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Abstract

Panel unit root and no-cointegration tests that rely on cross-sectional independence
of the panel unit experience severe size distortions when this assumption is violated, as
has e.g. been shown by Banerjee, Marcellino and Osbat (2004, 2005) via Monte Carlo
simulations. Several studies have recently addressed this issue for panel unit root test
using a common factor structure to model the cross-sectional dependence, but not much
work has been done yet for panel no-cointegration tests.

This paper proposes a model for panel no-cointegration using an unobserved common
factor structure, following the work on Bai and Ng (2004) for panel unit roots. The model
enables us to distinguish two important cases: (i) the case when the non-stationarity in the
data is driven by a reduced number of common stochastic trends, and (ii) the case where
we have common and idiosyncratic stochastic trends present in the data. We study the
asymptotic behavior of some existing, residual-based panel no-cointegration, as suggested
by Kao (1999) and Pedroni (1999, 2004). Under the DGP used, the test statistics are
no longer asymptotically normal, and convergence occurs at rate T rather than

√
NT as

for independent panels. We then examine the properties of residual-based tests for no-
cointegration applied to defactored data from which the common factors and individual
components have been extracted.
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1 Introduction

The effect of persistent cross-sectional dependence on panel unit root tests has been recently
analyzed and documented in some detail in the literature. As shown by Monte Carlo simula-
tions (Banerjee et al, 2005) or by asymptotic analysis (Lyhagen, 2000; Pedroni and Urbain,
2001), the standard (Levin-Lin-Chu or IPS) panel unit root tests are severely affected in that
either they display dramatic size distortions or even worse can be shown to diverge with the
cross-sectional dimension of the panel. To overcome these problems, new panel unit root
tests have been proposed that model the possibly persistent cross-sectional dependency using
a single common factor model (Pesaran, 2004, Philips and Sul, 2003) or k-common factor
models (Moon and Perron, 2004, Bai and Ng, 2004).

For the case of tests of the null hypothesis of no-cointegration, not much work has been
done yet. Banerjee et al. (2004) conduct an extensive Monte Carlo study where they conclude
that while all statistics investigated (residual-based tests or likelihood based trace-type test)
are affected, the presence of cross-member cointegration appears much less harmful for single-
equation tests than for the panel version of the Johansen test. In many cases, the tests are
affected by the presence of cointegration between members in such a way that these tests
cannot discriminate between cointegration among members and cointegration within, that is
for a single member of the panel. Bai and Kao (2004) and Banerjee and Carrion-i-Silvestre
(2005) study tests for panel no-cointegration with cross-sectional dependence. Both studies
consider residual-based tests for a single cointegration relationship, where the error term of
the cointegrating equation follows a common factor structure as in Bai and Ng (2004). Urbain
(2004) on the other hand studies analytically the issue of spurious regression in panels when
the units are cointegrated along the cross-sectional dimension, i.e. when there is cross-member
cointegration. In contrast to the spurious regression result for independent panel studied by
Phillips and Moon (1999), Pedroni (1995) or Kao (1999), in most of the cases considered these
estimators are not consistent and actually converge to non-degenerate limiting distribution
once the observed non-stationarity is generated by a reduced number of common stochastic
trends.

This paper builds on these results and extends the analysis to the analytical study of panel
tests for no-cointegration when the cross-sectional dependence in the panel is modelled by a
common factor structure following the work of Bai and Ng (2004). Adopting the framework
of Bai and Ng (2004) enables us to consider essentially two different classes of cases that
we believe are both of theoretical and empirical relevance: (i) the case where the observed
non-stationarity in the variables originates from a reduced number of cross-sectional common
trends only; (ii) the case where we have both cross-sectional common stochastic trends as
well as idiosyncratic ones. The spurious regression analysis for the former case is reported in
Urbain (2004) and corresponds to the cross-member cointegration case. The second case is
actually the one considered by Moon and Perron (2004) or Pesaran (2003) in the context of
panel unit root analysis and excludes the existence of cross-unit or cross-member cointegration
in the panel since both components are I(1)).

For both classes of DGP’s, we study analytically the behavior of several popular test for
panel cointegration including Kao (1999) and Pedroni’s (1999, 2004) residual-based panel
no-cointegration tests that have been widely used in empirical work in the recent years. For
example, when the number of common factors generating the non-stationarity in the panel
is kept fixed while the dimension of the panel increases, then the Gaussian limiting results
derived for the independent case are not valid anymore. Tests that are based on pooled or
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LSDV estimation of the underlying panel cointegration static regression may in some cases
diverge with

√
N and hence important size distortions are to be expected already in panels

with moderate cross-sectional dimension. Group mean statistics are also affected and not
asymptotically gaussian anymore.

These results complement and help to have a better understanding of some of the Monte
Carlo reported by Banerjee et al. (2004). We then examine the possibilities to test for
no-cointegration, by extracting the common factors and individual components from the
observed data directly and test for no-cointegration using residual-based panel tests applied
to the defactored data.

The remainder of the paper is organized as follows: In Section 2 we present our model for
panel no-cointegration with a common factor structure. In Section 3 we examine the asymp-
totic behavior of some residual-based panel no-cointegration tests when the data is generated
by our DGP. Section 4 discusses a possible solution for testing for no-cointegration when the
data contains unobserved common factors. In particular, we examine the possibilities of de-
factoring the observed data before testing, using the methodology from Bai and Ng (2004).
The finite sample behavior of the proposed approach is analyzed in Section 5. In Section
6 we illustrate the approach by revisiting the issue of panel cointegration of the weak PPP
hypothesis. Conclusions are drawn in Section 7.

A note on notation: Throughout the text, M is used to denote a generic positive number,
not depending on T or N . For a matrix A, A > 0 denotes that A is positive definite. Further-
more, ‖A‖ = trace(A′A)

1
2 . We write the integral

∫ 1
0 B(r)dr as

∫
B, and

∫ 1
0 B(r)B(r)′dr as∫

BB′. Furthermore, =⇒ denotes weak convergence, and
p−→ denotes convergence in proba-

bility. For any number x, bxc denotes the largest integer smaller than x. For any variable Xi,t,
X̃i,t = Xi,t − 1

T

∑T
s=1 Xi,s. Similarly, for any Brownian motion B, B̃ = B − ∫

B.Throughout
the paper we employ sequential limit theory, where we consider T →∞ followed by N →∞.

2 The Model

We consider balanced panels with N cross-sectional units and T time-series observations,
indexed by i = 1, . . . , N and t = 1, . . . , T respectively. For each unit in the panel we observe
a (m + 1)-dimensional vector of variables Zi,t = (Yi,t, X

′
i,t)

′, where Yi,t is a scalar time series
and Xi,t is a m-vector time series. We assume that the DGP for Zi,t has a common factor
structure as e.g. in Bai and Ng (2004), and we assume the presence of k common factors in
the data. Furthermore, we assume the number of common factors to be fixed as T,N → ∞
throughout the paper. Our model is given by

Zi,t = Di,t + ΛiFt + Ei,t, (1)

t = 1, . . . , T , i = 1, . . . , N . Di,t is an unobserved deterministic component such that either
Di,t = 0 for all i and t if there are no deterministic components present, Di,t = d0i for all t

if the data contains individual specific fixed effects, or Di,t = d0i + d1it if the data contains
individual specific deterministic components, where the coefficients d0i and d1i depend on i

only. For the remainder of the paper we assume Di,t = 0 unless mentioned otherwise. The
common component in Zi,t is given by Ft in (1). Ft is a k-vector of common I(1) factors given
by

Ft = Ft−1 + ft, (2)
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where ft = Φ(L)ηt, Φ(L) =
∑∞

j=0 ΦjL
j . The (m + 1) × k matrix of factor loadings Λi is

assumed to be of full rank and block-diagonal, with block-diagonality corresponding to the
partition of Zi,t, such that

Λi =

[
λ′1i 0
0 λ′2i

]
.

As for the vectors of observations Zi,t, we have partitions for the unobserved vector of common
factors Ft = (F Y ′

t , FX′
t )′ where F Y

t and FX
t have kY and kX elements respectively, and the

partition of Ft corresponds to the structure of Λi, such that λ1i is kY × 1 and λ2i is kX ×m.
The block-diagonal structure for the factor loadings is necessary to ensure that Yi,t and Xi,t

are not cointegrated when the non-stationarity in the data is driven by the common factors
alone. When the idiosyncratic components are non-stationary as well, this assumption on Λi

might be relaxed and a more general structure can be considered.
For the idiosyncratic component in (1), Ei,t, we distinguish two cases, namely stationary

and non-stationary idiosyncratic components. For the former case we have

Ei,t = ei,t, (3)

while in the later case we assume

Ei,t = Ei,t−1 + ei,t, (4)

where the stationary vector ei,t = Γi(L)εi,t, Γi(L) =
∑∞

j=0 ΓijL
j . Again, we partition Ei,t

conformable with the data Zi,t, such that Ei,t = (EY
i,t, E

X′
i,t )′, where EY

i,t is a scalar time series
and EX

i,t has m elements.
For the above given model we specify the following assumptions:

Assumption 1 Common factors: (i) ηt ∼ iid(0, Ik) with finite 4th moments, (ii)
∑∞

j=0 j ·
‖Φj‖ < M , (iii) rank(Φ(1)) = k, (iv) E‖F0‖ ≤ M .

Assumption 2 Factor loadings: (i) for non-random λ1i and λ2i, ‖λ1i‖ ≤ M and ‖λ2i‖ ≤ M ;
for random λ1i and λ2i, E‖λ1i‖4 ≤ M and E‖λ2i‖4 ≤ M , (ii) N−1

∑N
i=1 Λ′iΛi

p−→ ΣΛ > 0,
(iii) for non-random λ1i and λ2i, N−1

∑N
i=1 λ1i 6= 0 and N−1

∑N
i=1 λ2i 6= 0; for random λ1i

and λ2i, E(λ1i) 6= 0 and E(λ2i) 6= 0.

Assumption 3 Idiosyncratic components: for each i = 1, . . . , N , (i) εi,t ∼ iid(0,Σi) with
finite 8th moments, and εi,t and εj,s are independent for any t, s and i 6= j, (ii) E‖εi,0‖ < M ,
(iii) Γi(L) fulfills the random coefficients and summability conditions from Phillips and Moon
(1999), Assumptions 1 and 2 on p.1060 and p.1061 respectively, (iv) rank(Γi(1)) = m + 1,
∀i.
Assumption 4 The errors, ηt, εi,t, and the factor loadings Λi are mutually independent
groups.

Under the conditions of Assumption 1, the common factors Ft are a k-dimensional I(1) process
and the possibility of cointegration between the common factors is excluded. The full rank
assumption on the long-run covariance matrix of Ft could in fact be relaxed, as long as the
diagonal blocks corresponding to the long-run covariances of F Y

t and FX
t have at least rank

1 each. The long-run covariance matrix of the common factors is given by

Ω = Φ(1)Φ(1)′ = Ξ + Θ + Θ′,
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where Ξ = limT→∞ 1
T

∑T
t=1 E(ftf

′
t) and Θ = limT→∞ 1

T

∑T
t=1 E(ftF

′
t−1). Furthermore, an

invariance principle holds such that

T−1/2FbrT c =⇒ BF (r) as T →∞, (5)

where BF is a k-vector Brownian motion with covariance matrix Ω. Assumptions 2(i) and
2(ii) are standard assumptions for factor models and ensure that the factor loadings are
identifiable. Assumption 2(iii) is needed for the spurious regression results when the non-
stationarity in the data is only driven by the common factors. Assumption 3(iii) specifies
that a panel functional central limit theorem holds for Si,t =

∑t
s=1 ei,t, which corresponds to

Ei,t in case the idiosyncratic components are non-stationary as in (4), or its cumulative sum
if (3) is true. The long-run covariance of Si,t is given by

Ψi = Γi(1)ΣiΓi(1)′ = Υi + ∆i + ∆′
i,

where Υi = limT→∞ 1
T

∑T
t=1 E(ei,te

′
i,t) and ∆i = limT→∞ 1

T

∑T
t=1 E(ei,tS

′
i,t−1), and an invari-

ance principle ensures that

T−1/2Si,brT c =⇒ Bi(r) as T →∞, (6)

where Bi is a randomly scaled (m + 1)-vector Brownian motion with covariance matrix Ψi.
Assumption 3(iv) ensures that the idiosyncratic terms do not cointegrate in case these are
I(1) vectors.

