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Abstract

We study a model of multilateral bargaining over social outcomes represented by
points in the unit interval. An acceptance or rejection of a proposal is determined
by a voting rule as represented by a collection of decisive coalitions. The focus of
the paper is on the asymptotic behavior of subgame perfect equilibria in stationary
strategies as the discount factor goes to one. We show that, along any sequence of
stationary subgame perfect equilibria, as the discount factor goes to one, the social
acceptance set collapses to a point. This point, called the bargaining outcome, is
independent of the sequence of equilibria and is uniquely determined by the set of
players, the utility functions, the recognition probabilities, and the voting rule. The
central result of the paper is a characterization of the bargaining outcome as a unique
zero of the characteristic equation.
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1 Introduction

This paper analyzes a model of multilateral bargaining where players must choose one
alternative from a set of alternatives represented by points in the unit interval. An alter-
native might be a level of taxation, a location of a facility, or an index of an ideological
content of a policy (left vs. right).

Bargaining proceeds as follows. At the beginning of each period, nature randomly
selects one of the players as a proposer. The probability for a player to become a proposer,
the so–called recognition probability, is assumed to be the same in each period. The player
chosen by nature puts forward a proposal that specifies one alternative. All players then
react to the proposal. Each player can either reject or accept the proposal. The votes are
cast sequentially, the sequence of responses being fixed throughout the game. Whether the
proposal passes or fails is then determined by a voting rule, as represented by a collection
of decisive coalitions. The passing of a proposal requires an approval of it by all the players
in some decisive coalition. Examples of voting rules include the unanimity acceptance rule
when a passing of a proposal requires an approval of it by all the players, the quota rule,
when a fixed number of votes is needed for a passing of a proposal, or the simple majority
rule. If the proposal passes, it is implemented and the game ends. In this case each player
receives a discounted utility of the alternative. Otherwise, a new period begins.

We consider subgame perfect equilibria in stationary strategies. Stationarity means that
a proposal of any player does not depend on the history of play and a player’s reaction to a
proposal depends only on the proposal itself. The focus of the paper is on the asymptotic
behavior of stationary subgame perfect equilibria as the discount factor approaches one.

The results are as follows. We prove that, along any sequence of subgame perfect
equilibria in stationary strategies the social acceptance set collapses to a point. This point,
called the bargaining outcome, is independent of the sequence of equilibria and is uniquely
determined by the set of players, the utility functions, the recognition probabilities, and
the voting rule. The central result of the paper is a characterization of the bargaining
outcome as a unique zero of the characteristic equation. This paper is the first to provide
the characterization of the limit of stationary equilibrium in a one–dimensional model of
bargaining.

The results are obtained under rather minimal assumptions. Thus the instantaneous
utility functions are only assumed to be single–peaked and concave. Furthermore, we
require that the intersection of any two decisive coalitions contain a player with a positive
recognition probability. This requirement puts but a very mild restriction on the voting
rule and the recognition probabilities.

Games of bargaining with a one–dimensional space of alternatives have been previously
considered in Banks and Duggan [1], Cho and Duggan [4], Kalandrakis [7], and Cardona
and Ponsati [3]. Banks and Duggan [1] and Kalandrakis [7] consider bargaining in a
situation where the alternatives are represented by points in a general compact convex set.
For the special case where the set of alternatives is one–dimensional Banks and Duggan
[1] establish the existence of stationary subgame perfect equilibria in pure strategies, while
Kalandrakis [7] shows that pure strategy stationary subgame perfect equilibria are locally
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unique and finite in number for almost all discount factors. Cho and Duggan [4] prove
uniqueness of stationary subgame perfect equilibria in pure strategies in a model of one–
dimensional bargaining under the assumption that the utility functions are quadratic. They
also establish that any pair of stationary subgame perfect equilibria are nested in the sense
that the social acceptance set in one equilibrium forms the subset of the social acceptance
set of the other equilibrium.

The game tree used in this paper is the same as in Banks and Duggan [1], Cho and
Duggan [4] and Kalandrakis [7] except that the players vote sequentially, not simultane-
ously. This difference turns out to be inessential, and the results of Banks and Duggan
[1] and Cho and Duggan [4] are true in the setting of the present paper. The results of
Kalandrakis [7] on local uniqueness and finiteness equilibria, on the other hand, are generic
in the discount factors that may be different across the players. We restrict our attention
to the case of a common discount factor.

Cardona and Ponsati [3] also study bargaining over a one–dimensional set of alternatives
but their model differs from ours in two respects. Firstly, in Cardona and Ponsati [3] the
identity of the proposer rotates deterministically in the player set, whereas we use time–
independent recognition probabilities. And, secondly, Cardona and Ponsati [3] restrict
attention to a quota voting rule, whereas we use a more general family of voting rules.
Cardona and Ponsati [3] prove, in their setting, the asymptotic uniqueness of subgame
perfect equilibria in stationary strategies, but do not provide the characterization.

Our paper complements these insights by providing the asymptotic uniqueness result,
and more importantly, the explicit computation of the limit of subgame perfect equilibria
in stationary strategies.

There are numerous other contributions that study stationary subgame perfect equilib-
ria in various games of multilateral bargaining under the assumption that the the boundary
of the set of feasible payoffs is of dimension n− 1, where n is the number of players. This
assumption is satisfied in a situation when n players have to divide an amount of money
amongst themselves, in which case the set of alternatives consists of all feasible redistribu-
tions of an amount among n players. Thus Merlo and Wilson [9] and Merlo and Wilson [10]
give sufficient conditions for the uniqueness of stationary subgame perfect equilibria (in
pure strategies) in a model where the identity of the proposal and the amount of money to
be divided follow a Markov process and the unanimous approval is needed for a proposal to
pass. Eraslan [5] establishes uniqueness of subgame perfect equilibria (in mixed strategies)
in a game with a tree similar to the one described above and a quota voting rule. Eraslan
and Merlo [6] characterize stationary subgame perfect equilibria (in mixed strategies) in a
model where the amount of money to be divided is stochastic and a general agreement rule
is used. It is clear that the game where the payoffs are generated by a one–dimensional
space of alternatives is not covered by this analysis.

The idea of studying the asymptotic behavior of subgame perfect equilibria in the bar-
gaining context goes back to Binmore et al [2] who prove that in a two–player game, the
limit of subgame perfect equilibrium is given by the Nash bargaining solution. Miyakawa
[11] generalizes the result of Binmore et al [2]. He obtains a characterization of the limit of
stationary subgame perfect equilibria in the n-player game with the unanimity acceptance
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rule as the probability of the breakdown of the negotiations goes to zero, under the as-
sumption that the boundary of the set of feasible utility vectors is an (n− 1)–dimensional
surface. Miyakawa [11] shows that the limit is the asymmetric Nash bargaining solution,
with the weights corresponding to the recognition probabilities. A related result is given
in Kultti and Vartiainen [8], who also assume that the boundary of the feasible payoffs is
(n − 1)–dimensional surface. They obtain the (asymmetric) Nash bargaining solution as
a limit of the Von Neumann-Morgenstern stable set as the discount factor vanishes. The
stable set is defined with respect to a dominance relation where an alternative x dominates
an alternative y if some player prefers x even with a one–period delay. Our paper provides
the asymptotic results for the stationary subgame perfect equilibrium in a setting that
has not been covered by the analysis in Binmore et al [2], Miyakawa [11] or Kultti and
Vartiainen [8].

The outline of the paper is as follows. Section 2 introduces the game of bargaining and
the concept of δ–equilibrium. Essentially, δ–equilibrium is a subgame perfect equilibrium
in stationary strategies where each player is assumed to vote sincerely. Section 3 examines
a relationship of the δ–equilibrium and the subgame perfect equilibrium. It is shown that
each δ–equilibrium is a subgame perfect equilibrium in stationary strategies. Conversely,
given a subgame perfect equilibrium in stationary strategies there exists a δ–equilibrium
having the same equilibrium proposals and inducing the same equilibrium payoffs. In this
sense, the set of δ–equilibria is effectively the same as the set of subgame perfect equilibria
in stationary strategies.

In Section 4 we establish that, along any sequence of δ–equilibria, as the discount factor
converges to one, the social acceptance set collapses to a point. Any such point is called a
bargaining outcome. Section 5 introduces the characteristic function and the main result
of the paper: there is a unique bargaining outcome being the (unique) generalized zero of
the characteristic function. Section 6 provides the proof of the main result.

2 The model

We study a world ω described by the following variables: X, N , µ, C and u•. The symbol
X denotes the unit interval [0, 1]. This is a space of alternatives or social states the players
must choose from. The set N is a finite set of players and µ is a probability distribution on
N . The probability µ(i) is a recognition probability of player i, that is the probability for
player i to be chosen a proposer. The symbol u• denotes a collection of utility functions,
one for each player. The utility function of player t ∈ N is ut : X → [0, 1]. We shall
assume that the utility functions satisfy the following assumption.

(A1) For each t ∈ N the utility function ut : X → [0, 1] is concave, continuous, and it
attains its unique maximum at point x̄t.

