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Abstract

In this paper we study and compare the properties of several bootstrap unit root tests

recently proposed in the literature. The tests are Dickey-Fuller or Augmented DF-tests,

either based on residuals from an autoregression and the use of the block bootstrap (Papar-

oditis & Politis, 2003) or on first differenced data and the use of the stationary bootstrap

(Swensen, 2003a) or sieve bootstrap (Psaradakis, 2001; Chang & Park, 2003). We extend

the analysis by interchanging the data transformations (differences versus residuals), the

types of bootstrap and the presence or absence of a correction for autocorrelation in the

tests. We prove that two sieve bootstrap tests based on residuals remain asymptotically

valid, thereby completing the proofs of validity for all the types of DF bootstrap tests.

In contrast to the literature which basically focuses on a comparison of the bootstrap

tests with an asymptotic test, we compare the bootstrap tests among them using response

surfaces for their size and power in a simulation study. We also investigate how the tests

behave when accounting for a deterministic trend, even in the absence of such a trend in

the data.

This study leads to the following conclusions: (i) augmented DF-tests are always

preferred to standard DF-tests; (ii) the sieve bootstrap performs slightly better than the

block bootstrap; (iii) difference-based and residual-based tests behave similarly in terms

of size although the latter appear more powerful. The results for the response surfaces

allow us to make statements about the behaviour of the bootstrap tests as sample size

increases.
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1 Introduction

In this paper we study and compare the properties of some bootstrap unit root tests that

have recently been proposed in the literature. We also introduce some new tests, prove their

first order asymptotic validity and compare them to existing tests.

Due to the good performance of the bootstrap in finite samples for stationary processes, its

application to nonstationary series has recently become increasingly popular. This paper deals

with the tests proposed by Psaradakis (2001), Chang & Park (2003), Paparoditis & Politis

(2003) and Swensen (2003a). These papers consider bootstrap unit root tests, but differ in

the way the tests are constructed. Besides showing the asymptotic validity, all these papers

compare the finite sample performance of their test(s) to the asymptotic counterpart(s), and

the results are overall encouraging. It is however less clear how these tests perform compared

to each other. This is what we will analyse in this paper. Our goal is to find out which

tests perform best under circumstances to be given, and more specifically which aspects of

the tests lead to a good or bad finite sample performance. We will analyse and compare the

asymptotic properties of these tests, and we will also consider Monte Carlo simulations.

We distinguish three main features of the tests. The first is the actual test statistic.

While many different unit root tests are available, most papers restrict their attention to

Dickey & Fuller (1979, 1981) type of tests. Some tests use the Dickey-Fuller (DF) test, others

the augmented Dickey-Fuller (ADF). As the ADF statistic is asymptotically pivotal, whereas

the DF is not, we might expect a bootstrap ADF test to offer asymptotic refinements over

the bootstrap DF test and asymptotic tests (Horowitz, 2001). The second feature is which

series exactly should be resampled. Bootstrapping a nonstationary series directly is not valid

(Basawa et al., 1991). Therefore a stationary series has to be constructed first. Some tests use

residuals from a first-order autoregression of the series, others use first-differences of the series.

Swensen (2003b) shows that power functions are the same for both cases if the innovations

are iid. However as shown by Paparoditis & Politis (2003, 2005), differences lead to poor

behaviour of the bootstrap tests under the alternative. The third is the time series bootstrap

method that is employed. Some tests that we consider use some form of the block bootstrap,

in which blocks of (restricted) residuals are resampled. Other tests use the sieve bootstrap,

that fits an AR model to the (restricted) residuals and resamples the residuals of this AR

model. The sieve bootstrap is somewhat easier to use and performs better when valid, but

the block bootstrap is valid for more general processes.

Currently, no tests that use the sieve bootstrap and are based on residuals have been

shown to be asymptotically valid for the DGPs considered in this paper. We adapt the sieve

bootstrap tests by Psaradakis (2001) and Chang & Park (2003) by basing them on residuals

instead of differences and show that these new tests are asymptotically valid. As residual-

based tests may have better properties under the alternative than difference-based tests, this

is an important extension. With these results, all the tests considered in this paper have been
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shown to be asymptotically valid.

A word on notation. We denote weak convergence by ‘
d−→’, convergence in probability by

‘
p−→ and almost sure convergence by ‘

a.s.−−→’. W (r) indicates a standard Brownian motion. As

usual, we use the superscript ‘∗’ to denote bootstrap quantities, both for bootstrap samples

and statistics calculated for bootstrap samples. Similarly, ‘
d∗−→’ indicates weak convergence of

a bootstrap statistic conditional on the original series.

The structure of the paper is as follows. In Section 2, we discuss the bootstrap unit

root tests, highlight several features of these tests and prove the asymptotic validity of the

new tests proposed. Section 3 contains an extensive Monte Carlo simulation analysis of the

various bootstrap unit root tests. The results are summarised using response surfaces. Section

4 concludes.

2 The tests

In this section we discuss several bootstrap unit root tests from a theoretical point of view.

We will start with a description of the tests. We will focus on DF-type tests.

2.1 DF sieve bootstrap test

2.1.1 Difference-based DF sieve bootstrap test: Psaradakis (2001)

Psaradakis (2001) considers the following Data Generating Process (DGP) for the time series

yt, t = 1, . . . , n:

yt = dt + vt

vt = ρvt−1 + ut

(1)

where dt consists of deterministic components. Three cases for the deterministic components

are considered: the first case is without deterministics, dt = 0, the second case is with only

a constant term, dµ
t = δ0, and the third case is with constant term and linear time trend,

dτ
t = δ0 + δ1t. The process ut is assumed to satisfy the following condition:

Assumption 1

(i) ut is the linear process

ut =
∞
∑

j=0

ψjεt−j (ψ0 := 1) (2)

where εt are iid random variables with E[ε1] = 0, E[ε21] = σ2
ε > 0 and E[ε41] <∞.

(ii) The sequence of constants ψj in (2) is such that
∑∞

j=0 j|ψj | < ∞,
∑∞

j=0 ψj 6= 0, and
∑∞

j=0 ψjz
j 6= 0 in {z ∈ C : |z| ≤ 1}.
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Note that this assumption implies that ut is an invertible linear process; see Phillips &

Solo (1992) for more details. We can rewrite the model (1) into the following form

yt = ρyt−1 + d†t + ut, (3)

where d†t = γ0 + γ1t := (1− ρ)δ0 + ρδ1 +(1− ρ)δ1t (in the first case δ0 = δ1 = 0, in the second

case δ1 = 0). Psaradakis considers the DF coefficient test n(ρ̂ − 1) and t-test in equation

(3) for testing ρ = 1. As stated above, the assumptions on the innovations allow for a sieve

bootstrap.

Psaradakis (2001) furthermore needs the following assumption on the order of the autore-

gression:

Assumption 2 The order p of the autoregressive approximation is such that p = p(n) → ∞
as n→ ∞ with p(n) = o((n/ ln n)1/4).

The order of the autoregression can be selected using standard information criteria.

The exact bootstrap procedure can be described as follows.

Bootstrap Test 1 (Psaradakis, 2001)

1. Fit an AR(p) model to ût, where ût = ∆yt if the deterministic part consists of at most

a constant term, and ût = ∆yt −n−1
∑n

t=1 ∆yt if the deterministic part contains both a

constant term and a linear time trend

ε̂t = ût −
p
∑

j=1

φ̂j ût−j, t = 1 + p, . . . , n.

2. Generate an iid sample ε∗t by drawing randomly with replacement from ε̂t−(n−p)−1
∑n

t=1+p ε̂t.

3. Construct bootstrap errors by the recursion

u∗t =

p
∑

j=1

φ̂ju
∗
t−j + ε∗t . (4)

4. The bootstrap sample y∗t is generated recursively by

y∗t = y∗t−1 + u∗t

in case of no deterministic components or an intercept only, and by

y∗t = n−1
n
∑

t=1

∆yt + y∗t−1 + u∗t

in case of a constant term and a linear trend.
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5. Calculate the DF coefficient test and t-test using the bootstrap sample for the previously

specified deterministic specification.

6. Repeat steps 2 to 5 B times to find the bootstrap distributions where B denotes the

number of bootstrap replications.

Psaradakis (2001) suggests to estimate the AR(p) model in step 1 using the Yule-Walker

equations to ensure that the generated innovations u∗t admit a one-sided MA(∞) represen-

tation, but OLS can be used as well, as it is asymptotically equivalent to Yule-Walker. The

asymptotic distribution of the bootstrap statistics under the null is shown to be the same

as the asymptotic distribution of the original statistic. Note that although the limiting dis-

tributions contain nuisance parameters, this does not matter for the bootstrap approach as

the critical values for testing are based on the (empirical) distributions of the bootstrap tests

that can be approximated by simulation with any accuracy desired.

2.1.2 Residual-based DF sieve bootstrap test: Psaradakis modified

In this section we propose a DF sieve bootstrap test based on residuals. This test is very

similar to the test by Psaradakis (2001), except that it is based on residuals. Paparoditis

& Politis (2005) have proposed an ADF coefficient test, and we construct our test in the

same way as they do. In this section we will show that our test is asymptotically valid when

considering the assumptions made by Psaradakis (2001).

We can describe the new algorithm in a very brief way, as the algorithm for the tests by

Psaradakis (2001) only needs to be modified in one step:

Bootstrap Test 2 (Residual-based DF sieve bootstrap procedure)

Replace step 1 from Bootstrap Test 1 by

1. Calculate the residuals from the regression

ε̂t = ỹt − ρ̂ỹt−1

p
∑

j=1

φ̂j∆ỹt−j, t = 1 + p, . . . , n. (5)

where ỹt = yt in the case of a (possibly zero) intercept and ỹt = yt − γ̂0 − γ̂1t in the case

of a linear trend, and γ̂0 and γ̂1 are the corresponding OLS estimates.

We show that, under the assumptions given above, the bootstrap distributions converge

to the same limit distribution as the standard test statistics. First we define

σ2
u = lim

n→∞
n−1 E[u2

t ] (6a)

σ2 = lim
n→∞

n−1 E[(
n
∑

t=1

ut)
2]. (6b)
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Now we can state the following theorem:

Theorem 1 Let n(ρ̂∗ − 1) and t∗ be the coefficient and t-statistic, respectively, that follow

from Bootstrap Procedure 2. Under Assumptions 1 and 2, we have that

n(ρ̂∗ − 1)
d∗−→
∫ 1
0 W (r)dW (r) + (σ2 − σ2

u)/2σ2

∫ 1
0 W (r)2dr

t∗
d∗−→
∫ 1
0 W (r)dW (r) + (σ2 − σ2

u)/2σ2

(

(σ2
u/σ

2)
∫ 1
0 W (r)2dr

)1/2
.

where W (r) is a standard Brownian motion on [0, 1].

Proof : See Appendix A.

We have shown that the DF sieve test as constructed by Psaradakis (2001) remains asymp-

totically valid if it is based on residuals instead of differences.

