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An Impossibility in Sequencing Problems∗

Çağatay Kayı† and Eve Ramaekers‡

Abstract

A set of agents with different waiting costs have to receive a service of different length of

time from a single provider which can serve only one agent at a time. One needs to form a

queue and set up monetary transfers to compensate the agents who have to wait. We prove

that no rule satisfies efficiency of queues and coalitional strategy-proofness.

JEL Classification: D63, C72.

Keywords: Sequencing problems, Pareto-efficiency, coalitional strategy-proofness.

1 Introduction

A set of agents simultaneously arrive at a service facility that can only serve one agent at

a time. Agents require service for different lengths of time. The waiting cost may vary

from one agent to the other. Each agent is assigned a “consumption bundle” consisting

of a position in the queue and a positive or negative transfer. Each agent has quasi-linear

preferences over positions and transfers. For such a sequencing problem, a rule assigns each

agent a position in the queue and a positive or negative transfer such that no two agents are

assigned the same position, and the sum of the transfers is not positive.

Our objective is to identify rules that are well-behaved from the normative and strategic

viewpoints. The first requirement is efficiency. It says that if an allocation is selected, there
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should be no other feasible allocation that each agent finds at least as desirable and at least

one agent prefers. Since preferences are linear, Pareto-efficiency can be decomposed into two

axioms: on the one hand, efficiency of queues, which says that a queue should minimize the

total waiting cost, and on the other hand, balancedness, which says that transfers should sum

up to zero. Second is a minimal fairness requirement, no-envy, which requires that no agent

should prefer another agent’s assignment to her own. No-envy implies efficiency of queues.

Third is immunity to strategic behavior. As unit waiting costs may not be known, the

rule should provide agents the incentive to reveal these costs truthfully. Strategy-proofness

requires that each agent should find her assignment when she truthfully reveals her unit

waiting cost at least as desirable as her assignment when she misrepresents it.1 We are

also concerned about possible manipulations by groups, and consider coalitional strategy-

proofness : no group of agents should make each of its members at least as well off, and at

least one of them better off, by jointly misrepresenting their waiting costs. Finally is non-

bossiness : if an agent’s change in her announcement does not affect her assignment, then it

should not affect any other agent’s assignment.

For sequencing problems, Pareto-efficiency and strategy-proofness are compatible (Suijs,

1996). For the subdomain of sequencing problems in which agents require service for the

same length of time2, Pareto-efficiency, equal treatment of equals in welfare, and strategy-

proofness are compatible. (Kayı and Ramaekers, 2007). We show that if we impose the

stronger incentive property of coalitional strategy-proofness with efficiency of queues, we have

an impossibility result. Independently, Mutuswami and Mitra (2006) show that coalitional

strategy-proofness, efficiency of queues and feasibility–which says that transfers should sum

up less or equal to zero– are not compatible. In our proof, we make use of non-bossiness

and get some corollaries: We show that no rule satisfies Pareto-efficiency and coalitional

strategy-proofness, no rule satisfies Pareto-efficiency, non-bossiness, and strategy-proofness,

and no rule satisfies no-envy, non-bossiness, and strategy-proofness.

In Section 2, we formally introduce the model. In Section 3, we define the properties on

rules. In Section 4, we give the impossibility result.

1For an extensive survey on strategy-proofness, see Thomson, 2006.
2For queueing problems, see Mitra and Sen, 1998; Maniquet, 2003; Katta and Sethuraman, 2006; Chun