The symbol C is a collection of subsets of N representing a voting rule. The sets in C

are decisive coalitions in the sense that an approval of a proposal by any of these coalitions
is sufficient for a passing of a proposal. For instance, if the passing of a proposal requires
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the approval of it by each player, then the collection C consists of the set N alone. If
the acceptance of a proposal requires the approval of it by at least q voters, then the the
collection C consists of all sets C ⊂ N such that |C| = q. In particular, the simple majority
rule is a quota rule where the quota q equals n + 1 in a game with 2n + 1 players. An
interesting voting rule is an adaptation of the rule used by the United Nations Security
Council. The Council consists of five permanent and ten temporary members, and the
passing of its resolutions requires the yes–votes of at least nine members. Furthermore, each
permanent member has a veto right, which means that the no–vote by any of the permanent
members overrules any majority. Letting P denote the set of permanent members, the
collection C consists of all sets C ⊂ N such that P ⊂ C and |C| = 9. We shall assume the
following.

(A2) For each C1 and C2 in C the inequality µ(C1 ∩ C2) > 0 holds.

A restriction on the collection C of decisive coalitions commonly employed in the liter-
ature on voting is that for each C1 and C2 in C the set C1∩C2 be non–empty. Assumption
(A2) not only requires that the set C1∩C2 be non–empty, but also that it contain a player
having a positive probability of recognition. Assumption (A2) is trivially satisfied in the
case of the unanimity acceptance rule, i.e. when C = {N}. If |N | is an odd number and
the collection C represents the simple majority rule, then assumption (A2) implies that
all players’s recognition probabilities are positive, because for each i ∈ N there exist two
decisive coalitions C1 and C2 such that C1 ∩ C2 = {i}. If C represents the voting rule
of the Security Council as described above, for the assumption (A2) to be satisfied it is
sufficient that at least one permanent member have a positive recognition probability.

Given a discount factor δ ∈ [0, 1] we define a game of bargaining Γ(δ) as follows. The
game starts in period zero. Each period τ begins with nature randomly choosing a player
from the set N to make a proposal. Player i is chosen by nature with probability µ(i).
The chosen player proposes an alternative x from X. All players (including the proposer)
respond sequentially, according to a total order > on the player set N . The order > is fixed
throughout the game. Each responder can either accept or reject the current proposal. If
all players in some decisive coalition C ∈ C accept the proposal, the game terminates and
the proposal is implemented. Otherwise, period τ + 1 begins.

If alternative x is agreed upon in period τ , player i receives a payoff of δτui(x). The
payoff of perpetual disagreement to any player is zero.

The game tree of Γ(δ) is similar to that in Banks and Duggan [1] with the difference
that in the game Γ(δ) the players vote sequentially, while in [1] the votes are cast simul-
taneously. We insist that the players vote sequentially to rule out coordination problems
in the response stage of the game, for example a situation when any point in the set X is
unanimously accepted independently of preferences.

We shall restrict our attention to stationary strategies by which we mean the strategies
such that (a) a proposal of any player is independent of the history of play and (b) the
reaction of a player to a proposal only depends on the proposal itself. Thus a stationary
strategy of player t consists of a proposal xt and an acceptance set At. Player t proposes
the point xt whenever player t is chosen to be a proposer and he accepts a proposal x if
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and only if x is an element of the set At. A joint stationary strategy σ = (x•, A•) induces
the acceptance set AC = ∩t∈CAt of coalition C and the social acceptance set A = ∪C∈CAC .
A proposal x is implemented if and only if it is an element of the social acceptance set A.

Consider a case where the proposal xi of each player i lies in the social acceptance
set A. In this case each proposal is accepted without delay. The expected utility yt of
player t can then be computed as a weighted sum of ut(xi), where the weights are equal
to the respective recognition probabilities. The utility yt is also player t’s continuation
payoff when a proposal is turned down. Therefore, player t accepts a proposal x if and
only if ut(x) ≥ δyt. Since all proposals in the set A pass, player t proposes a point xt that
maximizes player t’s utility on A. These considerations motivate the following definition.

Definition 1 A joint stationary strategy σ = (x•, A•) is a δ–equilibrium of the world ω if
there exist the numbers (yt)t∈N , the sets (AC)C∈C and the set A such that the following
conditions are satisfied:

xt = arg maxx∈A ut(x) for each t ∈ N,

yt =
∑

i∈N µ(i)ut(xi) for each t ∈ N,

At = {x ∈ X|ut(x) ≥ δyt} for each t ∈ N,

AC = ∩t∈CAt for each C ∈ C ,

A = ∪C∈CAC .

A δ–equilibrium can be seen to be equivalent to the definition of stationary equilibrium
(in pure strategies) in Banks and Duggan [1] and Cho and Duggan [4]. In particular, the
existence of δ–equilibrium is established in Theorem 2 in Banks and Duggan [1]. Cho and
Duggan [4] show that δ–equilibrium is unique for each δ < 1 under the assumption that the
utility functions ui are quadratic and the voting rule C is proper and strong. In general,
there may be multiple δ–equilibria, an example being given in Cho and Duggan [?].

Since we assume the utility functions to be concave, each individual acceptance set is
a closed interval. We shall use the notation [x−t , x

+

t ] to denote the individual acceptance
set At of player t. The acceptance set of coalition C is also a closed interval, denoted by
[x−C , x

+

C ]. Furthermore,
x−C = max

t∈C
{x−t } and x+

C = min
t∈C

{x+

t }.

We write E(x•) to denote the expected proposal, that is

E(x•) =
∑

i∈N µ(i)xi.

Proposition 1 Let (x•, A•) be a δ–equilibrium inducing the social acceptance set A. Then
A is a closed interval containing the point E(x•).
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x+

x̄t

xt

Figure 1: Equilibrium proposals.

Proof. Each individual acceptance set At contains the point E(x•), because

ut(E(x•)) ≥ E(ut(x•)) = yt ≥ δyt

by the concavity of the function ut. It follows that the acceptance set AC of each coalition
C contains the point E(x•). A finite union of closed intervals having a point in common
is obviously closed interval.

We let the social acceptance set be [x−, x+], where the endpoints can be computed as

x− = min
C∈C

{x−C} and x+ = max
C∈C

{x+

C}.

The equilibrium proposal xt of player t is a point of [x−, x+] closest to x̄t, the ideal point
of individual t. Figure 1 illustrates. Thus

xt =











x− if x̄t ≤ x−

x̄t if x− ≤ x̄t ≤ x+

x+ if x+ ≤ x̄t.

Definition 2 For each natural n let An be a social acceptance set in a δn–equilibrium of
the world ω and let xn be a point of An. Suppose that the sequence δn converges to one
and xn converges to a point x. Then the alternative x is called a bargaining outcome of ω.
A collection of bargaining outcomes is called a bargaining solution.

The main result of the paper states that the bargaining outcome is unique. In particular,
along any sequence of δ–equilibria, as δ converges to one, the social acceptance set collapses
to a point, and in the limit all players make the same proposal.
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3 Subgame perfect equilibria in stationary strategies

In this section we show that each δ–equilibrium is a subgame perfect equilibrium of the
game Γ(δ). Conversely, given a subgame perfect equilibrium in stationary strategies there
exists a δ–equilibrium having the same equilibrium proposals and inducing the same ex-
pected payoffs. In particular, each subgame perfect equilibrium in stationary strategies
is a no–delay equilibrium. In this sense, the set of δ–equilibria effectively represents all
subgame perfect equilibria in stationary strategies. One can say that δ–equilibrium is a
subgame perfect equilibrium in stationary strategies where each player votes sincerely.

Theorem 1 Each δ–equilibrium is a subgame perfect equilibrium of the game Γ(δ).

The proof of Theorem 1 consists of two steps. The first step is to show that the strategy
σ is robust to all one–shot deviations. Recall that a strategy σ̄t for player t is said to be
a one–shot deviation from σ at node h if it coincides with the strategy σt on all nodes
but h. The second step establishes the one–shot deviation property for the game Γ(δ): if
there is a profitable deviation from the joint strategy σ, then there is a profitable one–shot
deviation from σ.

Proposition 2 Let σ = (x•, A•) be a δ–equilibrium. Then no player has a one–shot
profitable deviation from σ at any node of the game Γ.

Proof. Let σ̄t be a one–shot deviation from σt at node h. Let Γ(h) be the subgame that
starts at node h.

Suppose player t has to make a proposal at node h. Under the strategy σt player t
proposes the alternative xt, which is accepted, leading to a payoff of ut(xt) for player t.
Suppose under the strategy σ̄t player t makes a proposal x. If x is not an element of the
social acceptance set A = ∪C∈C ∩i∈C Ai, the proposal x will be rejected. As σ̄t coincides
with σt on all nodes following h, player t will receive a payoff of δyt. By the definition of
δ–equilibrium, δyt ≤ ut(xt). If x is an element of A, then the proposal x is accepted and
player t receives a payoff of ut(x). However, ut(x) ≤ ut(xt), because by the definition of
δ–equilibrium, xt maximizes the function ut on the set A. We conclude that the strategy
σ̄t does not give a higher payoff than the strategy σt in the subgame Γ(h).

