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1 Introduction

The international financial crises of the last decade have shown that financial shocks in one country

can have rapid and large impacts in other countries. In recent years, numerous papers have

examined the issue of whether contagion was responsible for this strong linkage among markets

during periods of crisis. Measuring financial contagion however poses several problems.

One problem is that economists disagree on what contagion exactly is. The concept of contagion

is inherited from the medical vocabulary and indicates the transmission of a contagious disease. The

translation to an economic concept is not straightforward, as illustrate the numerous definitions

of contagion that can be found on the World Bank’s website. Several authors, among others

Rigobon (1999) and Forbes and Rigobon (2002), define contagion as a significant and temporary

increase in cross-market linkages after a shock. Contagion can take place both across markets,

for instance between the foreign exchange market and the stock market, and across countries.

This concept of contagion is often labelled ”shift-contagion”. Shift-contagion can be generated by

multiple equilibria based on investor psychology, endogenous-liquidity shocks causing a portfolio

reshuffling and political economy affecting exchange rate regimes (see Rigobon (2000) for a survey).

For other authors, contagion is simply the cross-country or cross-market transmission of shocks, no

matter whether the linkages are reinforced or not. These authors are generally concerned with the

identification of the channels through which shocks are transmitted. The most important channels

are the trade channel (Glick and Rose, 1998), the financial channel (van Rickenghem and Weder,

2001), similarities between economies (Eichengreen, Rose and Wyplosz, 1996), policy coordination
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or the geographical proximity (Bayoumi and alii, 2003). In the literature, this approach of contagion

is often referred to as ”pure” or ”fundamental based” contagion.

The remainder of this study will focus solely on the aforementioned ”shift-contagion”. The term

”contagion” is therefore used to describe a temporary and significant shift in cross-market linkages.

It may occur that the shift in cross-market linkages after a shock is permanent rather than tem-

porary. This paper will refer to this situation as a change in ”market interdependence”. Therefore

the terms ’contagion ” and ”interdependence” describe two markedly different phenomena.

Measuring financial contagion also poses several statistical problems, as shown for instance by

Forbes and Rigobon (1999, 2001) in several papers. A variety of econometric techniques have been

used to measure contagion. An intuitive, and widely used, technique has been to test whether

the correlation between two markets was significantly higher during the period following the crisis

compared to the period preceding the crisis. For example, King and Wadhwani (1990) show that

the cross-market correlation between the U.S., U.K and Japan has significantly increased after the

U.S. stock market crash in 1987. Calvo and Reinhart (1995), Baig and Goldfajn (1998) use a similar

approach to show the presence of shift-contagion after the 1994 Mexican peso crisis and the 1997

Asian crisis. Nevertheless, this intuitive approach presents several shortcomings. First, correlation

is a static and bivariate measure. It thus neglects the possible dynamic structure of the linkages and

may in addition omit contributing variables. For example, if a shock in the Russian equity market

is transmitted to the Mexican exchange market via the Brazilian exchange market, the correlation

will not detect contagion. Secondly, correlation automatically increases during period of high

3



volatility (e.g. when the process exhibits heteroscedasticity or conditional heteroscedasticity) and

during periods of globalization (e.g. when there is a stochastic trend). Hence, a significant shift in

the correlation coefficient after a crisis may have nothing to do with contagion. Thus, statistical

procedures used in practice to test for the stability of the correlation have to be robust to the

presence of heteroscedasticity and trend (which corresponds to a common trend in each series).

Thirdly, correlation is a symmetrical measure: an increase in the correlation between markets i and

j does not give any information on the direction of the contagion (from i to j, from j to i, or both).

Contagion, in fact, has a clearly asymmetric dimension. It is for these reasons that several other

approaches have been used to measure cross-market linkages: Rigobon (2002) and Corsetti et alii

(2001) use a principal component model and build a test robust to heteroscedasticity. Candelon

and alii (2004) use the concept of common feature, which takes into account the dynamic nature

of correlation and thus minimizes the effect of possible omitted variables.

