8.

Case 3 v(F (p))  = 1. Then there is no subset Y of N such that Y d T and 8(Y)  # 0.8 ij ij

Hence, 8(T)  = 1. So, T ó B  and v(Fij ij w ij
8

8(p))  = 1.

�

Combining the previous two lemmas yields

CORROLARY 3.3 Every voting by committees preference rule is a coordinatewise

veto voting preference rule and vice versa.

The following result is straightforward see e.g. Barberà, Gul and Stacchetti [1993] or

Border and Jordan [1983].

LEMMA 3.4 Every coordinatewise veto voting preference rule is strategy-proof and

non-imposed.

Because coordinatewiseness is equivalent to the independence of irrelevant

alternatives, which implies indifference monotonicity we have the following result.

LEMMA 3.5 Every coordinatewise veto voting preference rule is indifference

monotonic.
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The following two lemmas establish that a strategy-proof and non-imposed preference

rule is a coordinatewise veto voting preference rule. First it is proved that such rules

are independent of irrelevant alternatives.

LEMMA 3.6 Let F : C  6 C be a strategy-proof and non-imposed preference rule. ThenN

F is independent of irrelevant alternatives.

PROOF Let 1 # i < j # M. Let p 0 C  and S,T,V a partition of N such thatN

S = {t 0 N * <a,a> ó p(t)}, T = {t 0 N * <a ,a > ó p(t)} and V = N —(S c T). It is sufficienti j j i

to prove that v(F(p))  = v(F(—E ,I ,E )) .ij ij ij ij
S V T

We distinguish three cases.

Case 1 v(F(p))  = —1. Let R  = F(p) and R  = R  c {<a ,a >}. Then by monotonicityij 1 2 1 i j

it follows that F(R ,R ) = R . Because C is a lattice there are relations1 2 1
S N—S

R ,R ,R ,R ,...,R  in C such that R  = —E , R  = I and R ,R ,R ,R  is an elementary3 4 5 6 k k—1 ij k 1 2 3 4

square, R ,R ,R ,R  is an elementary square ... and R ,R ,R ,R  is an elementary3 4 5 6 k—3 k—2 k—1 k

square.

So, by applying lemma 2.6 several times it follows that F(—E ,I ) = —E . Hence, byS N—S
ij ij

lemma 2.5 F(—E ,I ,E ) = —E . So, v(F(p))  = v(F(—E ,I ,E )) .S V T S V T
ij ij ij ij ij ij ij

Case 2 v(F(p))  = 1. Is similar to case 1.ij

Case 3 v(F(p))  = 0. Let R  = F(p) — {<a ,a >} and R  = F(p).ij 1 i j 2

By monotonicity it follows that F(p) = F(R ,R ).1 2
S N—S

Similarly to case 1 it follows that F(—E ,I ) = I.S N—S
ij

By a similar reasoning we also have F(I ,E ) = I.N—T T
ij

By strategy-proofness, lemma 2.5 and F(—E , I ) = I it follows thatS N—S
ij

F(—E ,I ,E ) 0 {I,E }. By strategy-proofness, lemma 2.5 and F(I ,E ) = I it follows thatS V T N— T
ij ij ij ij

F(—E ,I ,E ) 0 {I,—E }. So, F(—E ,I ,E ) = I. From which we can conclude thatS V T S V T
ij ij ij ij ij

v(F(p))  = v(F(—E ,I ,E )) .ij ij ij ij
S V T

�

LEMMA 3.7 Let F : C  6 C be a strategy-proof and non-imposed preference rule. ThenN

there is an assignment of disagreements 8 such that F = F .8
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PROOF First we define the assignment of disagreements 8 for X d N and

1 # i < j # M as follows.

8(X)  = —1 if F(—E ,E  ) = —E ,ij ij ij ij
X N—X

8(X)  = 0 if F(—E ,E  ) = I andij ij ij
X N—X

8(X)  = 1 if F(—E ,E  ) = E .ij ij ij ij
X N—X

By lemma 2.5 F(—E ,E  )  0 {—E ,I,E } therefore 8 is well-defined. Furthermore, byX N—X
ij ij ij ij

unanimity 8(N)  = —1 and 8(i)  = 1.ij ij

Let p 0 C  and 1 # i < j # m.N

Let S,V and T be defined according to p as in the previous lemma.

It is sufficient to prove that F(—E ,I ,E ) = F (—E ,I ,E ).S V T S V T
ij ij 8 ij ij

We distinguish four cases.