The implications of these assumptions are best understood by considering the Beveridge-
Nelson (BN) decomposition for Ft and for Ei,t =

∑t
s=1 ei,s:

Ft = Φ(1)
t∑

s=1

ηs + Φ∗(L)(ηt − η0) + F0, (7)

Ei,t = Γi(1)
t∑

s=1

εi,s + Γ∗i (L)(εi,t − εi,0) + Ei,0, (8)

where Φ∗(L) =
∑∞

j=0 Φ∗jL
j with Φ∗j = −∑∞

l=j+1 Φl, Γ∗i (L) =
∑∞

j=0 Γ∗i,jL
j with Γ∗i,j =

−∑∞
l=j+1 Γi,l, Φ∗(L)(ηt − η0) and Γ∗i (L)(εi,t − εi,0) are stationary with finite fourth order

moments and F0 and Ei,0 are Op(1) by assumption.
If (3) is true the idiosyncratic data components are I(0), and the I(1) trends of the common

factors contained in ΛiΦ(1)
∑t

s=1 ηs drive the non-stationarity in the data. Then, we might
observe cross-member cointegration between some Yi,t and Yj,t, and between some Xi,t and Xj,t

for some i, j, i 6= j, the exact cointegration structure depending on the individual loadings.
The assumption on the block-diagonal structure of the factor loadings Λi in turn implies that
we have separation in a cointegrating system, see Hecq, Palm and Urbain (2002). Note that
cointegration between Yi,t and Xi,t would only be possible if the common factors F Y

t and
FX

t would cointegrate, which is ruled out by Assumption 1 from which the full rank of the
long-run covariance matrix of Ft follows.

When Ei,t is given by (4), both common and idiosyncratic data components are non-
stationary and drive the non-stationarity in Zi,t, i = 1, . . . , N . Furthermore, the idiosyncratic
components do not cointegrate along the cross-section. Hence, we do not have cointegration
“within” units, e.g. between Yi,t or Xi,t. The BN decomposition of the Zi,t is easily ob-
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tained from (1) and (7-8) and shows that the non-stationarity of Zi,t stems from the term
ΛiΦ(1)

∑t
s=1 ηs + Γi(1)

∑t
s=1 εi,s.

Remark 1. The purpose of this paper is to investigate tests for no-cointegration so that
we need to maintain the assumption there does exist a full column rank matrix βi such that
β′iZit ∼ I(0). The model enables us however to distinguish a variety of different cases. We will
concentrate on two different important cases, namely one with cross-member cointegration
where we have I(1) common factors and I(0) idiosyncratic terms and one where the panel
units contain common stochastic trends, but do not cointegrate even along the cross-sectional
dimension so that both the common and the idiosyncratic components are I(1).

Remark 2. Strictly speaking, with I(1) common factors as well as I(1) idiosyncratic com-
ponents, nothing would preclude to have different sets of cointegrating vectors that would
annihilate the idiosyncratic and the common I(1) stochastic trends, see also the discussion
in Grégoire (2005), Breitung and Pesaran (2005). Combining (1) and (5)-(6), the resulting
BN representation of Zi,t shows that it will not be easy to annihilate both. In particular,
cointegrating vector(s), say δ′, that annihilate the common I(1) components should lie in the
left null space of Λi such that δ′ΛiΦ(1) = 0 while those for the idiosyncratic components, say
β′ would have to lie in the left null space of Γi(1) such that β′iΓi(1) = 0. If the intersection of
these left null spaces is the empty set, then there does not exist a cointegrating relationship
that would annihilate both the unit roots from the common stochastic trends and those of
the idiosyncratic terms. This would also represent a situation where none of the Zi,t vectors
are cointegrated. The components taken in isolation could be cointegrated though. This case
is not considered in the methodological part of the paper as it would present a different prob-
abilistic structure. Note however that the empirical analysis procedure proposed in Section 3
remains valid in this case too.

Remark 3. A similar framework is also, independently of the present work, proposed by
Dees, di Mauro, Pesaran and Smith (2005) for the study of macroeconomic linkages within
the Euro area. The purpose of their work is however different as no attempt to discuss tests
for cointegration is made. This work is complementary to theirs.

3 The behavior of panel residual-based tests

The purpose of this section is to study, given the set-up introduced in the preceding section,
the asymptotic behavior of some standard and popular panel tests for no-cointegration. We
can view this section as providing some complementary results to the simulation results
reported by Banerjee et al. (2004). The statistics we consider are designed to test for the
presence of a single cointegration relationship between Yi,t and Xi,t.1 Kao (1999) considers
a homogenous cointegrating vector, whereas Pedroni (1999) allows for some heterogeneity.
However, both rely on the cross-sectional independence of the panel unit to derive asymptotic
normality for their test statistics.

1This is a restrictive assumption that we however will make in the sequel by assuming the existence of a
single cointegrating vector. Approaches that allow for more than one cointegrating vectors, are reviewed in
Breitung and Pesaran (2005).
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3.1 Kao (1999)

Kao (1999) proposes to estimate the homogeneous cointegrating relationship by pooled re-
gression allowing for individual fixed effects. The regression equation is given by

Yi,t = αi + βXi,t + ui,t, (9)

and the least squared dummy variable (LSDV) estimator for β is

β̃ =
( N∑

i=1

T∑

t=1

Ỹi,tX̃
′
i,t

)( N∑

i=1

T∑

t=1

X̃i,tX̃
′
i,t

)−1
,

where Ỹi,t = Yi,t − 1
T

∑T
s=1 Yi,s and X̃i,t = Xi,t − 1

T

∑T
s=1 Xi,s. The residuals from this first

stage regression ũi,t = Ỹi,t − β̃X̃i,t will still contain a unit root under the null hypothesis of
no cointegration. We now estimate a pooled DF regression

∆ũi,t = (ρ− 1)ũi,t−1 + vi,t, (10)

where the pooled ordinary least squares (POLS) estimator of (ρ− 1) is given by

(ρ̃− 1) =
( N∑

i=1

T∑

t=1

∆ũi,tũi,t−1

)( N∑

i=1

T∑

t=1

ũ2
i,t−1

)−1
.

Kao (1999) tests are based on ρ̃ and the corresponding t-statistic

tρ̃ =
(
ρ̃− 1

)(
ŝ2
ũ(

N∑

i=1

T∑

t=1

ũ2
i,t−1)

−1
)− 1

2 ,

where ŝ2
ũ = N−1T−1

∑N
i=1

∑T
t=1 ∆ũi,t−1∆ũ′i,t−1, corrected for endogeneity and serial correla-

tion. When the panel units are cross-sectionally independent, the test statistics are asymp-
totically normally distributed as T →∞ followed by N →∞. However, for the model given
by (1), (2) and (3) or (4), this assumption is clearly violated. Using the results reported in
Lemmas 1-3 in Appendix A, we obtain the following limit results, where vec(

∫
dBFΛB′

FΛ) =
Λ̌ vec(

∫
dBF B′

F ), vec(ΘFΛ) = Λ̌ vec(Θ), vec(
∫

BFΛB′
FΛ) = Λ̌ vec(

∫
BF B′

F ), vec(
∫

dBFΛB̃′
FΛ) =

Λ̌ vec(
∫

dBF B̃′
F ) and vec(

∫
B̃FΛB̃′

FΛ) = Λ̌ vec(
∫

B̃F B̃′
F ), and Λ̌ = plimN→∞

1
N

∑N
i=1(Λi ⊗ Λi),

and BF and Bi are given in Equations (5) and (6), respectively.

Proposition 1 Given Assumptions 1, 2, 3 and 4:

(A) Consider the model given by (1) (2) and (3),

(a) β̃ =⇒ (
∫

B̃Y
FΛB̃X′

FΛ)(
∫

B̃X
FΛB̃X′

FΛ)−1 = b̃A as N, T →∞ sequentially,

(b) T (ρ̃ − 1) =⇒ (1, −b̃A)(
∫

dBFΛB̃′FΛ+ΘFΛ+γ1−Υ)(1, −b̃A)′

(1, −b̃A)(
∫

B̃FΛB̃′FΛ)(1, −b̃A)′
as T, N → ∞ sequentially,

where γ1 = E(γi1) and γi1 = E(ẽi,t−1ẽ
′
i,t),

(c) tρ̃ diverges at rate
√

N as T, N →∞ sequentially.

(B) Consider the model given by (1) (2) and (4),

(a) β̃ =⇒ (
∫

B̃Y
FΛB̃X′

FΛ + 1
6ΨY X)(

∫
B̃X

FΛB̃X′
FΛ + 1

6ΨXX)−1 = b̃B as N, T → ∞ sequen-
tially,
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(b) T (ρ̃− 1) =⇒ (1, −b̃B)(
∫

dBFΛB̃′FΛ+ΘFΛ− 1
2
Ψ+∆)(1, −b̃B)′

(1, −b̃B)(
∫

B̃FΛB̃′FΛ+ 1
6
Ψ)(1, −b̃B)′

as T, N →∞ sequentially,

(c) tρ̃ diverges at rate
√

N as T, N →∞ sequentially.

Proof: see Appendix B.

The results summarized in Proposition 1 are clearly in contrast to the asymptotic nor-
mality which Kao (1999) derives for the tests statistics for independent panels, although we
have not yet considered corrections for serial correlation and endogenous regressors. Results
(A)(a) and (B)(a) are similar to those derived by Urbain (2004) for the pooled least squares
estimator (PLS). This is in sharp contrast with the

√
N consistency of the LSDV estimator

in the case of a spurious regression estimated from independent panel data, see Phillips and
Moon (1999). The statistics proposed by Kao (1999) rely on this consistency, namely on the
fact that β̃

p−→ ΨY XΨXX−1 where ΨY X is the average long-run covariance between Xi,t and
Yi,t and ΨXX is the average long covariance matrix of the Xi,t’s. The presence of common fac-
tors destroys this property and consequently also destroys the asymptotic normality of these
estimators and of the statistics relying on this result. For the case of stationary idiosyncratic
components, our findings are similar to the spurious regression results from time-series analy-
sis. With non-stationary idiosyncratic components we obtain some mixture of time-series and
panel spurious regression results in the limiting distributions. It is apparent that the tests
are inconsistent when the data has a common factor structure, and size distortions have to
be expected which will increase with N . The nuisance parameters in the limiting distribu-
tions given in Proposition 1 introduced by the serial correlation in the common factors and
idiosyncratic components can be corrected non-parametrically for, i.e. the composite effect of
ΘFΛ+γ1−Υ or ΘFΛ+∆ can be accounted for. However, it is not possible to identify nuisance
parameters associated with the common factors or the idiosyncratic components individually.
So, the covariance of B̃FΛ as well as the average long-run covariance matrix of idiosyncratic
stochastic trends, Ψ, will in general remain in the limits.

3.2 Pedroni (1999)

Pedroni (1999) allows for some heterogeneity in the cointegration relationship. He proposes
to estimate a first stage regression individually for each panel member to obtain an estimate
of βi from the following cointegrating equation

Yi,t = αi + βiXi,t + ui,t. (11)

We now have for each panel unit

β̃i =
( T∑

t=1

Ỹi,tX̃
′
i,t

)( T∑

t=1

X̃i,tX̃
′
i,t

)
.

Pedroni (1999) proposes two classes of statistics, namely those based on the within-dimension
denoted as “panel” statistics, and those based on the between-dimension denoted as “group
mean” statistics. For the former group, the residuals from the first stage regression, ũi,t =
Ỹi,t− β̃iX̃i,t, are stacked and a pooled DF regression is estimated as in (10).2 The group mean

2Note that although the estimated DF equation is the same for Kao (1999) and Pedroni (1999), the residuals
used in estimation are obtained differently.
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statistics are based on averages of individual unit root statistics, derived from

∆ũi,t = (ρi − 1)ũi,t−1 + vi,t, (12)

to obtain

(ρ̃i − 1) =
( T∑

t=1

∆ũi,tũi,t−1

)( T∑

t=1

ũ2
i,t−1

)−1
.

