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Abstract

Two-person noncooperative games with finitely many pure strategies and
ordinal preferences over pure outcomes are considered, in which probabil-
ity distributions resulting from mixed strategies are evaluated according
to t-degree stochastic dominance. A t-best reply is a strategy that induces
a t-degree stochastically undominated distribution, and a t-equilibrium is
a pair of t-best replies. The paper provides a characterization and exis-
tence proofs of t-equilibria in terms of representing utility functions, and
shows that for t becoming large—which can be interpreted as the play-
ers becoming more risk averse—behavior converges to a specific form of
max-min play. More precisely, this means that in the limit each player
puts all weight on a strategy that maximizes the worst outcome for the
opponent, within the supports of the strategies in the limiting sequence
of t-equilibria.

1 Introduction

In order for a mixed strategy Nash equilibrium in a two-person noncooperative
game to make sense, a minimal condition is that the players have exact knowl-
edge about cardinal, von Neumann-Morgenstern utility representations of their
preferences over the outcomes of the game. This, however, is a strong assump-
tion: it presumes that such representations exist and are known to the players,
and it results, generically, in sharp point-beliefs about the mixed strategy of the
opponent.

In this paper we start by assuming that the players have complete knowl-
edge only about the ordinal preferences over the pure outcomes in the game.
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A natural way, then, to evaluate probability distributions over the outcomes
induced by mixed strategies is to order them by first-degree stochastic domi-
nance: probability distributions that shift more probability to better outcomes
are considered more attractive. Since the stochastic dominance ordering is not
complete, we call a mixed strategy of a player a best reply against the strategy
of the opponent if it induces an undominated probability distribution over the
outcomes. An equilibrium is a pair of best replies. Fishburn (1978) established
that the set of equilibria is equal to the union of all sets of Nash equilibria, taken
over all possible utility representations of the preferences. This is an intuitive
result in view of the familiar characterization of first-degree stochastic domi-
nance which says that a distribution is undominated if and only if it maximizes
expected utility for at least one utility representation of the ordinal preferences.

We take this analysis a good deal further by assuming that the players have
more specific knowledge about their risk attitudes or, equivalently, about the
derived classes of utility functions that may represent their preferences. Specif-
ically, we study so-called t-equilibria, where the natural number t is the degree
of stochastic dominance used to evaluate probability distributions. As is well-
known, a distribution is second-degree stochastically undominated if and only
if it maximizes expected utility for at least one concave utility representation
of the ordinal preferences. Loosely speaking, higher degrees of stochastic domi-
nance correspond to higher degrees of risk aversion.

After preliminaries about stochastic dominance, games and equilibria in Sec-
tions 2 and 3, we consider an example in Section 4 which nicely illustrates these
concepts and the main results of the paper. These results are, first, a char-
acterization of t-degree stochastic dominance in terms of representing utility
functions and existence of t-equilibria in Section 5, and, second, limit behavior
as the degree of stochastic dominance t goes to infinity, in Section 6.

Existence of t-equilibria can be established directly by using a fixed point
argument (this is done in Appendix B) or indirectly by using representation by
utility functions and existence of Nash equilibrium (Section 5).

It follows from the results of Section 5 that the sets of characterizing utility
functions become smaller as t grows, as already indicated by the transition
from t = 1 to t = 2. Consequently, the best reply correspondences and sets of t-
equilibria decrease as well. In Section 6 we provide a complete characterization
of the sets of pure strategies that can serve as supports for t-equilibria as t
becomes large. In the limit, such equilibria converge to max-min play, in the
sense that each player plays a pure strategy that, among the strategies in the
supports, maximizes the worst outcome for the opponent. Observe that this is
very different from what is usually meant by max-min play, namely that players
maximize their own worst outcomes. Max-min play in the present setting is
closer to equilibrium play: for large t, a player puts probability close to 1 on
the pure strategy maximizing the worst outcome for the opponent among the
strategies in the support of the opponent’s mixed strategy, in order to keep all
these strategies undominated. The intuition for this is that, as t becomes large,
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the opponent attaches increasing weights to worse outcomes, and to compensate
for this a player should put low weights on those own strategies that possibly
result in these worse outcomes for the opponent.

Section 7 concludes the paper with a brief discussion of related literature
and directions for further research. Appendix A collects the proofs of Section 2,
and Appendix B gives an independent existence result of t-equilibria by a fixed
point argument.

2 Stochastic dominance

Let ` ≥ 1 be an integer and let O = {1, . . . , `} be a set of ` alternatives. For
1 ≤ k < l ≤ ` we assume that a decision maker strictly prefers alternative l to
alternative k.

For a probability distribution r = (r1, . . . , r`) on O (so each l occurs with
probability rl) we define, recursively, for each l ∈ {1, . . . , `}, F 0

r (l) = rl and

F t
r (l) =

l∑

i=1

F t−1
r (i) (t ≥ 1).