2.2 ADF sieve bootstrap test

2.2.1 Difference-based ADF sieve bootstrap test: Chang & Park (2003)

Chang & Park (2003) consider the DGP

yt = ρyt−1 + ut, (7)

where ut =
∑∞

j=0 ψjεt−j . The following assumptions are used:

Assumption 3

(i) ut is the linear process

ut =

∞
∑

j=0

ψjεt−j (ψ0 := 1) (8)

where εt is a sequence of iid random variables with E[εt] = 0, E[ε2t ] = σ2
ε , and E |εt|r <∞

for some r ≥ 4,

(ii) Let
∑∞

j=0 ψjz
j 6= 0 for {z ∈ C : |z| ≤ 1}, and

∑∞
j=0 |j|s|ψj | <∞ for some s ≥ 1.

For the order of the autoregressive approximation, Chang & Park (2003) consider two

different assumptions:

Assumption 4 Let p(n) → ∞ and p(n) = o(nκ) with κ < 1
2 as n→ ∞.

The following assumption is stronger.

Assumption 5 Let p(n) = cnκ for some constant c and 1/rs < κ < 1
2 .
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These assumptions are very similar to the assumptions Psaradakis (2001) uses. Like Psaradakis,

Chang & Park (2003) assume that ut follows an invertible linear process. The main difference

is the rate at which the lag length p is allowed to grow. Furthermore there is a difference if

r > 4 and/or s > 1, which means stronger assumptions.1

The bootstrap procedure of Chang & Park (2003) is very similar to the procedure of

Psaradakis (2001):

Bootstrap Test 3 (Chang and Park, 2003)

Follow the same steps as in the procedure for the Psaradakis test, but only for the deterministic

specification dt = 0. Replace step 5 by

5. Calculate the ADF coefficient statistic (1−∑p
j=1 φ̂j)

−1n(ρ̂∗ − 1) and the corresponding

t-statistic2 from the ADF regression

y∗t = ρ∗y∗t−1 +

p
∑

j=1

φ∗j∆y
∗
t−j + ε∗t .

Chang & Park (2003) show that their bootstrap tests converge to the same asymptotic

distributions under the null as the asymptotic tests. The convergence is shown to hold almost

surely under the strong assumptions, and in probability under the weaker assumptions. They

claim that their tests are also valid when applied to demeaned or detrended data, but they do

not provide any further analysis. As these distributions are asymptotically pivotal, meaning

that the limiting distribution does not depend on nuisance parameters, one might expect that

the ADF bootstrap test offers asymptotic refinements.

2.2.2 Residual-based ADF sieve bootstrap test: Chang and Park modified

Similar to the previous section, we construct a residual-based test that is based on the test

by Chang & Park (2003) and resembles the residual-based ADF test of Paparoditis & Politis

(2005) strongly.

Bootstrap Test 4 (Residual-based ADF sieve bootstrap test) Replace step 1 from

Bootstrap Test 3 by

1. Calculate the residuals from an ADF regression as in the following equation

ε̂t = yt − ρ̃yt−1

p
∑

j=1

φ̂j∆yt−j, t = 1 + p, . . . , n. (9)

1If r > 4 higher moments exist; if s > 1 the dependence dies out more quickly.
2Chang and Park suggest using σ̂2

ε for the t-test instead of σ̂∗2
ε , although both are appropriate. Similarly,

it is possible to use 1 −

Pp

j=1
φ̂∗

j for the coefficient test.

7



The next theorem shows that, under the assumptions given above, the bootstrap distri-

butions converge to the same limit distributions as the asymptotic test statistics.

Theorem 2 Let n(ρ̂∗ − 1) and t∗ be the bootstrap coefficient statistic and t-statistic, respec-

tively, that follow from Bootstrap Test 4. Let Assumption 3 and 4 hold. Then

n(ρ̂∗ − 1)
d∗−→
∫ 1
0 W (r)dW (r)
∫ 1
0 W (r)2dr

,

t∗
d∗−→

∫ 1
0 W (r)dW (r)

(

∫ 1
0 W (r)2dr

)1/2
.

Proof : See Appendix A.

We have shown that the ADF sieve test as constructed by Chang & Park (2003) is also

asymptotically valid if it is based on residuals, although in Theorem 2 we have obtained

convergence in distribution whereas Chang & Park (2003) proved a.s. convergence for their

strong assumptions. By imposing the unit root restriction difference-based tests rely on

stationary series for which a.s. convergence holds. Although not imposing the unit root when

applying the sieve bootstrap is certainly a drawback, we still feel our result is worthwhile as

it does provide justification for using a residual-based sieve bootstrap, even if it is not the

same justification as Chang & Park (2003) provide for their tests.

2.3 (A)DF block bootstrap test

2.3.1 Residual-based (A)DF block bootstrap test: Paparoditis & Politis (2003)

Paparoditis & Politis (2003) propose a block bootstrap method to test for unit roots. Their

method, the residual-based block bootstrap (RBB), is a block bootstrap method applied to

residuals of a regression of the series yt on its first lag. We first state the assumptions under

which the RBB is appropriate. Two sets of assumptions are considered, such that one of these

should be satisfied by the process yt to validate the use of the RBB. Paparoditis & Politis

(2003) consider the process

yt = α+ ρyt−1 + ut (10)

where if α 6= 0 there is a drift under the null of ρ = 1.

For ut assumption 6 (i) and (ii)(A) must hold:

Assumption 6

(i) the process ut is generated by

ut =

∞
∑

j=0

ψjεt−j (11)

with εt a sequence of iid random variables with E[εt] = 0, E[ε2t ] = σ2
ε > 0 and E[ε4t ] <∞.
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(ii) (A) Let ψ0 = 1,
∑∞

j=1 j|ψj | <∞ and
∑∞

j=0 ψj 6= 0.

(B)
∑∞

j=0 ψjz
j is bounded, and bounded away from zero for {z ∈ C : |z| ≤ 1}.

This condition simply states that ut is a stationary linear process under the null while under

the alternative yt is stationary and linear, and under the additional assumption (ii)(B) it

is invertible as well. This assumption is similar to those Psaradakis and Chang and Park

employ.

The second condition states that ut should satisfy a mixing condition. In contrast to the

condition needed for the sieve bootstrap, one should note that the generating process of ut

does not have to be belong to the class of linear processes to satisfy this condition. Hence,

we see here a class of processes (possibly non-linear) for which the block bootstrap is valid

but the sieve bootstrap is not.

Assumption 7 For each value of ρ, the series ut is strong mixing and satisfies the following

conditions: E[ut] = 0, E |ut|r < ∞ for some r > 2, fu(0) > 0, where fu denotes the spectral

density of ut, i.e., fu(λ) =
∑∞

h=−∞ γu(h) exp(iλh) and γu(h) = E[utut+h]. Furthermore,
∑∞

k=0 α(k)1−2/r <∞, where α(·) denotes the strong mixing coefficient of ut.

Their procedure can be described as follows.

Bootstrap Test 5 (Paparoditis and Politis, 2003)

1. Calculate the centred residuals

ũt = ût −
1

n− 1

n
∑

j=2

ût = (yt − ρ̃yt−1) −
1

n− 1

n
∑

j=2

(yt − ρ̃yt−1)

where ρ̃ is a consistent estimator of ρ.

2. Choose the block length b, and draw points i0, i1, . . . , ik−1, where k = ⌊(n− 1)/b⌋,3 from

the uniform distribution on the set {1, 2, . . . , n − b}. These points will serve as the

beginning points of the blocks of centred residuals:

y∗t =

{

y1 for t = 1

α̂+ y∗t−1 + ũim+s for t = 2, 3, . . . , n
(12)

where m = ⌊(t−2)/b⌋, s = t−mb−1, and α̂ is a drift parameter that is either set equal

to zero or it is a consistent estimator of α.

3. From the bootstrap series y∗t compute the desired statistics.

4. Repeat steps 2 to 3 B times to find the bootstrap distribution.

3The bootstrap sample y∗

t will have total length l = kb + 1.
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Although most bootstrap unit root tests are based on differences, Paparoditis & Politis

(2003) show that this may lead to a loss of power. We will give a short intuition of why this

is so. This is adapted from Paparoditis & Politis (2001). For simplicity we neglect for the

moment that the ût’s might have non-zero mean and that the residuals have to be recentred,

and we set α = 0. Then ũt = yt − ρ̃yt−1. As the goal of the bootstrap is to approximate the

distribution, we want to generate samples that are I(1), which is accomplished through the

equation y∗t = y∗t−1 + ũim+s, see (12). Combining these two equations yields

y∗t = y∗t−1 + yim+s − ρ̃yim+s−1

= y∗t−1 + yim+s − ρyim+s−1 + ρyim+s−1 − ρ̃yim+s−1

= y∗t−1 + uim+s + (ρ− ρ̃)yim+s−1.

(13)

As the bootstrap should generate unit root samples for all values of ρ, the term (ρ− ρ̃)yim+s−1

should be negligible for all ρ. Therefore, choosing ρ̃ = 1 is not appropriate if in reality ρ 6= 1

and ρ̃ has to be a consistent estimator of ρ. Hence choosing ρ̃ = 1 will lead to problems under

the alternative. Paparoditis & Politis (2003) formally show that using differences instead of

residuals leads to loss of power.

As said above, ρ̃ should be a consistent estimator of ρ. Furthermore, it is required that

ρ̃ converges at rate op(1) if ρ 6= 1, at rate Op(n
−1) if ρ = 1 and α = 0, and converges at

rate Op(n
−3/2) if ρ = 1 and α 6= 0. Many estimators satisfy these conditions. Paparoditis &

Politis (2003) focus on what they call the least squares (LS) estimator, which is just the DF

estimator, and the ADF estimator (they call this the DF estimator). For the validity of the

ADF estimator the additional condition iiB is needed to ensure invertibility.

They prove the consistency of the RBB for the DF coefficient test and the ADF coefficient

test. For models where α = 0, they recommend to use the OLS estimator of ρ in

yt = α+ ρyt−1 + ut (14)

or the ADF equivalent4 as ρ̃, which is used to construct the residuals. In the second step α̂

is set to zero, as there should be no drift. They also recommend for the RBB ADF test to

use the block bootstrap5 of yt − yt−1 directly as lagged differences instead of y∗t − y∗t−1. For

both the tests without deterministic components as the tests with a constant included, the

consistency of the DF and ADF RBB tests is proved.

For the case of nonzero mean, α 6= 0, Paparoditis & Politis (2003) recommend using the

same estimator for ρ̃ as before but set α̂ = α̃ where α̃ is the estimator of α in (14). They prove

the consistency of the DF coefficient test with constant and trend and claim the consistency

of the corresponding ADF test can be established similarly.