Suppose player t has to react to a proposal x at node h. Suppose that ut(x) ≥ δyt. Then
x ∈ At, and the strategy σt accepts the proposal x. The strategy σ̄t rejects the proposal
x, because it is assumed to be a deviation from σt at the node h. If in the subgame Γ(h)
the joint strategy (σt, σ−t) leads to a social rejection of the proposal x, so does the joint
strategy (σ̄t, σ−t), since the latter gives one less yes–vote to x than the former. In that
case the payoff to player t in the subgame Γ(h) is δyt, whether player t uses the strategy
σt or σ̄t. Suppose that in the subgame Γ(h) the joint strategy (σt, σ−t) leads to a social
acceptance of the proposal x, so the payoff to player t on the strategy σt is ut(x). The
payoff on the strategy σ̄t in the subgame Γ(h) is either ut(x) or δyt, depending on whether
the joint strategy (σ̄t, σ−t) leads to a social acceptance or rejection of the proposal x, but
in either case is not higher than the payoff on the strategy σt.
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Suppose that ut(x) < δyt. Then x is not in At, so the strategy σt rejects the proposal x,
and the strategy σ̄t accepts the proposal x at the node h. If in the subgame Γ(h) the joint
strategy (σt, σ−t) leads to a social acceptance of the proposal x, so does the joint strategy
(σ̄t, σ−t), since under the joint strategy (σ̄t, σ−t) the proposal x receives one more yes–vote
than under the strategy (σt, σ−t). In that case the payoff to player t in the subgame Γ(h)
is ut(x) on both strategies σt and σ̄t. Suppose that in the subgame Γ(h) the joint strat-
egy (σt, σ−t) leads to a social rejection of the proposal x, so the payoff to player t on the
strategy σt is δyt. The payoff on the strategy σ̄t in the subgame Γ(h) is either ut(x) or δyt,
depending on whether the joint strategy (σ̄t, σ−t) leads to a social acceptance or rejection
of the proposal x. Therefore σ̄t does not give a higher payoff than the strategy σt in the
subgame Γ(h).

For the proof of Proposition 3 the reader can refer to Predtetchinski [12, Proposition 2].

Proposition 3 Let σ be a profile of strategies. If player t has a profitable deviation from
σ, then player t has a profitable one–shot deviation from σ.

We now compute the payoffs induced by a joint stationary strategy σ = (x•, A•). Let
yt denote the expected payoff to player t at the beginning of the game induced by σ. Let
Na = {t ∈ N |xt ∈ A} be the set of players whose proposal is accepted under σ and
Nr = {t ∈ N |xt /∈ A} denote the set of players whose proposal is rejected. If nature
chooses a proposer i from Na, player t receives a payoff of ut(xi), while if nature chooses a
proposer from Nr, then player t’s payoff is δyt. Thus yt satisfies the following relation:

yt =
∑

i∈Na

µ(i)ut(xi) + δµ(Nr)yt.

Solving the equation, we obtain the following expression for yt:

yt =











1

1 − δµ(Nr)

∑

i∈Na

µ(i)ut(xi) if µ(Na) > 0,

0 otherwise.

We now turn to the converse of Theorem 1. It is clear that there always exist subgame
perfect equilibria in stationary strategies that are not δ–equilibria. To illustrate, take a
δ–equilibrium σ and suppose that the alternative x is not in the social acceptance set
induced by σ. Let T be the set of players who reject the alternative x. Let i be a player
who reacts to a proposal before any player in the set T . Then, at any node of the game
Γ where player i has to respond to a proposal x, player i is indifferent between accepting
the proposal x and rejecting it, since it will later be rejected by the players in the set T .
Consequently, we can remove the alternative x from the individual acceptance set of player
i. The resulting profile of strategies will still be a subgame perfect equilibrium, but not a
δ–equilibrium.
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Figure 2: The response stage of the game Γ.

Thus we will not be able to show that each subgame perfect equilibrium in stationary
strategies is a δ–equilibrium. However, we shall prove that, given a subgame perfect equi-
librium in stationary strategies, there exists a δ–equilibrium inducing the same expected
payoffs, having the same equilibrium proposals, and (provided that there are players whose
ideal points are zero and one) the same social acceptance set.

Important for the proof of Theorem 2 is the concept of pivotal vote. Suppose one is
given a joint stationary strategy σ. Consider a node h of the game Γ where player t has to
react to some proposal, say x. Player t’s vote is said to be pivotal at node h if it determines
the social acceptance or rejection of the proposal x.

We illustrate the idea of pivotal vote by means of an example. Suppose there are three
players, and the yes–votes of any two players are sufficient for a passing of a proposal. The
order of response is 1 < 2 < 3. Suppose that under the given joint stationary strategy the
proposal x is rejected by all three players. Figure 2 depicts the response stage of the game
Γ. The capital letters in Figure 2 indicate whether the proposal in question is socially
accepted or not, and the arrows indicate the strategies.

The player 2’s vote at the node h2 is pivotal. Indeed, if player 2 accepts at the node h2,
then the proposal x will be socially accepted, and if player 2 rejects, the proposal will be
turned down. Notice that player 2’s vote at node h1 is not pivotal, because the proposal
will be socially rejected, whether player 2 votes for or against it. In the same way, player
1 is not pivotal at his decision node.

Definition 3 Let σ be a joint stationary strategy. Consider a node h of the game Γ where
player t has to react to some proposal, say x. Let the σ′

t and σ′′
t be strategies for player

t that coincide with the strategy σt at any node of the game Γ but h, where σ′
t accepts

x and σ′′
t rejects x. Player t is said to be pivotal at node h if the proposal x is socially

accepted on the path of play induced by the joint strategy (σ′
t, σ−t) in the subgame Γ(h)

and is socially rejected on the path of play induced by the joint strategy (σ′′
t , σ−t) in the

subgame Γ(h).
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If all players were voting sincerely, we would expect player t to accept a proposal x if the
utility of x to player t is higher than t’s continuation utility and to reject it if the utility of
x is lower than the continuation utility. In fact, the players need not vote sincerely, even in
a subgame perfect equilibrium. Consider again Figure 2. Since player 1’s vote is irrelevant,
both rejecting and accepting the proposal are player 1’s best responses to player 2’s and
3’s strategies. Thus player 1 may well reject a proposal x even even though the utility of x
is higher than player 1’s continuation utility. On the other hand, player 2’s vote is decisive
at h2, so player 2 receives a utility of δy2 if he chooses to reject x and a utility of u2(x) if he
chooses to accept it. Since in a subgame perfect equilibrium player 2 should maximize his
utility at any node of the game, including the node h2, player 2 should accept the proposal
x if u2(x) > δy2 and reject it if u2(x) < δy2.

It is therefore important to know whether a player is ever pivotal or not. This is
answered by Proposition 4 below.

Proposition 4 Let σ = (x•, A•) be a joint stationary strategy in the game Γ inducing the
acceptance set AC for coalition C and the social acceptance set A. Let x ∈ X.

(a) Suppose x is not an element of A. Then for each C ∈ C there is a player t ∈ C such
that x is not an element of the set At and player t’s vote is pivotal at some node h
of the game Γ.

(b) Suppose x is an element of A. Then there exists a C ∈ C such that x is an element
of AC and for each t ∈ C player t’s vote is pivotal at some node h of the game Γ.

The proof of Proposition 4 is very involved and is relegated to the appendix. We are now
in a position to prove Theorem 2.

Theorem 2 Suppose 0 ≤ δ < 1. Consider a joint strategy σ = (x•, A•) inducing the
expected payoffs y• and the social acceptance set A. Suppose σ is a subgame perfect equi-
librium of the game Γ(δ). Then there exists a δ–equilibrium (x•, A

′
•) inducing the expected

payoffs y• and the social acceptance set A′ such that IntA′ ⊂ A ⊂ A′. Furthermore, if there
are players i0 and i1 such that x̄i0 = 0 and x̄i1 = 1, then A = A′.

Proof. Define the following sets:

A′
i = {x ∈ X|ui(x) ≥ δyi} A′′

i = {x ∈ X|ui(x) > δyi}

A′
C = ∩i∈CA

′
i A′′

C = ∩i∈CA
′′
i

A′ = ∪C∈CA
′
C A′′ = ∪C∈CA

′′
C .

Step 1. We prove the inclusion A′′ ⊂ A.
Suppose x is not an element of A. Take a C ∈ C . By part (a) of Proposition 4, there

is a player t ∈ C such that x is not in At and player t’s vote is pivotal at a node h of the
game Γ. We now prove that x is not an element of the set A′′

t . It then follows that it is
not an element of the set A′′

C , and, since C is an an arbitrary coalition in C , that it is not
an element of the set A′′.

11



Let σ′
t and σ′′

t be as in Definition 3. Thus σ′
t and σ′′

t coincide with the strategy σt at
any node of the game Γ but h, where σ′

t accepts x and σ′′
t rejects x. Then the proposal x

is socially accepted on the path of play of the joint strategy (σ′
t, σ−t) in the subgame Γ(h)

and is rejected on the path of play of the joint strategy (σ′′
t , σ−t). It follows that the payoff

to player t on his strategy σ′
t in the subgame Γ(h) is ut(x) and the payoff on the strategy

σ′′
t is δyt. Now since x is not an element of At, player t rejects the proposal x under the

strategy σt, so in fact σt = σ′′
t . Since σ induces a Nash equilibrium in the subgame Γ(h),

we must have that ut(x) ≤ δyt. Thus x is not an element of the set A′′
t , as desired.