So F 1
r is the cumulative distribution function of F 0

r = r and, similarly, F t
r

‘accumulates’ the weights assigned by F t−1
r . For probability distributions r and

s on O, r t-th degree stochastically dominates s if

F t
r (l) ≤ F t

s(l) for every l ∈ {1, . . . , `}

with at least one inequality strict. Observe that the latter follows if r 6= s. For
t = 1, this relation means that r puts more probability on better alternatives
than s. It is well known that this is equivalent to the expected utility under
r being at least as large as the expected utility under s for every utility repre-
sentation of the preference relation. For second degree stochastic dominance,
an analogous equivalence holds if we restrict to concave utility functions, or,
more generally, utility functions with non-increasing differences between adja-
cent alternatives. Therefore, first degree stochastic dominance is a purely ordi-
nal concept but this is not the case for second and higher degrees. Note that
t-th degree stochastic dominance implies t + 1-th degree stochastic dominance.
In a relative sense, a similar relation holds between t + 1-th and t-th degree
stochastic dominance as between second and first degree stochastic dominance.
Thus, higher degree stochastic dominance can be associated with increased risk
aversion of decision makers.

Fishburn (1976, 1980) characterizes stochastic dominance in terms of util-
ity functions and in terms of moments of distributions. Below, we provide a
characterization of stochastically undominated distributions in terms of utility
functions for the context of this paper.
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Denote F t
r = (F t

r (1), . . . , F t
r (`) and let A = [aij ] be the `× `-matrix with

aij =
{

1 if i ≤ j
0 if i > j

for all i, j ∈ {1, . . . , `}.

Write At = A·A·. . .·A (t times, t ∈ IN). The following lemma gives a convenient
representation of F t

r .

Lemma 2.1 F t
r = rAt for every t ∈ IN .

Denoting the element in row i and column j of At by at
ij , we derive the following

expression for this number.

Lemma 2.2 Let t ∈ IN . Then

at
ij =

{
(j−i+t−1)!
(j−i)!(t−1)! if i ≤ j

0 if i > j
.

The following lemma applies to t approaching infinity.

Lemma 2.3 Let i, i′, j ∈ {1, . . . , `} with i < i′ ≤ j. Then at
ij ≥ at

i′j for every
t ∈ IN and lim

t→∞
at

ij/at
i′j = ∞.

For every t ∈ IN let1

U t := {u ∈ IR` | u = −Atc for some c ∈ IR`, c > 0}.

An element u of U t can be interpreted as a utility function representing the
implicit preference ordering by the assignment i 7→ ui, since u1 < u2 < · · · < u`.
Call a probability distribution r over O t-undominated if there is no probability
distribution s such that s t-th degree stochastically dominates r. Then we have
the following result, which adapts Fishburn (1976) to our context.

Proposition 2.4 The probability distribution r over O is t-undominated if and
only if there is a u ∈ U t such that

∑`
l=1 rlul ≥

∑`
l=1 slul for all probability

distributions s over O.

Note that U1 contains essentially any utility representation of σ. This is con-
sistent with remarks made earlier. The set U t is decreasing in t.

Proofs of Lemmas 2.1–2.3 and Proposition 2.4 can be found in Appendix A.
1For vectors x and y, x > y [x ≥ y] means xi > yi [xi ≥ yi] for every coordinate i. Similarly

for x < y, x ≤ y.
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3 Two-person games and t-equilibria

Consider two players. Player 1 has pure strategy set M = {1, . . . ,m}. A
(mixed) strategy for player 1 is a probability distribution over M . Denote
the set of strategies for player 1 by ∆M . A pure strategy i is identified with
the mixed strategy ei ∈ ∆M , where ei

k = 1 if k = i and ei
k = 0 otherwise.

Similarly, player 2 has pure strategy set N = {1, . . . , n} and (mixed) strategy
set ∆N . A pure strategy j is identified with the mixed strategy ej ∈ ∆N . If
player 1 plays pure strategy i and player 2 pure strategy j, then the alternative
oij results. If player 1 plays p ∈ ∆M and player 2 plays q ∈ ∆N , then oij

results with probability piqj . Let O := {oij | i ∈ M, j ∈ N} and assume that
players 1 and 2 have preference relations represented, respectively, by bijections
σ, τ : M × N → {1, . . . , mn}. For instance, if 1 ≤ k < l ≤ mn then player 1
strictly prefers oij to oi′j′ , where σ(i, j) = l and σ(i′, j′) = k.

For p ∈ ∆M and q ∈ ∆N we denote by pqσ the vector of probabilities with
l-th coordinate pqσl = piqj such that σ(i, j) = l, for all l ∈ {1, . . . , mn}. We
assume that the players evaluate strategies according to a stochastic dominance
criterion. More precisely, let t ∈ IN and fix a strategy q ∈ ∆N for player 2.
Then a strategy p ∈ ∆M of player 1 results in the weight vector F t

pqσ, which
depends on σ and assigns weight F t

pqσ(σ(i, j)) to alternative oij .
We call p a t-best reply against q if there is no p′ ∈ ∆M such that p′q t-th

degree stochastically dominates pq. The definition of a t-best reply q against p
is analogous. A pair (p, q) ∈ ∆M ×∆N is a t-equilibrium if p is a t-best reply
against q and vice versa. By Et we denote the set of t-equilibria.