4Depending on which unit root test is performed.
5Using the same blocks as for the residuals.
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2.3.2 Difference-based (A)DF block bootstrap test: Paparoditis & Politis (2003)

Similar to the previous two tests we also consider an alternative version of the tests by

Paparoditis & Politis (2003). However, the situation here is the reverse of the two tests

above, as the original tests are based on residuals, so the modified tests will be based on

differences. The new procedure simply replaces ρ̃ by 1. Paparoditis & Politis (2003) already

showed the asymptotic validity of these alternative tests.

2.4 DF stationary bootstrap test

2.4.1 Difference-based DF stationary bootstrap test: Swensen (2003a)

Swensen (2003a) considers a unit root test without deterministic components based on the

stationary bootstrap of Politis & Romano (1994). He assumes the DGP

yt = ρyt−1 + ut (15)

with the following assumptions on ut.

Assumption 8

(i) The process ut is strictly stationary with E[ut] = 0 for all t.

(ii) If γ(k) = E[utut+k], then

γ0 +
∞
∑

r=0

|rγ(r)| <∞.

(iii)
∑

r,s,t κ4(r, s, t) = K < ∞ where κ4(r, s, t) is the fourth cumulant of the distribution of

(uj , uj+r, uj+r+s, uj+r+s+t).

Assumption (iii) is used to ensure that the variance of 1
n

∑

t u
2
t tends to zero and implies

that σ2 can be consistently estimated. Under these conditions Swensen (2003a) proves the

consistency of the DF tests without deterministic components based on the stationary boot-

strap. Note that the conditions needed are significantly weaker than those needed for the

sieve bootstrap.

The algorithm can be described as follows:

Bootstrap Test 6 (Swensen, 2003)

1. Compute centred differences

ũt = ∆yt − (n− 1)−1
n
∑

j=2

∆yj.
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2. Apply the stationary bootstrap of Politis & Romano (1994) to the centred residuals to

obtain bootstrap errors u∗t :

(a) Draw the index of the starting points of the blocks, i1, i2, . . ., from the uniform

distribution P (t1 = t) = 1
n , t = 1, . . . , n. Let pL be a fixed number between 0 and 1.

Draw the length of the blocks b1, b2, . . . from the geometric distribution P (b1 = l) =

(1 − pL)l−1pL. The expected block length is 1/pL.

(b) Form blocks using the drawn starting points and block lengths. For block m+ 1 we

have

u∗t = ũim+1+t−b(m)−1 (16)

where t = b(m) + 1, . . . , b(m) + bm+1 and b(m) =
∑m

j=1 bj.

(c) Stop after generating B blocks if lB =
∑B

j=1 bj ≥ n. Lay the blocks end-to-end in

the order sampled, and cut off the resulting series u∗1, . . . , u
∗
lB

at u∗n if lB > n.

3. Construct the bootstrap sample y∗t with the recursion y∗t = y∗t−1 + u∗t .

4. Compute the bootstrap DF coefficient and t-statistic.

5. Repeat steps 2 to 4 B times to find the bootstrap distribution.

2.4.2 Residual-based DF stationary bootstrap test: Parker, Paparoditis & Poli-

tis (2006)

Again, we also consider a modified version of these tests. Here we base the modified version

on residuals instead of differences. Instead of the centred differences we calculate in step 1

centred residuals as in the bootstrap procedure of Paparoditis & Politis (2003). This test has

recently been considered by Parker et al. (2006) and they also show the asymptotic validity

of this test.

2.5 Comparison

As mentioned before, we will compare the tests on different aspects. We will mainly focus on

three aspects: whether differences or residuals are used, the bootstrap method and the test

statistic.

We have two tests that use the sieve bootstrap, and two that use (a form of) the block

bootstrap. Theory for stationary series might lead us to expect a slightly better performance

based on this aspect of the sieve bootstrap tests of Psaradakis (2001) and Chang & Park

(2003).

Two tests use the DF statistic, one uses the ADF statistic and one uses both. Considering

that the ADF test is asymptotically pivotal, a better performance of the Chang & Park (2003)

test and the ADF test of Paparoditis & Politis (2003) based on this aspect seems credible.

12



Because we construct the modified tests, all tests are both based on residuals as well as

differences. These modified tests allow us to look at each aspect separately. We have seen

above that for the original tests differences are often combined with the sieve bootstrap. In

fact, there is no sieve bootstrap test that is based on residuals. To be able to analyse the

effects of the bootstrap method and the construction of the I(0) series separately, we have to

use the new tests.

The authors of the papers discussed above of course also performed simulations. Psaradakis

(2001) performs some Monte Carlo simulations that show that for a model with a error term

with a large negative MA term the bootstrap tests have better finite sample size than all

asymptotic tests considered. In terms of power the bootstrap performs similar to the asymp-

totic tests. Monte Carlo simulations by Chang & Park (2003) show that bootstrap tests

have better empirical size in finite samples than their asymptotic equivalent in the presence

of a large negative MA-root. It is also shown that bootstrapping improves the coefficient

test more than the t-test. The Monte Carlo simulation results reported by Paparoditis &

Politis (2003) are qualitatively similar to those discussed earlier: the size of the tests is closer

to the nominal level than the size of the asymptotic tests. The problems with the negative

MA-root however cannot be solved with the RBB test. Since the RBB-ADF test appears to

be less sensitive to the lag length p than for example the sieve bootstrap, increasing p does

not improve performance much. They also compare the performance of the RBB test with a

block bootstrap test based on differences and with a sieve bootstrap. From the simulations it

seems that the power of the RBB test is higher than the power of both the block bootstrap

test based on differences as the sieve bootstrap test, as well as higher than the power of the

asymptotic tests. Swensen (2003a) also did simulations on the performance of his test. He

found that in general the stationary bootstrap test performs well, although it cannot fully

remove the size problems linked to a large negative MA-root. The simulations show that the

stationary bootstrap is very sensitive to the choice of the expected block length. Furthermore,

when the errors have AR components, the stationary bootstrap suffers from a lack of power

regardless of the choice of the expected block length.

It is clear from these simulations that in finite samples the bootstrap tests perform better

than the asymptotic tests in terms of size, and similar in terms of power. It is however not

clear from these simulations, how the tests compare to each other.

Table 1 summarises all the test statistics and their main points. A note on the notation: we

use τ for a coefficient test and t for a t-test. The first subscript indicates the bootstrap method,

so S stands for sieve bootstrap, B for block bootstrap, and St for stationary bootstrap; the

second subscript indicates whether a test is based on differences (d) or residuals (r). A

superscript a states that the test is an augmented DF test.

Insert Table 1 about here
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3 Finite sample performance: Monte Carlo results

We will analyse the finite sample behaviour of the various tests, and focus in particular on

the above mentioned points, by Monte Carlo simulations.

3.1 Monte Carlo setup

Let us first describe the DGPs that are used. We generate a series yt, t = 1, . . . , n according

to the recursion

yt = ρyt−1 + ut, y0 = 0, (17)

where different values for ρ are used: 1, 0.99, 0.95, 0.9 and 0.8. Furthermore, we let ut be

generated by different processes. As sample sizes we consider n = 50, n = 100 and n = 250.

We use three different significance levels: 0.01, 0.05 and 0.10. All experiments will be based on

5000 simulations and 999 bootstrap replications. All simulations are performed using GAUSS

6.0.

We use an ARMA(1,1) process to generate ut:

ut = φut−1 + εt + θεt−1, (18)

where εt ∼ IN(0, 1). The values used for φ and θ vary from -0.8 to 0.8. 6

We perform two sets of simulations with these models. The first set considers the tests

based on models without deterministic components. In the second set of simulation we will

consider the tests with a constant and a trend (but not in the DGP). These extensions are not

discussed in all papers, so that not all tests we consider have been shown to be theoretically

valid. For the ADF test of Paparoditis & Politis (2003), we follow their (clear) instructions

on how to handle the model with trend. Chang & Park (2003) on the other hand indicate

that their tests can be applied in the model with trend by applying the bootstrap test to the

detrended data. We hence follow their advise; we first detrend the series (by OLS), then we

apply the bootstrap tests to this detrended series as if this was our original series in the first

place. For the test proposed by Swensen (2003a), we add deterministic components in the

same way as Psaradakis (2001) does this.

We select the lag length for the sieve bootstrap by AIC, so it is applied to differenced data.

We estimate the AR(p) models by OLS. For the lag length in the ADF test of Paparoditis

and Politis we use the modified AIC by Ng & Perron (2001). For the block length we choose

fixed numbers: 5 for n = 50, 8 for n = 100 and 15 for n = 250. The fact that there is no easy

way to estimate block lengths remains a problem.

The large number of DGP’s and tests statistics in our simulations leads to a huge number

of results that is rather hard to analyse in standard tables. We circumvent this problem by

6Specific values used for (φ, θ) are: (0, 0), (−0.8, 0), (−0.4, 0), (0.4, 0), (0.8, 0), (0,−0.8), (0,−0.4), (0, 0.4),
(0, 0.8), (0.4, 0.4), (−0.4,−0.4).
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estimating different response surfaces for the rejection frequencies observed in our simulations

for each of the test statistics.

Because the empirical rejection frequency P̂ lies always between 0 and 1, we use the

following transformation:

L(P ) = ln

(

P

1 − P

)

. (19)

As dependent variable we use L(P̂ ), as explanatory variables we consider several functions

of the nominal level and the parameters in the underlying DGP. We will provide more details

below. The specific form of the response surfaces is test specific. To avoid lengthy specifi-

cation searches, we rely on PcGets (Hendry & Krolzig, 2001) to select the most appropriate

specification using a large set of possible variables. The reported standard errors are White

heteroscedasticity consistent standard errors. Apart from the coefficient estimates and their

standard errors, the R2 of the regression is also reported.

3.2 Results

3.2.1 The tests without deterministic components

Size Tables 2 and 3 give the parameter estimates and standard errors for the response

surfaces for the size. We consider the following response surface for the size:

L(P̂ ) = β1L(Pa) + β′
2f(L(Pa), φ, θ, n) + ν, (20)

where Pa is the nominal size, or significance level, of the test and f(L(Pa), φ, θ, n) is a vector

of functions of L(Pa), the ARMA parameters φ and θ and the sample size n. These functions

are stated in the leftmost column of the tables.

Insert Table 2 about here

Insert Table 3 about here

Several things can be seen from the response surfaces. The term β′2f(·) captures the

deviations of the actual size from the nominal size as a function of the parameters of the

DGP and sample size. β1L(Pa) gives an indication of the asymptotic size of the tests. When

β1 is equal to 1, the empirical size of the test is equal to the nominal size for large n. We see

that for some tests β1 is significantly different from 1, although for most it is close to it. Since

the terms in β′2f(·) are either of order O(n−1/2) or O(n−1), this means that for most tests

the size distortions decrease when n increases. Results for the tests by Psaradakis (2001), the

tests by Swensen (2003a) and, to a lesser degree, the DF test by Paparoditis & Politis (2003)

and the tests by Parker et al. (2006) are somewhat worrying. Note that these are all DF tests,

as opposed to the ADF tests for which β1 is much closer to 1. For the block tests, the value
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for β1 is higher for the difference-based version than the residual-based version, which may

indicate that in general the residual-based tests give slightly higher rejection frequencies than

difference-based tests, which is something we also see in the “raw” results of the simulations.