Consider now the panel-rho statistic denoted by Zρ̃NT−1 and the group-mean rho statistic
Z̃ρ̃NT−1 given by

Zρ̃NT−1 =
( N∑

i=1

T∑

t=2

(∆ũi,tũi,t−1 − λ̂i)
)( N∑

i=1

T∑

t=1

ũ2
i,t−1

)−1
, (13)

and

Z̃ρ̃NT−1 =
N∑

i=1

(( T∑

t=2

(∆ũi,tũi,t−1 − λ̂i)
)( T∑

t=1

ũ2
i,t−1

)−1
)
, (14)

with λ̂i = T−1
∑J

s=1 ωsJ
∑T

t=s+1 ṽi,tṽi,t−s where ṽi,t are the residuals of the second stage
regression, and J and ωsJ are suitable bandwidth and kernel function, respectively. For these
2 statistics, we obtain the following limiting results:

Proposition 2 Given Assumptions 1, 2, 3 and 4:

(A) Consider the model given by (1) to (3),

(a) β̃i =⇒ (
λ′1i(

∫
B̃Y

F B̃X′
F λ2i

)(
λ′2i(

∫
B̃X

F B̃X′
F ) λ2i

)−1 = b̃iA as T →∞,

(b) TZρ̃NT−1 =⇒
∑N

i=1 λ′1iL
′
11

∫
dQF Q̃′F L11λ1i∑N

i=1 λ′1iL
′
11

∫
Q̃F Q̃′F L11λi1

as T →∞,

(c) TZ̃ρ̃NT−1 =⇒ ∑N
i=1

λ′1iL
′
11

∫
dQF Q̃′F L11λ1i

λ′1iL
′
11

∫
Q̃F Q̃′F L11λi1

as T →∞,

where Q̃ = W̃ Y
F − (

∫
W̃ Y

F W̃X
F
′)(

∫
W̃X

F W̃X
F
′)−1W̃X

F , W̃F is a demeaned k-vector standard
Brownian motion, and L11 is upper left element of L, the block-triangular decomposition
of Ω = L′L.

(B) Consider the model given by (1) to (4),

(a)
β̃i =⇒ (

λ′1i

∫
B̃Y

F B̃X′
F λ2i +

∫
B̃Y

i B̃X′
i + λ′1i

∫
B̃Y

F B̃X′
i +

∫
B̃Y

i B̃X′
F λ2i

)
(
λ′2i

∫
B̃X

F B̃X′
F λ2i +

∫
B̃X

i B̃X′
i + λ′2i

∫
B̃X

F B̃X′
i +

∫
B̃X

i B̃X′
F λ2i

)−1 = b̃iB

as T →∞,

(b) TZρ̃NT−1 =⇒
∑N

i=1(1 −b̃iB)
(
Λ′i(

∫
dBF B̃F )Λ′i+

∫
dBiB̃

′
i+Λi

∫
dBF B̃i+

∫
dBiB̃

′
F Λ′i

)
(1 −b̃iB)′

∑N
i=1(1 −b̃iB)

(
Λi

∫
B̃F B̃′F Λ′i+

∫
B̃iB̃′i+Λi

∫
B̃F B̃′i+

∫
B̃iB̃′F Λ′i

)
(1 −b̃iB)′

as

T →∞,

(c) TZ̃ρ̃NT−1 =⇒ ∑N
i=1

(1 −b̃iB)
(
Λ′i(

∫
dBF B̃F )Λ′i+

∫
dBiB̃

′
i+Λi

∫
dBF B̃i+

∫
dBiB̃

′
F Λ′i

)
(1 −b̃iB)′

(1 −b̃iB)
(
Λi

∫
B̃F B̃′F Λ′i+

∫
B̃iB̃′i+Λi

∫
B̃F B̃′i+

∫
B̃iB̃′F Λ′i

)
(1 −b̃iB)′

as

T →∞.

Proof: see Appendix C.

For the panel-rho and group-mean-rho statistics Pedroni (1999, 2004) derives asymptotic
normality when they are properly standardized. In particular,

√
NTZρ̃NT−1 −

√
Nθ2θ

−1
1 and
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N− 1
2 TZ̃ρ̃NT−1−

√
Nθ̃1 are asymptotically normally distributed for independent panels, where

θ1, θ2 and θ̃1 are means of functionals of Brownian motions (for details see Pedroni, 2004).
The results from Proposition 2 indicate that under the DGP we consider, TZρ̃NT−1 and
N−1TZ̃ρ̃NT−1 converge, so that the two test-statistics diverge at rate

√
N when standardized

as above. Furthermore, due to the presence of the common factors, the individual statistics
will not be independent along the cross-section, so that the use of a CLT to derive asymptotic
normality of the average statistic will be invalid. The result is similar to that derived by
Lyhagen (2000) for the Im-Pesaran-Shin (IPS) statistics. Also, for independent panels the
distributions of Zρ̃NT−1 and Z̃ρ̃NT−1 will be nuisance parameter free. For the DGP we con-
sider, this is not true in general. Although the composite effect of serial correlation in the the
common factors and idiosyncratic components can be corrected for non-parametrically, nui-
sance parameters coming only from the common factors or from the idiosyncratic components
cannot be identified. So, the limiting distributions will in general depend on the long-run co-
variances of the common and/or idiosyncratic stochastic trends. A special case arises when
there is a single common factor in Yi,t and the idiosyncratic components are stationary. Then,
λ1iL11 will cancel from the limits given in Proposition 2 A (b) and (c).

4 A two-step procedure to test for (no)cointegration in the

presence of common factors

The previous section shows that standard panel tests for the null of cointegration suffer from
serious theoretical problems when applied to data that have been generated by a common
factor structure. In this section, we address the problem using a simple approach based on
the Bai and Ng (2004) PANIC methodology.3

Note that a related, albeit different, idea is exploited in the recent work of Banerjee and
Carrion-i-Silvestre (2005). These authors assume a factor structure for the disturbance of a
panel static regression model:

Yi,t = αi + βiXi,t + ui,t

ui,t = γ′iFt + Ei,t,

where Ft and Ei,t are the common factors and the idiosyncratic components respectively that
can be either I(1) or I(0). A similar framework is used by Bai and Kao (2004) for the estimation
of a cointegrating relationship in the presence of common factors. Under strong exogeneity
of Xi,t for all i, this framework leads to panel statistics for the null of no-cointegration that
have the same distribution as those for panel unit root tests and hence are not affected by
the number of regressors.4 This framework makes it however difficult to interpret the case
of no-cointegration (spurious regression) if the regressors Xi,t also have a factor structure
since in the absence of cointegration, assuming a factor structure for the residuals essentially
boils down to assuming a factor structure for Yi,t only. The restrictiveness of the exogeneity
assumption should also be underlined.

The route we follow in this paper is slightly different and based on the framework presented
in Section 2. We assume that the data are generated by the approximate factor structure

3Wagner and Müller-Fürstenberger (2004) use similar ideas in an empirical study of the Kuznets curve.
4A similar set-up is retained by Westerlund (2005) who proposes Durbin-Hausman tests for cointegration

in panels.
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(1)-(4). Since the behavior of the statistics has been shown in the previous section to de-
pend essentially on the location of the unit roots in the factors and/or in the idiosyncratic
components, a testing strategy needs to be chosen that covers the two important cases of
interest.

The basic idea of the procedure we propose is to exploit results derived in Bai and Ng
(2004) for their PANIC methodology. In particular, under the DGP (1)-(4), and using the
partitioning of Zi,t = (Yi,t, X

′
i,t)

′, both Yi,t and Xi,t are characterized by a factor structure.
Since the problems encountered with the usual panel cointegration tests stem from the unit
root in the factors, we propose a simple procedure that essentially consists in two different
steps.

Step 1. Conduct a preliminary PANIC analysis of each variable Xi,t and Yi,t individually to ex-
tract the common factors, using for example the principal components approach advo-
cated by Bai and Ng (2004). Test for unit roots in both the factors and the idiosyncratic
components using the approach proposed by Bai and Ng (2004) or using a related panel
unit root tests valid in the presence of a factor structure such as the one proposed by
Breitung and Das (2005).

Step 2. a. If I(1) common factors and I(0) idiosyncratic components are detected, then we face
the situation of cross-member cointegration and consequently the non-stationarity
in the panel is entirely due to a reduced number of common stochastic trends.
Cointegration between Yi,t and Xi,t can only occur if the common factors for Yi,t

cointegrate with those of Xi,t. The null of no-cointegration between these estimated
factors can be tested using a Johansen type of likelihood ratio test for example.

b. If I(1) common factors and I(1) idiosyncratic components are detected, similarly
to Banerjee and Carrion-i-Silvestre (2005), we will work with defactored series. In
contrast to their work however, instead of defactoring the residuals from a static
regression we will defactor separately Yi,t and Xi,t. The defactored Yi,t (e.g. the
estimated idiosyncratic components) is simply obtained as ÊY

i,t =
∑t

s=1 êY
i,s =∑t

s=1(∆Yi,s − λ̂′1,if̂s) where f̂s is a consistent factor estimate of ft in (2) and λ̂′1,i

a consistent estimate of the loading.5 The same defactoring procedure is applied
to the Xi,t’s.

Testing for no-cointegration between the defactored data (the estimated idiosyn-
cratic components) can be conducted using standard panel tests for no-cointegration
such as those of Pedroni (1999, 2004) while testing for the absence of cointegration
between the common factors (the I(1) common trends) can again be performed
using Johansen’s likelihood ratio type tests.

The rejection of no-cointegration between Yi,t and Xi,t only occurs if both statistics
reject.

One should make a few remarks at this stage.
Remark 4. The theoretical justification and motivation for this sequential procedure is
analogous to the one behind the PANIC approach for panel unit root analysis. In particu-
lar, since the DGP implies that all series have a Bai and Ng (2004) representation, we will

5In the case of a single factor, the moment estimator defactoring approach of Phillips and Sul (2003) which
does not require large N could also be used.
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proceed by analogy with the results derived in Bai and Ng (2004)6, which exploits the fact
that, provided the number of common factors is known or consistently selected using one
of the asymptotically consistent model selection procedures discussed in Bai and Ng (2004),
then it holds that T−1/2

∑t
s=2 êY

i,s = T−1/2
∑t

s=2 eY
i,s + Op(C−1

NT ) where êY
i,t is the estimated

idiosyncratic component (e.g. the defactored variables), êY
i,t = ∆Yi,s − λ̂′1,if̂s, f̂s a consistent

factor estimate of ft, λ̂′1,i a consistent estimate of the loading and C−1
NT = min(N1/2, T 1/2).

It holds consequently that 1√
T

∑bTrc
t=1 êY

i,t =⇒ BY
i (r), ∀i where BY

i (r) is the first elements of

the (m + 1)-vector Brownian motion Bi(r). BY
i (r) and BY

j (r) are furthermore uncorrelated
Brownian motions for i 6= j. The same holds for Xi,t.

Consequently, standard panel no-cointegration tests derived under the maintained as-
sumption of independent panel unit, such as those proposed by Pedroni (2004) for example,
can be used on the defactored observations.

Remark 5. This approach requires both large N and T which is one of the important
limitation. Notice, also that this approach will have finite sample properties that can, at best,
be close to those observed for the tests when applied to a panel data set with independent
units. This will be analyzed in the next subsection by Monte Carlo simulations.

Remark 6. If the rank of the long-run covariance matrix of the factors turns out to be
smaller than k, that is if the factors cointegrate, then a further step is needed to assess overall
lack of cointegration between Yi,t and Xi,t. No cointegration then requires separability in
cointegration as discussed and analyzed in details in Hecq et al. (2002).

5 Some Monte Carlo Evidence

The approach we propose in the preceding section has several characteristics that call for a
Monte Carlo analysis of some of its finite sample properties. In particular, the theoretical
foundation requires both large N and T which is not always met in typical applications of
panel cointegration techniques. We will focus on the empirical size properties of the proposed
approach, namely testing for no-cointegration using ”defactored” data, as it was shown that
tests designed for cross-sectionally independent data may suffer from dramatic size distortions
when applied to panel with cross-member cointegration for example as pointed out by Banerjee
et al. (2004). The DGP is a simple bivariate process that obeys to the representation (1)-(4)
and is given by

Zi,t = ΛiFt + Ei,t, Ei,t =

{
ei,t

Ei,t−1 + ei,t
,

ei,t = εi,t + Γiεi,t−1

Ft = Ft−1 + ft,

ft = ηt + Φ1ηt−1,

6A similar result is given in Kapetanios (2004, Theorem 2).
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where εi,t ∼ i.i.d.N(0,Σi), ηt ∼ i.i.d.N(0, I2). The loading matrix has a diagonal structure

Λi =

[
λ1i 0
0 λ2i

]
,

with λ1i, λ2i ∼ U [−1, 3] where U denotes uniform distributions. The remaining parameters are
also drawn from independent uniform distributions to allow for some degree of heterogene-
ity: Φ11,22 ∼ U [0.5, 0.7], Φ12,21 ∼ U [0, 0.5],Σi,11,22 ∼ U [1, 1.4],Γ11,22 ∼ U [0.5, 0.7], Φ12,21 ∼
U [0, 0.5] and Σi,12,21 ∼ U [0, 0.2]. The sample size has been set to T = {25, 50, 100} and the
number of units in the panel is set to N = {25, 50, 100}. We consider the rejection frequencies
based on 2000 replications7 for the following statistics:

1. Kao’s pooled normalized coefficient (the ρ test) test based on the raw data,

2. Kao’s pooled ADF test based on the raw data,

3. Pedroni’s panel-t statistics based on raw data,

4. Pedroni’s panel-ρ statistics based on raw data,

5. Pedroni’s group mean t statistics based on raw data,

6. Pedroni’s group mean ρ statistics based on raw data,

7. Pedroni’s group mean t statistics based on defactored data,

8. Pedroni’s group mean ρ statistics based on defactored data ,

9. Johansen trace test for the estimated common factors, using the information criterion
of Aznar and Salvador (2002) to select the lag length of the VECM.