4 An example

The example presented here is illustrative of the main results of this paper,
namely (i) existence and characterization of t-equilibria; and (ii) asymptotic
behavior for t approaching infinity.

Let m = n = 2 and consider the game
[

o11 o12

o21 o22

]

where the rows are the pure strategies of player 1, the columns those of player
2, and the preferences are given by σ(1, 2) = 1, σ(2, 2) = 2, σ(2, 1) = 3, and
σ(1, 1) = 4 for player 1 and τ(1, 2) = 1, τ(1, 1) = 2, τ(2, 1) = 3, and τ(2, 2) = 4
for player 2.

We concentrate on player 1. The matrix At (t ≥ 1) can be computed using
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Lemma 2.2. This results in

At =




1 t 1
2 t(t + 1) 1

6 t(t + 1)(t + 2)
0 1 t 1

2 t(t + 1)
0 0 1 t
0 0 0 1


 .

Consider strategies p = (p1, p2) and q = (q1, q2) for players 1 and 2, respectively.
In order to examine t-best replies of player 1 we compute (cf. Lemma 2.1)

F t
pqσ = (p1q2, p2q2, p2q1, p1q1)At.

Dropping the part that does not depend on p and which therefore is not needed
to compute t-best replies of player 1, this results in the vector

p1

(
q2, (t− 1)q2,

1
2
(t2 − t)q2 − q1,

1
6
(t3 − t)q2 − q1(t− 1)

)
. (1)

For t = 1, (1) reduces to p1(q2, 0,−q1, 0). Since player 1 wants to ‘minimize’
this vector, the t-best responses are p1 = 0 if q1 = 0, p1 = 1 if q1 = 1, and any
0 ≤ p1 ≤ 1 if 0 < q1 < 1. With a similar argument for player 2 (not reproduced
here) we find the set E1: it contains the two pure Nash equilibria of the game,
resulting in o11 and in o22, and all strategy combinations where no player plays
a pure strategy. This is no surprise: in general, E1 consists of all strategy com-
binations that are a Nash equilibrium for at least one choice of utility functions
representing σ and τ . This is a consequence of the familiar characterization
of first degree stochastic dominance using utility representations, mentioned in
Section 2. See also Fishburn (1978), where the result is derived formally.

Next, consider t = 2, so best replies are second degree stochastically undomi-
nated. By substituting t = 2 in (1) it follows that for q1 = 1 the 2-best reply
is p1 = 1, for 1 > q1 > 1

2 any 0 ≤ p1 ≤ 1 is a 2-best reply, and for q1 ≤ 1
2 the

2-best reply is p1 = 0. Again after a similar argument for player 2 it follows
that E2 consists of the two pure Nash equilibria of the game plus the set

{(p, q) | 1
2

< q1 < 1, 0 < p1 <
1
2
}.

In these mixed strategy equilibria player 1 puts a larger weight on row 2. Row
2 is player 1’s max-min pure strategy: he prefers the worst alternative in row
2, o22, to the worst alternative in row 1, o12. Thus, one might be tempted to
conclude that a higher t leads to max-min play. This, however, is deceptive. As
will turn out later, what is important is that row 2 is the max-min row from
the point of view of player 2: player 2 prefers the worst alternative (for him) of
row 2, o21, to the worst alternative of row 1, o12. (A similar consideration holds
for the strategy of player 2.)
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Observe also that the 2-best reply correspondences of the players are not
upper semi-continuous (their graphs are not closed).

For t > 2, let q̂1 = (t3 − t)/(t3 + 5t − 6). For 0 ≤ q1 ≤ q̂1 the t-best reply is
p1 = 0, for q̂1 < q1 < 1 any p1 is a t-best reply, and for q1 = 1 the t-best reply
is p1 = 1. The t-equilibria are again the two pure Nash equilibria in the game
together with the collection

{(p, q) | t3 − t

t3 + 5t− 6
< q1 < 1, 0 < p1 < 1− t3 − t

t3 + 5t− 6
},

For t → ∞ these mixed strategy t-equilibria converge to the pure strategy
combination of row 2 and column 1.

5 Existence and characterization of t-equilibria

The existence of t-equilibria can be proved directly by applying a fixed point ar-
gument to the best-reply correspondences. This proof is not completely straight-
forward since the best reply correspondences do not have to be upper semi-
continuous, see the example in the previous section, so that the argument has
to be applied to a suitable sub-correspondence. For the details, see Appendix
B.

Alternatively, t-equilibria can be characterized as Nash equilibria for suitably
chosen utility functions, by an argument analogous to the proof of Proposition
2.4. Existence then follows from the standard existence result for Nash equilib-
rium. This is the approach taken here. For t = 1, this has already been done in
Fishburn (1978).

In the next lemma we consider the game as defined in Section 3. The bijec-
tion σ represents the preference relation of player 1. The set U t was defined in
Section 2.