Case 1 8(S)  = —1. Then by definition we have both F (—E ,I ,E ) = —E  andij 8 ij ij ij
S V T

F(—E ,E  ) = —E . So in that case we are done by monotonicity.S N—S
ij ij ij

Case 2 8(S)  = 0. Is similar to case 1.ij

Case 3 8(S  c  V)  # 0 and 8(S)  = 1. By definition we have both F (—E ,I ,E ) = Iij ij 8 ij ij
S V T

and F(—E ,E ) 0 {—E ,I}.ScV T
ij ij ij

If F(—E ,E ) = I, then by monotonicity F(—E ,I ,E ) = I and we are done.ScV T S V T
ij ij ij ij

Suppose F(—E ,E ) = —E . By definition F(—E ,E ) = E .ScV T S N—S
ij ij ij ij ij ij

By lemma 2.5 F(—E ,I ,E ) 0 {—E ,I,E }.S V T
ij ij ij ij

If F(—E ,I ,E ) = —E , then by strategy-proofness and lemma 2.5 F(—E ,E ) = —E .S V T S N—S
ij ij ij ij ij ij

This cannot be the case.

If F(—E ,I ,E ) = E , then by strategy-proofness and lemma 2.5 F(—E ,E ) = E .S V T ScV T
ij ij ij ij ij ij

This cannot be the case also.

So, F(—E ,I ,E ) = I.S V T
ij ij

Case 4 8(S c V)  = 1. Then by definition we have both F (—E ,I ,E ) = E  andij 8 ij ij ij
S V T

F(—E ,E ) = E . Hence by monotonicity F(—E ,I ,E ) = E .ScV T S V T
ij ij ij ij ij ij

�

Combining lemmas 3.7 and 3.4 we have

CORROLARY 3.8 Let F : C  6 C be a preference rule then (i) and (ii) are equivalent,N

where:

(i) F is strategy-proof and non-imposed,
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(ii) There is an assignment of disagreements 8, such that F = F .8

In Barberà, Gul and Stacchetti [1993] and Barberà, Massó and Neme [1992]

similar results are obtained for a larger class of networks. Instead of strict strategy-

proofness involving preferences which are completely determined by their peak as is

done here, there strategy-proofness involving a variety of strict preferences connected

with the same peak is studied. Therefore the basic assumptions of both models are

different. Moreover, for this reason we cannot use their results here, although the final

outcomes of both approaches do not differ very much.
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§ 4. ACYCLIC PREFERENCE RULES

In this section non-imposed, indifference monotonic and strategy-proof acyclic

preference rules are characterized by acyclic coordinatewise veto voting preference

rules, which are based on so called cycle-free assignments of disagreements.

An acyclic preference rule F : A  6 A is acyclic coordinatewise veto votingN

preference rule if their is an assignment of disagreements 8 such that for all p 0 A  andN

all 1 # i < j # M

v(F(p))  = min  max {v(p(t))  * t 0 X} c {8(X) }. (5)ij ij ij

XdN
In that case F is denoted by F .8

Clearly, contrary to the preference rule case, there exist assignments of disagreements

such that the coordinatewise minmax outcome at (5) does not yield an acyclic relation.

A necessary and sufficient condition to avoid this is cycle-freeness. An assignment of

disagreements 8 is said to be cycle-free if for every sequence of alternatives

ai i i i 1 2 k i i1 2 k k+1 1 k+1,a ,...a ,a  and for every sequence of coalitions S ,S ,...,S , such that a  = a ,

#{ai i t+1 t t i t t+11 k+1 t+1 t,...,a } = k, and for all t 0 {1,2,...,k} i  < i  implies 8(S ) i  = —1 and i  < i  implies

8(N—S )t i tt t+1i  = 1 we have that 1{S  * t 0 {1,2,...,k}} � i.

Let i  < i . If 8(S )t t+1 t i t i it t+1 t+1 ti  = —1, then S  is decisive over the pair <a ,a > and if

8(N—S)t i t i i 8t t+1 t t+1i  = 1, then S  is decisive over the pair <a ,a > at F  for some assignment of

disagreements. Now suppose that 8(N—S )  = 1, 8(N—S )  = 1 and 8(S )  = —1 and1 12 2 23 3 13

S  1 S  1 S  = i. We will show that F (p) is not acyclic for some profile p 0 A . This1 2 3 8

N

profile is for all t 0 N defined as follows

p(t) = E for t 0 S  — (S  c S ),12 1 2 3

p(t) = E for t 0 S  — (S  c S ),23 2 1 3

p(t) = —E for t 0 S  — (S  c S ),13 3 1 2

p(t) = E  1 E for t 0 (S  1 S ) — S ,12 23 1 2 3

p(t) = E  1 —E for t 0 (S  1 S ) — S  and12 13 1 3 2

p(t) = E  1 —E for t 0 (S  1 S ) — S .23 13 2 3 1

Now by definition<a ,a >, <a ,a > and <a ,a > are in "F (p). Hence F  is not an acyclic1 2 2 3 3 1 8 8

preference rule in that case. The following lemma shows that cycle-freeness is a

necessary and sufficient condition in order that F  is an acyclic preference rule. The8

definition of this cycle-freeness property is inspired by Trouchon [1993], lemma 7 and

theorem 8. These theorems characterize binary games in constitutional form in a similar
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way.