2006.
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2 Model

There is a finite set of agents N . Let |N | = n ≥ 2. For each agent i ∈ N , let ri ∈ R++ be the

servicing time and ci ∈ R+ be the unit waiting cost of i ∈ N . Let r = (ri)i∈N ∈ R
N
++ and

c = (ci)i∈N ∈ R
N
+ be the lists of the servicing times and unit waiting costs respectively. A

queue is a bijection σ : N → {1, 2, ..., n}. Let Q be the set of all queues. For each agent i ∈ N ,

we will denote σ(i) as σi. Each agent i ∈ N has to be assigned a position σi ∈ {1, 2, ..., n}
in a queue σ and may receive a positive or negative monetary transfer ti ∈ R. Preferences

are linear over X ≡ {1, 2, ..., n} × R. For each queue σ ∈ Q and each i ∈ N , let Pi(σ)

be the set of agents preceding agent i in queue σ, i.e., Pi(σ) ≡ {j ∈ N |σj < σi}. If i is

served σi-th, her total waiting cost is
∑

l∈Pi(σ) rlci. Her preferences can be represented by

the function ui defined as follows: for each (σi, ti) ∈ X, ui(σi, ti) = −∑
l∈Pi(σ) rlci + ti.

We use the following notational shortcut. If her waiting cost is c′i, then her preferences are

represented by the function u′
i, defined by u′

i(σi, ti) = −∑
l∈Pi(σ) rlc

′
i + ti; if it is c̃i, then

we use ũi(σi, ti) = −∑
l∈Pi(σ) rlc̃i + ti, and so on. A sequencing problem is defined as a list

s ≡ (ri, ci)i∈N ∈ R
N
++ × R

N
+ . Let S ≡ R

N
++ × R

N
+ be the class of all problems.

An allocation for s ∈ S is a pair (σ, t) ≡ (σi, ti)i∈N ∈ XN . An allocation (σ, t) ∈ XN

is feasible for s ∈ S if no two agents are assigned the same position in σ, (i.e., for each

{i, j} ⊆ N with i �= j, we have σi �= σj), and the sum of the coordinates of t is non-positive,

(i.e.,
∑

i∈N ti ≤ 0). Let Z(s) be the set of all feasible allocations for s ∈ S. An (allocation)

rule ϕ is a function that associates with each problem s ∈ S a feasible allocation ϕ(s) ∈ Z(s).

Given s ∈ S and S ⊆ N , rS ≡ (cl)l∈S and cS ≡ (cl)l∈S are restrictions of servicing times r

and unit waiting costs c to S respectively. Given i ∈ N , r−i ≡ (rl)l∈N\{i} and c−i ≡ (cl)l∈N\{i}
are the restrictions of r and c to N\{i} respectively.

3 Properties of rules

In this section, we define properties of rules. Let ϕ be a rule. First, if an allocation is selected,

there should be no other feasible allocation that each agent finds at least as desirable and

at least one agent prefers.

Pareto-efficiency: For each s ∈ S and each (σ, t) ∈ ϕ(s), there is no (σ′, t′) ∈ Z(s) such

that for each i ∈ N , ui(σ
′
i, t

′
i) ≥ ui(σi, ti) and for at least one j ∈ N , uj(σ

′
j, t

′
j) > uj(σj, tj).
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If an allocation is Pareto-efficient for s, any other allocation at which the queue is the

same is also Pareto-efficient. Therefore, it is meaningful to speak of the efficiency of queues.

It requires to minimize the total waiting cost. Thus, an allocation (σ, t) is Pareto-efficient

for s if and only if for each σ′ ∈ Q, we have
∑

i∈N

∑
l∈Pi(σ′) rlci ≥

∑
i∈N

∑
l∈Pi(σ) rlci, i.e., σ

is efficient for s and
∑

i∈N ti = 0, i.e., t is balanced for s. Let Q∗(s) be the set of all efficient

queues for s. For each s ∈ S and each (σ, t) ∈ Z(s), we have σ ∈ Q∗(s) if and only if for

each {i, j} ⊂ N with i �= j, if σi < σj, then ci/ri ≥ cj/rj. (Smith, 1956) For simplicity,

throughout the paper, we will assume that agents have unequal ratios of unit waiting costs

and servicing time. Therefore, there is only one efficient queue.

Summarizing the discussion above, Pareto-efficiency can be decomposed into two axioms:

Efficiency of queues: For each s ∈ S and each (σ, t) ∈ ϕ(s), we have σ ∈ Q∗(s).