Lemma 5.1 Let p ∈ ∆M , q ∈ ∆N , and t ≥ 1. Then p is a t-best reply against
q if and only if there is a ut ∈ U t such that

m∑

i=1

n∑

j=1

piqju
t
σ(i,j) ≥

m∑

i=1

n∑

j=1

p′iqju
t
σ(i,j)

for all p′ ∈ ∆M .

Proof. p is a t-best reply against q if and only if there is no p′ ∈ ∆M such that
F t

p′qσ ≤ F t
pqσ with at least one coordinate strictly smaller. This is the case if

and only if

{x ∈ IRmn | x ≤ F t
pqσ} ∩ {x ∈ IRmn | x = F t

p′qσ for some p′ ∈ ∆M} = {F t
pqσ}.
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By a separation argument analogous to the one in the proof of Proposition
2.4 this, in turn, holds if and only if there is a c ∈ IRmn with c > 0 such
that F t

pqσ · c ≤ F t
p′qσ · c for all p′ ∈ ∆M . By Lemma 2.1 this is equivalent

to (pqσ)Atc ≤ (p′qσ)Atc for all p′ ∈ ∆M . The proof is complete by taking
ut := −Atc. 2

Lemma 5.1 can be formulated for player 2 in an analogous way. Then t-equilibria
can be characterized as follows.

Corollary 5.2 Let σ and τ represent the preferences of players 1 and 2, re-
spectively. Let t ≥ 1, p∗ ∈ ∆M , and q∗ ∈ ∆N . Then (p∗, q∗) is a t-equilibrium
if and only if there are u, v ∈ U t such that (p∗, q∗) is a Nash equilibrium for the
payoff functions O → IR defined by oij 7→ uσ(i,j) and oij 7→ vτ(i,j) for players 1
and 2, respectively.

Since Nash equilibria always exist, Corollary 5.2 implies existence of t-equilibria.

Corollary 5.3 Et 6= ∅ for every t ≥ 1.

6 Limiting behavior of equilibria

The example in Section 4 suggests some kind of max-min behavior of the players
in a t-equilibrium for t going to infinity. In this section we consider this in detail.
The setting is the general game model as defined in Section 3. Unless stated
otherwise, the number t is arbitrary but fixed. The preferences of the players
are represented by the bijections σ for player 1 and τ for player 2.

For p ∈ ∆M , the support of p is the set

supp(p) = {i ∈ M | pi > 0}.

For q ∈ ∆N , supp(q) is defined in the same way. We start with an auxiliary
result.

Lemma 6.1 Let pt ∈ ∆M and let qt ∈ ∆N . Let p ∈ ∆M and q ∈ ∆N with
supp(p) ⊆ supp(pt) and supp(q) ⊆ supp(qt). Then

(i) if pt is a t-best reply against qt, then p is a t-best reply against qt;

(ii) if qt is a t-best reply against pt, then q is a t-best reply against pt.

Proof. Apply Lemma 5.1. 2

Lemma 6.2 Let I ⊆ M , J ⊆ N , and let (pt, qt)t∈IN be a sequence of pairs of
mixed strategies such that I = supp(pt) and J = supp(qt) for all t ∈ IN .
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(i) Let pt be a t-best reply against qt for every t ∈ IN . Then, for every i ∈ M ,
there is a j ∈ J such that σ(i, j) < σ(i′, j) for all i′ ∈ I\{i}.

(ii) Let qt be a t-best reply against pt for every t ∈ IN . Then, for every j ∈ N ,
there is an i ∈ I such that τ(i, j) < τ(i, j′) for all j′ ∈ J\{j}.

Proof. We only prove (i), the proof of (ii) is analogous. Suppose (i) were not
true. Then there is an ı̂ ∈ M such that for every j ∈ J

Ij := {i ∈ I | σ(i, j) < σ(̂ı, j)} 6= ∅.

For every j ∈ J , choose an ij ∈ Ij . Let Î := {ij | j ∈ J}, s := |Î|, 2 and define
p̂ ∈ ∆M by p̂i = 1/s if i ∈ Î and p̂i = 0 otherwise. We will show that, for t
sufficiently large,

F t
eı̂qtσ ≤ F t

p̂qtσ. (2)

Since, clearly, the two probability distributions eı̂qtσ and p̂qtσ in (2) are differ-
ent, this means that at least one of the inequalities must be strict if (2) holds.
Since supp(p̂) ⊆ I = supp(pt) for all t, (2) contradicts Lemma 6.1. This proves
(i).

We are left to prove (2), hence we are left to prove

F t
eı̂qtσ(k) ≤ F t

p̂qtσ(k) for all k = 1, . . . , mn. (3)

Fix k ∈ {1, . . . ,mn} and define Jk := {j ∈ J | σ(̂ı, j) ≤ k}. Then

F t
eı̂qtσ(k) =

mn∑

l=1

(eı̂qtσ)la
t
lk

=
k∑

l=1

(eı̂qtσ)la
t
lk

=
∑

j∈Jk

qt
ja

t
σ(ı̂,j),k. (4)

Here, the first equality follows from Lemma 2.1, the second equality from Lemma
2.2, and the last equality by Lemma 2.2 and the definition of Jk.