For the last two statistics based on the defactored data, we assume the number of factors
k known in the simulations. For the ADF type statistics the lag length was selected using the
AIC. For the non-parametric correction for serial correlation, we used a quadratic spectral
kernel with a bandwidth of 3.21T

1
3 as proposed in Andrews (1991).

The two polar cases that we consider in the simulations are the cases discussed earlier
namely:

• the case of cross-member cointegration in which the common factors are I(1) and the
idiosyncratic component are I(0),

• the case where both common factors and idiosyncratic components are I(1).

Table 1 and Table 2 report the rejection frequencies for both cases but where we have in
addition excluded any serial correlation in et and in ft. All statistics considered in these
two tables are then also constructed without correction for serial correlation. Tables 3-4
report rejection frequencies for the general case with short-run dynamics modelled as MA(1)
processes as mentioned above.

As expected from the results of the previous section, the usual panel statistics perform
bady in cases of cross-member cointegration where the nonstationary is essentially due to the

7All experiments are carried out using GAUSS 6.0.
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common factors. In these cases, as was already observed in Banerjee et al. (2004), standard
tests assuming uncorrelated units are very severely oversized even for cases where N and T

are both equal to 100. A common features of all four tables that is worth underlining is the
superiority of the group mean statistics compared to their (pooled) panel versions. When
both the common factors and the idiosyncratic components are I(1) but we exclude serial
correlation from the DGP (Table 2), we observe that the distributions for Kao’s DFρ and
DFt statistics diverge to the right. Therefore, these statistics have rejection frequencies of 0
in that case.

Insert Tables 1 to 4 about here

The last three rows of the tables are the rejection frequencies of the panel tests using the
defactored data (column 2-7) and of the system test for the estimated factors (columns 8-
10). These are denoted by Idiosyncratic Panel-t, Idiosyncratic Group-ρ and Aznar/Johansen.
Table 1 and 3 report the frequencies for the case of cross-member cointegration where the
generated idiosyncratic components are I(0). As could be expected, the tests on the de-
factored data always reject the null since these components are stationary. The tests of
no-cointegration between the extracted common factors have correct size in the case without
short-run dynamics and are slightly oversized when MA(1) dynamics is introduced since the
rejection frequencies vary from 0.14 to 0.08 for a nominal size of 0.05. The panel cointegration
tests applied to the defactored data, i.e. the estimated idiosyncratic components, is under-
sized in the case where both components are I(1) and where short-run dynamics is present
(see Table 4).

Tables 5 to 7 present some simulation results for cases with cointegration in some data
component, but without serial correlation in the error terms. In particular, the cases we
consider are cointegration in Ft but not in Ei,t (Table 5), cointegration in Ei,t for all i but
not in Ft (Table 6), and cointegration in Ft and Ei,t for all i with a common cointegrating
vector (Table 7). Note that only in the later case, Yi,t and Xi,t cointegrate for all i. Both Kao
test statistics we consider do not reject the null of no cointegration when only the common
factors cointegrate. When cointegration is only present in the idiosyncratic component, Kao’s
normalized coefficient test is over-sized, while the ADF test has rejection frequencies close to
the nominal 5% level. When cointegration is present in either the common or the idiosyncratic
component, all Pedroni tests are strongly over-sized, with slightly lower size distortions if
cointegration is only present in Ei,t. In that case, also the group mean statistics are less
distorted than the panel ones. Test statistics for the defactored data are slightly under-sized
if there is no cointegration in the idiosyncratic component, while they correctly reject the null
if EY

i,t and EX
i,t are cointegrated. The trace test for the estimated common factors has a size

close to the nominal 5% when the common factors do not cointegrate, and a high rejection
frequency of the full rank null hypothesis for the long-run covariance matrix of Ft if there
is cointegration present in the common factors. If Yi,t and Xi,t cointegrate, all tests have a
power of (close to) 1.

Insert Tables 5 to 7 about here

Tables 8 to 10 consider similar cases as Tables 5 to 7, but with serial correlation introduced
in the error terms. When either Ft or Ei,t is cointegrated, and hence there is no cointegration
in Zi,t, the test statistics by Kao and Pedroni are oversized with size distortions increasing in
N and T . The panel cointegration tests applied to the defactored data are undersized when
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Ei,t is not cointegrated, but have a power of 1 for almost all combinations of N and T when
there is cointegration in the idiosyncratic component. The trace test applied to the extracted
common factors is slightly oversized when no cointegration is present in the common factors,
and has high power when F Y

t and FX
t cointegrate.

Insert Tables 8 to 10 about here

6 Empirical Illustration

Among the economic hypotheses that are selected to illustrate the feasibility of new techniques
in non-stationary econometrics, the purchasing power parity (PPP) hypothesis is without any
doubts among the most popular ones. This applications was also chosen in Pedroni (2004) to
illustrate the feasibility of his tests. In his illustration, he also highlights the importance of
taking cross-sectional dependence into account even if this was outside the scope of his initial
study. Since PPP is a field where persistent cross-sectional dependence is present in the data
due to the very nature of the economic problems studied (see Lyhagen, 2000; Banerjee et al,
2004), we will also consider PPP to illustrate the approach discussed earlier in this paper.
Following Pedroni (2004), we will focus on a version of the hypothesis known as weak long-
run PPP which posits that although nominal exchange rates and aggregate price ratios may
move together over long periods, there are reasons to think that in practice the movements
may not be perfectly proportional. Motivations for this deviation from the perfect PPP
hypothesis are numerous and will not be discussed here (transportation costs, measurement
errors, productivity differential, ....). All these factors however speak in favor of allowing for
substantial heterogeneity, since under the alternative hypothesis of cointegration there are no
reasons to expect the cointegrating vector to be the same for all countries.

The empirical model adopted can be written as

si,t = αi + βipi,t + εi,t, (15)

where si,t is the log nominal bilateral US dollar exchange rate at time t for country i and pi,t is
the log price level differential between country i and the United States at time t. A rejection
of the null hypothesis of no cointegration in this equation is taken as empirical evidence in
favor of the weak PPP hypothesis.

We employ quarterly (in contrast to Pedroni who uses both monthly and annual IFS data)
on nominal exchange rates and consumer price index (CPI) deflators for the postBretton
Woods/pre-Euro period from the 1st quarter of 1974 to 3rd quarter of 1998. The cross-
section consists of 18 countries: Australia, Austria, Belgium, Canada, Denmark, Finland,
France, Germany, Ireland, Italy, Japan, The Netherlands, Norway, Portugal, Spain, Sweden,
Switzerland and the UK. For the Kao-ADF statistics the lag length was selected using the
AIC. For the non-parametric correction used in the construction of the Pedroni statistics and
the Kao-ρ∗ statistics, we used a quadratic spectral kernel with a bandwidth of 3.21T

1
3 .

insert Tables 11-12 about here

The results are reported in Table 8. Although not reported to save space,8, we note that
the number of rejections of the null of no-cointegration when using the individual time series

8The results are available upon request from the authors.



16

statistics is too low to favor weak PPP. A similar observation is made in Pedroni (2004). When
we consider the standard panel tests applied to the raw data, we see that the panel tests of
Kao clearly reject the null. The same holds for the ”within” panel tests of Pedroni, while
the group-mean statistics do not reject, globally only lending some weak support to the PPP
hypothesis. The aforementioned tests do however not take into account any cross-sectional
dependence.

Following the procedure proposed in Section 3 we first consider a Bai and Ng (2004) type
PANIC analysis for the series for si,t and pi,t separately. The number of common factors is
selected using Bai and Ng’s (2002) IC1 criterion. For both the exchange rates and the prices
a single common factor is selected. The pooled p-value Fisher type unit root tests on the
extracted idiosyncratic components do not reject the null hypothesis (the statistics take the
value -2.25 and -1.46 respectively). Similarly, the ADF tests for the extracted common factors
do not reject the unit root hypothesis since these take the value -2.79 and -2.63 respectively
for F̂Y and F̂X which is larger than the 5% critical of -3.416. Given these outcomes, the
second step of the procedure consists in testing for no-cointegration between the idiosyncratic
components as well as testing for the absence of cointegration between the estimated factors.
The results are reported in Table 9. As it is clear from the entries in the Table, none of the
reported statistics reject the null of no-cointegration.

7 Conclusions

In this paper we have considered the problem of testing for (no-)cointegration in panel data
set characterized by strong permanent cross-sectional dependencies that take the form of an
approximate factor representation inspired by the work of Bai and Ng (2004). We focus on
two polar cases that we believe are of empirical relevance namely the case of cross-member
cointegration and the case where the panel units have both common and individual specific
stochastic trends that are not cointegrated.

For both classes of DGP’s, we study analytically the behavior of several popular tests for
panel cointegration including Kao (1999) and Pedroni’s (1999, 2004) residual-based panel no-
cointegration tests that have been widely used in empirical work over the recent years. The
results complement and help to understand some of the Monte Carlo reported by Banerjee et
al. (2004b). For example, when the number of common factors generating the non-stationarity
in the panel is kept fixed while the dimension of the panel increases, then the Gaussian limiting
results derived for the independent case are not valid anymore. Tests that are based on pooled
or LSDV estimation of the underlying panel cointegration static regression may in some cases
diverge with

√
N and hence important size distortions are to be expected already in panels

with moderate cross-sectional dimension. Group mean statistics are also affected and not
asymptotically gaussian anymore.

Given these observations, we propose a simple two-step procedure to address the issue of
cointegration testing in panels with common factors. Specifically, we propose to first conduct
a PANIC analysis of each series, to defactor the data if I(1) common factors are found and
then to conduct ”standard” panel cointegration analysis on defactored data. This approach is
similar in spirit to the recent work of Banerjee and Carrion-i-Silvestre (2005) but in contrast
to their work strong exogeneity assumptions are not required. One of its advantages is that
it covers many sub-cases of interest and allows to have a clear picture of the common/global
and iniosyncratic/individual specific components in the panel. The procedure is simple to
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apply and makes use of existing tools. Some simulation results show that the procedure we
propose seems to have reasonable size properties.

While being attractive due, among other things, to its ease of application and nice proper-
ties, some limitations inherent in this approach should be mentioned. A first limitation of the
proposed procedure, as well as of that proposed by Banerjee and Carrion-i-Silvestre (2005), is
that the theoretical validity relies on both large N and large T which may be unrealistic for
applications with ”moderate” N and large T . The performance of the proposed procedures,
in particular the power properties, in such situation still needs to be further studied even
if the size properties reported in Monte Carlo section are promising. If considering large N

analysis is clearly inappropriate for the problem under study, then an alternative would be
to follow the work of Demetrescu and Tarcolea (2005) who propose a non-linear IV testing
approach or to consider the use of bootstrapping techniques that seem to work well from an
empirical point of view (see Fachin, 2005). Future work should study the relative merits of
these different approaches both theoretically and empirically.

A second limitation worth mentioning lies in the fact that the approach is a residual-based
testing procedure and hence suffers from the usual critiques against residual-based tests such
as the maintained assumptions of a single cointegrating relationship (if it exists) as well as
the imposition of the common factor restriction. Nothing however precludes to conceptually
extend the idea developed in this paper to other cointegration techniques that would not
suffer from these drawbacks.
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A Proofs of Lemmas 1 to 3

Given Assumptions 1 to 4, we can summarize some convergence results. In the following lemmas,
for a variable xt, x̃t = xt − 1

T

∑T
t=1 xt is the demeaned value. Similarly, for a Brownian motion B,

B̃ = B − ∫
B denotes the demeaned Brownian motion. Furthermore, for non-random factor loadings,

Λ̄ = limN→∞ 1
N

∑N
i=1 Λi, while for random factor loadings Λ̄ = E(Λi), Ψ = E(Ψi) and ∆ = E(∆i).