Step 2. We prove the inclusion A ⊂ A′.
Let x be an element of A. By part (b) of Proposition 4, there exists a C ∈ C such that

x is an element of AC and for each t ∈ C player t’s vote is pivotal at some node h of the
game Γ. We now prove that x is an element of A′

C .
As before, let σ′

t and σ′′
t be as in Definition 3. Then the payoff to player t on his strategy

σ′
t in the subgame Γ(h) is ut(x) and the payoff on the strategy σ′′

t is δyt. Since x is an
element of At, player t accepts the proposal x under the strategy σt, so in fact σt = σ′

t.
Since σ induces a Nash equilibrium in the subgame Γ(h), we must have that δyt ≤ ut(x).
It follows that x ∈ A′

t. Since t is an arbitrary player of the coalition C, we conclude that
x ∈ A′

C , as desired.

Step 3. Let Na = {t ∈ N |xt ∈ A}. We show that µ(Na) > 0.
If µ(Na) = 0, then yt = 0 for all t ∈ N . Because all functions ut are positive on the

interior of X, the inclusion IntX ⊂ A′′
t ⊂ At holds for each t ∈ N . Thus each alternative

in the interior of X is unanimously accepted under the joint strategy σ. It follows that
any player t ∈ N \Na has a one–shot profitable deviation at any node where t has to make
a proposal, namely to propose a point x ∈ IntX rather than xt. Indeed, the proposal xt

of player t is rejected, resulting in the payoff of 0, while the proposal x ∈ IntX is socially
accepted and yields a positive payoff.

From µ(Na) > 0 it follows that the set A is non–empty.

Step 4. We now prove that the set ∩A′′
t is non–empty, where the intersection extends over

all players t in N . It then follows that both sets A′′ and A′ are intervals.
Let x by the average accepted proposal:

x =
∑

i∈Na

µ(i)xi/µ(Na).

By the concavity of the function ut

ut(x) ≥
∑

i∈Na

µ(i)ut(xi)/µ(Na) ≥
∑

i∈Na

µ(i)ut(xi)/[1 − δµ(Nr)] = yt ≥ δyt,

which shows that x is an element of the set A′
t for each t. If yt > 0, then the extreme right

inequality is strict, so the point x is an element of the set A′′
t . And if yt = 0, the the set

A′′
t contains the open interval IntX. Thus the set

⋂

{t∈N |yt>0}

A′′
t
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is a non–empty open subset of X. Any non–empty open subset of X has a non–empty
intersection with the interior of X, and therefore with the set

⋂

{t∈N |yt=0}

A′′
t .

We conclude that ∩A′′
t is non–empty.

Step 5. We show that (x•, A
′
•) is a δ–equilibrium. First we prove that Na = N .

Suppose not. Then any player t ∈ N \ Na has a one–shot profitable deviation at any
node where player t is a proposer, namely to propose any point x ∈ ∩A′′

t rather than the
point xt. Indeed, the proposal xt is rejected, resulting in the payoff of δyt for player t.
The proposal x, on the other hand, will be socially accepted, because x ∈ ∩A′′

t ⊂ A′′ ⊂ A,
resulting in the payoff of ut(x) for player t at node h. And, since x ∈ A′′

t , we have the
inequality ut(x) > δyt. This contradicts the assumption that σ is a subgame perfect
equilibrium.

Since Na = N , the expected utility of player t can be written as

yt =
∑

i∈N

µ(i)ut(xi).

Finally, we have to show that the proposal xt of player t maximizes the function ut on
A′. Suppose not. Then there is an x ∈ IntA′ such that ut(x) > ut(xt). But then player
t has a one–shot profitable deviation at any node where player t has to make a proposal,
namely to propose the point x rather than the point xt. Indeed, the proposal x is socially
accepted under the strategy profile σ, because x ∈ IntA′ ⊂ A′′ ⊂ A, and it gives a higher
payoff to player t than xt. This contradicts the hypothesis that σ is a subgame perfect
equilibrium.

Step 6. Suppose there are players i0 and i1 such that x̄i0 = 0 and x̄i1 = 1. We show that
A = A′. As IntA′ ⊂ A ⊂ A′, it suffices to prove that A contains both endpoints of the
interval A′. We already know that (x•, A

′
•) is a δ–equilibrium. As the ideal point of player

i0 is zero, the proposal xi0 of player s equals the left endpoint of the interval A′. The ideal
point of player i1 is one, so xi1 equals the right endpoint of the interval A′. As we have al-
ready proved in Step 5, Na = N , so both xi0 and xi1 are elements of the set A, as desired.

4 The social acceptance set

In this section we establish that along any sequence of δ–equilibria, as δ converges to one,
the social acceptance set collapses to a point. The idea of the proof is very simple: we first
consider the image ut(A) of the social acceptance set in the utility space. We show that
for at least one player t the length of the interval ut(A) is bounded above by (1 − δ)/ν,
where ν depends only on the recognition probabilities. It follows that ut(A) converges to
a singleton as δ goes to one. Strict quasi–concavity of the function ut then implies that
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the set A also converges to a singleton. To highlight the importance of assumption (A2)
for this result we consider a world where assumption (A2) is violated and consequently
Theorem 3 fails.

At the end of the section a special case of simple majority rule is considered. If the
simple majority is required for a passing of a proposal, then the unique bargaining outcome
is the ideal point of the median player, i.e. that individual who divides the set of players
into two coalitions of equal size, those with lower ideal points and those with higher ideal
points. This result has been earlier established in Banks and Duggan [?].

Let In be a sequence of compact intervals and I be a compact interval. We say that
the sequence In converges to I if the sequence of left endpoints of In converges to the left
endpoint of I and the sequence of right endpoints of In converges to the right endpoint of
I. We write Len(I) for the length of an interval I, the difference of the upper and lower
endpoints. Let S = {i ∈ N |µ(i) > 0} and let ν = mini∈S{µ(i)}.

Proposition 5 Let a• be an element of [0, 1]N . Let δ ∈ [0, 1]. Suppose that δE(a•) ≤ ai

for all i ∈ S. Then ai ≤ (1 − δ + νδ)E(a•)/ν for all i ∈ S.

Proof. For each i ∈ S we have the following chain of inequalities:

E(a•) =
∑

t∈S

µ(t)at

≥ µiai + (1 − µi)δE(a•)

= δE(a•) + µi(ai − δE(a•))

≥ δE(a•) + ν(ai − δE(a•))

= νai + (1 − ν)δE(a•).

Rearranging yields the desired inequality.

We now estimate the length of the image of the social acceptance set in the utility
space. Notice that assumption (A2) plays a crucial role in the argument.

Proposition 6 Let (x•, A•) be a δ–equilibrium inducing the expected payoffs y• and the
social acceptance set A. Then Len(ut(A)) ≤ (1 − δ)/ν for some t ∈ S.

Proof. Let A = [x−, x+]. There exist coalitions C− and C+ in C such that x− ∈ AC− and
x+ ∈ AC+ . Now, by assumption (A2) there exists a player t ∈ C− ∩ C+ with µ(t) > 0.
Thus, both points x− and x+ belong to the individual acceptance set At of player t. Since
At is an interval, it contains the entire social acceptance set A. Fix one such player t.

We can estimate the utility of player t on the social acceptance set A as follows. Since
A ⊂ At, the utility of player t on the set A is bounded below by δyt. On the other hand,
the proposal xt of player t maximizes player’s t utility on the set A. Thus

ut(A) ⊂ [δyt, ut(xt)].
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Now we apply Proposition 5. Let ai = ut(xi) for all i ∈ N and notice that yt = E(a•).
Then we have ai ≥ δE(a•) as in Proposition 5, because each xi is an element of A, and
therefore an element of At. Proposition 5 implies, in particular, that

ut(xt) ≤ (1 − δ + νδ)yt/ν.

We can thus estimate the length of the interval ut(A) as follows:

Len(ut(A)) ≤ (1 − δ + νδ)yt/ν − δyt = (1 − δ)yt/ν ≤ (1 − δ)/ν,

where the last inequality follows from the fact that yt ≤ 1. The result follows.

We are now in a position to prove the main result of this section.

Theorem 3 For each natural number n let An be a social acceptance set in a δn–equilibrium.
If the sequence An converges to a compact interval A and the sequence δn converges to 1,
then A is a singleton.

Proof. Since the set S is finite, we can assume without loss of generality that there exists
a player t in S such that

Len(ut(A
n)) ≤ (1 − δn)/ν

for each n. Thus the sequence Len(ut(A
n)) converges to zero. Now, Len(ut(I)) is a con-

tinuous function of the endpoints of the interval I. It follows that Len(ut(A)) = 0, i.e.
the function ut is constant on the interval A. By assumption (A1) the function ut is non–
constant on any non–degenerate interval. It follows that A is a singleton.

We now show, by means of an example, that Theorem 3 need not be true if assumption
(A2) is violated. Let the player set N consist of player 0 with the utility function u0(x) =
1 − x, player 1 with the utility function u1(x) = x and a set of players M all having the
same utility function ui(x) = 1 − |x− 1/2|. The utility functions are illustrated in Figure
3. Assumption (A1) is clearly satisfied.

Think of the set M as consisting of a very large number of players. It is then reasonable
to assume that there exists a subset C of M such that both C0 = {0}∪C and C1 = {1}∪C
are decisive coalitions. Furthermore, we assume that µ(0) = µ(1) = 1/2. Thus only players
0 and 1 ever make proposals. Assumption (A2) is violated because C0 ∩ C1 = C and
µ(C) = 0.