Now

F t
p̂qtσ(k) =

k∑

l=1

(p̂qtσ)la
t
lk

≥
∑

j∈Jk

qt
j p̂ij a

t
σ(ij ,j),k

2| · | denotes the cardinality of a set.
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=
∑

j∈Jk

1
s
qt
ja

t
σ(ij ,j),k

≥
∑

j∈Jk

1
s
qt
ja

t
σ(ı̂,j)−1,k. (5)

The first equality follows again by Lemmas 2.1 and 2.2. The first inequality
follows since some terms are left out. The second equality follows by definition
of p̂ since ij ∈ Î for every j ∈ J . The last inequality follows by the first
statement in Lemma 2.3 since σ(ij , j) ≤ σ(̂ı, j)− 1 for every j ∈ J .

If Jk = ∅ then (3) follows immediately from (4) and (5). Otherwise, by the
second statement in Lemma 2.3 there is a t sufficiently large such that for every
k = 1, 2, . . . , mn and j ∈ Jk we have

1
s
qt
ja

t
σ(ı̂,j)−1,k ≥ qt

ja
t
σ(ı̂,j),k. (6)

Then (3) follows from (4), (5), and (6). 2

Lemma 6.2(i) implies that for every row (pure strategy) i in I there must be a
column (pure strategy) j in J such that the resulting outcome oij is the worst
outcome for player 1 in that column restricted to the rows in I. In turn, this
implies |I| ≤ |J |. Similarly, Lemma 6.2(ii) implies |J | ≤ |I|. So we have the
following result.

Corollary 6.3 Let I ⊆ M , J ⊆ N , and let (pt, qt)t∈IN be a sequence of t-
equilibria such that I = supp(pt) and J = supp(qt) for all t ∈ IN . Then
|I| = |J |.

If |I| = |J | = 1 in Corollary 6.3, then the sequence of t-equilibria reduces to
the constant Nash equilibrium in which player 1 picks the best element from
the column played by player 2 and player 2 picks the best element from the row
played by player 1.

The next result implies that in Corollary 6.3 the t-equilibria must converge
to pure strategy combinations.

Lemma 6.4 Let I ⊆ M , J ⊆ N , and let (pt, qt)t∈IN be a sequence of t-equilibria
such that I = supp(pt) and J = supp(qt) for all t ∈ IN . Let ı̂ ∈ I and ̂ ∈
J such that min{τ(i, j) | j ∈ J} < min{τ (̂ı, j) | j ∈ J} for all i ∈ I\{ı̂}
and min{σ(i, j) | i ∈ I} < min{σ(i, ̂) | i ∈ I} for all j ∈ J\{̂}. Then (i)
limt→∞ pt

ı̂ = 1 and (ii) limt→∞ qt
̂ = 1.

Proof. We only prove (ii), the proof of (i) is analogous. By Lemma 6.2 and
Corollary 6.3 we may renumber the strategies of the players such that:

(a) I = J = {1, . . . , s} for some s ≥ 1;
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(b) σ(j, j) < σ(i, j) for every j ∈ J and i ∈ I\{j};
(c) σ(1, 1) < σ(2, 2) < . . . < σ(s, s).

Note that ̂ = s. Let s′ ∈ {1, . . . , s − 1} arbitrary. To prove (ii), it is sufficient
to prove that limt→∞ qt

s′ = 0. Suppose that this is not the case. Then we may
assume that there is an α > 0 such that qt

s′ ≥ α for all t (otherwise there is
a subsequence with this property and we can apply the following argument to
this subsequence). Define the strategy p̂ ∈ ∆M by p̂i = 1/s′ for i = 1, . . . , s′

and p̂i = 0 otherwise. We will show that p̂qtσ is t-dominated by es′+1qtσ for
sufficiently large t, which contradicts Lemma 6.1 and therefore completes the
proof. So we are left to show that for t sufficiently large

F t
es′+1qtσ

(k) ≤ F t
p̂qtσ(k) for every k = 1, . . . , mn. (7)

(Since the probability distributions es′+1qtσ and p̂qtσ are clearly different, at
least one of the inequalities in (7) must be strict.)