LEMMA 4.1 Let 8 be an assignment of disagreements. Consider F  : C  6 C. Then (i)8

N

and (ii) are equivalent, where:

(i) 8 is cycle free, and

(ii) for all p 0 A    F (p) 0 A.N
8

PROOF ¬(ii) Y ¬(i) Suppose F (p) ó A. Then without loss of generality we have for8

some k # m   <a ,a >,<a ,a >,...,<a ,a >,<a ,a > 0 "F (p). Let1 2 2 3 k—1 k k 1 8

T  = {t 0 N * <a ,a > 0 "p(t)} for 1 # i # k—1 and S  = {t 0 N * <a ,a > 0 "p(t)}. Leti i i+1 k k 1

S  = N — T  for 1 # i # k—1. By definition of F  and <a ,a > 0 "F(p) it follows thati i 8 k 1

8(S )  = —1. By definition of F  and <a ,a > 0 "F(p) it follows for all i 0 {1,2,...,k—1}  k 1k 8 i i+1

8(T )  = 8(N—S )  = 1. So, 8 is not cycle free.i ii+1 i ii+1

¬(i) Y ¬(ii) Let 8 have a cycle. Without loss of generalization then there is a number

k # m and coalitions S ,S ,...,S  such that for all 1 # i # k—1   8(N—S )  = 1 and1 2 k i ii+1

8(S )  = 1 and S  1 S  1 ... 1 S  = i. Now for all t 0 N define p(t) as follows: for allk 1k 1 2 k

a ,a  0 A   <a ,a > 0 p(t) unlessi j i j

either i = 1, j = k and t 0 S ,k

or i = j+1 # k and t 0 S .j

Since S  1 S  1 ... 1 S  = i it follows that p 0 A .1 2 k
N

By definition of F  it follows that <a ,a >,...,<a ,a >,<a ,a > 0 "F (p).8 1 2 k—1 k k 1 8

So, F (p) ó A.8

�

Next it is shown that non-imposed, indifference monotonic and strategy-proof

acyclic preference rules are independent of irrelevant alternatives.

LEMMA 4.2 Let F : A  6 A be a non-imposed and strategy-proof acyclic preferenceN

rule.  Then F is indifference monotonic if, and only if, F is independent of irrelevant

alternatives.

PROOF The if-part is evident.

In order to prove the only if-part suppose F is indifference monotonic. Let 1 # i < j # M.
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Let p 0 A  and S,T and V be a partition of N such that S = {t 0 N * <a ,a > ó p(t)},N
i j

T = {t 0 N * <a ,a > ó p(t)} and V = N ! (S c T). It is sufficient to prove thatj i

v(F(p))  = v(F(—E ,I ,E ) . We distinguish three cases.ij ij ij ij
S V T

Case 1 v(F(p))  = —1. Let R  = F(p) and R  = R  c {<a ,a >}. R  0 A becauseij 1 2 1 1 2 2

<a ,a > 0 "R  and R  0 A. Furthermore, there are complete relations R ,R ,...,R ,R2 1 1 1 3 4 k—1 k

in C such that R  = —E , R  = I, and R ,R ,R ,R  is an elementary square, R ,R ,R ,Rk—1 ij k 1 2 3 4 3 4 5 6

is an elementary square,... and R ,R ,R ,R  is an elementary square. It is withoutk—3 k—2 k—1 k

loss of generality to suppose that R  d R  d R  d ... d R  = —E  and1 3 5 k—1 ij

R  d R  d ... d R  = I. Therefore R  is obtained from R  by changing a strict preference2 4 k 3 1

over a single pair into an indifference. Hence, R  is in A. Similarly it follows that3

R ,R ,...,R  0 A. So, all the squares are in A. But then similarly as in case 1 of lemma4 5 k

3.6 it follows that v(F(p))  = v(F(—E ,I ,E )) .ij ij ij ij
S V T

Case 2 v(F(p))  = 1. Is similar to case 1.ij

Case 3 v(F(p))  = 0. Then by indifference monotonicity it follows thatij

v(F(p))  = v(F(—E ,I ,E )) .ij ij ij ij
S V T

�

Now similarly to 3.7 the following result can be obtained.

LEMMA 4.3 Let F : A  6 A be strategy-proof, non-imposed and indifferenceN

monotonic. Then there is an assignment of disagreements 8 such that F = F .8

Combining lemma 4.1 up to 4.3 yields the following characterization of strategy-proof,

non-imposed and indifference monotonic acyclic preference rules.
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CORROLARY 4.4 Let F : A  6 A be an acyclic preference rule.N

Then (i) and (ii) are equivalent, where:

(i) F is strategy-proof, non-imposed and indifference monotonic

(ii) There is a cycle-free assignment of disagreements 8, such that F = F .8
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