Balancedness: For each s ∈ S and each (σ, t) ∈ ϕ(s), we have
∑

i∈N ti = 0.

The next requirement is necessary for no agent to prefer another agent’s assignment to her

own.

No-envy: For each s ∈ S, each (σ, t) ∈ ϕ(s), and each i ∈ N , there is no j ∈ N\{i} such

that ui(σj, tj) > ui(σi, ti).

The last requirements are motivated by strategic considerations. The planner may not

know the agents’ cost parameters. If agents behave strategically when announcing them,

neither efficiency nor equity may be attained. Thus, we require that each agent should find

her assignment when she truthfully reveals her unit waiting cost at least as desirable as her

assignment when she misrepresents it.

Strategy-proofness: For each s ∈ S, each i ∈ N , and each c′i ∈ R+, if (σ, t) = ϕ(s) and

(σ′, t′) = ϕ(r, c′i, c−i), then ui(σi, ti) ≥ ui(σ
′
i, t

′
i).

We also consider the requirement that no group of agents should be able to make each of its

members at least as well off, and at least one of them better off, by jointly misrepresenting

its members’ waiting costs.

Coalitional strategy-proofness: For each s ∈ S and each S ⊆ N , there is no c′S ∈ R
S
+

such that if (σ, t) = ϕ(s) and (σ′, t′) = ϕ(r, c′S, cN\S), then for each i ∈ S, we have ui(σ
′
i, t

′
i) ≥

ui(σi, ti) and for some j ∈ S, we have uj(σ
′
j, t

′
j) > uj(σj, tj).

The next requirement is that if an agent’s change in her announcement does not affect her

assignment, then it should not affect any other agent’s assignment.
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Non-bossiness: For each s ∈ S, each i ∈ N , and each c′i ∈ R+, if ϕi(s) = ϕi(r, c
′
i, c−i),

then ϕ(s) = ϕ(r, c′i, c−i).

4 Result

First, we establish a relationship between efficiency of queues and coalitional strategy-

proofness, and non-bossiness.

Proposition 1. Let ϕ be a rule satisfying efficiency of queues and coalitional strategy-

proofness, then it satisfies non-bossiness.

Proof. Let ϕ be a rule satisfying the axioms of Proposition 1. We need to show that for each

s ∈ S, each i ∈ N , each c′i ∈ R+, if z = ϕ(s) and z′ = ϕ(r, (c′i, c−i)) are such that zi = z′i,

then z = z′. Indeed, let s = (r, c) ∈ S, i ∈ N , c′i ∈ R+, z = ϕ(s), and z′ = ϕ(r, (c′i, c−i))

be such that zi = z′i. By contradiction, suppose that there is j ∈ N such that zj �= z′j.

Then, since zi = z′i, we have ui(σ, ti) = ui(σ
′, t′i). By efficiency of queues, σj = σ′

j. Since

zj �= z′j, we have tj �= t′j. First, suppose tj > t′j. Then, uj(σ, tj) > uj(σ
′, t′j) and there

is (c′i, cj) ∈ R{i,j}
+ such that ui(σ, ti) = ui(σ

′, t′i) and uj(σ, tj) > uj(σ
′, t′j), contradicting

coalitional strategy-proofness. Second, suppose tj < t′j. Then, uj(σ, tj) < uj(σ
′, t′j) and

there is (ci, cj) ∈ R{i,j}
+ such that u′

i(σ, ti) = u′
i(σ

′, t′i) and uj(σ
′, t′j) > uj(σ, tj), contradicting

coalitional strategy-proofness.

Then, we prove our main result.

Theorem 1. No rule satisfies efficiency of queues and coalitional strategy-proofness.

Proof. By contradiction, let ϕ be a rule satisfying the axioms of Theorem 1. Then, by

Proposition 1, ϕ satisfies non-bossiness. Now, assume that for each i ∈ N , we have ri = 1.