In this paper, we present a new approach to measure shift-contagion. The innovation consists

of using causality tests in the frequency domain to detect whether the strength of asset market

linkages is altered by a financial crisis. We assert that this new approach offers a more suitable

way to measure shift-contagion. Indeed, the focus on the causal structure rather than on static

correlation allows one to both take into account the underlying dynamic structure, and deal with

the problem of asymmetry. In addition, the frequency domain allows us to test for causality at

each frequency (see Geweke, 1982, Hosoya and Yao, 1998 and Breitung and Candelon, 2004) and

thus offers a simple way to discriminate between contagion and interdependence. By comparison,
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time domain causality tests are performed for the whole range of frequencies and so ignore the

possible differences between short-run (concerning high frequencies) and long-run (low frequencies)

causality.

The rest of the paper is organized as follows. Section 2 presents the key features of our measure

of contagion. In section 3, we describe the methodology and the econometric framework. A

simulation analysis is performed to analyze the robustness of the causality test in the frequency

domain with respect to changes in volatility. In section 4, we use our approach to test for the

existence of contagion among several stock markets in Latin America and in Asia during the

financial crises of 1994 and 1997.

2 A new approach of contagion

Shift-contagion has been defined as a significant and temporary increase in cross-market linkages

after a shock in a ”ground-zero” market. From this definition, one can identify three important

features of contagion: (i) Cross-market linkages should increase after the shock; (ii) The shock is

transmitted from one country to a different one; (iii) The diffusion of the shock is temporary.

Regarding (i), a simple and common way of testing for shift-contagion is to test if the con-

temporaneous correlation coefficient between asset returns in different countries has significantly

increased before and after the crisis (Rigobon, 2002). This approach does not, however, satisfy (ii)

as correlation is by nature a symmetrical measure: an increase in the correlation between markets

i and j does not give any information on the origin of the shock or on the direction of its propa-
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gation (from i to j, from j to i, or both). To take asymmetry into account, we propose a test of

contagion that is based on causality measures rather than on contemporaneous correlation coeffi-

cients. The literature already provides a few attempts in this direction (Favero and Giavazzi, 2002

and Rigobon, 2000) and several concepts of causality exist (see the special issues of the Journal

of Econometrics, 1988 and 2004). We consider here Granger-causality, not so much because it is

popular and easy to implement, but mainly because it has the advantage of modeling asymmetry

explicitly. With regard to the objective of measuring cross-market linkages, another advantage of

using causality rather than correlation comes from the fact that causality is actually correlation

conditional on the dynamic structure of the system. The omitted variable problem, encountered

in papers using contemporaneous correlation coefficient, is therefore avoided.

Compared to (i) and (ii), feature (iii) has received less attention in the literature. To illustrate

its importance, assume that xi and xj are two asset returns in countries i and j, each return being

composed of a permanent or long-run term (x̄) and a transitory or short-run term (x̂). Stronger

linkages between the two returns could be due either to a higher co-movement between the perma-

nent components of the returns, or to a higher co-movement between their short-run components.

There will be contagion only in the latter case; contagion is therefore measured by a stronger linkage

among the short-run components of the two returns after a crisis. In the former case, as the shift in

cross-market linkages is permanent, what is measured is not shift-contagion but a higher integra-

tion of markets. Simply computing correlations, even causality measures, without distinguishing

short- and long-run components will therefore only provide spurious measures of contagion. 3 A
3To draw a comparison with business cycle analysis, the real interdependence among two countries may increase
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simple way to handle this distinction is to tackle the problem in a frequency domain framework.

Indeed, each frequency corresponds to a particular component of the variable: components at low

frequencies are more persistent than components at high frequencies. In particular, frequency 0

corresponds to a permanent component. Thanks to this frequency discrimination, we can isolate

whether the increase in cross-market linkages is due to long-run (low frequency) or short-run (high

frequency) components. Only the latter case corresponds to contagion.