Let k ∈ {1, . . . , mn}. By (b) and Lemma 2.3 we can choose t1 such that for
all t ≥ t1 we have

at
σ(j,j),k ≥ s at

σ(s′+1,j),k for all j = 1, . . . , s′ − 1. (8)

Also by (b) and Lemma 2.3 we can choose t2 such that for all t ≥ t2 we have

αat
σ(s′,s′),k ≥ 2s qt

s′a
t
σ(s′+1,s′),k. (9)

By (b), (c), and Lemma 2.3 we can choose t3 such that for all t ≥ t3 we have

αat
σ(s′,s′),k ≥ 2s

∑

j∈J: j≥s′+1

qt
ja

t
σ(s′+1,j),k. (10)

Then, for t ≥ max{t1, t2, t3}, we have

F t
es′+1qtσ

(k) =
∑

j∈J: σ(s′+1,j)≤k

qt
ja

t
σ(s′+1,j),k

=
∑

j∈J: j<s′, σ(s′+1,j)≤k

qt
ja

t
σ(s′+1,j),k

+
∑

j∈J: j≥s′, σ(s′+1,j)≤k

qt
ja

t
σ(s′+1,j),k

≤
∑

j∈J: j<s′

1
s
qt
ja

t
σ(j,j),k +

1
2s

αat
σ(s′,s′),k +

1
2s

αat
σ(s′,s′),k

≤ F t
p̂qtσ(k),

where the first inequality follows from (8)–(10). This implies (7) and completes
the proof of the lemma. 2

Lemma 6.4 has the following converse.
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Lemma 6.5 Let I ⊆ M and J ⊆ N satisfy conditions (i) and (ii) in Lemma
6.2, and let t ∈ IN . Then there are pt ∈ ∆M and qt ∈ ∆N with supp(pt) = I,
supp(qt) = J , and (pt, qt) ∈ Et.

Proof. Note that, as before, (i) and (ii) in Lemma 6.2 imply |I| = |J |. If
|I| = |J | = 1, then there is a pure Nash equilibrium (pt, qt) ∈ Et with supports
I and J . Assume now that |I| = |J | ≥ 2. As in the proof of Lemma 6.4 we may
renumber the pure strategies of the players such that

(a) I = J = {1, . . . , s} for some s ≥ 2;

(b) σ(j, j) < σ(i, j) for every j ∈ J and i ∈ I\{j};
(c) σ(1, 1) < σ(2, 2) < . . . < σ(s, s).

Define qt ∈ ∆N with supp(qt) = {1, . . . , s} such that

qt
j/qt

j−1 = mn at
1,mn for every j = 2, . . . , s. (11)

We will show that every p ∈ ∆M with supp(p) ⊆ I is a t-best reply against
qt. Since we can define pt analogously and show that every q ∈ ∆N with
supp(q) ⊆ J is a t-best reply against pt, the proof is complete.

So let p ∈ ∆M with supp(p) ⊆ I. Assume, contrary to what we wish to
prove, that there is a p′ ∈ ∆M such that pqt is t-dominated by p′qt. We first
argue that without loss of generality supp(p) ∩ supp(p′) = ∅. For, suppose
that i is an element in this intersection, and let α := min{pi, p

′
i}. Define p̄ :=

1/(1− α) (p− αei) and p̄′ := 1/(1− α) (p′ − αei). Then p̄, p̄′ ∈ ∆M , and p̄qt is
still t-dominated by p̄′qt, whereas i /∈ supp(p̄) ∩ supp(p̄′) and supp(p̄) ⊆ I.

So assume that supp(p) ∩ supp(p′) = ∅, and take ı̂ ∈ supp(p′) such that
p′ı̂ ≥ 1/m. If ı̂ ∈ I then let ̂ := ı̂. Then, by condition (b), σ(̂ı, ̂) < σ(i, ̂) for all
i ∈ I\{ı̂}, hence for all i ∈ supp(p) in particular. If ı̂ ∈ M\I then by condition
(i) in Lemma 6.2 we can take ̂ ∈ J such that σ(̂ı, ̂) < σ(i, ̂) for all i ∈ I, hence
for all i ∈ supp(p). Together with conditions (b) and (c) this implies

σ(̂ı, ̂) < σ(i, j) for all i ∈ supp(p) and j ∈ {̂, . . . , s}. (12)

Let k := σ(̂ı, ̂). Then

F t
pqtσ(k) =

k∑

l=1

(pqtσ)la
t
lk

=
̂−1∑

j=1

qt
j


 ∑

i∈I: pi>0, σ(i,j)<k

pi at
σ(i,j),k




≤
̂−1∑

j=1

qt
ja

t
1,mn
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< nqt
̂−1 at

1,mn

= qt
̂/m

≤ (1/m) qt
̂a

t
σ(ı̂,̂),k

≤ F t
p′qtσ(k) (13)

where the first equality follows from Lemma 2.1; the second equality by (12);
the first inequality by Lemma 2.2; the second (strict) inequality and the third
equality by (11); the third inequality since at

σ(ı̂,̂),k ≥ 1; and the final inequality
by Lemma 2.1 and the choice of p′ı̂ ≥ 1/m.

Since (13) contradicts the assumption that pqt is t-dominated by p′qt, the
proof of the lemma is complete. 2

Lemmas 6.2, 6.4, and 6.5, and Corollary 6.3 can be summarized as follows.