Now, for each δ ∈ [0, 1] there exists a δ–equilibrium where X is the social acceptance
set. In this equilibrium each player proposes his own ideal point: player 0 proposes 0, each
player in M proposes the point 1/2 and player 1 proposes the point 1. The expected utility
is 1/2 for all players. The individual acceptance set of player 0 is A0 = [0, (1 + δ)/2], the
individual acceptance set of player 1 is A1 = [(1 − δ)/2, 1] and that of each player in M
is X. The acceptance set of coalition C0 equals the individual acceptance set of player 0,
while the acceptance set of coalition C1 equals the individual acceptance set of player 1.
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ui

u1

Figure 3: The utility functions in the example of Section 4.

The union of A0 and A1 is clearly the entire set X. Thus the social acceptance set equals
X.

We conclude this section with two additional results. First we show that each bargaining
outcome of the world ω lies in the interval [α, β] as defined below. We also reestablish that,
under the simple majority rule, there exists a unique bargaining outcome that only depends
on the set of players and their ideal points. The latter result has been established by Banks
and Duggan [1], see Theorem 5 and the discussion thereafter.

Define α and β as follows:

α = max
C∈C

min
t∈C

{x̄t} and β = min
C∈C

max
t∈C

{x̄t}.

For example, in the case of the unanimity acceptance rule (C = {N}) α equals the mini-
mum of the ideal points and β is the maximal ideal point.

Proposition 7 The inequality µ({i ∈ N |α ≤ x̄i ≤ β}) > 0 holds. In particular, α ≤ β.

Proof. Let Cα ∈ C and Cβ ∈ C be such that

α = min
t∈Cα

{x̄t} and β = max
t∈Cβ

{x̄t}.

Thus α ≤ x̄t for all t ∈ Cα and x̄t ≤ β for all t ∈ Cβ. By Assumption (A2) there exists a
player i ∈ Cα ∩ Cβ such that µ({i}) > 0. Then α ≤ x̄i ≤ β. This proves the result.

Proposition 8 Let δ ∈ [0, 1]. Let A = [x−, x+] be the social acceptance set in a δ–
equilibrium of the world ω. Then x− ≤ β and α ≤ x+.

Proof. As before, let [x−t , x
+
t ] be the individual acceptance set of player t. The point

x̄t is the maximum of the function ut on the set X, and so is an element of At. Thus
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x−t ≤ x̄t ≤ x+
t for each t ∈ N . Using the formulas for x− and x+ of Section 2, we obtain

x− = min
C∈C

max
t∈C

{x−t } ≤ min
C∈C

max
t∈C

{x̄t} = β,

x+ = max
C∈C

min
t∈C

{x+

t } ≥ max
C∈C

min
t∈C

{x̄t} = α.

Proposition 9 Each bargaining outcome of the world ω lies in the interval [α, β].

Proof. Let x be a bargaining outcome of ω. By Definition 2, the point x is a limit of a
sequence xn of points where each xn is an element of the social acceptance set An = [xn

−, x
n
+]

in a δn–equilibrium of ω and the sequence δn converges to one. Then by Theorem 3 both
sequences xn

− and xn
+ converge to the point x. By Proposition 8, xn

− ≤ β and α ≤ xn
+ for

each n. Taking the limit, we obtain the inequalities x ≤ β and α ≤ x.

We now turn to a special case of the simple majority rule.

Proposition 10 Consider a world ω where |N | = 2n+ 1 and the collection C consists of
all coalitions C ⊂ N with |C| = n + 1. Then α = β is the unique bargaining outcome of
the world ω. Furthermore, α = β is the unique point x satisfying the inequalities

|{i ∈ N |x̄i ≤ x}| ≥ n+ 1 and |{i ∈ N |x ≤ x̄i}| ≥ n+ 1.

Proof. The fact that α = β and the inequalities are established by a direct verification.
The fact that α = β is the unique bargaining outcome follows from Proposition 9.

For example, if there are seven players four of whom have an ideal point equal to 0 and
the remaining three have an ideal point 1, then 0 is the unique bargaining outcome. If no
two players have the same ideal points, then the unique bargaining outcome is an ideal
point of the median voter, i.e. that player who divides the set of players into two coalitions
of equal size, those with a lower ideal point and those with a higher ideal point. Notice
that this point only depends on the collection of players’ ideal points. It does not depend
on the shape of the utility functions or recognition probabilities.

In the case of the simple majority rule the computation of the bargaining outcome
is trivial, because the points α and β coincide, so they must be the unique bargaining
outcome by Proposition 9. One other special case where α = β is when all players’ ideal
points coincide, in which case α = β is the common ideal point and therefore the unique
bargaining outcome. In most cases of interest, however, α < β, and Proposition 9 does not
pin down a specific point as a bargaining outcome. To compute the bargaining outcome
we rely on a technique based on the characteristic function.
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5 The characteristic function

5.1 The characteristic function and the main result

Remark 1 Each function ut has left and right derivatives at each point x of the interior
of X denoted by lt(x) and rt(x). Both the left and the right derivatives are non–increasing
functions of x and rt(x) ≤ lt(x). The interval [rt(x), lt(x)] is the subgradient of ut at point
x. Given x ∈ IntX and ẋ ∈ X, the inequality ut(ẋ) − ut(x) ≤ s(ẋ − x) holds for each
s ∈ [rt(x), lt(x)]. Furthermore, rt(x̄t) ≤ 0 ≤ lt(x̄t), because x̄t is the maximum of ut on X.

For each x ∈ IntX we define

ϕ−(x) = max
C∈C

min
t∈C

{rt(x)/ut(x), 0} and ϕ+(x) = min
C∈C

max
t∈C

{lt(x)/ut(x), 0},

µ−(x) = µ({i ∈ N |x < x̄i}) and µ+(x) = µ({i ∈ N |x̄i < x}),

ξ(x) = µ−(x)ϕ−(x) + µ+(x)ϕ+(x).

These are well defined, since each function ut is positive on the interior of the set X. The
function ξ is referred to as a characteristic function. It will be convenient to extend the
characteristic function to X by letting ξ(0) = +∞ and ξ(1) = −∞.

Remark 2 There is nothing particularly important about the use of left derivatives in
the function ϕ+ and right derivatives in ϕ−. As the reader can verify, all results remain
true if one replaces a derivative lt(x) or rt(x) by an arbitrary element in the subgradient
[rt(x), lt(x)] of the function ut.

We now compute the characteristic function in a special case where the utility of an al-
ternative x to player t depends only on the distance between x and player t’s ideal point
through a function h that is the same for all players. Let N be a subset of X. Suppose
that ut(x) = h(|x− t|) where h : [0, 1] → [0, 1] is a decreasing concave continuously differ-
entiable function. Notice that the function ut reaches its maximum on X at the point t.
Let g : [0, 1] → [0, 1] be defined by g(x) = h′(x)/h(x). Then

rt(x)/ut(x) =

{

−g(|x− t|) if x < t

+g(|x− t|) if t ≤ x,
lt(x)/ut(x) =

{

−g(|x− t|) if x ≤ t

+g(|x− t|) if t < x.

Since g is a non–positive decreasing function, both functions rt(x)/ut(x) and lt(x)/ut(x)
are decreasing in the argument x for each t and are increasing in the argument t for each
x. Using the latter fact we compute:

ϕ−(x) = max
C∈C

min
t∈C

{rt(x)/ut(x)} = rα(x)/uα(x), whenever ϕ−(x) < 0,

ϕ+(x) = min
C∈C

max
t∈C

{lt(x)/ut(x)} = lβ(x)/uβ(x), whenever ϕ+(x) > 0,
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where α and β are as in Section 4. We can restrict our attention to the interval [α, β], since
we already know that it contains all bargaining outcomes. Since rα(x)/uα(x) = g(x−α) is
non–positive and lβ(x)/uβ(x) = −g(β − x) is non–negative on the interval [α, β], we have
the following expression for the characteristic function:

ξ(x) = µ−(x)g(x− α) − µ+(x)g(β − x) for each α ≤ x ≤ β.

Proposition 11 The characteristic function ξ is a decreasing function on X.

Proof. Given a real–valued function f on X let supp(f) = {x ∈ X||f(x)| > 0}.
Consider the functions ϕ+ and ϕ−. Clearly, ϕ+(x) ≥ 0 and ϕ−(x) ≤ 0 for each

x ∈ IntX. Using the fact that the functions lt(x) and rt(x) are non–increasing, it is easy
to show that both lt(x)/ut(x) and rt(x)/ut(x) are decreasing functions on IntX for each t.
It then follows that both functions ϕ+ and ϕ− are non–increasing on IntX. Furthermore,
ϕ+ is a decreasing function on supp(ϕ+) and ϕ− is a decreasing function on supp(ϕ−).

We show that
(0, β) ⊂ supp(ϕ+) ⊂ [0, β].

To prove the first inclusion, let the point 0 < x < β be given. Then for each C ∈ C there
exists a player t ∈ C such that x < x̄t. For this player t it holds that rt(x) > 0. It follows
that ϕ+(x) > 0, as desired. To prove the second inclusion let β < x < 1 be given. Then
there exists a coalition C ∈ C such that for each t ∈ C we have x̄t < x, so rt(x) < 0. It
follows that ϕ+(x) = 0, as desired. Similarly, one shows that

(α, 1) ⊂ supp(ϕ−) ⊂ [α, 1].

