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Abstract

Cochrane (2007) points out that the Taylor rule parameters in New-Keynesian models are not iden-
tified, and thus trying to estimate them through single-equation regressions is pointless. This paper
shows in contrast that this observation holds only for economies that do not display inflation inertia
or habit formation. These inherent features of aggregate data allow to correctly identify the param-
eters of the monetary policy rule by single-equation analysis.
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Introduction

The aim of this paper is to reconsider the usefulness of Taylor rule regressions conducted through single-
equations. Monetary policy rules gained importance since Taylor (1993), where the federal funds rate is
shown to react quite systematic to movements on inflation and output away their targets. This opened
an entire debate about how active the central bank should be in order to achieve determinacy (i.e., ruling
out sunspots or excessive fluctuations). Accordingly, it is understood that determinacy is reached when
the inflation coefficient on the latent rule is greater than one.! For the U.S. case, Clarida, Gali and

Gertler (2000) claim to find such evidence only for the post-Volcker period (1979 onwards), which would

*Corresponding author: Department of Economics, Universiteit Maastricht, PoBox 616, MD6200 Maastricht, The
Netherlands. Ph: +(31) 4338-83640. Fax: +(31) 4338-84150. Email: j.carrilloQalgec.unimaas.nl. I would like to
thank F. Blasques, B. Candelon, P. Feve, J. Muysken, and A. Korpos for helpful discussions and comments. All errors are
of course my own.

10Of course, monetary modelers recognize that determinacy is a property of a system, not of a single parameter. See
Bullard and Mitra (2002) for instance.



explain the great moderation.

There are different criticisms to Taylor and Clarida et al., specially because they use a single-equation.?
Can we rule out the possibility that we are instead estimating a reduced form?, or that the aggregate
dynamics of the economy come from an alternative observationally equivalent model?, or why not ensure
identification by using the information of a whole DSGE model? These are valid questions, from which

we have not yet converge to a unique answer.

But one of the most critical arguments is certainly provided by Cochrane (2007), who claims that the
possibility of identifying the parameters of the Taylor rule simply vanishes when using single-equation
estimations. Cochrane shows a sort of a “curse” of the Taylor principle: In a purely forward-looking
model, the eigenvalues that make the system determinate (say, the “stabilizers”) are irremediably lost in
the equilibrium dynamics. The Taylor principle shows how the parameters of the interest rate rule are
partly responsible for the size of the stabilizers eigenvalues; if the latter are lost, than any information to
identify the parameters of the Taylor rule will be also lost.? Since forward-looking behavior its nowadays
crucial on New Keynesian models, Cochrane critique seems to nullified any evidence about the size of the

inflation coefficient conducted trough single-equation analysis.

On the other hand, the framework used by Cochrane overlook an essential issue about the dynamics of
inflation and output inherent to actual data, that is persistence. Do inflation inertia and output persis-
tence contain any information that would help to identify the parameters of the Taylor rule (provided
that the central bank behavior could indeed be described through this latent rule)? This is the main
question of this paper, whose answer is yes! These two features of aggregate data can help to identify

the parameters of the interest rate rule, at least partially, even using a single-equation approach. This

2See, for instance, Hetzel, 2000; Linde, 2002; Lubik and Schorfheide, 2004; Beyer and Farmer, 2004 and 2005; Carrillo
and Feve, 2006

3Cochrane, section 4.3, highlight some hopes and constraints for the identification of the Taylor rule parameters within
a full-information approach, but this new attempt rule out any single-equation method.



result is already provided by purely backward-looking models (see Carare and Tchaidze 2005). The rea-
son is explained by Mavroeidis (2005), who recalls that high-order dynamics (or some persistence) on

the regressors (or instruments) is a necessary condition for the generic identification of a structural model.

In this paper, the emphasis is on the new generation of monetary models, i.e., with inertia on price
setting and habit formation on consumption yielding a hybrid model.* For comparisons purposes, I
consider additionally pure forward-looking and backward-looking models. After simulations, a series of
regressions are performed as to recover the parameters of the imposed Taylor rule within each model.
The remainder is as follows: first, the models are presented; then, more details about the calibration,
the Monte Carlo simulations, and the regressions are provided; finally, the results and some concluding

remarks close the present analysis.