Next, we see that the response surfaces for block tests in general require more parameters

than for sieve tests. Specifically, we see that functions of φ play a larger role for block tests

than for sieve tests. As φ is the autoregressive parameter, this is not so strange. Because

the sieve bootstrap filters out the dependence using an AR(p) model, it filters φ out directly,

therefore it will not have much influence on the size. Basically we will be resampling an

approximately iid series εt (if there is no MA dependence). In the block bootstrap however,

there is no filtering out of the dependence, so it is more likely that φ will play a role here.

We do not only see this difference when we compare block bootstrap tests to sieve boot-

strap tests, but also when we compare residual-based tests to difference-based tests. The

AR parameter φ seems to be more important for the size of residual-based tests than of

difference-based tests. Again this may be understood by noting that the AR parameter has

an influence through the estimator of ρ when estimating residuals, whereas it does not when

using differences. As said before, the difference-based test might perform somewhat better

under the null because we impose it.

Another point we notice is the fact that the MA parameter θ plays a role for all tests.

This is due to the size distortions that all tests exhibit when θ = −0.8, a well-known fact

for all unit root tests. The size distortions are not the same for all tests, though. The sieve

tests in general have lower size distortions for finite samples than the block tests, which is

reflected in the response surfaces by the fact that the coefficients for functions of θ in general

are lower in absolute value for sieve tests than for block tests. Note that of the block tests, the

size of the ADF test by Paparoditis & Politis (2003) (τa
B,r) is the least affected by θ. Again

this shows that the sieve bootstrap can also filter out a large part of the dependence created

through θ, which might lead to its better performance. Similarly, the lags in the ADF test

also remove most of the dynamics created through θ. This result is slightly overstated as we

fix the block length whereas we select the lag length using information criteria. Therefore the

lag length can adapt to the large dependence in the errors. However, simulations not reported

here show that although increasing the block length will somewhat reduce the problem, the

size distortions remain worse than for the sieve bootstrap. Besides, as there currently exist

no methods to select the optimal block length we have no other option than to fix the block

length.

Again we also see a difference between residual- and difference-based tests. Residual-based

tests have higher size distortions than the same tests based on differences, as reflected through

the (absolute) larger coefficients in the response surfaces.
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As an illustration we provide graphical representations of all the coefficient tests for two

specific DGPs: the pure random walk (φ = 0, θ = 0) and an MA-process with a large negative

MA-root (φ = 0, θ = −0.8), for which unit root tests are known to perform badly. We use PP

and PP discrepancy plots: The PP plot graphs the empirical rejection frequency P̂ against

the nominal level Pa, whereas the PP discrepancy plot graphs the deviation of the empirical

rejection frequency from the nominal level against the nominal level (Davidson & MacKinnon,

1998). Hence ideally the graph of a test would lie on the 45◦ line in the PP plot and on a

horizontal line at 0 in the PP discrepancy plot.

Figures 1 and 2 present, respectively, the PP plots and PP discrepancy plots of both

cases. We see that in the first case (φ = 0 and θ = 0) in the PP plot all tests are very close to

the 45◦ line, and although the PP discrepancy plot shows deviations from 0, these deviations

are quite small in magnitude. We can conclude from these figures that all tests perform well

in terms of size for this DGP.

Both the PP plot and the PP discrepancy plot of the second case (φ = 0 and θ =

−0.8) contrast heavily with the first case. Both graphs clearly show that there are large size

distortions for all tests, although some are worse than others. The size of the τB,r and τSt,r test

is particularly dramatic. Even for a nominal level of 0.05, the empirical size already exceeds

0.9. In general the difference-based tests have lower size distortions than their residual-based

counterparts. The sieve tests (based on both differences as residuals) perform best in this case,

together with the τa
B,r test, even though this test is somewhat undersized for high nominal

levels (which are not interesting in practice). The τa
B,d test is undersized for all sizes, which

sharply contrasts with the other tests.

Insert Figure 1 about here

Insert Figure 2 about here

Power Tables 4 and 5 give the response surfaces for the power. We choose to report only

unadjusted power as we feel this is the most relevant, because this is what matters in practice.

We now estimate the following response surface:

L(P̂ ) = β0 + β1L(Pa) + β′
2f(ρ, L(Pa), φ, θ, n) + β3(ρ− 1) + ν, (21)

where again all variables in f(ρ, L(Pa), φ, θ, n) are either of order O(n−1/2) or O(n−1). So in

this case the asymptotic behaviour can be deducted from βa = (β0, β1, β3)
′. As we do not have

an asymptotic benchmark as explanatory variable, it is difficult to analyse the coefficients βa

like we did for the size.

Insert Table 4 about here

Insert Table 5 about here
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Instead, we calculate the asymptotic power implied by βa for different combinations of ρ

and the significance level. The results can be found in Table 6. Although for most combi-

nations the asymptotic power is 1 (as it should be for a consistent test), there are still some

clear differences. Except for the Chang & Park (2003) tests, the residual-based tests have

higher power than the difference-based tests. It also seems that the block tests in general

have somewhat higher power than the sieve tests, although here the higher power is often

combined with higher size distortions.

Insert Table 6 about here

By far the worst test in terms of power is the ADF test based on differences by Paparoditis

& Politis (2003). This result corresponds to what Paparoditis & Politis (2003) show in their

paper. The Psaradakis (2001) tests also seem to suffer from a lack of power as compared to

the other tests. The Swensen (2003a) tests and the residual-based DF test by Paparoditis

& Politis (2003) seem to have highest power, but they also have the highest size distortions,

so this is not necessarily a positive finding. When we compare the (difference-based) Chang

& Park (2003) test to the (residual-based) ADF test of Paparoditis & Politis (2003), whose

size behaviour is quite similar and therefore allows a direct comparison, we see that the

Paparoditis and Politis test has higher power, which confirms the idea that residual-based

tests and block tests have higher power than difference-based tests and sieve tests.

The differences in the coefficients for the functions of the ARMA parameters between

sieve and block tests, and difference-based and residual-based tests, are less pronounced here.

It seems that the ARMA parameters of the DGP in general have more impact on the power

of the tests than on the size.

Concluding, it seems the tests by Chang & Park (2003) and the ADF test by Paparoditis

& Politis (2003) perform best. The Chang and Park tests have advantage of depending less

on the AR coefficient, and the Paparoditis and Politis test has the advantage of having higher

power.

3.2.2 The tests with intercept and linear trend

The simulations for the tests with trends give in general very similar results to the ones

discussed above. Again the size of the sieve tests and difference-based tests is more robust to

the ARMA parameters than the size of the block tests and residual-based tests, respectively.

The power of the tests is in general lower. Similar to the case without deterministic

components, the higher power of the residual-based tests is again confirmed. This is again

in line with what Paparoditis & Politis (2005) claim. The (slight) advantage of the block

tests is not apparent anymore, therefore we cannot conclude in general that block tests have

a higher power than sieve tests. The coefficient test by Psaradakis (2001) seems to perform

better relative to the previous section. In general we also see a lack of power for the t-tests.
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One remarkable thing we notice is that for the Chang & Park (2003) tests we have to

include a positive intercept, meaning that these tests have a certain size independent of the

nominal level, which obviously makes the tests invalid. This shows that the handling of

deterministic components is not as straightforward as some authors, including Chang and

Park, claim it to be.

We can explain this as follows. Chang & Park (2003) claim in their paper that their

tests can be applied to demeaned and detrended series, when deterministic components are

present. This is exactly what we do: we first detrend the data, and then apply exactly the

same test as before to this detrended data. The problem here is that in the bootstrap proce-

dure, the deterministic trends are not taken into account anymore, as unit root tests without

deterministics are performed on the resampled series. Therefore the bootstrap distribution

will mimic the Dickey-Fuller distribution for tests without deterministic trends instead of the

distribution for the test with a constant and a trend, which is in this case the relevant distri-

bution. One way to get the correct bootstrap distribution would be to detrend the resampled

series as well before performing the test on the resampled series.

So far we have only considered a linear DGP for the errors. As the sieve bootstrap is in-

valid for nonlinear models, but the block bootstrap is not, provided mixing conditions are

satisfied, this would be a very interesting extension to consider. We have indeed performed

some simulations where we use a nonlinear DGP for the innovations instead of an ARMA

process. Specifically, we use a Markov Switching model for the errors. Our results indicate

that the difference between the sieve bootstrap and the block bootstrap is rather small for

such models. Therefore, we might expect the sieve bootstrap to work reasonably well also

for nonlinear models, in particular for nonlinear processes which have a Wold representation

(which can be approximated by an ARMA model).

4 Conclusion

We have shown that the sieve bootstrap procedures proposed by Psaradakis (2001) and Chang

& Park (2003) remain asymptotically valid if they are based on residuals instead of differences.

With these results we have completed the set of bootstrap Dickey-Fuller tests.

In finite samples, for the tests without deterministic trends, we can draw several conclu-

sions. First, ADF tests clearly perform better than DF tests, which is what we expected

from our discussion about asymptotically pivotal statistics. Second, it seems that sieve tests

perform slightly better in terms of size than block tests for ARMA models, which is in line

with the results for stationary series. We also see that the stationary bootstrap test performs

somewhat worse in terms of size than the overlapping blocks bootstrap. In the case of a

nonlinear generating process for the innovations, we do not really see the expected superior
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performance of the block bootstrap.

For the applied researcher there is also a practical reason to use the sieve bootstrap. The

selection of the lag length can be done quite easily, and appears to work if based on an

information criterium. On the other hand, choosing the block length on the basis of intuition

is difficult, and there exist no satisfactory methods for it. Hence this means when one wishes to

apply the block bootstrap to test for unit roots, one has to use some trial-and-error methods;

choosing different block lengths and then regarding how much the results change. Taking all

this into account, the sieve bootstrap has a slight advantage over the block bootstrap.

The choice between difference-based tests and residual-based tests is not obvious. While

the residual-based tests have higher power than the difference-based tests, these tests also

have higher size distortions, although for the residual-based ADF tests, the size distortions

are less serious than for residual-based DF tests. Hence, in combination with an ADF test,

using residuals is preferable to using differences.

Summarising, the main point is to use an ADF test instead of a DF test. When we use

an ADF test, the differences between sieve and block tests and between difference-based and

residual-based tests become small, although residual-based tests still have higher power. The

Chang & Park (2003) tests, our ADF sieve tests based on residuals and the ADF test of

Paparoditis & Politis (2003) all perform well. When we investigate the behaviour of the test

statistics with deterministic components (for DGPs without deterministic trends), we see that

both size and power is lower in general, but the main conclusions still hold.
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A Proofs

As the tests we have proposed are very similar to the existing tests of Psaradakis (2001)

and Chang & Park (2003) we do not offer a complete proof of the validity of our tests, but

instead we adapt the already existing proofs of Psaradakis (2001) and Chang & Park (2003)

to our tests. Therefore in the following sections we will only present those elements of the

proofs that differ from those for the tests by Psaradakis (2001) and Chang & Park (2003).