In order to integrate features (i), (ii) and (iii) into a single statistical test, we propose to measure

contagion using causality tests in the frequency domain. According to this approach, contagion

is present if there is a significant increase in the causality at high frequencies. Figures 1 and 2

illustrate this point. On each graph, the statistics of the causality test for frequencies between

[0, π] are plotted for the period preceding (thick line) and following (thin line) the shock. The

horizontal line corresponds to the critical value of the test. 4 In figure 1, causality significantly

increases at low frequencies after the shock, whereas in figure 2 the increase in causality occurs at

high frequencies. The case depicted in figure 2 corresponds to contagion, while figure 1 illustrates

higher interdependence. In utilizing our approach, contagion and interdependence can be analyzed

in a unified framework, and so they can be distinguished very easily. Figures 1 and 2 illustrate

another advantage of testing for contagion in the frequency domain rather than in the time domain.

In the time domain, causality tests are computed for the whole range of frequencies. Because of

this, tests in the time domain will very likely reject the causality in both cases as the range of

because of an increase in the interdependence of their seasonal components (short-run causality) or their cycle components
(longer-run causality).

4A description of the test is provided in the next section.
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frequencies for which causality is accepted is relatively small compared to [0, π]. In the time

domain, contagion will thus be rejected, even if it is present in figure 2. The causality test in the

frequency domain would, however, have detected the existence of shift-contagion.

Include Figures 1 to 2 about here

3 Methodology

3.1 Causality in the frequency domain: A test

Our new approach to contagion relies on the causality test in the frequency domain recently

developed by Breitung and Candelon (2004). The usual definition of causality is due to Granger

(1969) and is based on the forecast variance. To illustrate this, let us consider zt = [xt, yt]′ to be a

two-dimensional vector of time series observed at t = 1, . . . , T . In our application, xt and yt will be

equity returns in two different countries, where one of the two countries being the ”ground-zero”

country where the crisis started. It is assumed that zt has a finite order vector autoregressive

(VAR) representation of the form:

Θ(L)zt = εt , (1)

where Θ(L) = I−Θ1L−· · ·−ΘpL
p is a 2×2 lag polynomial with Lkzt = zt−k. We assume that the

error vector εt is white noise, with E(εt) = 0 and E(εtε
′
t) = Σ, where Σ is positive definite. For ease

of exposition, we do not include any deterministic terms in (1) although in empirical applications

the model typically includes a constant. Here, yt is Granger causal for xt if the forecast variance
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of xt+1 conditional on Xt = {xt, xt−1, . . .} is larger than forecast variance of xt+1 conditional on

Xt ∪ Yt, where Yt = {yt, yt−1, . . .}. In other words Yt contains information to predict the one-step

ahead value of xt.

The extension of this framework in the frequency domain has been proposed by Geweke (1982)

and Hosoya (1991). Let G be the lower triangular matrix of the Cholesky decomposition G′G =

Σ−1 such that E(ηtη
′
t) = I and ηt = Gεt. If system (1) is assumed to be stationary, the MA

representation of the system is

zt = Φ(L)εt =
[

Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

] [
ε1t

ε2t

]

= Ψ(L)ηt =
[

Ψ11(L) Ψ12(L)
Ψ21(L) Ψ22(L)

] [
η1t

η2t

]
, (2)

where Φ(L) = Θ(L)−1 and Ψ(L) = Φ(L)G−1.

The measure of causality suggested by Geweke (1982) and Hosoya (1991) is the following:

My→x(ω) = log
[
1 +

|Ψ12(e−iω)|2
|Ψ11(e−iω)|2

]
. (3)

Several methods have been proposed to test for the nullity of |Ψ12(e−iω)| = 0, corresponding to

the case where y does not cause x at frequency ω.

Breitung and Candelon (2004) propose the simplest approach to test for the null hypothesis

of non-causality (i.e. My→x(ω) = 0) based on the necessary condition |Ψ12(e−iω)| = 0, using

Ψ(L) = Θ(L)−1G−1 and

Ψ12(L) = −g22Θ12(L)
|Θ(L)| ,

where g22 is the lower diagonal element of G−1 and |Θ(L)| is the determinant of Θ(L). It follows
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that y does not cause x at frequency ω if 5

|Θ12(e−iω)| =

∣∣∣∣∣
p∑

k=1

θ12,k cos(kω) −
p∑

k=1

θ12,k sin(kω) i

∣∣∣∣∣ = 0 .