1 Models
1.1 Hybrid model

A model able to merge backward and forward temporal dimensions can be stated as:

yr = c1yi—1 + (1 — c1) Eyyey1 — c3(ie — Eymiq1) + vy (1)
Ty = KYp + Yomp—1 + YV Eimip1 + ey (2)
Iy = Ar Ty + QyYs + €5t (3)

€xt = Py i—1+ 0gly, for xe{bm, i} (4)

where E} is the expectation operator conditional to the information available at period ¢; y;, m, and 4,
represent output, inflation and the nominal interest rate, all as deviations from their steady state values;
ep, er, and e; are assumed to be correlated disturbances in the spirit of Smets and Wouters (2007), i.e.,
representing a interest rate spread shock, a cost push shock, and a monetary policy shock, respectively;

the innovations v are assumed to be i.i.d. with N(0,1), while o, for z € {b, 7,4} are positive constants

4See Christiano, Eichenbaum and Evans (2005), or Smets and Wouters (2007), among others.



proportional to the variance of the correlated shocks .

The first two relations are the New-Keynesian versions of the IS and the Phillips curves. The former
correspond to the specification provided in Smets and Wouters (2007), which denotes the presence of
habit formation on consumption; the latter is the version presented in the seminal work of Gali and
Gertler (1999) which includes inflation inertia trough the existence of backward-looking firms. Equation

(3) is a Taylor rule that for simplicity is stated in a contemporaneous dimension.

The coefficients presented in equations (1) and (2) are functions of the deep parameters in the economy,’
which includes: h € [0, 1] as the habit persistence coefficient, ¢ > 0 as the non-negative inverse of the
inter-temporal elasticity of substitution, w € [0,1] as the proportion of backward-looking firms in the
economy, « € [0,1] as the probability of a firm to do not re-optimize prices in the present period, and
1—cy

B € ]0,1] as the subjective discount rate for future consumption. Accordingly, ¢; = th; €3 = S

KR = —(1—w)(1—¢a)(l—aﬁ); Yo = %7 V= %f, and ¢ = —I—w[l — Oé(l - ﬁ)]

1.2 Forward-looking model

An special case happens when consumers do not form any habit (h = 0) and there are no backward-
looking firms (w = 0). In such a case, this setup converges to a pure forward-looking model in the way

commonly found on textbooks.

1.3 The backward-looking-Rudebusch model

Rudebusch (2001) considered a constrained-VAR on the variables cited above which entails a nice goodness

of fit for the U.S. economy. In specific,

5The reader is advice to review the aforementioned papers for details on the environments faced by households and firms
and the derivation of these relations.



4

Yt = Y1Ye—1 + Y2yr—2 + Y3 Z; G—j — Ti—j)) + €bs (5)

;_A

Mg = MoYt—1 + T1Mp—1 + ToTy_2 + M3Me—3 + T4T4—4 + €x ¢ (6)

The economy is finally closed with the policy rule (3) and the shocks given by (4). This is a similar setting
to Carare and Tchaidze (2005), though the main difference is that here the Taylor rule is present in a
contemporaneous dimension (eq. 3), and not in a backward-looking version, keeping the same grounds
of comparison with the hybrid model. Notice that switch off the forward-looking terms in the hybrid
model is not possible even by setting extreme values for the deep parameters of the model. For instance,
if we consider total habit persistence (h = 1), we would have that ¢; = 1/2 and thus we will still have
the expected future output present on equation (1). That is why, without loss of generality, I chose the

Rudebusch constrained-VAR to represent the backward-looking model.

2 Simulations

2.1 Calibration

Let 8 = 0.99, implying a steady state annualized real interest rate of 4 %; o = 1, for a logarithmic utility
for consumption; o« = 0.8, which denotes an average duration for price changes of 5 quarters; w = 0.5,
implying half of firms are backward-looking (following the estimations of Gali and Gertler, 1999); the
habit persistence parameter h is set to 0.7, lying in the range of available estimates based on aggregate
data (see Christiano et al, 2005; Boivin and Giannoni, 2006; and Smets and Wouters, 2007). The param-
eters of the Taylor rule take the classical values found in the literature and considered in Taylor (1993),
ie. ar = 1.5 and a,; = 0.5. The choice of these parameters ensure that the hybrid model equilibrium
will be determinate, though we could also choose parameters to study the indeterminate case, but this
goes beyond the scope of this analysis. For the backward-looking model, the calibration corresponds to
the estimations of Rudebusch (2001), i.e., y1 = 1.17, yo = —0.27, y3 = —0.09, 7o = 0.15, m = 0.67,

Mo = —0.08, m3 = 0.29 and 75 = 0.12.° Without loss of generality, we add the correlated shocks to

6For the standard deviations of the estimated coefficients and details about the estimations procedure, see Rudebusch
(2001).



Rudebusch’s equations, though he did not find any evidence of autocorrelated disturbances within his

setting.