These differences result from the fact that we use residuals where they use differences. To be

specific, the residuals that are resampled in our tests are constructed as

ε̂t = yt − ρ̂yt−1 −
p
∑

j=1

φ̂j∆yt−j , (22)

where ρ̂, φ̂1, . . . , φ̂p are the OLS estimates from the (augmented Dickey-Fuller) regression of

yt on yt−1,∆yt−1, . . . ,∆yt−p.

The residuals that are resampled in the tests of Psaradakis (2001) and Chang & Park

(2003) are constructed as

ε̃t = ∆yt −
p
∑

j=1

φ̃j∆yt−j, (23)

where φ̃1, . . . , φ̃p are the OLS (or Yule-Walker) estimates from the regression of ∆yt on

∆yt−1, . . . ,∆yt−p.

One effect of not imposing the unit root restriction is that the estimation of ρ means

that we are only able to obtain some results in probability that can be obtained a.s. when

imposing the unit root.

A.1 Proof of Theorem 1

A small difference between our tests and the tests by Psaradakis (2001) is that we use OLS

instead of Yule-Walker. However, as both methods are asymptotically equivalent, the results

for Psaradakis also hold for OLS. We first have to prove Lemma 2 of Psaradakis (2001); the

version for our test with residuals is stated below.

Lemma 1 Suppose assumptions 1 and 2 hold. Let φ̂j,p be Yule-Walker estimates. Then as

n→ ∞:

(a) there exists a random variable n0 such that supn≥n0

∑∞
j=0 j|ψ̂j,n| <∞ in probability;

(b) sup0≤j≤∞ |ψ̂j,n − ψj | = op(1);

(c) Var∗[ε∗t ] − σ2
ε = op(1)

(d) Var∗[n−1/2
∑n

t=1 ε
∗
t ] − σ2 = op(1).
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As mentioned above, we can only show parts (a) and (b) in probability, while Psaradakis

(2001) has these almost sure. This will not affect the end result as only convergence in

probability is needed.

Proof of (a) Psaradakis (2001) refers to Bühlmann (1995) for his proof. Following Bühlmann

(1995), we have to show that
∞
∑

j=0

j|φ̂j,n − φj| = op(1). (24)

Let φ̃j,n be the OLS-estimates from the regression

∆yt =

p
∑

j=1

φj,n∆yt−j + εt. (25)

We have that φ̂j,n = φ̃j,n +Op(n
−1) from Chang & Park (2002).

We can write

∞
∑

j=0

j|φ̂j,n − φj | =

∞
∑

j=0

j|φ̂j,n − φ̃j,n + φ̃j,n − φj|

≤
∞
∑

j=0

j|φ̂j,n − φ̃j,n| +
∞
∑

j=0

j|φ̃j,n − φj |.
(26)

Bühlmann (1995) shows that
∑∞

j=0 j|φ̃j,n − φj | = o(1) a.s. and furthermore we have that

∞
∑

j=0

j|φ̂j,n − φ̃j,n| ≤ p2 max
1≤j≤p

|φ̂j,n − φ̃j,n| = op(1). (27)

Hence,
∑∞

j=0 j|φ̂j,n − φj | = op(1) and the proof of part (a) is completed.

Proof of (b) Bühlmann (1995) (Lemma 3.2) proves this for the Yule-Walker estimates,

but, as OLS is asymptotically equivalent to Yule-Walker, it holds for our tests as well.

Proof of (c) and (d) For part (c) and (d) we need that

E∗[(ε∗t )
2w] = E[(εt)

2w] + op(1). (28)

Following Bühlmann (1997)

E∗[(ε∗t )
2w] = (n− p)−1

n
∑

t=p+1

(ε̂t,n − ε̂(·)n )2w, (29)
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where ε̂
(·)
n = (n− p)−1

∑n
t=p+1 ε̂t,n.

We first look at ε̂
(·)
n and prove that it is op(1). Note that

εt = ∆yt −
∞
∑

j=1

φj∆yt−j (30a)

ε̂t,n = yt − ρ̂yt−1 −
p
∑

j=1

φ̂j∆yt−j. (30b)

Then we write

ε̂(·)n = (n− p)−1
n
∑

t=p+1

(εt − εt + ε̂t,n)

= (n− p)−1
n
∑

t=p+1



εt − (∆yt −
∞
∑

j=1

φj∆yt−j) + (yt − ρ̂yt−1 −
p
∑

j=1

φ̂j,n∆yt−j)





= (n− p)−1
n
∑

t=p+1

[

εt − (∆yt − (yt − ρ̂yt−1))

−
p
∑

j=1

(φ̂j,n − φj)∆yt−j +

∞
∑

j=p+1

φj∆yt−j

]

= (n− p)−1
n
∑

t=p+1

(At +Bt + Ct +Dt)

(31)

Hence it has to be shown that (n−p)−1
∑n

t=p+1At, (n−p)−1
∑n

t=p+1Bt, (n−p)−1
∑n

t=p+1Ct, (n−
p)−1

∑n
t=p+1Dt = op(1).

It is trivial that (n− p)−1
∑n

t=p+1At and (n− p)−1
∑n

t=p+1Dt are op(1). Next we turn to

Bt:

Bt = −∆yt + yt − ρ̂yt−1

= (1 − ρ̂)yt−1

(32)

As 1 − ρ̂ = Op(n
−1) (Chang & Park, 2002), we have that

(n− p)−1
n
∑

t=p+1

(1 − ρ̂)yt−1 = (1 − ρ̂)(n − p)−1
n
∑

t=p+1

yt−1 = op(1). (33)
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Finally, we look at Ct. By the Cauchy-Schwartz inequality,

(n − p)−1
n
∑

t=p+1

p
∑

j=1

(φ̂j,n − φj)∆yt−j

≤





p
∑

j=1

(φ̂j,n − φj)
2





1/2 

(n− p)−1
n
∑

t=p+1

p
∑

j=1

(∆yt−j)
2





1/2

.

(34)

Then, using that φ̂j,n − φj = Op

(

(lnn/n)1/2
)

+ o
(

p−1
)

and p(n) = o
(

(n/ lnn)1/2
)

, we have

that





p
∑

j=1

(φ̂j,n − φj)
2





1/2

=





p
∑

j=1

{

Op

(

(lnn/n)1/2
)

+ o
(

p−1
)

}2





1/2

=





p
∑

j=1

{

Op

(

(lnn/n)1/4
)

+ op

(

p−1(lnn/n)1/2
)

+ o
(

p−2
)

}





1/2

=
[

Op

(

p(lnn/n)1/4
)

+ op

(

(lnn/n)1/2
)

+ o
(

p−1
)

]1/2

=
[

op

(

(lnn/n)1/2
)

+ o(p−1)
]1/2

(35)

Therefore,

(n− p)−1
n
∑

t=p+1

Ct =
[

op

(

(ln n/n)1/2
)

+ o(p−1)
]1/2

Op(p
1/2) = op(1) (36)

and the proof is complete.

After having proven that ε̂
(·)
n is op(1), we turn to (n− p)−1

∑n
t=p+1(ε̂t,n)2w and show that

it is equal to E[(εt)
2w] + op(1).

Following Bühlmann (1997), we now have to show that

(n− p)−1
n
∑

t=p+1

|Bt|2w = op(1), (37a)

(n− p)−1
n
∑

t=p+1

|Ct|2w = op(1), (37b)

(n− p)−1
n
∑

t=p+1

|Dt|2w = op(1). (37c)

These proofs follow straightforwardly by adapting the proofs used in the previous part. Hence

we have shown that (n−p)−1
∑n

t=p+1(ε̂t,n)2w = E[(εt)
2w]+op(1). Now the result in (28) follows

from the proof of Bühlmann (1997).
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The proof of Lemma 1 is the main element in the proof that is different from Psaradakis

(2001) if we use residuals instead of differences. The rest of the proof of Theorem 1 therefore

simply follows from the proof in Psaradakis (2001) by setting the deterministic components

to zero.

A.2 Proof of Theorem 2

Next we prove the validity of our sieve bootstrap ADF test based on residuals. As this test

is very similar to the test of Chang & Park (2003), we follow the same strategy as in the

previous section and adapt the proofs from Chang & Park (2003) when necessary.

Chang & Park (2003) rely on the results in Park (2002), hence we first focus on this paper.

Note that all definitions are the same as before, unless mentioned.

As we mentioned above, we cannot prove all the results from Park (2002) a.s. for our

case, but only in probability, due to the use of residuals and the corresponding estimation of

ρ that is involved.

We first give our equivalent of Lemma 3.1 in Park (2002):

Lemma 2 Let assumption 3 hold and let p(n) = o((n/ lnn)1/2). Then it follows that

max
1≤j≤p

|φ̂j,n − φj | = Op((ln n/n)1/2) + o(p−s)

for large n. Moreover, we have

σ̂2
n = σ2 +Op((ln n/n)1/2) + o(p−s)

p
∑

j=1

φ̂j,n =
∞
∑

j=1

φj +Op(p(lnn/n)1/2) + o(p−s)

as n→ ∞.

Proof The first and the third statement of Lemma 2 follow directly from Lemma 3.5 of

Chang & Park (2002). The second statement follows from Bühlmann (1995), the proof of

theorem 3.2.

Next we will give our equivalent of Lemma 3.2 in Park (2002).

Lemma 3 Let assumption 3 hold and let p(n) = o((n/ ln n)1/2). Then n1−r/2 E∗ |ε∗t |r
p−→ 0

and

W ∗
n(i) =

1

σ̂n
√
n

[ni]
∑

k=1

ε∗k
d∗−→W

as n→ ∞.
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Proof To show Lemma 3 we need to show that

n1−r/2 E∗ |ε∗t |r = n1−r/2

(

1

n

n
∑

t=1

∣

∣

∣

∣

∣

ε̂t,n − 1

n

n
∑

t=1

ε̂t,n

∣

∣

∣

∣

∣

r)

p−→ 0. (38)

Following Park (2002), we have that

1

n

n
∑

t=1

∣

∣

∣

∣

∣

ε̂t,n − 1

n

n
∑

t=1

ε̂t,n

∣

∣

∣

∣

∣

r

≤ c(An +Bn + Cn +Dn) (39)

where

An =
1

n

n
∑

t=1

|εt|r,

Bn =
1

n

n
∑

t=1

|εt,n − εt|r,

Cn =
1

n

n
∑

t=1

|ε̂t,n − εt,n|r,

Dn =

∣

∣

∣

∣

∣

1

n

n
∑

t=1

ε̂t,n

∣

∣

∣

∣

∣

r

.

(40)

Hence we have to show that n1−r/2An
p−→ 0 and similarly for the other parts. Note that the

only term that is different from the definition in Park (2002) because our test is based on

residuals, is ε̂t,n. As An and Bn do not involve any ε̂t,n terms we can just follow his proof in

this.