A.1 Lemma 1: Common Component

Lemma 1 Given Assumptions 1, 2 and 4,

(a)
1
T

∑T
t=1 ΛiftF

′
t−1Λ

′
i =⇒ Λi(

∫
dBF B′

F + Θ)Λ′i as T →∞, and
1
N

∑N
i=1 Λi(

∫
dBF B′

F + Θ)Λ′i
p−→ ∫

dBFΛB′
FΛ + ΘFΛ as N →∞,

(b)
1

T 2

∑T
t=1 ΛiFtF

′
tΛ
′
i =⇒ Λi(

∫
BF B′

F )Λ′i as T →∞, and
1
N

∑N
i=1 Λi(

∫
BF B′

F )Λ′i
p−→ ∫

BFΛB′
FΛ as N →∞,

(c)
1
T

∑T
t=1 ΛiftF̃

′
t−1Λ

′
i =⇒ Λi(

∫
dBF B̃′

F + Θ)Λ′i as T →∞, and
1
N

∑N
i=1 Λi(

∫
dBF B̃′

F + Θ)Λ′i
p−→ ∫

dBFΛB̃′
FΛ + ΘFΛ as N →∞,

(d)
1

T 2

∑T
t=1 ΛiF̃tF̃

′
tΛ
′
i =⇒ Λi(

∫
B̃F B̃′

F )Λ′i as T →∞, and
1
N

∑N
i=1 Λi(

∫
B̃F B̃′

F )Λ′i
p−→ ∫

B̃FΛB̃′
FΛ as N →∞,

where vec(
∫

dBFΛB′
FΛ) = Λ̌ vec(

∫
dBF B′

F ), vec(ΘFΛ) = Λ̌ vec(Θ), vec(
∫

BFΛB′
FΛ) = Λ̌ vec(

∫
BF B′

F ),
vec(

∫
dBFΛB̃′

FΛ) = Λ̌ vec(
∫

dBF B̃′
F ) and vec(

∫
B̃FΛB̃′

FΛ) = Λ̌ vec(
∫

B̃F B̃′
F ),

and Λ̌ = plimN→∞
1
N

∑N
i=1(Λi ⊗ Λi).

A.2 Proof of Lemma 1

For the common factors given in (2) we find the following Beveridge-Nelson (BN) decomposition:

Ft = Φ(1)
t∑

s=1

ηs + Φ∗(L)(ηt − η0) + F0, (16)

where Φ∗(L) =
∑∞

j=0 Φ∗jL
j with Φ∗j = −∑∞

l=j+1 Φl. Now, 1√
T

Φ(1)
∑brTc

s=1 ηs =⇒ Φ(1)WF (r) ≡ BF (r)
by the FCLT, where WF is standard Brownian Motion. Furthermore, Φ∗(L)(ηt − η0) is stationary
with finite fourth order moments such that 1√

T
Φ∗(L)(ηt − η0)

p−→ 0, and F0 is Op(1) by assumption.

(a) We have 1
T

∑T
t=1 ΛiftF

′
t−1Λ

′
i = Λi( 1

T

∑T
t=1 ftF

′
t−1)Λ

′
i. Now, 1

T

∑T
t=1 ftF

′
t−1 =⇒ ∫

dBF B′
F +

Θ as T →∞ as shown in e.g. Davidson and de Jong (2000), and the result of Lemma 1 (a)
follows immediately. Furthermore, vec(Λi(

∫
dBF B′

F + Θ)Λ′i) = (Λi ⊗Λi) vec(
∫

dBF B′
F +

Θ). As E‖(Λi ⊗ Λi)‖2 = E‖Λi‖4 ≤ M by Assumption 2 (i), we can apply a LLN to
1
N

∑N
i=1(Λi ⊗Λi). Denote plim(Λi ⊗Λi) = Λ̌ to obtain the second result of Lemma 1 (a).

(b) The proof of Lemma 1 (b) is similar to that of (a), except that 1
T 2

∑
FtF

′
t =⇒ ∫

BF B′
F

as shown in e.g. Phillips and Durlauf (1986) in the first step.

(c) 1
T

∑T
t=1 ftF̃

′
t−1 = 1

T

∑T
t=1 ftF

′
t−1 −

( ∑T
t=1

ft√
T

)(
1

T
3
2

∑T
s=1 F ′s

)
. Now, 1

T

∑T
t=1 ftF

′
t−1 =⇒

∫
dBF B′

F + Θ while
(∑T

t=1
ft√
T

)(
1

T
3
2

∑T
s=1 F ′s

)
=⇒ ∫

dBF (
∫

BF )′ as T → ∞, so that
1
T

∑T
t=1 ftF̃

′
t−1 =⇒ ∫

dBF B̃′
F +Θ. The remainder of the proof follows the same arguments

as above.

(d) Now,
∑T

t=1 F̃tF̃
′
t =⇒ ∫

B̃F B̃′
F as shown in Phillips and Moon (1999), and the limit as

N →∞ follows as above.
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A.3 Lemma 2: Idiosyncratic Components

Lemma 2 Given Assumption 3,

(a)
1
T

∑T
t=1 ei,tS

′
i,t−1 =⇒ ∫

dBiB
′
i + ∆i as T →∞, and

1
N

∑N
i=1

∫
dBiB

′
i + ∆i

p−→ ∆ as N →∞,

(b)
1

T 2

∑T
t=1 Si,tS

′
i,t =⇒ ∫

BiB
′
i as T →∞, and

1
N

∑N
i=1

∫
BiB

′
i

p−→ 1
2Ψ as N →∞,

(c)
1
T

∑T
t=1 ei,tS̃

′
i,t−1 =⇒ ∫

dBiB̃
′
i + ∆i as T →∞, and

1
N

∑N
i=1

∫
dBiB̃

′
i + ∆i

p−→ − 1
2Ψ + ∆ as N →∞,

(d)
1

T 2

∑T
t=1 S̃i,tS̃

′
i,t =⇒ ∫

B̃iB̃
′
i as T →∞, and

1
N

∑N
i=1

∫
B̃iB̃

′
i

p−→ 1
6Ψ as N →∞.

A.4 Proof of Lemma 2

For the partial sum process Si,t =
∑t

s=1 ei,s we obtain a BN decomposition

Si,t = Γi(1)
t∑

s=1

εi,s + Γ∗i (L)(εi,t − εi,0) + Ei,0, (17)

where Γ∗i (L) =
∑∞

j=0 Γ∗i,jL
j with Γ∗i,j = −∑∞

l=j+1 Γi,l. Now, 1√
T

Si,brTc =⇒ Γi(1)Σ
1
2
i Wi(r) ≡ Bi(r) as

T →∞ for all i, where Wi is standard Brownian motion and Σ
1
2
i is the Cholesky decomposition of Σi

such that Σ
1
2
i Σ

1
2
i
′ = Σi as shown in Phillips and Moon (1999). Furthermore, Bi and Bj are i.i.d over

the i-dimension.

(a) We have 1
T

∑T
t=1 ei,tS

′
i,t−1 =⇒ ∫

dBiB
′
i + ∆i as T → ∞ as shown in Davidson and de

Jong (2000). Now,
∫

dBiB
′
i are i.i.d across the i-dimension with E(

∫
dBiB

′
i) = 0 and

E‖ vec(
∫

dBiB
′
i)‖2 < M . So, we can apply a LLN to find 1

N

∑N
i=1

∫
dBiB

′
i

p−→ 0. Fur-
thermore, a LLN also applies such that

∑N
i=1 ∆i

p−→ ∆ ≡ E(∆i), which proves the first
result.

(b) This result is proven in Phillips and Moon (1999).

(c) 1
T

∑T
t=1 ei,tS̃

′
i,t−1 = 1

T

∑T
t=1 ei,tS

′
i,t−1 − 1

T

∑T
t=1 ei,tS̄

′
i, where S̄′i = 1

T

∑T
t=1 Si,t. Now,

1
T

∑
t = 1T ei,tS

′
i,t−1 =⇒ ∫

dBiB
′
i + ∆i, while 1

T

∑T
t=1 ei,tS̄

′
i = 1√

T
ST

1

T
3
2

∑T
t=1 S′i,t =⇒

Bi(1)
∫

Bi as T → ∞. So, 1
T

∑T
t=1 ei,tS̃

′
i,t−1 =⇒ ∫

dBiB̃
′
i + ∆i as T → ∞. Furthermore,

E(
∫

dBiB̃
′
i) = − 1

2Ψ and hence, using similar arguments as in (a) 1
N

∑N
i=1

∫
dBiB̃

′
i+∆i

p−→
− 1

2Ψ + ∆ as N →∞.

(d) See Phillips and Moon (1999).

A.5 Lemma 3

Lemma 3 Given Assumptions 1, 2, 3 and 4

(a)
1
T

∑T
t=1 ΛiFt−1e

′
i,t =⇒ Λi

∫
BF dB′

i as T →∞, and
1
N

∑N
i=1 Λi

∫
BF dB′

i
p−→ 0 as N →∞,

(b)
1
T

∑T
t=1 ΛiftS

′
i,t−1 =⇒ Λi

∫
dBF B′

i as T →∞, and
1
N

∑N
i=1 Λi

∫
dBF B′

i
p−→ 0 as N →∞,

(c)
1

T 2

∑T
t=1 ΛiFtS

′
i,t =⇒ Λi

∫
BF B′

i as T →∞, and
1
N

∑N
i=1 Λi

∫
BF B′

i
p−→ 0 as N →∞,

(d)
1
T

∑T
t=1 ΛiF̃t−1e

′
i,t =⇒ Λi

∫
B̃F dB′

i as T →∞, and
1
N

∑N
i=1 Λi

∫
B̃F dB′

i
p−→ 0 as N →∞,



22

(e)
1
T

∑T
t=1 ΛiF̃t−1ẽ

′
i,t =⇒ Λi

∫
B̃F dB′

i as T →∞, and
1
N

∑N
i=1 Λi

∫
B̃F dB′

i
p−→ 0 as N →∞,

(f)
1
T

∑T
t=1 ΛiftS̃

′
i,t−1 =⇒ Λi

∫
dBF B̃′

i as T →∞, and
1
N

∑N
i=1 Λi

∫
dBF B̃′

i
p−→ 0 as N →∞,

(g)
1

T 2

∑T
t=1 ΛiF̃tS̃

′
i,t =⇒ Λi

∫
B̃F B̃′

i as T →∞, and
1
N

∑N
i=1 Λi

∫
B̃F B̃′

i
p−→ 0 as N →∞,

A.6 Proof of Lemma 3

For each i, the stacked error vector wi,t = (f ′t , e
′
i,t)

′ and the corresponding partial sum process
Wi,t =

∑t
s=1 wi,s = (F ′t , S

′
i,t)

′ fulfill the conditions for a FCLT, such that 1√
T

Wi,brTc =⇒ Bwi(r) =
(BF (r)′, Bi(r)′)′. Due to the independence of ft and ei,t, the covariance matrix of Bwi will have zero
off-diagonal blocks. Now, for every panel unit i we obtain time series spurious regression results as
T → ∞. Furthermore, the functionals of BF and Bi we obtain in the first step have zero mean and
finite variance, and are uncorrelated across the i-dimension of the panel. So, we can apply a LLN to
the average to find the limits as N → ∞. We present the proof for (a), (b)-(g) are obtained using a
similar line of argumentation.

(a) The limit as T →∞ follows from applying a spurious regression result as above and noting
that E(Ft−1ei,t) = 0 for all i and t. Now, taking expectations we find E(Λi

∫
BF dBi) = 0,

while E‖ vec(Λi

∫
BF dBi)‖2 < M . for all i. Applying a LLN, we find

1
N

∑N
i=1 Λi

∫
BF dBi

p−→ 0.

Lemma 1 presents convergence results for the common data component ΛiFt. The limiting dis-
tributions are functionals of Brownian motions weighted by the factor loadings, even as N → ∞.
These results are intuitive, as we assume a fixed number of common factors. Lemma 2 summarizes
the convergence for the idiosyncratic components, where we recover the panel spurious regression re-
sults for Phillips and Moon (1999). In Lemma 3, the limits for the cross-products of the common
and individual specific components are given. It is evident that these cross-products will only affect
limiting distributions for finite N , but as N →∞ these effects will vanish due to the independence of
the shock driving Ft and Ei,t.