The nuisance parameters of the shock processes are set following Smets and Wouters (2007), i.e., (pp, o) =
(0.22,0.23), (pp,op) = (0.89,0.14), and (p;,0;) = (0.5,0.24); the first two couples corresponds to the
estimates of these authors, while for the monetary policy shock I adopt their prior values as to consider

a mild persistent disturbance as a reference point.

2.2 Monte Carlo and policy rule regressions

In order to asses the ability of the single-equation approach to identify the parameters of the policy rule,
the three models presented above are simulated within a Monte Carlo exercise, where 10,000 samples of
500 observations each one are generated. In every sample, a series of estimations are conducted, from
which the OLS estimator, and two IV estimators with different instruments are put in place.” The choose
of the instruments follows from the common practice of the Taylor rule regression, where the lagged val-
ues of the regressors are taken; in this case, the first set of instruments is formed by Z1+ = (m—1, y1—1),
while the second denotes Z3; = (m¢—1,m—2). The reasons behind the difference between Z; + and Zs ¢ is
to corroborate the robustness of the estimations and to elucidate the added value that may appear from
considering two stochastic processes (like in Z; ), instead of one (Z3.), as the relevant information to
identify the Taylor rule parameters.® Along the 10,000 regressions for each estimation technique, a den-
sity function is computed through a gaussian kernel. The mean of that distribution will tell us whether

or not each estimation method is able to recover the Taylor rule parameters.

One important observation is that the single-equation approach is not spared from biases whenever the

monetary shock inserted in the Taylor rule present some degree of persistence, at least for the hybrid and

7Clarida et al. (2000) use GMM estimation, with a set of predetermined instruments. Here we use the simplest GMM
possible, with only 2 instruments to identify 2 Taylor rule parameters.

8There were also considered other set of instruments as (it—1,%t—1), (ie—1,7mt—1), (Ye—1,ye—2), or (it—1,4i¢—2). The
results were invariant about the added value that the sequence of two different variables may provide over a sequence of
one single variable.



forward-looking model. This is because on the hybrid model the equilibrium dynamics of the economy
imply that z; = Zke{bmi} Zkek,t, for zx € {m, y1}, where z, is a function of the deep parameters of the
model. Therefore, the OLS-estimator will be biased as long as the monetary innovation is present, since
E(e;12) will be different from zero. For the IV-estimators, the orthogonality condition is not verified as
long as E(e; 1z:—1) # 0, which is the case whenever |p;|| > 0. In the case of the backward-looking model,

in contrast, all estimations techniques are unbiased by construction.”

To asses the importance and size of these biases, at least for the IV-estimators of the hybrid and forward-
looking models, two series of simulations can be confronted: (7), where the innovations are not correlated
(all the p’s equal zero), and (II) where serial correlation is present. For the latter case, we can still
consider two subcases: (II.i) when only a, and a, are estimated; and (I1.ii), using the Hildreth-Liu

method to estimate p; along with the parameters of the Taylor rule.
3 Results

The results are stated in table 1. The estimated densities for cases (I) and (II.i) are displayed in fig-
ure 1, while case (I1.ii) is depicted on figure 2. One observation that will hold for any model is that
the OLS-estimations are characterized by at least equal or narrower distributions than the ones of the
IV-estimations, which denotes a superiority in estimation precision; Though, as explained above, the

OLS-estimators will be systematically biased for the hybrid and forward-looking models.

Forward-looking model. In this case, we can see directly that the striking observation of Cochrane
(2007) holds in any single regression for this model. Indeed, no single estimation is able to recover the true
parameters of the Taylor rule, in terms of the mean of the estimated densities, independently of whether

shocks display serial correlation or not. In all cases, the estimations of the forward-looking model yield

9Consider for example a simplified version of the Rudebusch model:
Yt = Y1Yt—1 — bt—1
it = ayYt + e ¢

and e; ; following an AR(1) process as in (4). Then we can express output as yt = (p; + Y1 — ay)ye—1 — pi(y1 — ay)yt—2 —
oV t—1. Therefore E(e; 1yt) = 0, and the OLS-estimator for the coefficient a, is unbiased.



a mean that is less than one for a, and negative for a,.

Hybrid model. Here we find, in contrast, very interesting results. In the case of no serial correlation
(panel b.1 and b.2 of figure 1, and rows 4-6 on table 1), the OLS-estimation shows a slightly bias of 0.05
point estimates, since the mean values for a, and a, are 1.45 and 0.45, respectively; the bias is reduced
by one point estimate using the instrument set Zs;, but the standard deviations increase substantially.
In contrast, the IV-Z; ; estimations display no bias and much more narrow confidence intervals for the
estimated coeflicients than Z; ;. The unbiased estimates, at least for Z; ¢, are not surprising, since in the

absence of correlated shocks, any lagged predetermined instrument is a valid instrument.