Next we turn to Cn. We write

ε̂t,n = yt − ρ̂yt−1 −
p
∑

j=1

φ̂j,n∆yt−j

= (yt − ρ̂yt−1 − ∆yt) + (∆yt −
p
∑

j=1

φ̂j,n∆yt−j)

= −(ρ̂− 1)yt−1 + (εt,n −
p
∑

j=1

(φ̂j,n − φj,n)∆yt−j −
p
∑

j=1

(φj,n − φj)∆yt−j)

(41)

where the last line follows from Park (2002). Then it follows that

|ε̂t,n − εt,n|r ≤ c



|(ρ̂− 1)yt−1|r +

∣

∣

∣

∣

∣

∣

p
∑

j=1

(φ̂j,n − φj,n)∆yt−j

∣

∣

∣

∣

∣

∣

r

+

∣

∣

∣

∣

∣

∣

p
∑

j=1

(φj,n − φj)∆yt−j

∣

∣

∣

∣

∣

∣

r

 . (42)
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where c = 3r−1. Then we define

C0n =
1

n

n
∑

t=1

|(ρ̂− 1)yt−1|r

C1n =
1

n

n
∑

t=1

∣

∣

∣

∣

∣

∣

p
∑

j=1

(φ̂j,n − φj,n)∆yt−j

∣

∣

∣

∣

∣

∣

r

C2n =
1

n

n
∑

t=1

∣

∣

∣

∣

∣

∣

p
∑

j=1

(φj,n − φj)∆yt−j

∣

∣

∣

∣

∣

∣

r

(43)

and hence it has to be shown that n1−r/2Cin
a.s.−−→ 0 for i = 0, 1, 2. Again, we follow the proof

of Lemma 3.2 in Park (2002) to show this for C1n and C2n. Our C2n is exactly the same as

C2n in Park (2002) so this result follows straightforwardly. C1n is majorised by

(

max
1≤j≤p

|φ̂j,n − φj,n|r
)

1

n

n
∑

t=1

p
∑

j=1

|∆yt−j |r

≤
(

max
1≤j≤p

|φ̂j,n − φj,n|r
)

p

n

(

n−1
∑

t=0

|∆yt|r +

1−p
∑

t=−1

|∆yt|r
)

≤ c

(

max
1≤j≤p

(|φ̃j,n − φj,n|r + |φ̂j,n − φ̃j,n|r)
)

p

n

(

n−1
∑

t=0

|∆yt|r +

1−p
∑

t=−1

|∆yt|r
)

=
[

O ((lnn/n)r) +Op

(

n−r
)]

(p/n)O(n) = O (p(lnn/n)r)

= op

(

(lnn/n)r−1/2
)

.

(44)

Hence, C1n
p−→ 0.

Next we consider C0n. Note that we can write this as

1

n

n
∑

t=1

|(ρ̂− 1)yt−1|r = |ρ̂− 1|r 1

n

n
∑

t=1

|yt−1|r = op(1). (45)

This proves that n1−r/2Cn
p−→ 0.
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For Dn we have to prove that

1

n

n
∑

t=1

∞
∑

j=p+1

φj∆yt−j
p−→ 0, (46)

1

n

n
∑

t=1

∞
∑

j=p+1

(φj,n − φj)∆yt−j
p−→ 0, (47)

1

n

n
∑

t=1

∞
∑

j=p+1

(φ̂j,n − φj,n)∆yt−j
p−→ 0, (48)

1

n

p
∑

t=1

(1 − ρ̂)yt−1
p−→ 0, (49)

where (46) and (47) just follow from Park (2002). For (48) we define

Nn =

p
∑

j=1

(φ̂j,n − φj,n)
n
∑

t=1

∆yt−j (50)

and

Qn =

p
∑

j=1

∣

∣

∣

∣

∣

n
∑

t=1

∆yt−j

∣

∣

∣

∣

∣

. (51)

Then Nn is dominated by

Qn max
1≤j≤p

|φ̂j,n − φj,n|. (52)

Park (2002) shows that Qn = o
(

pn1/2(lnn)1/r(ln lnn)(1+δ)/r
)

a.s. for any δ > 0.

Furthermore,

max
1≤j≤p

|φ̂j,n−φj,n| ≤ max
1≤j≤p

(|φ̃j,n−φj,n|+|φ̂j,n−φ̃j,n|) = O
(

(lnn/n)1/2
)

a.s.+Op

(

n−1
)

. (53)

Then following Park (2002) we find that Nn = op(n), which proves the result.

We have seen (49) several times before, and it is easy to see that this is true. This

completes the proof of Dn and hence of Lemma 3.

Our versions of Theorem 3.3 and Lemma 4.1 of Park (2002) can easily be seen to hold

given that we have shown before that
∑∞

j=0 |ψ̂j,n| <∞.

The proof of Theorem 2 then simply follows by straightforward adaptation of the proofs

of Chang & Park (2003) for their Theorem 2, using the lemmas above.
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Table 1: Main features of the tests.
Testa Bootstrap Method Based on Test Statistic

τS,d Sieve Differences DF τ
tS,d Sieve Differences DF t
τS,r Sieve Residuals DF τ
tS,r Sieve Residuals DF t
τa
S,d Sieve Differences ADF τ

taS,d Sieve Differences ADF t

τa
S,r Sieve Residuals ADF τ

taS,r Sieve Residuals ADF t

τB,r Block Residuals DF τ
τB,d Block Differences DF τ
τa
B,r Block Residuals ADF τ

τa
B,d Block Differences ADF τ

τSt,d Stationary Differences DF τ
tSt,d Stationary Differences DF t
τSt,r Stationary Residuals DF τ
tSt,r Stationary Residuals DF t

aWe use τ for a coefficient test and t for a t-test. The first subscript indicates the bootstrap method, so
S stands for sieve bootstrap, B for block bootstrap, and St for stationary bootstrap; the second subscript
indicates whether a test is based on differences (d) or residuals (r). A superscript a states that the test is an
augmented DF test.
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τS,d tS,d τS,r tS,r τa
S,d taS,d τa

S,r taS,r

L(pa) 0.76 0.71 0.98 0.98 0.97 1.00 1.04 1.05
(0.05) (0.05) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

L(pa)/n1/2 5.96 6.44
(0.83) (0.89)

L(pa)/n -8.01 -4.37
(1.06) (0.90)

1/n1/2 -1.82 -2.43 -3.38 -0.84
(0.66) (0.69) (0.48) (0.45)

1/n 65.91 65.44 -11.87
(13.00) (11.76) (3.36)

φ/n1/2

φ/n -39.82 -39.37 -8.38
(5.42) (5.00) (3.16)

θ/n1/2 -6.72 -7.11 -6.87 -6.92 -10.12 -8.88 -10.71 -4.44
(2.00) (2.12) (1.38) (1.39) (1.95) (1.75) (2.64) (0.85)

θ/n 53.28 50.62 40.45
(15.52) (13.97) (21.25)

φθ/n1/2

φθ/n 83.61 80.07
(32.37) (32.84)

φ2/n1/2 2.65
(1.13)

φ2/n -34.91 -38.71 -9.05
(9.09) (13.47) (3.69)

θ2/n1/2 16.63 4.34 23.04 24.11 23.27 17.10 18.87 6.99
(6.84) (2.00) (5.20) (5.18) (3.56) (3.08) (4.49) (1.11)

θ2/n -117.06 -80.24 -77.16 -78.19 -53.67 -68.04
(71.69) (44.38) (43.59) (28.84) (24.76) (38.09)

φ3/n1/2

φ3/n 24.36
(12.34)

θ3/n1/2 -7.22 -7.44 -5.92 -8.00 -38.54 -5.84
(3.15) (3.13) (1.58) (1.42) (2.55) (2.17)

θ3/n -91.50 -68.82
(45.56) (36.63)

R2 0.96 0.95 0.95 0.96 0.98 0.99 0.97 0.97

Table 2: Response surfaces of size - part I.
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τB,r τB,d τa
B,r τa

B,d τSt,d tSt,d τSt,r tSt,r

L(pa) 0.90 1.18 0.99 1.33 1.26 1.22 0.93 0.89
(0.03) (0.02) (0.02) (0.04) (0.06) (0.05) (0.03) (0.03)

L(pa)/n
1/2 1.98 3.60

(0.84) (0.69)
L(pa)/n

1/n1/2 3.24 4.85 8.28
(1.26) (1.93) (1.68)

1/n

φ/n1/2 -51.89 -12.25 33.35 74.41 -19.18 -70.49 -67.44
(7.25) (2.14) (9.34) (11.34) (1.37) (7.65) (6.98)

φ/n 225.32 -294.83 -498.93 -75.31 293.62 279.38
(54.71) (76.20) (85.48) (17.69) (63.56) (55.94)

θ/n1/2 -26.09 -14.13 76.18 -14.00 -13.90 -26.51 -26.13
(3.09) (2.51) (13.21) (3.17) (2.46) (3.90) (3.89)

θ/n -542.53
(101.86)

φθ/n1/2 -153.00
(37.90)

φθ/n 1087.20
(278.55)

φ2/n1/2 36.98 -74.65 -93.26 36.31 34.46
(10.04) (9.61) (8.81) (11.70) (10.62)

φ2/n -269.90 406.08 525.91 -257.66 -226.92
(82.59) (68.37) (63.57) (95.39) (81.52)

θ2/n1/2 98.44 49.95 8.61 51.07 46.63 107.41 102.29
(7.67) (7.64) (1.66) (9.50) (9.78) (8.73) (8.60)

θ2/n -547.67 -230.32 71.03 -239.39 -208.68 -612.56 -549.34
(57.67) (60.16) (17.51) (78.71) (77.20) (65.91) (64.20)

φ3/n1/2 -15.37 -58.50 -71.84 -12.71
(6.38) (21.88) (22.43) (4.39)

φ3/n -112.35 407.19 421.52
(41.71) (167.54) (166.53)

θ3/n1/2 -113.28 -39.43 -19.30 -74.88 -40.56 -44.91 -130.69 -127.68
(10.61) (10.62) (1.87) (23.69) (12.54) (12.69) (12.37) (12.17)

θ3/n 814.52 229.05 453.27 225.81 271.90 923.28 884.00
(70.43) (76.36) (185.98) (93.47) (92.94) (81.38) (77.66)

R2 0.96 0.95 0.92 0.94 0.94 0.95 0.95 0.95

Table 3: Response surfaces of size - part II.
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τS,d tS,d τS,r tS,r τa
S,d taS,d τa

S,r taS,r

ρ− 1 -97.88 -96.68 -109.45 -107.29 -51.80 -95.68 -111.41 -96.54
(8.31) (8.52) (9.90) (10.61) (2.99) (7.30) (8.02) (7.82)

(ρ− 1)/n1/2 1174.43 1174.56 1197.36 1162.06 267.40 1116.76 1340.08 1164.23
(152.66) (156.53) (198.18) (212.58) (23.64) (134.40) (151.11) (143.70)