We establish two claims:

Claim 1: For each s ∈ S, each i ∈ N , and each c′i ∈ R+,

if (σ, t) = ϕ(r, c) and (σ′, t′) = ϕ(r, (c′i, c−i)) are such that σi = σ′
i, then (σ, t) = (σ′, t′).

Let s ∈ S, i ∈ N , c′i ∈ R+, (σ, t) = ϕ(r, c) and (σ′, t′) = ϕ(r, (c′i, c−i)) are such that σi = σ′
i.

By strategy-proofness, −∑
l∈Pi(σ) rlci + ti ≥ −∑

l∈Pi(σ′) rlci + t′i and −∑
l∈Pi(σ) rlc

′
i + ti ≤

−∑
l∈Pi(σ′) rlc

′
i + t′i. By assumption, for each i ∈ N , we have ri = 1. Thus, −(σi − 1)ci + ti ≥
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−(σ′
i − 1)ci + t′i and −(σi − 1)c′i + ti ≤ −(σ′

i − 1)c′i + t′i. Thus, as σi = σ′
i, we have ti = t′i. By

non-bossiness, (σ, t) = (σ′, t′).

Claim 2: For each s ∈ S such that for each j, k ∈ N , we have cj �= ck if and only if j �= k,

for each i ∈ N , and each c′i ∈ R+ such that for each j ∈ N\{i}, we have c′i > cj if and only

if ci > cj, if (σ, t) = ϕ(s), then (σ, t) = ϕ(r, (c′i, c−i)).

Let s ∈ S, i ∈ N , c′i ∈ R+ be such that for each j ∈ N\{i}, we have c′i �= cj and c′i > cj if

and only if ci > cj, and (σ, t) = ϕ(s), (σ′, t′) = ϕ(r, c′i, c−i)). By efficiency of queues, σ′
i = σi.

Thus, by Claim 1, (σ, t) = ϕ(r, (c′i, c−i)).

Claims 1 to 2 being proved, we now come to a contradiction. Without loss of generality,

suppose N = {1, 2, ..., n}. Let {c, c′} ⊆ R
N
+ be such that

(i) c1 > c2 > c3... > cn,

(ii) c′2 > c′1 > c′3 > ... > c′n, and

(iii) for each i ∈ N\{1}, c′i = ci.

Let (σ, t) = ϕ(s) and (σ′, t′) = ϕ(r, c′). By efficiency of queues, for each i ∈ N , we have

σi = i, whereas σ′
1 = 2, σ′

2 = 1, and for each i ∈ N\{1, 2}, we have σi = σ′
i = i. Thus,

(σ, t) �= (σ′, t′). By strategy-proofness, u1(σ1, t1) = t1 ≥ −c1 + t′1 = u1(σ
′
1, t

′
1) and u′

1(σ
′
1, t

′
1) =

−c′1 + t′1 ≥ t1 = u′
1(σ1, t1). That is, t′1 ∈ [t1 + c′1, t1 + c1]. Thus, agent 1’s transfer depends

either on a constant, i.e., t1 = t1 + c with c ∈ [c1, c
′
1], or on its own announcement, i.e.,

t1 = t1 + f(c′1, c1) with f(c′1, c1) ∈ [c1, c
′
1]. Clearly, this contradicts strategy-proofness.

The following paragraphs establish examples of rules that satisfy only one of the axioms

in Theorem 1.

(i) Equally Distributed Pairwise Pivotal rule (Kayı and Ramaekers, 2007 and Suijs, 1996)

satisfies efficiency of queues but not coalitional strategy-proofness.

(ii) Any rule that selects the same arbitrary queue and sets the transfer to each agent equal

to zero satisfies coalitional strategy-proofness, but not efficiency of queues.

Finally, by using the implication of properties, we have the following corollaries.

Corollary 1.

1. No rule satisfies Pareto-efficiency and coalitional strategy-proofness.

2. No rule satisfies Pareto-efficiency, non-bossiness, and strategy-proofness.
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3. No rule satisfies no-envy, non-bossiness, and strategy-proofness.3
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