Assuming no serial correlation is, however, not very realistic. For instance, some authors attribute the
sizable inertia of the interest rate in real data to very persistent monetary shocks.!® A persistent devia-
tion from the latent rule may elicit any contingent event that is too hard to model within an interest rate
rule, for which the central bank has to respond in a no systematic way.!! Therefore, we are interested
in the estimations of the hybrid model when allowing serial correlation on all disturbances. In this case
(displayed on panels b.3 and b.4 of figure 1 and rows 13-15 on table 1), we expect all estimations to
present a certain bias, as explained in the preceding section. It is indeed the case for the OLS and IV-Z; ;
estimations, but surprisingly, this is not true when using Zs;, for which we find no bias and decently

narrow confidence intervals.

One might argue this is the result of considering a mild persistent monetary shock (p; = 0.5), since the
bias is expected to increase with higher values of p;. But if we re-compute all the estimations with a
pi = 0.9, the results are somehow unchanged. Indeed, in this special case, not shown on the table,'?
we find bigger biases under OLS and IV-Z; ¢, with mean values of a, = 1.25,1.20 and a, = 0.25,0.20,

respectively; whereas for Zs; = (m—1,m—2) we still find unbiased mean values. A second explanation

10See Rudebusch (2006), or Carrillo, Féve and Matheron (2007).
HLike financial crises, credit crunches, commodities price instability or liquidity squeezes, just as our recent experience.
12The results of this and the next experiments are available under request.



comes from the fact that inflation is highly persistent in the present setting (p, = 0.89), which somehow
may reduce the expected bias of the estimation procedure.'® In order to corroborate this fact, one can
redo all the estimations with output as the most persistent instrument, by just inverting the values of p
from the former calibration, i.e. with p, = 0.89 and p, = 0.22. In this case, the bias of Z; ; disappears
while the confidence intervals become narrow; for Z5; there is an insignificant bias but much more wider
confidence intervals. This gives an important guidance for the estimation of Taylor rules: choosing very
persistent instruments may reduce the bias of single-equation estimations. This turns out to be important

because inflation and output do display a high degree of sluggishness in actual data.

One can be also interested in whether we could also identify the persistence parameter of the monetary
policy shocks and improve the estimations. Using the Hildreth-Liu method for serially correlated errors
in the regression equation (panel b.1, b.2 and b.3 in figure 2, and bottom of table 1), we can see that the
mean estimates of a, and a, are not so different than before, while only the OLS estimations are able
to recover the true value of p;. The estimates of the latter using Z; ; or Zs; or not so precise, as the

distribution densities are wider, and even bimodal for Z5 ;.

Backward-looking model. In what respect for this setting, the estimation results are quite compact:
all estimations within all scenarios are unbiased and with quite similar densities in general. The latter
verifies the results of Carare and Tchaidze (2005) and reinforce the observation that, in order to correctly
identify the structural parameters of the Taylor rule, high-order dynamics in the regressors or instruments

is a necessary condition.

13For instance, using IV-Zs ¢, we can express the probabilistic limit of the estimator ar as: ar +c(E(e; tme—2)E(ysme—1)—
E(e;¢mi—1)E(ysme—2)), where ¢ is a constant. If 7y is highly persistent, it may be the case that the two terms conforming
the bias simply vanish.



4 Conclusions

The present analysis offers a hope for the identification of the Taylor rule parameters through single-
equation estimations, a practice that became popular since the seminal work of Clarida et. al (2000).
We have pointed out that the observation of Cochrane (2007), in what identification through single-
equations is hopeless, applies only to model economies that do not display inflation inertia and output
persistence, which are inherent characteristics of aggregate data in our economies. The results shown here
are an illustration of the necessity of having high-order dynamics in the regressors or instruments as to
correctly identify the policy rule parameters. One further observation is that instruments that are highly
persistent may also help to minimize the bias which is inherent in the estimations procedures described
here, whenever serial correlation is present on the policy rule. Of course, the present analysis relies on
a strong assumption that is still the issue of several ongoing debates, which impose the Taylor rule as

indeed the true, latent rule that describes the central bank policymaking.
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Table 1. Mean and standard deviations from estimated densities

Mean
(St. Deviation)