Consider now the function ξ. Write the function ξ as ξ = ξ− + ξ+, where ξ−(x) =
µ−(x)ϕ−(x) and ξ+(x) = µ+(x)ϕ+(x). Of course, ξ−(x) ≤ 0 and 0 ≤ ξ+(x) for each
x ∈ IntX.

We show that both functions ξ+ and ξ− are non–increasing on IntX. Indeed, both
µ+ and ϕ+ are non–increasing and non–negative on IntX. It follows that ξ+ = µ+ϕ+ is
non–increasing. The function µ− is non–decreasing, while ϕ− is non–positive and non–
increasing. Therefore, ξ− = µ−ϕ− is a non–increasing function.

Now, supp(ξ+) = supp(µ+)∩supp(ϕ+). Since the function ϕ+ is decreasing on supp(ϕ+),
the function ξ+ is decreasing on supp(ξ+). Similarly, supp(ξ−) = supp(µ−) ∩ supp(ϕ−).
Since the function ϕ− is decreasing on supp(ϕ−), the function ξ− is decreasing on supp(ξ−).

We now show that ξ is a decreasing function on IntX. Suppose not. Then there exist
0 < a < b < 1 such that ξ(a) ≥ ξ(b). Because ξ− and ξ+ are non–increasing functions,
all three must be constant on the interval [a, b]. Because the function ξ− is decreasing on
the set supp(ξ−) and the function ξ+ is decreasing on supp(ξ+), both function must be
identically equal to zero on the interval [a, b].

In particular, ξ−(b) = 0 and ξ+(a) = 0. Now, ξ−(b) = 0 means that either µ−(b) = 0
or ϕ−(b) = 0. Similarly, ξ+(a) = 0 means that either µ+(a) = 0 or ϕ+(a) = 0. Now, we
cannot have both µ−(b) = 0 and µ+(a) = 0, because 1 = µ(N) ≤ µ−(b) + µ+(a). Suppose
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µ+(a) > 0. Then ϕ+(a) = 0. Therefore, β ≤ a. But then α ≤ β ≤ a < b, so ϕ−(b) > 0.
Therefore, µ−(b) = 0. But then µ({i ∈ N |α ≤ x̄i ≤ β} = 0, contradicting Proposition 7.

Finally, ξ is a decreasing function on X because ξ(0) = +∞ and ξ(1) = −∞.

Definition 4 The point x ∈ X is a generalized zero of the function f : X → R ∪
{−∞,+∞} if there are sequences xn

− and xn
+ of points in X converging to x such that

lim f(xn
−) ≤ 0 ≤ lim f(xn

+).

It is clear that any point x ∈ X such that f(x) = 0 is a generalized zero of the function
f (take xn

− = x and xn
+ = x). Conversely, if x is a generalized zero of f and f is continuous

at point x, then f(x) = 0. A decreasing function f has at most one generalized zero. We
are now in a position to state the main result of the paper.

Theorem 4 (Main result) Each world ω has a unique bargaining outcome. The bar-
gaining outcome of ω is the unique generalized zero of the characteristic function ξ.

5.2 Some intuition

In this subsection we wish to argue that the bargaining outcome is in some sense robust
to renegotiations, when it is taken to be a status quo. All derivations are deliberately
informal, the purpose being to provide some intuition behind, rather than the proof of, the
main result.

Suppose that there has been a preliminary stage of negotiations that resulted in the
agreement to implement some alternative x at the moment of time t > 0. Imagine now
that the players negotiate again over the incremental change in the outcome together with
an incremental reduction in length of delay, with the status quo being the implementation
of the alternative x at time t. Let dx be an incremental change in the outcome and −dt < 0
be an incremental reduction in length of delay. The ratio dx/dt can be though of the as
the speed of the adjustment. A player i evaluates the resulting time–outcome pair using
the function Ui(x, t) = δtui(x). Obviously, each player prefers a change away from x in
the direction of its own ideal point, however, a player also accepts an incremental change
in the opposite direction, given a sufficiently large reduction in the length of delay. The
proposal (dx,−dt) is accepted by player i if results in a non–negative change in the utility
Ui, so the condition for the acceptance of (dx,−dt) is that

dUi(x, t) = u′i(x)dx− ln(δ)ui(x)dt ≥ 0.

Player i whose ideal point is to the left of the point x accepts a pair (dx,−dt) provided
that dx/dt ≤ ln(δ)ui(x)/u

′
i(x). Similarly, a player i whose ideal point is to the right of x

any pair (dx,−dt) provided that dx/dt ≥ ln(δ)ui(x)/u
′
i(x). The acceptance set of coalition

C is therefore an interval with the endpoints

φ−
C(x) = max

i∈C
x<x̄i

{

ln(δ)ui(x)

u′i(x)
,−∞

}

and φ+

C(x) = min
i∈C
x̄i<x

{

ln(δ)ui(x)

u′i(x)
,+∞

}

.
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The social acceptance set is an interval with the endpoints

φ−(x) = min
C∈C

φ−
C(x) and φ+(x) = max

C∈C

φ+

C(x).

Each player with an ideal point to the left of x proposes the left endpoint of the social
acceptance set, and a player with an ideal point to the right of x proposes the right endpoint
of the social acceptance set. Any player whose ideal point is x makes a proposal dx/dt = 0.
Thus the average proposed speed is

ψ(x) = µ−(x)φ−(x) + µ+(x)φ+(x).

In fact, the function ψ is related to the function ξ through the equation ϕ−ϕ+ψ = ln(δ)ξ.
To see this, notice that

φ−
C(x) = ln(δ)/max

i∈C
{u′i(x)/ui(x), 0} and φ+

C(x) = ln(δ)/min
i∈C

{u′i(x)/ui(x), 0}

φ−(x) = ln(δ)/ϕ+(x) and φ+

C(x) = ln(δ)/ϕ−(x).

Assuming that ϕ− is negative and ϕ+ is positive on the relevant interval, every zero of ξ
is also a zero of ψ, and vice versa.

Now, it seems very intuitive that the bargaining outcome should be a zero of the function
ψ. Indeed, a zero of the function ψ can be thought of being robust to a renegotiation, when
taken as a status quo, in the sense that the average proposed incremental change is zero.
Alternatively, one can view a zero of ψ as a rest point of a dynamics dx/dt = ψ(x) that
adjusts the outcome in the direction of the average proposal.

6 The proof of the main result

The central idea of the proof is to estimate the values of the characteristic function on the
endpoints of the social acceptance set. Thus the main result of this section is Theorem
5 which establishes the inequalities ξ(x−) ≥ 0 and 0 ≥ ξ(x+), where x− and x+ are the
endpoints of the social acceptance set in a δ–equilibrium for any δ < 1. The inequalities
imply immediately that any bargaining outcome is a generalized zero of the function ξ, and,
since ξ is a decreasing function, that the bargaining outcome is unique. As a byproduct of
Theorem 5 we also obtain an interesting fact that the bargaining outcome is an element of
the social acceptance set of any δ–equilibrium for any δ ∈ [0, 1).

The following proposition is a decisive step of the proof.

Proposition 12 Suppose δ ∈ [0, 1). Let (x•, A•) be a δ–equilibrium inducing the expected
payoffs y•, the acceptance set AC for each coalition C and the social acceptance set A =
[x−, x+]. Let

d− =
x− − E(x•)

1 − δ
and d+ =

x+ −E(x•)

1 − δ
.
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If x− ∈ IntX, then the following inequalities hold:

−1 ≤ δd+ϕ−(x−),

−1 ≥ δd−ϕ+(x−).

If x+ ∈ IntX, then the following inequalities hold:

−1 ≤ δd−ϕ+(x+),

−1 ≥ δd+ϕ−(x+).

Proof. We prove the first inequality. Assume that x− ∈ IntX.
Let t be an arbitrary player. For each i ∈ N we have the inequalities

ut(x+) − ut(xi) ≤ rt(xi)[x+ − xi] ≤ rt(x−)[x+ − xi],

where the first inequality is a defining inequality for the subgradient of the function ut,
and the second inequality follows from the fact that the left derivative is a non–increasing
function, so that rt(xi) ≤ rt(x−) for each i ∈ N and the fact that 0 ≤ x+ − xi. (The right
derivative at the point xi exists if xi < x+, because in that case xi is in the interior of X. If
xi = x+, then the extreme left and right hand sides of the above inequality are both zero.)
Taking the expected value with respect to i in both sides of the above inequality yields

ut(x+) − yt ≤ rt(x−)[x+ −E(x•)].

Let C+ ∈ C be such that x+ ∈ AC+
. Then δyt ≤ ut(x+) for each t ∈ C. Let t be a

player in the coalition C. Therefore,

0 ≤ ut(x+) − δyt =

= (1 − δ)ut(x+) + δ[ut(x+) − yt] ≤

≤ (1 − δ)ut(x+) + δrt(x−)[x+ − E(x•)].

Dividing by (1 − δ) yields
0 ≤ ut(x+) + δrt(x−)d+.