Theorem 6.6 If I ⊆ M , J ⊆ N , and if (pt, qt)t∈IN is a sequence of t-equilibria
such that I = supp(pt) and J = supp(qt) for all t ∈ IN , then (i) and (ii) in
Lemma 6.2 hold, |I| = |J |, and the sequence of t-equilibria converges to the pure
strategy combination (̂ı, ̂), where ı̂ and ̂ are as in Lemma 6.4. Conversely, if
∅ 6= I ⊆ M and ∅ 6= J ⊆ N satisfy (i) and (ii) in Lemma 6.2, then a sequence
of t-equilibria with supports I and J for players 1 and 2, respectively, exists.

As announced earlier, the results in this section imply that, as t becomes large,
the equilibrium behavior of the players converges to max-min play in a specific
sense. Take any sequence of t-equilibria with (without loss of generality) con-
stant supports I and J of the players’ strategies. Then, in the limit, player 1
puts all weight on that strategy (row) in I in which the worst outcome for player
2 with respect to the strategies (columns) in J is maximal among all rows in I;
and player 2 puts all weight on that column in J in which the worst outcome
for player 1 with respect to the rows in I is maximal among all columns in J .
The next examples illustrate this further.

Example 6.7 Consider the following 3×3 game, in which the numbers express
the ordinal preferences of the players:




1, 1 6, 5 9, 4
5, 6 2, 2 8, 7
4, 9 7, 8 3, 3


 .

In this game, I := M = {1, 2, 3} and J := N = {1, 2, 3} clearly satisfy (i) and
(ii) in Lemma 6.2. Obviously, ı̂ = ̂ = 3. For every t ∈ IN the t-equilibrium
used in the proof of Lemma 6.5 is defined by

pt = qt =
(

1
1 + A + A2

,
A

1 + A + A2
,

A2

1 + A + A2

)
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where A = 9(7 + t)!/8!(t− 1)!. In this equilibrium the weights on the first two
rows (and columns) converge to 0 and pt

1/pt
2 (and qt

1/qt
2) converges to zero as

well. That is, the weight on the first row (column) goes to 0 much faster than the
weight on the second row (column). The latter phenomenon is not a necessary
one: in the present example, for instance, it is also possible to have a sequence
of t-equilibria with equal weights on the first two rows (columns). It can be
verified that taking pt

1 = pt
2 = qt

1 = qt
2 =: αt such that (1−2αt)/αt > at

1,3 +at
1,8

for every t ∈ IN is again a t-equilibrium. Finally, I = M and J = N are the
only subsets of pure strategies satisfying (i) and (ii) in Lemma 6.2, hence the
only supports of t-equilibria. Hence, in the limit each player plays his third
strategy, resulting in the ‘payoffs’ (3, 3).

Example 6.8 Consider the following 3× 3 game:



4, 4 8, 5 3, 6
5, 8 7, 7 2, 9
6, 3 9, 2 1, 1


 .

The following combinations satisfy (i) and (ii) in Lemma 6.2:

(a) I = {3}, J = {1}, resulting in (3, 1) in the limit;

(b) I = {1}, J = {3}, resulting in (1, 3) in the limit;

(c) I = {1, 3}, J = {2, 3}, resulting in (1, 2) in the limit;

(d) I = {2, 3}, J = {1, 3}, resulting in (2, 1) in the limit;

(e) I = M , J = N , resulting in (2, 2) in the limit.

This means that the ‘payoff pairs’ that can arise as limits of t-equilibria are
(6, 3), (3, 6), (8, 5), (5, 8), and (7, 7).

7 Concluding remarks

There is quite some literature on noncooperative games with only ordinal pref-
erences: many economic games (for instance, Cournot or Bertrand oligopoly
games) belong to this category, but also games used for implementing social
choice correspondences, to name just a few examples. However, apart from
Fishburn (1978) the only references to ordinal games with mixed strategies that
we know of are Börgers (1993) and Rothe (1995). Börgers (1993) proposes a def-
inition of rationalizability in which only ordinal preferences over outcomes are
assumed to be common knowledge. Rothe (1995) considers equilibrium selection
in 2× 2-games under the first-degree stochastic dominance criterion.

There are several possible extensions of the present model that we list here
without any implication about their interest: extension to more than 2 play-
ers; to non-strict preferences; to the players being characterized by different t’s;
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and to letting t vary continuously instead of in discrete steps. More generally,
another extension is obtained by letting Uσ and Uτ denote classes of utility func-
tions representing the ordinal preferences of players 1 and 2, and by considering
(Uσ, Uτ )-equilibria, i.e., strategy combinations that are Nash equilibrium for at
least one pair of utility functions from Uσ and Uτ .

A Remaining proofs

Proof of Lemma 2.2. The proof is by induction on t. For t = 1 the formula
holds by definition of A. Let the formula be true for all k < t, where t ≥ 2.
Then for all i, j ∈ {1, . . . , `}

at
ij =

∑̀

l=1

at−1
il alj =

∑̀

l=i

at−1
il alj , (14)

where the second equality holds by induction. If i > j then every alj = 0 in the
RHS of (14) since l > j. If i ≤ j then (14) implies by induction

at
ij =

j∑

l=i

at−1
il =

j∑

l=i

(t− 2 + l − i)!
(l − i)!(t− 2)!