90 % confidence intervals

ar Qy pi ar Gy pi
No serial correlation
OLS 0.85 —0.15 — [0.76,0.95] [-0.20,-0.09] [-]
(0.06) (0.03) (—
Forward-looking IV-(m—1,9¢—1) 0.98  —0.06 - [-7.03,8.77]  [-4.68,4.57] [
(19.87)  (13.15) (=)
IV-(mrp—1,me—2) 0.94 —0.12 — [-7.91,9.24] [-5.10,5.01] [-]
(20.91)  (13.24) (=)
OLS 1.46 0.46 — [1.43, 1.49] [0.43, 0.48] [-]
(0.02) (0.02) (-)
Hybrid IV-(ms— _ 1.50 0.50 — 1.44, 1.57 0.45, 0.55 -
ybri (Te—1,Yt—1) &0 T 5 [ ) ] [ ) | -]
IV-(me—1, me—2) 1.47 0.47 — [1.20, 1.79] [0.21, 0.75] [-]
(1.41) (1.48) (=)
OLS 1.50 0.50 — [1.48, 1.52] [0.47, 0.53] [-]
(0.01) (0.02) (-)
Backward-looking  IV-(m¢—1,y¢—1) 1.50 0.50 — [1.48, 1.53] [0.47, 0.53] [-]
(0.02) (0.02) (=)
IV-(me—1, me—2) 1.50 0.50 — [1.47, 1.53] [0.40, 0.60] [-]
(0.02) (0.06) (-)
Serial correlation
OLS 0.89 —0.11 — [0.85,0.93] [-0.15,-0.07] [-]
(0.03) (0.03) (=)
Forward-looking IV-(mre—1, Yt—1) 0.71 —0.29 — [0.60,0.82] [-0.40,-0.18] [-]
(0.07) (0.07) (=)
IV-(mre—1,me—2) 0.95 —0.09 — [-2.45,4.10] [-3.51,3.02] [-]
(12.49) (20.78) (=)
OLS 1.45 0.45 — [1.42, 1.47] [0.43, 0.48] [-]
(0.02) (0.02) (-)
Hybrid IV-(ms— _ 1.46 0.46 — 1.42, 1.50 0.42, 0.50 -
ybri (Te—1,Yt—1) &9 T 5 [ ) ] [ ) | -]
IV-(me—1, me—2) 1.50 0.50 — [1.43, 1.58] [0.42, 0.58] [-]
(0.05) (0.05) (-)
OLS 1.50 0.50 — [1.48, 1.51] [0.46, 0.53] [-]
(0.01) (0.02) (-)
Backward-looking ~ IV-(m¢—1,y:—1)  1.50 0.50 — [1.48, 1.51]  [0.46, 0.54] [-]
(0.01) (0.02) (=)
IV-(mr¢—1, me—2) 1.50 0.50 — [1.48, 1.52] [0.43, 0.57] [-]
(0.01) (0.04) (-)
Serial correlation: Hildreth-Liu estimations
OLS 0.95 —0.05 0.35 [0.90, 0.99] [-0.09,-0.01] [0.27, 0.43]
(0.02) (0.02) (0.05)
Forward-looking IV-(mre—1, ys—1) 0.72 —0.28 0.00 [0.64, 0.80] [-0.36, -0.20]  [-0.11, 0.12]
(0.05) (0.05) (0.08)
IV-(mri—1,me—2) 0.81 —0.19 0.06 [-0.86, 2.4] [-1.87, 1.38] [-0.78, 0.95]
(5.54) (5.56) (0.49)
OLS 1.45 0.44 0.49 [1.43, 1.47] [0.42, 0.47] [0.42, 0.55]
(0.01) (0.01) (0.04)
Hybrid IV-(mre—1, yt—1) 1.48 0.48 0.41 [1.41, 1.53] [0.41, 0.53] [0.31, 0.51]
(0.04) (0.04) (0.06)
IV-(mre—1, me—2) 1.49 0.49 0.39 [1.38, 1.60] [0.38, 0.61] [0.19, 0.54]
(0.07) (0.07) (0.11)
OLS 1.50 0.50 0.49 [1.49, 1.52] [0.47, 0.54] [0.42, 0.55]
(0.01) (0.02) (0.04)
Backward-looking  IV-(m¢—1,y¢—1) 1.50 0.50 0.49 [1.48, 1.52] [0.46, 0.54] [0.42, 0.55]
(0.01) (0.03) (0.04)
IV-(me—1, Te—2) 1.50 0.50 0.49 [1.48, 1.52] [0.45, 0.55] [0.42, 0.55]
(0.01) (0.03) (0.04)