(ρ− 1)/n -4122.47 -4169.84 -3837.90 -3693.95 -3831.94 -4638.88 -4093.96
(674.16) (691.11) (923.62) (989.83) (593.50) (680.29) (635.53)

L(pa) 3.36 3.39 1.08 1.05 1.37 2.64 2.79 2.79
(0.57) (0.58) (0.04) (0.05) (0.20) (0.51) (0.53) (0.52)

L(pa)/n1/2 -37.42 -38.64 -3.66 -25.63 -28.14 -28.13
(10.56) (10.80) (1.58) (9.45) (9.94) (9.72)

L(pa)/n 174.67 181.28 97.43 112.18 109.73
(46.95) (48.13) (41.82) (44.75) (43.42)

1/n1/2 -188.39 -185.96 -77.60 -75.66 -142.66 -153.09 -166.58 -158.35
(41.15) (41.42) (18.85) (19.82) (14.79) (38.30) (39.75) (37.70)

1/n 772.32 752.63 271.43 263.20 520.50 560.42 640.27 579.36
(181.72) (183.12) (88.68) (93.52) (55.76) (168.72) (178.22) (167.26)

φ/n1/2 -18.76 -8.01 -8.29 -5.62 -13.40 -7.20 -6.66
(4.96) (1.62) (1.59) (0.67) (4.23) (1.26) (1.35)

φ/n 117.50 76.60
(37.46) (31.88)

θ/n1/2 -5.21 -7.35 -7.86
(1.27) (1.62) (1.62)

θ/n

φθ/n1/2

φθ/n

φ2/n1/2 -8.21 -27.03 -18.37 -21.58 -18.88 -3.57 -18.22
(1.25) (9.31) (10.34) (11.05) (7.84) (1.27) (7.96)

φ2/n 149.82 157.17 182.86 128.68 126.49
(70.47) (78.16) (83.31) (59.03) (60.20)

θ2/n1/2 40.03 42.57 10.00 35.12 7.62
(12.79) (13.35) (1.18) (9.58) (1.26)

θ2/n -147.12 -162.76 93.40 -182.42
(96.54) (100.14) (10.08) (71.84)

φ3/n1/2 -29.85 -40.23 -47.05 -18.93
(9.25) (10.80) (11.76) (9.01)

φ3/n 178.49 286.04 340.42 179.53 50.83
(70.38) (77.40) (84.28) (65.22) (17.35)

θ3/n1/2 -36.07 -44.95 -53.91 -59.30 -49.04 -50.24 -43.99
(10.38) (9.72) (13.91) (14.70) (8.60) (10.45) (8.72)

θ3/n 180.36 195.35 286.95 327.89 -116.66 248.75 232.23 211.05
(76.78) (73.91) (100.00) (104.94) (11.30) (64.42) (78.48) (65.77)

Constant 12.77 12.76 5.61 5.43 9.75 10.76 10.92 10.93
(2.24) (2.25) (0.97) (1.00) (1.08) (2.08) (2.13) (2.04)

R2 0.95 0.94 0.94 0.94 0.89 0.95 0.95 0.94

Table 4: Response surfaces of power - part I.
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τB,r τB,d τa
B,r τa

B,d τSt,d tSt,d τSt,r tSt,r

ρ− 1 -54.29 -72.48 -123.22 -113.16 -73.07 -70.43 -52.30 -49.77
(5.00) (3.53) (8.13) (7.18) (3.45) (3.42) (5.07) (4.80)

(ρ− 1)/n1/2 198.95 360.80 1443.03 1310.81 374.01 364.01 185.13 171.65
(41.76) (29.71) (155.78) (127.87) (28.91) (28.85) (42.37) (40.12)

(ρ− 1)/n -4911.63 -4452.39
(707.32) (558.31)

L(pa) 1.09 1.48 1.52 2.03 1.72 1.87
(0.08) (0.06) (0.17) (0.19) (0.06) (0.06)

L(pa)/n
1/2 -3.37 -5.91 20.95 20.11

(1.41) (1.52) (3.08) (2.90)
L(pa)/n -85.41 -85.34

(23.02) (21.67)
1/n1/2 -120.72 -143.72 -64.73 -31.60 -146.75 -145.19 -36.50 -35.55

(23.30) (17.30) (18.36) (6.16) (16.96) (16.75) (7.81) (7.41)
1/n 360.66 571.92 174.65 595.82 584.13

(106.64) (81.76) (78.74) (80.39) (78.92)

φ/n1/2 -82.87 -36.73 9.80 102.56 -17.77 -15.55 -105.78 -98.44
(9.94) (6.98) (4.82) (15.14) (2.16) (2.04) (9.35) (9.73)

φ/n 402.80 172.17 -83.46 -716.76 455.67 484.65
(71.13) (51.98) (34.25) (113.67) (72.01) (69.95)

θ/n1/2 -78.54 -18.73 42.50 111.51 -53.24 -55.97 -80.70 -86.21
(10.61) (2.38) (10.57) (15.94) (8.18) (8.09) (10.55) (9.82)

θ/n 275.59 -350.93 -789.50 270.99 307.44 287.81 315.71
(80.95) (79.40) (119.22) (63.97) (62.86) (80.41) (74.80)

φθ/n1/2 37.74 22.89 -64.33 -137.09 23.52 18.93 35.99
(10.76) (7.36) (27.65) (35.47) (7.71) (7.21) (11.52)

φθ/n 445.07 995.37 263.85
(209.59) (258.63) (79.52)

φ2/n1/2 -82.02 -116.62
(8.80) (10.02)

φ2/n 449.79 720.04
(69.20) (74.90)

θ2/n1/2 38.01 73.81 38.86 36.50 81.12 83.27 36.95 37.21
(3.00) (15.99) (12.86) (11.89) (15.44) (15.14) (2.96) (2.81)

θ2/n -298.45 -200.33 -159.91 -369.64 -392.68
(122.94) (96.63) (89.16) (117.71) (116.01)

φ3/n1/2 -24.87 -22.99 -15.54 -95.64 -60.67 -58.00 -20.44
(6.90) (4.61) (3.14) (26.28) (14.39) (14.80) (6.89)

φ3/n 602.88 342.66 340.77
(197.19) (105.13) (109.28)

θ3/n1/2 -72.94 -94.07 -121.47 -21.01 -21.34
(18.78) (24.06) (29.37) (5.18) (5.04)

θ3/n 400.94 577.66 757.92
(138.75) (180.75) (219.90)

Constant 10.30 9.60 6.00 4.41 9.93 10.37 6.08 5.94
(1.28) (0.93) (1.13) (0.77) (0.91) (0.89) (0.91) (0.85)

R2 0.89 0.93 0.95 0.94 0.93 0.93 0.89 0.90

Table 5: Response surfaces of power - part II.
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level ρ τS,d tS,d τS,r tS,r τa
S,d taS,d τa

S,r taS,r

0.01 0.99 0.161 0.139 0.854 0.844 0.982 0.399 0.322 0.286
0.95 0.906 0.885 0.998 0.997 0.998 0.968 0.976 0.950
0.90 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.05 0.99 0.980 0.977 0.972 0.968 0.998 0.981 0.979 0.975
0.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.10 0.99 0.998 0.998 0.987 0.985 0.999 0.997 0.997 0.997
0.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

level ρ τB,r τB,d τa
B,r τa

B,d τSt,d tSt,d τSt,r tSt,r

0.01 0.99 0.997 0.972 0.568 0.023 0.942 0.924 0.999 0.998
0.95 1.000 0.998 0.995 0.686 0.997 0.995 1.000 1.000
0.90 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000
0.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.05 0.99 1.000 0.997 0.941 0.397 0.996 0.996 0.999 0.998
0.95 1.000 1.000 1.000 0.984 1.000 1.000 1.000 1.000
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.10 0.99 1.000 0.999 0.980 0.749 0.999 0.999 0.999 0.998
0.95 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 6: Implied asymptotic power.
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Figure 1: PP plots.

36



Figure 2: PP discrepancy plots.
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Additional results (not for publication)

Response surfaces for the tests with deterministic trends

Insert Table 7 about here

Insert Table 8 about here

Insert Table 9 about here

Insert Table 10 about here
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τS,d tS,d τS,r tS,r τa
S,d taS,d τa

S,r taS,r

L(pa) 0.82 0.89 0.92 1.01 0.97 0.89 1.03 0.96
(0.05) (0.05) (0.04) (0.03) (0.01) (0.02) (0.02) (0.01)

L(pa)/n1/2 7.93 4.04 -1.84 0.65
(0.85) (0.57) (0.48) (0.18)

L(pa)/n 3.79
(1.45)

1/n1/2 4.64 -6.10 -7.08 5.11 4.05
(1.57) (1.49) (0.96) (0.50) (0.65)

1/n -4.86
(2.30)

φ/n1/2 12.78
(1.25)

φ/n -128.57 -93.11 -6.18 -30.67 -14.85
(12.59) (15.78) (2.65) (13.12) (9.58)

θ/n1/2 -26.03 -18.45 -1.99 -2.62
(1.13) (2.06) (0.37) (1.02)

θ/n 85.04 -27.19 -28.36
(22.91) (5.81) (11.91)

φθ/n1/2 -13.57
(4.20)

φθ/n 244.05 191.25 70.61 131.98 85.23
(84.90) (42.62) (15.59) (36.85) (29.04)

φ2/n1/2 11.89 16.82
(2.41) (1.15)

φ2/n 37.27 22.75
(17.68) (7.94)

θ2/n1/2 8.88 59.12 52.49 37.39 16.91 16.23 6.02
(2.03) (7.39) (5.89) (3.13) (1.15) (0.94) (0.62)

θ2/n -206.27 -174.11 -193.09 -56.72
(58.47) (45.73) (32.11) (9.76)

φ3/n1/2 13.34 -11.60
(2.19) (3.37)

φ3/n 126.42 42.48 31.35
(36.07) (22.00) (15.50)

θ3/n1/2 -70.41 -17.85 -32.81 -30.89 -16.95 -11.91 -7.09
(8.15) (4.69) (8.09) (3.49) (1.41) (2.38) (1.82)

θ3/n 405.17 171.77 197.04 65.24
(62.44) (54.70) (40.92) (10.72)

Constant 2.97 3.11 3.45 3.40
(0.07) (0.06) (0.05) (0.05)

R2 0.95 0.91 0.93 0.97 0.98 0.99 0.98 0.99

Table 7: Response surfaces of size (deterministic trends) - part I.
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τB,r τB,r (2) τB,d τa
B,r τa

B,d τSt,d tSt,d τSt,r τSt,r (2) tSt,r

L(pa) 0.45 0.96 1.73 2.10 1.11 1.53 0.51 0.80
(0.35) (0.28) (0.22) (0.36) (0.24) (0.05) (0.27) (0.04)

L(pa)/n1/2 25.04 15.63 15.18 -12.82 -18.94 15.33 24.58 13.91
(1.82) (7.62) (5.99) (4.54) (8.21) (4.99) (1.52) (5.70)