Their empirical procedure consists of testing for these linear restrictions. To simplify the

notation, we let αj = θ11,j and βj = θ12,j , so that the VAR equation for xt is written as

xt = α1xt−1 + · · · + αpxt−p + β1yt−1 + · · · + βpyt−p + ε1t . (4)

The hypothesis My→x(ω) = 0 is equivalent to the linear restriction

H0 : R(ω)β = 0 , (5)

where β = [β1, . . . , βp]′ and

R(ω) =
[

cos(ω) cos(2 ω) · · · cos(p ω)
sin(ω) sin(2 ω) · · · sin(p ω)

]
.

This restriction tests that (5) is an ordinary F statistic and is asymptotically distributed as F (2, T−

2p) for ω ∈ (0, π). Such a method can be extended to higher dimensional systems or to cointegrated

VARs (see Breitung and Candelon, 2004). The comparison with the causality test in time domain

is not straightforward. It is very difficult to find correspondence between the procedures, which test

for k-ahead causality (Dufour and Renault, 1998, 2003). This procedure determines if a particular

component (characterized by the frequency ω) of one series causes the component at the same

frequency of the variable of interest one period ahead. Such a definition fits to the concept of

contagion, presented in section 2. The k-ahead causality appears to be inappropriate in such a

5Note that g22 is positive due to the assumption that Σ is positive definite.
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case as it does not distinguish the linkages between the short- and the long-run components of the

series.

3.2 Simulation study

To investigate the finite sample properties of the aforementioned tests in the presence of misspeci-

fications (outliers and heteroscedasticity) often encountered when using financial data, we generate

the same stationary model as in Breitung and Candelon (2004):

xt = 0.1 xt−1 + 0.3 bω(L)yt−1 + ε1t

yt = −xt−1 + 0.1 yt−1 − 0.2 yt−2 + 0.3 yt−3 + ε2t,

where

εt ∼ N(0, Σ) , Σ =
[

0.5 0.2
0.2 0.5

]

and bω(L) = 1 − 2 cos(ω)L + L2. At frequency ω the gain function of the polynomial is zero and

therefore y is not a cause of x at this particular frequency. To investigate the consequences of

misspecification for the causality test, we consider two types of problems often encountered in the

contagion literature. First, the presence of outliers, representing the crisis itself, might affect the

causality test. Lütkepohl (1989) has demonstrated via simulation study that the performance of

the Granger-causality test in the time domain is affected by the presence of structural breaks.

Two cases are scrutinized here. In the first experiment, we allow for the presence of one outlier

in the middle of the sample. The size of the outlier corresponds to 20 times the variance of
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the process and thus represents an excessive shock 6. Then, we introduce two outliers of similar

magnitude located towards the first and the last quarter of the sample. Secondly, we investigate

the performance of our test in the presence of conditional heteroscedasticity. Under conditional

heteroscedasticity, OLS estimators are still convergent but loose their efficiency, leading to size

distortions for specification tests. As noticed by Rigobon (2000), heteroscedasticity is observable

in financial series and leads to the over-acceptance of contagion. The aim of the simulation is to

see how much conditional heteroscedasticity affects the causality test in the frequency domain. If

so, an adequate correction (i.e. a White heteroscedastic consistent variance-covariance matrix) has

to be employed). In the simulation, we consider conditional heteroscedasticity via a multivariate

constant conditional correlation GARCH (ccc-GARCH) a la Bollerslev (1990) such that:

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1 i = 1, 2, (6)

and Ht = DtCHt, where Dt = diag(
√

hit) and C =
(

1 0.5
0.5 1

)
.