Now, either x̄t ≤ x− or x− < x̄t. If the former, then then the function ut is non–increasing
on the interval [x−, x+], in particular ut(x+) ≤ ut(x−). If the latter, then 0 ≤ rt(x−). In
either case we obtain the inequality

0 ≤ ut(x−) + δrt(x−)d+.

Rearranging yields the inequality

−1 ≤ δd+rt(x−)/ut(x−).

Since t is arbitrary member of coalition C+, we have

−1 ≤ min
t∈C+

{δd+rt(x−)/ut(x−), 0}.
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Therefore,

−1 ≤ max
C∈C

min
t∈C

{δd+rt(x−)/ut(x−), 0} =

= max
C∈C

min
t∈C

{rt(x−)/ut(x−), 0}δd+ =

= ϕ−(x−)δd+.

The proof of the third inequality is a jigged–jagged version of the proof of the first one.
Assume that x+ ∈ IntX. Let C− ∈ C be such that x− ∈ AC

−

. Replacing every instance
where x− occurs by x+ and vice versa, one shows that

−1 ≤ δd−lt(x+)/ut(x+).

for each t ∈ C−. Therefore,

−1 ≤ min
t∈C

−

{δd−lt(x+)/ut(x+), 0}.

Taking into account that d− ≤ 0, we then obtain

−1 ≤ max
C∈C

min
t∈C

{δd−lt(x+)/ut(x+), 0} =

= min
C∈C

max
t∈C

{lt(x+)/ut(x+), 0}δd− =

= ϕ+(x+)δd−.

We prove the fourth inequality. Assume that x+ ∈ IntX. Let C be an arbitrary
coalition from C . First we argue that there exists a player t ∈ C such that ut(x+) ≤ δyt.
Suppose not. Then δyt < ut(x+) for each t ∈ C. Then the acceptance set AC of coalition
C contains an open neighborhood of the point x+, and so does the social acceptance set A.
But x+ is an interior point of X, so any open neighborhood of x+ contains a point x > x+.
This contradicts the fact that x+ is the right endpoint of the interval A.

Fix any player t ∈ C such that ut(x+) ≤ δyt. For each i ∈ N we have the inequality

ut(xi) − ut(x+) ≤ rt(x+)[xi − x+],

Taking the expected values on both sides with respect to i yields

ut(x+) − yt ≥ rt(x+)[x+ −E(x•)].

Therefore,

0 ≥ ut(x+) − δyt =

= (1 − δ)ut(x+) + δ[ut(x+) − yt] ≥

≥ (1 − δ)ut(x+) + δrt(x+)[x+ − E(x•)].

Dividing by 1 − δ gives
0 ≥ ut(x+) + δrt(x+)d+.
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Rearranging yields the inequality

−1 ≥ δd+rt(x+)/ut(x+).

Thus,
−1 ≥ min

i∈C
{δd+ri(x+)/ui(x+), 0}.

Since C is an arbitrary element of the collection C , we obtain

−1 ≥ max
C∈C

min
i∈C

{δd+ri(x+)/ui(x+), 0} =

= max
C∈C

min
i∈C

{ri(x+)/ui(x+), 0}δd+ =

= ϕ−(x+)δd+.

The proof of the second inequality is similar to the proof of the fourth inequality.
Assume that x− ∈ IntX. Replacing every instance where x− occurs by x+ and vice versa,
one shows that for each coalition C ∈ C there exists a player t ∈ C such that

−1 ≥ δd−lt(x−)/ut(x−).

Thus,
−1 ≥ min

i∈C
{δd−li(x−)/ui(x−), 0}.

Since C is an arbitrary element of the collection C , and taking into account that d− ≤ 0,
we then obtain

−1 ≥ max
C∈C

min
i∈C

{δd−li(x−)/ui(x−), 0} =

= min
C∈C

max
i∈C

{li(x−)/ui(x−), 0}δd− =

= ϕ+(x−)δd−.

This completes the proof.

Proposition 13 Suppose δ ∈ [0, 1). Let (x•, A•) be a δ–equilibrium inducing the social
acceptance set A = [x−, x+]. Let

d =
x+ − x−

1 − δ
.

If x− ∈ IntX, then, the following inequalities hold:

−1 ≤ δdµ−(x−)ϕ−(x−),

1 ≤ δdµ+(x−)ϕ+(x−).

If x+ ∈ IntX, then the following inequalities hold:

1 ≥ δdµ+(x+)ϕ+(x+),

−1 ≥ δdµ−(x+)ϕ−(x+).
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Proof. Let d− and d+ be as in Proposition 12. We use the following estimates of E(x•):

E(x•) ≤ µ(x̄i < x−)x− + µ(x− ≤ x̄i)x+,

E(x•) ≤ µ(x̄i ≤ x−)x− + µ(x− < x̄i)x+,

E(x•) ≥ µ(x̄i ≤ x+)x− + µ(x+ < x̄i)x+,

E(x•) ≥ µ(x̄i < x+)x− + µ(x+ ≤ x̄i)x+,

where µ(x̄i < x−) stands for µ({i ∈ N |x̄i < x−}), e.t.c. To derive the first of the estimates,
let zi be equal to x− whenever x̄i < x− and x+ otherwise. Then xi ≤ zi for each i ∈ N .
Therefore, E(x•) ≤ E(z•). Other estimates are derived similarly.

Use the estimates for E(x•) to obtain, respectively, the following inequalities:

x+ −E(x•) ≥ x+ − [µ(x̄i < x−)x− + µ(x− ≤ x̄i)x+] = µ(x̄i < x−)[x+ − x−],

x− −E(x•) ≥ x− − [µ(x̄i ≤ x−)x− + µ(x− < x̄i)x+] = −µ(x− < x̄i)[x+ − x−],

x− −E(x•) ≤ x− − [µ(x̄i ≤ x+)x− + µ(x+ < x̄i)x+] = −µ(x+ < x̄i)[x+ − x−],

x+ −E(x•) ≤ x+ − [µ(x̄i < x+)x− + µ(x+ ≤ x̄i)x+] = µ(x̄i < x+)[x+ − x−].

Dividing by 1 − δ gives
d+ ≥ µ(x̄i < x−)d,

d− ≥ −µ(x− < x̄i)d,

d− ≤ −µ(x+ < x̄i)d,

d+ ≤ µ(x̄i < x+)d.

Now each inequality of Proposition 13 is obtained by combining the respective inequality
of Proposition 12 with the respective inequality above.

−1 ≤ δd+ϕ−(x−) ≤ δµ(x̄i < x−)dϕ−(x−) = δdµ−(x−)ϕ−(x−),

−1 ≥ δd−ϕ+(x−) ≥ −δµ(x− < x̄i)dϕ+(x−) = −δdµ+(x−)ϕ+(x−),

−1 ≤ δd−ϕ+(x+) ≤ −δµ(x+ < x̄i)dϕ+(x+) = −δdµ+(x+)ϕ+(x+),

−1 ≥ δd+ϕ−(x+) ≥ δµ(x̄i < x+)dϕ−(x+) = δdµ−(x+)ϕ−(x+).

Of course, the first two inequalities are obtained under the assumption that x− ∈ IntX
and the last two under the assumption that x+ ∈ IntX.

Proposition 14 below strengthens Proposition 1 in Section 2. While Proposition 1
establishes that the social acceptance set is an interval containing the average proposal, the
Proposition 14 states that it contains the average proposal together an open neighborhood.

Proposition 14 Suppose δ ∈ [0, 1) and let (x•, A•) be a a δ–equilibrium inducing the
expected payoffs y• and the social acceptance set A. Then A contains an open neighborhood
of the point E(x•).
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Proof. Each individual acceptance set At contains the point E(x•) by the concavity of
the function ut. Indeed,

ut(E(x•)) ≥ E(ut(x•)) = yt ≥ δyt.

Furthermore, if yt > 0, the last inequality is strict, so the point E(x•) is contained in the
interior of At. If yt = 0, then the set At contains the interval (0, 1). Thus, in either case,
the set At contains the point E(x•) together with an open neighborhood. It follows that
for each coalition C the acceptance set AC contains an open neighborhood of the point
E(x•). The result follows.

Theorem 5 Suppose δ ∈ [0, 1) and let A = [x−, x+] be the social acceptance set in a
δ–equilibrium of ω. Then ξ(x−) ≥ 0 ≥ ξ(x+).

Proof. By Proposition 14 the the set A is non–degenerate. In particular, x− < 1. If
0 < x− < 1, then ξ(x−) ≥ 0 as can be seen by adding up the first two inequalities of Propo-
sition 13 and dividing by δd, d being non–zero again by Proposition 14. If x− = 0, then
ξ(x−) = +∞ by the definition of ξ. Similarly, x+ > 0 by Proposition 14. If 0 < x+ < 1,
then ξ(x+) ≤ 0 is obtained by adding up the last two inequalities of Proposition 13 and
dividing by δd. And if x+ = 1, then ξ(x+) = −∞ by the definition of ξ.

Proposition 15 Each bargaining outcome of the world ω is a generalized zero point of the
characteristic function ξ.