L(pa)/n -116.45 -71.79 -72.37 52.71 83.19 -74.69 -114.98 -64.41
(14.11) (37.97) (29.18) (22.35) (42.92) (24.16) (11.88) (28.17)

1/n1/2 -35.08 -18.76
(12.72) (3.23)

1/n -37.25 167.45 112.58
(12.25) (95.45) (21.29)

φ/n1/2 -72.13 -72.13 40.16 105.32 -18.45 33.35 -71.55 -71.55 -57.15
(6.03) (5.98) (11.04) (24.09) (2.39) (8.53) (6.07) (6.12) (3.15)

φ/n 251.15 251.15 -187.14 -422.49 -806.36 -203.39 249.73 249.73 270.11
(50.99) (50.75) (11.91) (91.65) (178.86) (64.16) (51.51) (51.86) (23.96)

θ/n1/2 -37.53 -37.53 -20.71 84.76 -18.92 -72.63 -72.63 -48.31
(4.28) (4.30) (2.77) (24.51) (2.37) (15.48) (14.87) (8.85)

θ/n -75.29 -661.17 291.37 291.37 184.28
(22.46) (182.67) (124.81) (120.63) (66.26)

φθ/n1/2 25.78 25.78 36.67 -77.70 -149.09 41.05 30.49 24.02 24.02 34.78
(11.77) (11.57) (9.11) (30.12) (57.44) (8.02) (10.71) (10.66) (10.39) (3.79)

φθ/n 663.47 1281.52
(251.24) (425.48)

φ2/n1/2 98.28 98.28 64.70 -140.32 -144.27 78.34 20.42 100.06 100.06 98.94
(13.52) (13.36) (9.77) (8.52) (15.42) (9.88) (3.53) (11.47) (11.28) (6.68)

φ2/n -591.96 -591.96 -356.61 877.14 948.82 -425.25 -597.57 -597.57 -497.08
(105.83) (104.89) (81.28) (69.31) (113.54) (81.06) (94.67) (93.82) (50.14)

θ2/n1/2 198.88 198.88 102.24 22.97 33.85 113.34 106.01 199.92 199.92 209.90
(14.52) (14.47) (13.46) (2.24) (2.77) (10.55) (8.89) (11.92) (11.81) (8.77)

θ2/n -1081.07 -1081.07 -502.25 -586.63 -590.72 -1092.98 -1092.98 -1141.49
(111.33) (111.34) (101.79) (79.55) (67.97) (90.73) (90.37) (67.01)

φ3/n1/2 -73.91 -121.62 39.44
(20.89) (43.20) (10.20)

φ3/n 553.12 860.74 -328.65
(171.90) (321.19) (79.17)

θ3/n1/2 -248.32 -248.32 -99.97 -19.93 -102.35 -90.60 -78.43 -180.12 -180.12 -195.61
(16.29) (16.33) (16.56) (5.10) (40.83) (12.18) (10.28) (28.33) (27.63) (18.01)

θ3/n 1647.35 1647.35 585.54 622.70 528.51 452.03 1084.35 1084.35 1155.15
(108.95) (108.82) (117.86) (306.71) (83.67) (85.63) (223.74) (218.73) (135.86)

Constant

R2 0.97 0.97 0.96 0.95 0.91 0.97 0.87 0.98 0.98 0.99

Table 8: Response surfaces of size (deterministic trends) - part II.
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τS,d tS,d τS,r tS,r τa
S,d taS,d τa

S,r taS,r

ρ− 1 -116.66 -108.51 -113.67 -86.77 -202.69 -173.12 -190.32 -151.60
(7.16) (6.37) (6.10) (9.26) (11.11) (5.87) (6.80) (4.09)

(ρ− 1)/n1/2 1773.84 1859.60 1436.86 1212.26 2962.31 2492.55 2703.78 2170.68
(155.18) (133.15) (121.09) (185.80) (203.65) (109.04) (130.10) (70.42)

(ρ− 1)/n -6749.17 -7626.91 -4726.30 -4250.52 -11105.20 -9256.17 -9915.95 -8005.39
(755.18) (657.44) (572.14) (878.69) (895.76) (484.71) (593.25) (304.12)

L(pa) 1.43 0.93 0.94 2.51 2.20 2.57 1.54
(0.05) (0.04) (0.04) (0.71) (0.41) (0.45) (0.12)

L(pa)/n1/2 26.55 -21.80 -17.49 -22.45 -4.00
(1.51) (13.03) (7.51) (8.46) (0.95)

L(pa)/n -94.28 76.11 66.01 88.42
(11.90) (57.20) (32.90) (37.91)

1/n1/2 77.97 24.25 -6.51 -61.99 -52.76 -70.61 -14.37
(15.90) (5.14) (1.26) (46.71) (30.19) (33.63) (4.03)

1/n -412.67 -176.78 -26.38 243.01 210.20 269.18
(80.71) (34.48) (10.62) (203.24) (129.84) (148.31)

φ/n1/2 -49.08 -47.26
(7.24) (12.75)

φ/n 446.32 -180.40 193.70 -39.72 -20.22
(54.95) (19.49) (97.59) (11.04) (8.31)

θ/n1/2 -31.71 -40.85 -22.92 -5.30 -3.04
(3.05) (4.50) (2.33) (1.61) (0.90)

θ/n 223.62 295.76 -173.57 -40.16 -22.24
(23.28) (36.08) (18.70) (10.24) (7.70)

φθ/n1/2 -55.15
(19.48)

φθ/n 521.90 211.12 126.82 78.19 70.85
(160.36) (54.18) (60.02) (23.25) (26.13)

φ2/n1/2 -42.91 -35.60 -17.87 -45.80 -2.49 -12.52 -17.25 -14.09
(8.08) (13.07) (9.34) (17.17) (1.38) (6.48) (6.84) (5.74)

φ2/n 361.31 286.87 218.29 471.98 85.42 145.13 104.62
(61.68) (99.24) (70.50) (126.65) (48.42) (52.24) (43.74)

θ2/n1/2 -33.89 58.17 32.67 31.15 8.58 15.31
(6.42) (8.22) (2.33) (13.86) (0.94) (1.24)

θ2/n 274.98 47.37 -183.14 -177.63 40.41
(50.38) (15.26) (62.05) (103.63) (6.53)

φ3/n1/2 -47.28 -66.17 -45.08 -22.01 -18.00 -18.13 -11.36
(8.14) (11.19) (34.94) (10.35) (6.53) (6.97) (5.83)

φ3/n 432.15 570.63 439.11 142.07 123.42 180.81 115.27
(61.36) (88.92) (261.85) (77.69) (48.94) (55.22) (45.36)

θ3/n1/2 -16.09 -69.35 -61.27 -27.94 -27.02 -30.58 -21.84
(2.70) (9.21) (12.86) (15.74) (7.23) (9.39) (7.69)

θ3/n 463.86 391.46 205.62 147.26 153.32 109.59
(73.62) (93.06) (114.70) (52.50) (71.41) (58.28)

Constant -2.58 7.65 7.16 8.25 5.33
(0.73) (2.59) (1.70) (1.84) (0.50)

R2 0.94 0.84 0.94 0.88 0.74 0.95 0.95 0.96

Table 9: Response surfaces of power (deterministic trends) - part I.
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τB,r τB,d τa
B,r τa

B,d τSt,d tSt,d τSt,r tSt,r

ρ− 1 -174.72 -114.61 -132.10 -60.74 -114.33 -75.55 -178.06 -137.01
(11.52) (12.19) (4.37) (2.60) (8.76) (11.17) (12.10) (12.47)

(ρ− 1)/n1/2 2460.92 1556.85 1638.60 401.09 1688.98 1272.13 2523.01 1985.63
(215.79) (237.56) (83.20) (21.16) (163.17) (208.43) (230.36) (240.50)

(ρ− 1)/n -9312.36 -5521.42 -5357.49 -6440.94 -5271.59 -9427.97 -7525.43
(976.20) (1090.11) (386.37) (732.62) (942.31) (1057.31) (1115.11)

L(pa) 0.89 0.98 1.11 1.15 1.74 1.60 1.16 0.93
(0.15) (0.36) (0.03) (0.05) (0.05) (0.04) (0.04) (0.04)

L(pa)/n1/2 2.67 13.60
(1.20) (7.50)

L(pa)/n -60.62 -11.10
(35.62) (2.95)

1/n1/2 -3.30
(1.52)

1/n -42.64 43.17
(8.21) (14.18)

φ/n1/2 -155.92 -23.30 29.08 130.36 -19.34 -34.76 -159.80 -163.92
(9.99) (1.93) (6.65) (13.24) (2.03) (10.46) (11.03) (12.24)

φ/n 835.20 -343.04 -1009.11 273.98 869.73 989.40
(75.11) (52.70) (98.88) (78.81) (82.96) (91.30)

θ/n1/2 -106.50 -25.84 92.57 -26.07 -142.74 -140.07
(18.94) (2.02) (12.82) (2.03) (9.50) (9.16)

θ/n 497.42 -116.96 -737.51 769.69 798.06
(143.06) (12.50) (96.03) (69.04) (63.14)

φθ/n1/2 163.99 25.50 -70.40 -152.36 36.37 27.38 166.25 159.49
(52.26) (6.83) (18.32) (31.41) (6.38) (9.86) (55.78) (59.47)

φθ/n -1025.02 557.13 1278.33 -1048.97 -915.36
(400.57) (152.32) (236.53) (431.12) (460.70)

φ2/n1/2 62.02 17.83 -129.41 -175.55 25.83 21.17 71.28 64.72
(17.60) (2.30) (6.38) (11.33) (2.47) (2.84) (18.88) (21.00)

φ2/n -315.55 798.74 1161.46 -376.24 -233.76
(131.88) (49.46) (85.46) (139.91) (154.02)

θ2/n1/2 156.56 121.54 20.18 50.58 123.47 114.35 169.55 146.84
(15.35) (15.74) (1.38) (10.09) (10.98) (13.22) (14.66) (13.77)

θ2/n -770.32 -630.37 -149.14 -626.38 -632.99 -884.57 -675.32
(116.22) (124.89) (75.91) (81.88) (98.20) (110.03) (103.16)

φ3/n1/2 -42.60 -98.08 -154.33 -43.99
(15.85) (13.57) (25.54) (18.66)

φ3/n 285.17 736.38 1134.54 299.61
(113.29) (105.99) (191.75) (132.88)

θ3/n1/2 -96.13 -108.35 -44.06 -119.01 -108.28 -139.57 -32.03 -35.99
(36.37) (5.27) (8.30) (23.39) (13.08) (14.53) (6.34) (6.58)

θ3/n 513.74 249.07 782.04 739.85 859.09
(275.10) (67.94) (175.75) (90.59) (107.90)

Constant -2.04
(0.27)

R2 0.93 0.94 0.97 0.93 0.93 0.83 0.93 0.90

Table 10: Response surfaces of power (deterministic trends) - part II.
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