The residuals are generated according to εt = utH̄t, where εt = (ε1t, ε2t)′ and uit are independent

N(0, 1), and H̄t comes from the Cholesky decomposition Ht = H̄tH̄
′
t. We consider a parametriza-

tion (0.01, 0.2, 0.79) such that the unconditional variance equals one and thus is identical to the

model without GARCH. The coefficients represent the models encountered in practice, i.e. with a

steep news impact curves.

For the Monte Carlo experiments, we compute the rejection frequencies based on 5,000 replica-

6We consider such a large outlier to give the maximum penalty at the size of the causality test.
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tions of the process with sample sizes T = 500 and T = 1, 000, and consider the 0.05 significance

level. Table 1 indicates the results obtained.

Include Table 1 about here

It turns out that the size of the test is not affected by the presence of a large outlier (20 times

the variance of the process). Even if the rejection frequency is below the nominal size, it remains

close to the 5% boundary. This undersized problem is more acute when introducing the two other

outliers. Then, the rejection frequency dramatically decreases. It is noticeable that the rejection

frequencies at high frequency (ω = π/4) do not depart too much from the 5% boundary contrary

to what it is observed at higher frequencies. It indicates nevertheless that the problem of outliers

has to be tackled before performing the causality analysis. The presence of ccc-GARCH is also

investigated. It turns out that, contrary to the previous case, the rejection frequency is higher

than the nominal size and lies around 6%. The test is thus slightly oversized in the presence of ccc-

GARCH. In figure 3, the empirical power of the causality test in the frequency domain in presence

of ccc-GARCH is analysed, by simulating 5,000 times the previous bivariate VAR with i.i.d. white

noise residuals as well as with ccc-GARCH. We consider a sample size of 500 observations for two

particular frequencies (π/2 and π/4). It turns out that in presence of ccc-GARCH, the empirical

power has the same shape as in the presence of i.i.d. white noise residuals. A leakage problem,

as well as a decrease in the power for frequencies close to 0, are observed. We nevertheless notice

that the power of the causality test is always lower in presence of ccc-GARCH. The size and
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power analysis show that the causality test in the frequency domain can be used in the presence

of ccc-GARCH, but not in presence of large structural breaks.

Include Figure 3 about here

4 Empirical Analysis

The approach developed in the two previous sections is here used to test whether contagion occurred

during two famous periods of international financial crisis, the Mexican ”Tequila” crisis of 1994

and the Asian ”flu” crisis of 1997.

Contagion is examined at the stock market level. We use daily equity data for a sample of

eleven emerging countries from Asia and Latin America. The Asian sample includes Hong Kong,

Indonesia, Malaysia, the Philippines, South Korea, Taiwan and Thailand; the Latin American

sample consists of Argentina, Brazil, Chile, Mexico, and Venezuela, which are the largest economies

in the region.7 All the data are retrieved from Datastream. Datastream stock market indices are

all expressed in US dollars, which is usual practice in many studies (see for instance Forbes and

Rigobon (2000), Bekaert and al. (2003), Bae and al. (2000)). 8 Equity market returns are

computed through log-differentiation.

For our empirical investigation, we follow Forbes and Rigobon (2001) and calculate two-day

7This choice of emerging countries is usual in studies concerned with recent episodes of financial contagion. See for
instance Bekaert, Harvey and Ng (2003), Forbes and Rigobon (2000) and Kaminsky and Reinhart (2001).

8In some papers, stock market indices are measured in local currency instead of dollars. Bae and al. (2000) and Forbes
and Rigobon (2000) find that the choice of the currency denomination does not tend to significantly alter their results.
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rolling over returns (R2,t) in order to account for differences in time zones and official holidays

among the different countries in the sample. The proper application of our methodology necessi-

tates the elimination of outliers. To detect outliers, we use the Median Absolute Deviation (MAD)

procedure, which is a simple and standard approach.9 According to this procedure, an observation

is classified as an outlier if :

R2,t > γβmed(|R2,t − med(R2,t)|), (7)

where med is the median operator, β is a constant equal to (1/q0.75) where q0.75 is the 75th

fractile of the sample distribution of R2,t. The parameter γ is fixed arbitrarily, but a value of 2 or

3 is commonly used in practice. In this paper, γ is set equal to 3.