Proof. Let x be a bargaining outcome of ω. By Definition 2, there exist sequences An,
δn, and xn such that An is a social acceptance set in a δn–equilibrium of ω, xn is a point
in An, the sequence δn converges to 1 and xn converges to x. Let An = [xn

−, x
n
+]. Re-

placing, if necessary, sequences by subsequences, assume that both xn
− and xn

+ converge.
Then Theorem 3 implies that both sequences converge to x. Theorem 5 implies that
lim ξ(xn

−) ≥ 0 ≥ lim ξ(xn
+), as desired.

The following theorem follows immediately from Theorem 5 and Proposition 15.

Theorem 6 Let x be a bargaining outcome of the world ω. Suppose δ ∈ [0, 1) and let A
be the social acceptance set in a δ–equilibrium of ω. Then x is an element of A.

Appendix

We now provide a proof of Proposition 4. To prove the proposition we introduce a lexico-
graphic order on the collection C of decisive coalitions induced by the order > on the set
N of players. Recall that > denotes the response sequence in the game Γ.
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Definition 5 Given a natural number k and a coalition C ∈ C let ℓk(C) be the k–th
lowest element of the coalition C, in the order > (we let ℓk(C) = ℓ|C|(C) for each k > |C|).
Define an lexicographic order > on the set C by letting C1 > C2 whenever there exists an
natural number K such that ℓk(C1) = ℓk(C2) for each k = 1, . . . , K and ℓK(C1) > ℓK(C2).

To compare the coalition C1 to the coalition C2 we first compare their minimal elements.
If the lowest element of C1 is bigger than the lowest element of C2, than C1 > C2. And
if the lowest element of C1 equals the lowest element of C2, we go on to compare the
second lowest elements. If the second lowest element of C1 is bigger than that of C2, then
C1 > C2. If the second lowest elements of the two coalitions are also the same, we go on
to compare the third lowest elements, and so on. For example, take C1 = {1, 2, 4, 5} and
C2 = {1, 2, 3, 6, 7} and let the order on the set N be the natural order (1 < 2 < · · · < 7).
Then C1 > C2.

Clearly, the lexicographic order > is a strict total order on C . We shall be interested
in the maximal elements of > on a subset C ′ of C . For each C ′ ⊂ C there is a unique
maximal element of > on C ′. For the rest of this section we assume that C only includes
the minimal decisive coalitions, i.e. there are no C1 and C2 in C such that C1 ⊂ C2.

Proposition 16 Let C ′ ⊂ C and let C ∈ C ′ be the unique maximal element of > on C ′.
Then for each t ∈ C and each C ′ ∈ C ′ either t ∈ C ′ or there is a player i ∈ C ′ \ C such
that t > i.

Proof. Let t ∈ C and C ′ ∈ C ′. Since C > C ′, there exists a K such that ℓk(C) = ℓk(C
′)

for each k = 1, . . . , K and ℓK(C) > ℓK(C ′). If t ≤ ℓK(C), then t = ℓk(C) for some
k = 1, . . . , K, in which case t = ℓk(C

′) and so is an element of C ′.
Suppose now that t > ℓK(C) and let i = ℓK(C ′). We know that t > i, and that the

player i is an element of C ′. It remains to show that i is not an element of C. Suppose
it is. Then ℓK(C) > i, so there is some J < K such that ℓJ(C) = i. But we know that
ℓJ(C) = ℓJ(C ′). Thus ℓK(C ′) = i = ℓJ(C ′). This is possible only if |C ′| ≤ J . But then
each element of C ′ can be written as ℓj(C

′) for some j = 1, . . . , J , which equals the element
ℓj(C) of the set C. Thus C ′ ⊂ C, a contradiction.

Proposition 4 Let σ = (x•, A•) be a joint stationary strategy in the game Γ inducing the
acceptance set AC for coalition C and the social acceptance set A. Let x ∈ X.

(a) Suppose x is not an element of A. Then for each C ∈ C there is a player t ∈ C such
that x is not an element of the set At and player t’s vote is pivotal at some node h
of the game Γ.

(b) Suppose x is an element of A. Then there exists a C ∈ C such that x is an element
of AC and for each t ∈ C player t’s vote is pivotal at some node h of the game Γ.

Proof. We prove part (a). Fix a coalition C ′′ ∈ C . We show C ′′ contains a player t whose
vote is pivotal at some node h of the game Γ.
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Given a coalition C ′ ∈ C , let C ′
r = {i ∈ C ′|x /∈ Ai}. The set C ′

r is non–empty for each
C ′ ∈ C . Choose a coalition C ∈ C having the following properties: (a) Cr ⊂ C ′′ and (b)
there is no coalition C ′ ∈ C such that C ′

r is a strict subset of Cr. Clearly, such a coalition
C exists: the set Cr is a minimal element of the collection {C ′

r|C
′ ∈ C : C ′

r ⊂ C ′′} of sets
ordered by inclusion. Let t be the last player of the set Cr in the response order >. Notice
that t is an element of C ′′ and that x is not an element of At.

Let h be any node of the game Γ where (a) player t reacts to the proposal x, (b) each
player i ∈ C preceding player t in the response order > accepts the proposal x, (c) each
player i ∈ N \ C preceding player t in the response order > rejects the proposal x. As
follows from the considerations below, the vote of player t at the node h is decisive: the
proposal x is socially accepted if and only if it is accepted by player t.

Notice that under the strategy σt player t rejects the proposal x. We now show that
the proposal x is turned down on the path of play induced by the joint strategy σ in the
subgame Γ(h). Indeed, coalition C rejects the proposal x, because player t ∈ C rejects x
at the node h. Take any C ′ ∈ C other than C. By the choice of the coalition C, there is
a player i ∈ C ′

r \ Cr. If i = t or i > t, player i rejects the proposal x along the path of
play induced by the joint strategy σ, because x /∈ Ai. And if i < t, then player i rejects
the proposal x at the node h by condition (c). Notice that player i is not an element of
the coalition C, for otherwise the inclusions i ∈ C and i ∈ C ′

r would imply the inclusion
i ∈ Cr, leading to a contradiction.

Consider now a strategy σ′
t for player t that coincides with σt on all nodes but h, where

it accepts the proposal x. We show that the proposal x is accepted by the coalition C
on the path of play induced by the joint strategy (σ′

t, σ−t) in the subgame Γ(h). Since
t is chosen to be the last player of Cr in the response sequence, each member i of the
coalition C following player t in the response order accepts the proposal x on the path
of play induced by (σ̄t, σ−t). And each member of coalition C preceding player t in the
response order accepts x at the node h by condition (b).

We now prove part (b) of the proposition. As x is assumed an element of the set A,
the collection C

′ = {C ∈ C |x ∈ AC} is non–empty. Now choose a coalition C ∈ C
′ having

the following property: For each t ∈ C and each C ′ ∈ C ′ either t ∈ C ′ or there is a player
i ∈ C ′ \ C such that t > i. The existence of coalition C is guaranteed by Proposition
16. One must take C to be the maximal element of the set C

′ in the lexicographic order
induced by the response sequence >, as in Definition 5. We show that each player t of C
has a node h where player t’s vote is pivotal.

Take a player t ∈ C. Let h be any node where (a) player t has to react to the proposal
x, (b) each player i ∈ C preceding player t in the response order > accepts x, and (c) each
player i ∈ N \ C preceding player t in the response order > rejects x.

Notice that player t accepts the proposal x under the strategy σt. We now show that
the proposal x is accepted by the coalition C on the path of play induced by the joint
strategy strategy σ in the subgame Γ(h). Indeed, each player i ∈ C preceding player t
in the response order > accepts x by the definition of the node h. And all players i ∈ C
following player t in the response order accept the proposal x along the path of play induced
by the joint strategy σ, because x ∈ Ai.
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Consider the strategy σ′
t that coincides with the strategy σt on all nodes but h where

it rejects the proposal x. We show that the proposal x is socially rejected on the path of
play induced by the joint strategy (σ′

t, σ−t) in the subgame Γ(h). To see this, let C ′ ∈ C .
Suppose first that C ′ ∈ C ′. Player t, if a member of coalition C ′, rejects x at the node
h by the definition of the strategy σ′

t. And if t is not a member of C ′, then there is a
player i ∈ C ′ \ C such that t > i. Any such player i rejects the proposal x at the node
h by condition (c). In either case the proposal x is rejected by at least one of the players
of the coalition C ′. Suppose now C ′ is not in C ′, so there exists a player i ∈ C ′ such
that x is not an element of Ai. If i follows t in the response order, then i rejects the
proposal x along the path of play induced by the strategy σ. Suppose player i precedes
player t in the response order. In this case, note that player i is not an element of the
coalition C, because x ∈ AC , so player i rejects the proposal x by the choice of the node h.

References

[1] Jeffrey S. Banks and John Duggan: A Bargaining Model of Collective Choice.
American Political Science Review, 94: 73–88, 2000.

[2] Ken Binmore, Ariel Rubinstein, and Asher Wolinsky: The Nash Bargaining
Solution in Economic Modelling. The RAND Journal of Economics, 17: 176–188,
1986.

[3] Daniel Cardona and Clara Ponsat́ı: Bargaining One–Dimensional Social
Choices. Journal of Economic Theory, doi: 10.1016/j.jet.2006.12.001, 2007.

[4] Seok-ju Cho and John Duggan: Uniqueness of Stationary Equilibria in a One–
Dimensional Model of Bargaining. Journal of Economic Theory, 113: 118–130, 2003.
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