. (15)

We are done if we can prove

j∑

l=i

(t− 2 + l − i)!
(l − i)!(t− 2)!

=
(t− 1 + j − i)!
(j − i)!(t− 1)!

.

We show this again by induction. For j = i it is immediate. Let the equality
hold for i, . . . , j − 1, then

j∑

l=i

(t− 2 + l − i)!
(l − i)!(t− 2)!

=
(t− 1 + j − 1− i)!
(j − 1− i)!(t− 1)!

+
(t− 2 + j − i)!
(j − i)!(t− 2)!

=
(t− 1 + j − i− 1)!(j − i) + (t− 2 + j − i)!(t− 1)

(j − i)!(t− 1)!

=
(t− 1 + j − i)!
(j − i)!(t− 1)!

.

This completes the proof. 2

Proof of Lemma 2.1. The proof is by induction on t. For t = 1 the identity
in the lemma holds by definition. Assume it holds for every k < t (t ≥ 2). Let
l ∈ {1, . . . , `}. Then

F t
r = F t−1

r A = rAt−1A = rAt,
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where the second equality follows by induction. 2

Proof of Lemma 2.3. By Lemma 2.2,

at
ij/at

i′j =
(t− 1 + j − i)!
(j − i)!(t− 1)!

· (j − i′)!(t− 1)!
(t− 1 + j − i′)!

=
(j − i + 1) · (j − i + 2) · · · (j − i + t− 1)

(j − i′ + 1) · (j − i′ + 2) · · · (j − i′ + t− 1)

=
(j − i′ + t) · (j − i′ + t + 1) · · · (j − i + t− 1)

(j − i′ + 1) · (j − i′ + 2) · · · (j − i))
,

hence at
ij ≥ at

i′j and limt→∞ at
ij/at

i′j = ∞. 2

Proof of Proposition 2.4 By Lemma 2.1, the probability distribution r is
t-undominated if and only if

{x ∈ IR` | x ≤ rAt} ∩ {x ∈ IR` | x = sAt for some s} = {rAt}.

By a standard separation argument it follows that the two sets on the left-
hand side of this identity can be separated by a hyperplane through rAt with a
nonnegative normal c such that sAtc ≥ rAtc for all probability distributions s
on O. Since the second set is a polytope, this normal can be chosen positive (see
Shapley, 1959, for a detailed argument). This implies

∑`
l=1 rlul ≥

∑`
l=1 slul for

all probability distributions s on O, where u := −Atc ∈ U t. Also the converse
of this argument holds, so that the proof of the lemma is complete. 2

B Existence of t-equilibria

We provide an existence proof of t-equilibria by applying the Kakutani fixed
point theorem to subsets of the t-best reply correspondences—recall from Sec-
tion 4 that these correspondences themselves are not necessarily upper semi-
continuous.

Consider the two-person game defined in Section 3. Fix a strategy q ∈ ∆n

for player 2. By Lemma 2.1 it follows that

F t
pqσ =

m∑

i=1

piF
t
eiqσ (16)

for every p ∈ ∆m. Hence

{F t
pqσ | p ∈ ∆m} = conv{F t

eiqσ | i ∈ M}, (17)

where ‘conv’ denotes ‘the convex hull of’. The t-best replies against q are those
strategies p that generate points on the ‘southwest corner’ of the polytope in
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(17), i.e., each point for which there is no other point in the polytope that has
every coordinate smaller or equal and, thus, t-degree stochastically dominates
it. These undominated points do not necessarily lie in the same face of the
polytope and therefore a convex combination of t-best replies against q is not
necessarily a t-best reply itself against q. So t-best reply correspondences are
not necessarily convex-valued, in contrast with Nash best reply correspondences.
For applying a fixed point argument this lack of convexity is not a real problem
since from (17) it is easily seen that the set of t-best replies is homeomorphic
to a convex set. In the proof of the existence result we apply Kakutani to the
correspondences obtained by minimizing sums of coordinates on the polytopes
in (17).

Theorem B.1 Et 6= ∅ for every t ≥ 1.

Proof. Let t ≥ 1. For every q ∈ ∆n define

µ1(q) = arg min

{
mn∑

l=1

F t
pqσ(l) | p ∈ ∆m

}
.

Then it is easy to verify that the correspondence q 7→ µ1(q) is nonempty- and
convex-valued, and upper semi-continuous. For player 2, we define an anal-
ogous correspondence ∆m 3 p 7→ µ2(p) with the same properties. Now the
correspondence

µ : ∆m ×∆n 3 (p, q) 7→ µ1(q)× µ2(p)

satisfies all conditions needed to apply the Kakutani fixed point theorem. Hence,
there exists a pair (p∗, q∗) with p∗ ∈ µ1(q∗) and q∗ ∈ µ2(p∗). Since, for any
p and q, all elements of µ1(q) are t-best replies against q and all elements of
µ2(p) are t-best replies against p, this holds in particular for p∗ and q∗. Hence,
(p∗, q∗) ∈ Et. 2
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