B Proof of Proposition 1

B.1 Proposition 1 (a): Convergence of β̃

The LSDV estimator of β is given by β̃ = (
∑N

i=1

∑T
t=1 Ỹi,tX̃

′
i,t)(

∑N
i=1

∑T
t=1 X̃i,tX̃

′
i,t)

−1. Consider the
numerator

N∑

i=1

T∑
t=1

Ỹi,tX̃
′
i,t =

N∑

i=1

T∑
t=1

(λ′1iF̃
Y
t + ẼY

i,t)(λ
′
2iF̃

X
t + ẼX

i,t)
′

=
N∑

i=1

T∑
t=1

(λ′1iF̃
Y
t F̃X

t
′λ21 + ẼY

i,tẼ
X
i,t
′ + λ′1iF̃

Y
t ẼX

i,t
′ + ẼY

i,tF̃
X
t
′λ21). (18)

If the idiosyncratic term is given by (3), we have
∑N

i=1(Op(T 2)+Op(T )+Op(T )+Op(T )) in (18).
So, as T →∞,

∑N
i=1

1
T 2

∑T
t=1 Ỹi,tX̃

′
i,t =⇒ ∑N

i=1 λ′1i

∫
B̃Y

F B̃X
F
′λ2i from the first result of Lemma 1 (d).

Now, using the second result we obtain 1
N

∑N
i=1 λ′1i

∫
B̃Y

F B̃X
F
′λ2i

p−→ ∫
B̃Y

FΛB̃X
FΛ

′ as N → ∞, where∫
B̃Y

FΛB̃X
FΛ

′ is the 1×m upper right block of
∫

B̃FΛB̃′
FΛ defined in Lemma 1.

If the idiosyncratic terms are also I(1), such that the DGP includes (4), all terms in (18) are
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Op(T 2) when summed over T . Using Lemmas 1 (d), 2 (d) and 3 (g) we find as T →∞,

N∑

i=1

1
T 2

T∑
t=1

Ỹi,tX̃
′
i,t =⇒

N∑

i=1

(λ′1i

∫
B̃Y

F B̃X
F
′λ2i +

∫
B̃Y

i B̃X
i
′ + λ′1i

∫
B̃Y

F B̃X
i
′ +

∫
B̃Y

i B̃X
F
′λ21).

The terms given above are Op(N) + Op(N) + op(N) + op(N), and we obtain

1
N

N∑

i=1

(λ′1i

∫
B̃Y

F B̃X
F
′λ2i +

∫
B̃Y

i B̃X
i
′ + λ′1i

∫
B̃Y

F B̃X
i
′ +

∫
B̃Y

i B̃X
F
′λ21)

p−→
∫

B̃Y
FΛB̃X

FΛ
′ +

1
6
ΨY X

as N →∞, where ΨY X is the upper right 1×m block of Ψ.
Now the denominator of β̃ is given by

N∑

i=1

T∑
t=1

X̃i,tX̃
′
i,t =

N∑

i=1

T∑
t=1

(λ′1iF̃
X
t + ẼX

i,t)(λ
′
2iF̃

X
t + ẼX

i,t)
′

=
N∑

i=1

T∑
t=1

(λ′2iF̃
X
t F̃X

t
′λ21 + ẼX

i,tẼ
X
i,t
′ + λ′2iF̃

X
t ẼX

i,t
′ + ẼX

i,tF̃
X
t
′λ21). (19)

Similar to the results for the numerator, the terms in (19) are
∑N

i=1

(
Op(T 2) + Op(T ) + Op(T ) +

Op(T )
)
, if the DGP contains (3). Hence,

∑N
i=1

1
T 2

∑T
t=1 X̃i,tX̃

′
i,t =⇒ ∑N

i=1 λ′2i

∫
B̃X

F B̃X
F
′λ2i as T →∞.

Furthermore, the remaining term is Op(N), and we obtain 1
N

∑N
i=1

1
T 2

∑T
t=1 X̃i,tX̃

′
i,t

L,p−→ ∫
B̃X

FΛB̃X
FΛ

′

as T →∞ followed by N →∞, where
∫

B̃X
FΛB̃X

FΛ
′ is the lower right m×m block of

∫
B̃FΛB̃′

FΛ.
If the true DGP contains (4), all terms in the summation over T in (19) are Op(T 2) and we have

N∑

i=1

1
T 2

T∑
t=1

X̃i,tX̃
′
i,t =⇒

N∑

i=1

(λ′2i

∫
B̃X

F B̃X
F
′λ2i +

∫
B̃X

i B̃X
i
′ + λ′2i

∫
B̃X

F B̃X
i
′ +

∫
B̃X

i B̃X
F
′λ21),

as T → ∞. As above, the cross-products between common and idiosyncratic components will vanish
in the cross-sectional average as N →∞, and we find

1
N

N∑

i=1

(λ′2i

∫
B̃X

F B̃X
F
′λ2i +

∫
B̃X

i B̃X
i
′ + λ′2i

∫
B̃X

F B̃X
i
′ +

∫
B̃X

i B̃X
F
′λ21)

p−→
∫

B̃X
FΛB̃X

FΛ
′ +

1
6
ΨXX

as N →∞, where ΨXX is the lower right m×m block of Ψ.
Combining the results given above yields Proposition 1 A(a) and B(a).

B.2 Proposition 1 (b): Convergence of ρ̃

The residuals from the first stage PLS regression are given by ũi,t = (1 − β̃)Zi,t = Yi,t − β̃Xi,t. For
the pooled regression given in (10) we have

(ρ̃− 1) =
( N∑

i=1

T∑
t=2

(1 − β̃)∆Zi,tZ̃
′
i,t−1(1 − β̃)′

)( N∑

i=1

T∑
t=2

(1 − β̃)Z̃i,t−1Z̃
′
i,t−1(1 − β̃)′

)−1
. (20)

For the numerator consider

N∑

i=1

T∑
t=2

∆Zi,tZ̃
′
i,t−1 =

N∑

i=1

T∑
t=2

(Λift + ∆Ei,t)(ΛiF̃t−1 + Ẽi,t−1)′

=
N∑

i=1

T∑
t=2

(ΛiftF̃
′
t−1Λ

′
i + ∆Ei,tẼ

′
i,t−1 + ΛiftẼ

′
i,t−1 + ∆Ei,tF̃

′
t−1Λ

′
i). (21)
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From Lemma 1 (c), 1
N

∑N
i=1

1
T

∑T
t=2 ΛiftF̃t−1Λ′i

L,p−→ ∫
dBFΛB̃FΛ + ΘFΛ as T → ∞ followed by

N →∞. If the idiosyncratic terms are I(0), i.e. the true DGP is given by (3),

N∑

i=1

T∑
t=2

∆Ei,tẼ
′
i,t−1 =

N∑

i=1

T∑
t=2

(
(ei,t − ei,t−1)e′i,t−1 − (ei,t − ei,t−1)ēi

)
,

where ēi = 1
T

∑T
t=1 ei,t. Now, 1

T

∑T
t=2 ei,te

′
i,t−1

p−→ γi1 as T →∞, with γi1 = limT→∞ 1
T

∑T
i=1 E(ei,tei,t−1),

and 1
N

∑N
i=1 γi1

p−→ γ1 as N → ∞, with γ1 ≡ E(γi1). Also, 1
T

∑T
t=2 ei,t−1e

′
i,t−1

p−→ Υi as T → ∞
and 1

N

∑N
i=1 Υi

p−→ Υ as N → ∞. Furthermore, 1
T

∑T
t=2 ei,tē

′
i

p−→ 0 and 1
T

∑T
t=2 ei,t−1ē

′
i

p−→ 0 as
T →∞. Hence, 1

N

∑N
i=1

1
T

∑T
t=2 ∆Ei,tẼ

′
i,t−1

p−→ γ1 −Υ as T →∞ followed by N →∞.
For the third term in (21) we have,

1
T

T∑
t=2

ΛiftẼ
′
i,t−1 =

1
T

T∑
t=2

Λift(ei,t−1 − ēi)′

=
1
T

T∑
t=2

Λifte
′
i,t−1 −

1
T

T∑
t=2

Λiftē
′
i

p−→ 0− 0,

as T →∞.
Finally,

1
T

T∑
t=2

∆Ei,tF̃
′
t−1Λ

′
i =

1
T

T∑
t=2

(ei,t − ei,t−1)F̃ ′t−1Λ
′
i

=
1
T

ei,T F̃ ′T−1Λ
′ − 1

T
ei,1F̃

′
1Λ

′ − 1
T

T∑
t=2

ei,t−1f
′
t−1Λ

′
i

p−→ 0− 0− 0,

as T →∞. Hence,

1
N

N∑

i=1

1
T

T∑
t=2

∆Zi,tZ̃
′
i,t−1

L,p−→
∫

dBFΛB̃FΛ + ΘFΛ + γ1 −Υ,

as T →∞ followed by N →∞.
If the idiosyncratic components are I(1) and their true DGP includes (4), such that ∆Ei,t = ei,t

and Ẽi,t−1 = S̃i,t−1, using Lemmas 1 (c), 2 (c) and 3 (d) and (f), we obtain

1
N

N∑

i=1

1
T

T∑
t=2

∆Zi,tZ̃
′
i,t−1

L,p−→
∫

dBFΛB̃FΛ + ΘFΛ − 1
2
Ψ + ∆,

as T →∞ followed by N →∞.
For the denominator in (20) consider

N∑

i=1

T∑
t=2

Z̃i,t−1Z̃
′
i,t−1 =

N∑

i=1

T∑
t=2

(ΛiF̃t−1 + Ẽi,t−1)(ΛiF̃t−1 + Ẽi,t−1)′

=
N∑

i=1

T∑
t=2

(
ΛiF̃t−1F̃

′
t−1Λ

′
i + Ẽi,t−1Ẽ

′
i,t−1

+ ΛiF̃t−1Ẽ
′
i,t−1 + Ẽi,t−1F̃

′
t−1Λ

′
i

)
. (22)
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If the idiosyncratic components are given by (3), we have
∑N

i=1

(
Op(T 2) + Op(T ) + Op(T ) + Op(T )

)
),

in (22). So, 1
T 2

∑T
t=2 Z̃i,t−1Z̃

′
i,t−1 =⇒ Λi

∫
B̃F B̃′

F Λ′i as T → ∞, and 1
N

∑N
i=1 Λi

∫
B̃F B̃′

F Λ′i
p−→∫

B̃FΛB̃′
FΛ as N →∞.

For I(1) idiosyncratic components given by (4), we find using Lemmas 1 (d), 2 (d) and 3(g)

1
N

N∑

i=1

1
T 2

T∑
t=2

Z̃i,t−1Z̃
′
i,t−1

L,p−→
∫

B̃ΛB̃′
Λ +

1
6
Ψ

as T →∞ followed by N →∞. Combining the above given results with those of A (a) or B(a) yields
Proposition 1 A (b) and B(b).

B.3 Proposition 1 (c): Divergence of tρ̃

The t-statistic for ρ̃ = 1 is given by

tρ̃ = (ρ̃− 1)s−1(
N∑

i=1

T∑
t=2

ũi,t−1ũ
′
i,t−1)

1
2 ,

where

s2 =
1
N

N∑

i=1

1
T

T∑
t=2

(∆ũi,t − (ρ̃− 1)ũi,t−1)2

=
1
N

N∑

i=1

1
T

T∑
t=2

(
∆ũ2

i,t + 0p(1)
)
.

As
1
N

N∑

i=1

1
T

T∑
t=2

∆ũ2
i,t =

1
N

N∑

i=1

1
T

T∑
t=2

(1 − β̃)∆Zi,t∆Z̃ ′i,t(1 − β̃)′,

which is Op(1) whether the idiosyncratic components are I(0) or I(1), s2 is Op(1). Furthermore,
T (ρ̃ − 1) and 1

N

∑N
i=1

1
T 2

∑T
t=2 ũi,t−1ũ

′
i,t−1 are Op(1) as well whether Ei,t is given by (3) or (4), as

shown above. Hence,

tρ̃ =
√

NT (ρ̃− 1)s−1(
1
N

N∑

i=1

1
T 2

T∑
t=2

ũi,t−1ũ
′
i,t−1)

1
2

=
√

NOp(1),

which diverges at rate
√

N as T →∞ followed by N →∞.

C Proof of Proposition 2

C.1 Proposition 2 (a): Convergence of β̃i

For each panel unit i, the estimator of βi is given by β̃i = (
∑T

t=1 Ỹi,tX̃
′
i,t)(

∑T
t=1 X̃i,tX̃

′
i,t)

−1. Consider
the numerator

T∑
t=1

Ỹi,tX̃
′
i,t =

T∑
t=1

(λ′1iF̃
Y
t + ẼY

i,t)(λ
′
2iF̃

X
t + ẼX

i,t)
′

=
T∑

t=1

(λ′1iF̃
Y
t F̃X

t
′λ21 + ẼY

i,tẼ
X
i,t
′ + λ′1iF̃

Y
t ẼX

i,t
′ + ẼY

i,tF̃
X
t
′λ21). (23)

If the idiosyncratic term is given by (3), we have Op(T 2) + Op(T ) + Op(T ) + Op(T ) in (23). So,
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as T →∞, 1
T 2

∑T
t=1 Ỹi,tX̃

′
i,t =⇒ λ′1i

∫
B̃Y

F B̃X
F
′λ2i from the first result of Lemma 1 (d).

If the idiosyncratic terms are also I(1), such that the DGP includes (4), all terms in (23) are
Op(T 2) when summed over T . Using Lemmas 1 (d), 2 (d) and 3 (g) we find as T →∞,

1
T 2

T∑
t=1

Ỹi,tX̃
′
i,t =⇒ (λ′1i

∫
B̃Y

F B̃X
F
′λ2i +

∫
B̃Y

i B̃X
i
′ + λ′1i

∫
B̃Y

F B̃X
i
′ +

∫
B̃Y

i B̃X
F
′λ21).

Now the denominator of β̃i is given by

T∑
t=1

X̃i,tX̃
′
i,t =

T∑
t=1

(λ′1iF̃
X
t + ẼX

i,t)(λ
′
2iF̃

X
t + ẼX

i,t)
′

=
T∑

t=1

(λ′2iF̃
X
t F̃X

t
′λ21 + ẼX

i,tẼ
X
i,t
′ + λ′2iF̃

X
t ẼX

i,t
′ + ẼX

i,tF̃
X
t
′λ21). (24)

Similar to the results for the numerator, the terms in (24) are Op(T 2) + Op(T ) + Op(T ) + Op(T ),
if the DGP contains (3). Hence, 1

T 2

∑T
t=1 X̃i,tX̃

′
i,t =⇒ λ′2i

∫
B̃X

F B̃X
F
′λ2i as T →∞.

If the true DGP contains (4), all terms in (24) are Op(T 2) and we have

1
T 2

T∑
t=1

X̃i,tX̃
′
i,t =⇒ (λ′2i

∫
B̃X

F B̃X
F
′λ2i +

∫
B̃X

i B̃X
i
′ + λ′2i

∫
B̃X

F B̃X
i
′ +

∫
B̃X

i B̃X
F
′λ21),

as T →∞.
Combining the results given above yields Proposition 2 A(a) and B(a).

C.2 Proposition 2 (b): Convergence of Zρ̃NT−1 and Z̃ρ̃NT−1

The residuals from the individual first stage regression are given by ũi,t = (1, −β̃i)Zi,t = Yi,t− β̃iXi,t.
Consider first

T∑
t=2

∆ũi,tũi,t−1 =
T∑

t=2

(1, −β̃i)∆Zi,tZ̃
′
i,t−1(1, −β̃i)′. (25)

Now,

T∑
t=2

∆Zi,tZ̃
′
i,t−1 =

T∑
t=2

(Λift + ∆Ei,t)(ΛiF̃t−1 + Ẽi,t−1)′

=
T∑

t=2

(ΛiftF̃
′
t−1Λ

′
i + ∆Ei,tẼ

′
i,t−1 + ΛiftẼ

′
i,t−1 + ∆Ei,tF̃

′
t−1Λ

′
i). (26)

From Lemma 1 (c), 1
T

∑T
t=2 ΛiftF̃t−1Λ′i =⇒ ∫

Λi(dBF B̃F + Θ)Λ′i as T → ∞. If the idiosyncratic
terms are I(0), i.e. the true DGP is given by (3),

T∑
t=2

∆Ei,tẼ
′
i,t−1 =

T∑
t=2

(
(ei,t − ei,t−1)e′i,t−1 − (ei,t − ei,t−1)ēi

)
,

where ēi = 1
T

∑T
t=1 ei,t. Now, 1

T

∑T
t=2 ei,te

′
i,t−1

p−→ γi1 as T →∞, with γi1 = limT→∞ 1
T

∑T
i=1 E(ei,tei,t−1).

Also, 1
T

∑T
t=2 ei,t−1e

′
i,t−1

p−→ Υi as T →∞. Furthermore, 1
T

∑T
t=2 ei,tē

′
i

p−→ 0 and 1
T

∑T
t=2 ei,t−1ē

′
i

p−→
0 as T →∞. Hence, 1

T

∑T
t=2 ∆Ei,tẼ

′
i,t−1

p−→ γi1 −Υi as T →∞.
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For the third term in (26) we have,

1
T

T∑
t=2

ΛiftẼ
′
i,t−1 =

1
T

T∑
t=2

Λift(ei,t−1 − ēi)′

=
1
T

T∑
t=2

Λifte
′
i,t−1 −

1
T

T∑
t=2

Λiftē
′
i

p−→ 0− 0,

as T →∞. Finally,

1
T

T∑
t=2

∆Ei,tF̃
′
t−1Λ

′
i =

1
T

T∑
t=2

(ei,t − ei,t−1)F̃ ′t−1Λ
′
i

=
1
T

ei,T F̃ ′T−1Λ
′ − 1

T
ei,1F̃

′
1Λ

′ − 1
T

T∑
t=2

ei,t−1f
′
t−1Λ

′
i

p−→ 0− 0− 0,

as T →∞. Hence,

1
T

T∑
t=2

∆Zi,tZ̃
′
i,t−1 =⇒ Λi(

∫
dBF B̃F + Θ)Λ′i + γi1 −Υi,

as T →∞.
If the idiosyncratic components are I(1) and their true DGP includes (4), such that ∆Ei,t = ei,t

and Ẽi,t−1 = S̃i,t−1, using Lemmas 1 (c), 2 (c) and 3 (d) and (f), we obtain

1
T

T∑
t=2

∆Zi,tZ̃
′
i,t−1 =⇒ (

Λ′i(
∫

dBF B̃F + Θ)Λ′i +
∫

dBiB̃
′
i + ∆i + Λi

∫
dBF B̃i +

∫
dBiB̃

′
F Λ′i

)
,

as T →∞.
Furthermore, note that the residuals ṽi,t = ∆ũi,t + op(1) regardless of whether they were obtained

from the poooled regression (10) or the individual regression (12). Now,

λ̂i = T−1
J∑

s=1

ωsJ

T∑
t=s+1

ṽi,tṽi,t−s

= T−1
J∑

s=1

ωsJ

T∑
t=s+1

∆ũi,t∆ũi,t−s + op(1)

= T−1
J∑

s=1

ωsJ

T∑
t=s+1

(1, −β̃i)∆Z̃i,t∆Z̃ ′i,t−s(1, −β̃i)′ + op(1).

Expanding ∆Z̃i,t∆Z̃ ′i,t−s in terms of the common factors and unobserved components we obtain the
following four terms and convergence results for suitable choices of bandwidth J and kernel function
ωsJ . First,

T−1
J∑

s=1

ωsJ

T∑
t=s+1

Λif̃i,tf̃
′
i,t−sΛ

′
i

p−→ ΛiΩΛ′i. (27)

Next,

T−1
J∑

s=1

ωsJ

T∑
t=s+1

Λif̃i,t∆Ẽ′
i,t−s

p−→ 0, (28)



28

and

T−1
J∑

s=1

ωsJ

T∑
t=s+1

∆Ẽi,tf̃
′
i,t−sΛi

p−→ 0, (29)

due to the independence of common factors and idiosyncratic components. Finally,

T−1
J∑

s=1

ωsJ

T∑
t=s+1

∆Ẽi,t∆Ẽ′
i,t−s

p−→ lim
T→∞

1
T

T∑
t=1

E(ei,tẼi,t), (30)

which is γ1i −Υi if the idiosyncratic components are stationary, and ∆i if they are I(1).
Now consider

T∑
t=2

∆ũi,tũi,t−1 =
T∑

t=2

(1, −β̃i)∆Zi,tZ̃
′
i,t−1(1, −β̃i)′. (31)

We have

T∑
t=2

Z̃i,t−1Z̃
′
i,t−1 =

T∑
t=2

(ΛiF̃t−1 + Ẽi,t−1)(ΛiF̃t−1 + Ẽi,t−1)′

=
T∑

t=2

(
ΛiF̃t−1F̃

′
t−1Λ

′
i + Ẽi,t−1Ẽ

′
i,t−1

+ ΛiF̃t−1Ẽ
′
i,t−1 + Ẽi,t−1F̃

′
t−1Λ

′
i

)
. (32)

If the idiosyncratic components are given by (3), when summed over T the first term in (32) is Op(T 2),
while the remaining three are Op(T ). So, 1

T 2

∑T
t=2 Z̃i,t−1Z̃

′
i,t−1 =⇒ Λi

∫
B̃F B̃′

F Λ′i as T →∞.
For I(1) idiosyncratic components given by (4), we find using Lemmas 1 (d), 2 (d) and 3(g)

1
T 2

T∑
t=2

Z̃i,t−1Z̃
′
i,t−1 =⇒ (

Λi

∫
B̃F B̃′

F Λ′i +
∫

B̃iB̃
′
i + Λi

∫
B̃F B̃′

i +
∫

B̃iB̃
′
F Λ′i

)

as T →∞.
Next, we partition the long-run covariance matrix of the common non-stationary factors Ω con-

formable to the partition of BF = (BY
F
′, BX

F
′)′, such that

Ω =
[

Ω11 Ω′21
Ω21 Ω22

]
.

We use the block-triangular decomposition Ω = L′L, with

L =
[

L11 0
L21 L22

]
,

where L11 = (Ω11−Ω′21Ω
−1
22 Ω21)

1
2 , L21 = Ω−

1
2

22 Ω21, and L22 = Ω
1
2
22. Note that Ω22 > 0 by Assumption

1.
Now, B̃F = L′W̃F , where W̃F is a demeaned k-vector standard Brownian motion. Furthermore,

denote η′i = (1,−b̃iA), and κ′ = (IkY
, −(

∫
W̃Y

F W̃X
F
′)(

∫
W̃X

F W̃X
F
′)−1)). Then, LΛ′iηi = κL11λ1i, and

η′iB̃F = λ′1iL
′
11Q̃F , with Q̃F = W̃Y

F − (
∫

W̃Y
F W̃X

F
′)(

∫
W̃X

F W̃X
F
′)−1W̃X

F . Finally,

η′i

∫
dBF B̃′

F ηi = λ′1iL
′
11

∫
dQF Q̃′

F L11λ1i,

and
η′i

∫
B̃F B̃′

F ηi = λ′1iL
′
11

∫
Q̃F Q̃′F L11λ1i.
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Combining the above given results with those of A (a) or B (a) yields the convergence results for
Zρ̃NT−1 and Z̃ρ̃NT−1.
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D Tables

Table 1: Cross-member cointegration without serial correlation.

N 25 50 100 25 50 100 25 50 100

T Kao DFρ Kao DFt Pedroni Panel − ρ

50 0.80 0.83 0.85 0.27 0.27 0.32 0.90 0.91 0.92
100 0.81 0.85 0.87 0.26 0.30 0.33 0.90 0.93 0.93
250 0.83 0.89 0.88 0.28 0.34 0.37 0.92 0.94 0.95

T Pedroni Panel − t Pedroni Group− ρ Pedroni Group− t

50 0.93 0.93 0.93 0.77 0.78 0.83 0.86 0.85 0.88
100 0.92 0.93 0.93 0.80 0.84 0.84 0.85 0.87 0.86
250 0.94 0.94 0.95 0.84 0.85 0.88 0.87 0.88 0.91

T Idiosyncratic Panel − ρ Idiosyncratic Group− ρ Aznar/Johansen

50 1.00 1.00 1.00 1.00 1.00 1.00 0.08 0.08 0.06
100 1.00 1.00 1.00 1.00 1.00 1.00 0.04 0.04 0.05
250 1.00 1.00 1.00 1.00 1.00 1.00 0.05 0.05 0.05

Ft =
∑t

s=1 ηs where ηt ∼ iidN(0, I2), Ei,t = εi,t where εi,t ∼ iidN(0, I2) and Λi = I2 for all i.
Rejection frequencies are based on 5% asymptotic critical values.
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Table 2: I(1) common factors and I(1) idiosyncratic components without serial correlation.

N 25 50 100 25 50 100 25 50 100

T Kao DFρ Kao DFt Pedroni Panel − ρ

50 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.23 0.33
100 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.31 0.36
250 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.29 0.38

T Pedroni Panel − t Pedroni Group− ρ Pedroni Group− t

50 0.46 0.51 0.57 0.10 0.12 0.18 0.34 0.42 0.49
100 0.44 0.49 0.58 0.13 0.21 0.24 0.30 0.40 0.45
250 0.44 0.48 0.54 0.19 0.21 0.33 0.30 0.33 0.43

T Idiosyncratic Panel − ρ Idiosyncratic Group− ρ Aznar/Johansen

50 0.04 0.04 0.12 0.01 0.02 0.01 0.08 0.08 0.06
100 0.06 0.05 0.05 0.02 0.02 0.01 0.04 0.04 0.05
250 0.07 0.06 0.04 0.06 0.03 0.03 0.06 0.04 0.05

Ft =
∑t

s=1 ηs where ηt ∼ iidN(0, I2), Ei,t =
∑t

s=1 εi,s where εi,t ∼ iidN(0, I2) and Λi = I2 for all i.
Rejection frequencies are based on 5% asymptotic critical values.
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Table 3: Cross-member cointegration with MA(1) errors

N 25 50 100 25 50 100 25 50 100

T Kao - ρ∗ Kao - ADF Pedroni - Panel − ρ

25 0.27 0.32 0.35 0.48 0.50 0.54 0.68 0.90 0.88
50 0.39 0.47 0.49 0.54 0.62 0.62 0.84 0.96 0.95
100 0.52 0.54 0.55 0.64 0.67 0.69 0.93 1.00 0.96

T Pedroni - Panel − t Pedroni - Group− ρ Pedroni - Group− t

25 0.76 0.92 0.91 0.33 0.67 0.62 0.52 0.79 0.77
50 0.83 0.96 0.94 0.665 0.94 0.89 0.67 0.89 0.85
100 0.92 0.99 0.95 0.88 1.00 0.94 0.78 0.95 0.88

T Idiosyncratic- Panel − t Idiosyncratic - Group− ρ Aznar/Johansen

25 1.00 1.00 1.00 1.00 1.00 1.00 0.12 0.12 0.11
50 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.11 0.09
100 1.00 1.00 1.00 1.00 1.00 1.00 0.08 0.10 0.08

Rejection frequencies are based on 5% asymptotic critical values.
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Table 4: I(1) common factors and I(1) idiosyncratic components with MA(1) errors

N 25 50 100 25 50 100 25 50 100

T Kao - ρ∗ Kao - ADF Pedroni - Panel − ρ

25 0.17 0.17 0.23 0.59 0.65 0.69 0.00 0.00 0.00
50 0.23 0.28 0.36 0.63 0.74 0.75 0.02 0.02 0.03
100 0.34 0.39 0.45 0.74 0.81 0.80 0.10 0.08 0.14

T Pedroni - Panel − t Pedroni - Group− ρ Pedroni - Group− t

25 0.03 0.02 0.04 0.00 0.00 0.00 0.03 0.02 0.04
50 0.06 0.04 0.08 0.00 0.00 0.01 0.04 0.03 0.06
100 0.13 0.10 0.18 0.02 0.01 0.04 0.07 0.05 0.10

T Idiosyncratic- Panel − t Idiosyncratic - Group− ρ Aznar/Johansen

25 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.14 0.12
50 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.12 0.09
100 0.02 0.01 0.00 0.00 0.00 0.00 0.11 0.10 0.09

Rejection frequencies are based on 5% asymptotic critical values.



34

Table 5: Cointegration in Ft but not in Ei,t without serial correlation.

N 25 50 100 25 50 100 25 50 100

T Kao DFρ Kao DFt Pedroni Panel − ρ

50 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.59 0.73
100 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.79 0.85
250 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.85 0.93

T Pedroni Panel − t Pedroni Group− ρ Pedroni Group− t

50 0.74 0.82 0.92 0.38 0.51 0.65 0.70 0.82 0.92
100 0.79 0.91 0.93 0.59 0.80 0.88 0.72 0.89 0.93
250 0.83 0.92 0.96 0.78 0.89 0.96 0.77 0.90 0.94

T Idiosyncratic Panel − ρ Idiosyncratic Group− ρ Aznar/Johansen

50 0.04 0.04 0.01 0.01 0.02 0.01 0.73 0.83 0.87
100 0.06 0.05 0.04 0.02 0.02 0.01 0.82 0.87 0.92
250 0.08 0.06 0.04 0.06 0.03 0.03 0.68 0.83 0.90

F Y
t =

∑t
s=1 ηY

s , ∆F X
t = ∆F Y

t + ηX
t , where ηt = (ηY

t , ηX
t )′ ∼ iidN(0, I2),

Ei,t =
∑T

s=1 εi,s where εi,t ∼ iidN(0, I2) and Λi = I2 for all i.
Rejection frequencies are based on 5% asymptotic critical values.
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Table 6: No cointegration in Ft but cointegration in Ei,t without serial correlation.

N 25 50 100 25 50 100 25 50 100

T Kao DFρ Kao DFt Pedroni Panel − ρ

50 0.16 0.18 0.17 0.02 0.04 0.03 0.58 0.60 0.64
100 0.20 0.24 0.25 0.02 0.04 0.05 0.60 0.66 0.69
250 0.25 0.30 0.32 0.03 0.04 0.07 0.61 0.70 0.75

T Pedroni Panel − t Pedroni Group− ρ Pedroni Group− t

50 0.72 0.73 0.74 0.39 0.39 0.46 0.55 0.57 0.61
100 0.70 0.73 0.77 0.43 0.50 0.53 0.54 0.60 0.63
250 0.70 0.78 0.78 0.47 0.52 0.57 0.52 0.58 0.64

T Idiosyncratic Panel − ρ Idiosyncratic Group− ρ Aznar/Johansen

50 1.00 1.00 1.00 1.00 1.00 1.00 0.07 0.08 0.07
100 1.00 1.00 1.00 1.00 1.00 1.00 0.05 0.03 0.05
250 1.00 1.00 1.00 1.00 1.00 1.00 0.05 0.05 0.05

Ft =
∑t

s=1 ηs, where ηt ∼ iidN(0, I2), EY
i,t =

∑T
s=1 εY

i,s, ∆EX
i,t = ∆EY

i,t + εX
i,s,

where εi,t = (εY
i,t, ε

X
i,t)

′ ∼ iidN(0, I2) and Λi = I2 for all i.
Rejection frequencies are based on 5% asymptotic critical values.
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Table 7: Cointegration in Ft and Ei,t with common cointegrating vector without serial corre-
lation.

N 25 50 100 25 50 100 25 50 100

T Kao DFρ Kao DFt Pedroni Panel − ρ

50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T Pedroni Panel − t Pedroni Group− ρ Pedroni Group− t

50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T Idiosyncratic Panel − ρ Idiosyncratic Group− ρ Aznar/Johansen

50 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.90 0.91
100 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.96 0.97
250 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99

F Y
t =

∑t
s=1 ηY

s , ∆F X
t = ∆F Y

t + ηX
t , where ηt ∼ iidN(0, I2), EY

i,t =
∑T

s=1 εY
i,s, ∆EX

i,t = ∆EY
i,t + εX

i,s,
where εi,t = (εY

i,t, ε
X
i,t)

′ ∼ iidN(0, I2) and Λi = I2 for all i.
Rejection frequencies are based on 5% asymptotic critical values.
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Table 8: Cointegration in Ft but not in Ei,t with MA errors.

N 25 50 100 25 50 100 25 50 100

T Kao-ρ∗ Kao-ADF Pedroni Panel − ρ

50 0.18 0.17 0.24 0.55 0.60 0.65 0.01 0.00 0.01
100 0.25 0.29 0.39 0.59 0.69 0.73 0.07 0.03 0.11
250 0.37 0.40 0.50 0.70 0.77 0.78 0.18 0.10 0.32

T Pedroni Panel − t Pedroni Group− ρ Pedroni Group− t

50 0.05 0.03 0.06 0.00 0.00 0.00 0.03 0.02 0.05
100 0.09 0.06 0.19 0.05 0.01 0.10 0.07 0.03 0.15
250 0.17 0.11 0.33 0.25 0.13 0.57 0.19 0.10 0.42

T Idiosyncratic Panel − ρ Idiosyncratic Group− ρ Aznar/Johansen

50 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.61 0.74
100 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.78 0.85
250 0.02 0.00 0.00 0.00 0.00 0.00 0.68 0.85 0.87

F Y
t =

∑t
s=1 fY

s , ∆F X
t = ∆F Y

t + fX
t , Ei,t =

∑T
s=1 ei,s,

where ft and ei,t are MA processes generated as described in Section 5.
Rejection frequencies are based on 5% asymptotic critical values.
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Table 9: No cointegration in Ft but cointegration in Ei,t with MA errors.

N 25 50 100 25 50 100 25 50 100

T Kao-ρ∗ Kao-ADF Pedroni Panel − ρ

50 0.26 0.28 0.33 0.57 0.60 0.64 0.05 0.13 0.10
100 0.36 0.43 0.46 0.62 0.72 0.72 0.16 0.39 0.32
250 0.46 0.52 0.55 0.71 0.77 0.78 0.31 0.53 0.48

T Pedroni Panel − t Pedroni Group− ρ Pedroni Group− t

50 0.14 0.23 0.23 0.01 0.03 0.03 0.10 0.17 0.18
100 0.20 0.42 0.38 0.06 0.32 0.18 0.14 0.35 0.29
250 0.29 0.52 0.50 0.21 0.68 0.40 0.24 0.55 0.44

T Idiosyncratic Panel − ρ Idiosyncratic Group− ρ Aznar/Johansen

50 0.92 0.99 1.00 0.94 1.00 1.00 0.12 0.12 0.11
100 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.11 0.10
250 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.10 0.08

Ft =
∑t

s=1 fs, EY
i,t =

∑T
s=1 eY

i,s, ∆EX
i,t = ∆EY

i,t + eX
i,s,

where ft and ei,t are MA processes generated as described in Section 5.
Rejection frequencies are based on 5% asymptotic critical values.
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Table 10: Cointegration in Ft and Ei,t with common cointegrating vector and MA errors.

N 25 50 100 25 50 100 25 50 100

T Kao-ρ∗ Kao-ADF Pedroni Panel − ρ

50 0.41 0.43 0.47 0.57 0.58 0.61 0.58 0.63 0.69
100 0.50 0.56 0.59 0.60 0.67 0.69 0.84 0.91 0.97
250 0.60 0.63 0.63 0.69 0.72 0.74 0.96 0.99 1.00

T Pedroni Panel − t Pedroni Group− ρ Pedroni Group− t

50 0.69 0.77 0.84 0.74 0.81 0.91 0.86 0.94 0.98
100 0.87 0.94 0.98 1.00 1.00 1.00 1.00 1.00 1.00
250 0.95 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T Idiosyncratic Panel − ρ Idiosyncratic Group− ρ Aznar/Johansen

50 0.98 1.00 1.00 0.99 1.00 1.00 0.67 0.65 0.75
100 1.00 1.00 1.00 1.00 1.00 1.00 0.79 0.83 0.89
250 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.87 0.92

F Y
t =

∑t
s=1 fY

s , ∆F X
t = ∆F Y

t + fX
t , EY

i,t =
∑T

s=1 eY
i,s, ∆EX

i,t = ∆EY
i,t + eX

i,s,
where ft and ei,t are MA processes generated as described in Section 5.
Rejection frequencies are based on 5% asymptotic critical values.

Table 11: Panel no-cointegration tests for observed data

Kao - ρ∗ Kao - ADF Pedroni - Panel − ρ

Statistic -4.36 -3.58 -2.16
p-value 0.00 0.00 0.02

Pedroni - Panel − t Pedroni - Group− ρ Pedroni - Group− t

Statistic -1.57 -0.18 -0.50
p-value 0.06 0.43 0.31
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Table 12: Panel no-cointegration tests for defactored data

Statistic p-value
Panel − ρ -1.58 0.57
Panel − t -1.31 0.10
Group− ρ 0.14 0.56
Group− t -0.05 0.48

Statistic Critical value
Johansen 8.19 12.53