Each outlier is then replaced by a 10-day average centered around the abnormal observation

using:

R10x,t = (1/9)
∑

i=−4,+4

R2x,t (8)

Our empirical work uses bivariate models (as in (1)) composed of the return in the country that

is considered to be the source of the crisis (the ”ground-zero” country) and the return in another

country, either in Latin America or in Asia. Contagion can therefore occur between countries in a

similar or different geographical regions.

For the Tequila crisis of 1994, as the crisis was triggered by the devaluation of the Mexican peso

9For a more detailed description of the procedure, see Hotta and Tsay (1988).
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in December 19th, 1994, the ”ground-zero” country is undoubtedly Mexico. Regarding the East

Asian crisis, the choice of the country where the crisis originated is not so obvious: in some papers,

it is considered that the crisis started with the Thai Baht devaluation on July 2, 1997 while other

papers consider that the crisis was triggered by the sharp decline in the Hong Kong stock market

in mid-October 1997. In this paper, we consider separately both countries as the ”ground-zero”

country.

We estimate each model over a pre- and a post-crisis periods. In order to make our results

comparable with those from earlier studies, we take the chronology of the crises from previous

studies, more precisely from Forbes and Rigobon (2002). Following Forbes and Rigobon (2002),

we fix the Tequila crisis as lasting from December 16th, 1994 (when the exchange rate regime was

abandoned) to January 2nd, 1995. Regarding the Asian crisis, taking Hong-Kong as the ”ground-

zero” country, the crisis period goes from October 16th, 1997 (when the Hong-Kong stock market

crashed) through November 3rd, 1997; alternatively, when we take Thailand as the origin of the

crisis, the crisis period goes from July 2nd, 1997 (when the Thai Baht is devaluated) through

July 28th, 1997 (when Thailand calls the IMF). In line with Forbes and Rigobon (2002), we fix

the beginning of the period preceding the crisis on January 1st, 1993 for the Mexican Peso crisis,

and on January 1st, 1996 for the Asian crisis, no matter whether the ”ground-zero” country is

Hong-Kong or Thailand. Finally, we define the period following the crisis as starting on the last

day of the crisis period through the end of the year following the crisis. Precisely, the estimation

periods are the following ones: (i) Tequila crisis: pre-crisis = 1/01/1993 to 16/12/1994; post-crisis
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= 2/01/1995 to 29/12/1995; (ii) Asian crisis (Hong-Kong = ”ground zero” country): pre-crisis

= 1/01/1996 to 16/10/1997; post-crisis = 03/11/1997 to 31/12/1998; (iii) Asian crisis (Thailand

= ”ground zero” country): pre-crisis = 1/01/1996 to 02/07/1997; post-crisis = 28/07/1997 to

31/12/1998.

In table 2, we report the optimal lag length of each bivariate system for the different sub-periods,

having used the AIC information criteria. It is well known that this information criterion slightly

overestimates the optimal lag length. By taking the highest dimension of the dynamic structure,

we build a conservative causality test, rejecting as often as possible the causality hypothesis as well

as the contagion one.

Include Table 2 about here

Our results are presented in Figures 4 to 9. On each figure, the statistics of the causality

test (M(ω)) as well as the 95%-critical value are plotted for each frequency (ω). The dotted line

corresponds to the statistics for the post-crisis period, whereas the full line indicates the results

obtained for the pre-crisis period. As explained before, there is evidence of shift-contagion if the

causality is not rejected at high frequencies for the post-crisis period, whereas it is rejected for the

pre-crisis period. We restrict the high frequencies to components having a periodicity of two to

three days (i.e. ω ∈ [2π/3, π]). 10 This definition is somewhat ad-hoc, but it is acknowledged that

the transmission of shocks among one equity markets is very fast (it can spread from one equity

10The correspondence between the component periodicity (cp) and the frequency (ω) is obtained via 2π
ω = cp.
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market to the other equity markets during the same day) and generally does not exceed half a

week. For instance, using impulse response analysis, Baig and Goldfjan (1988) find that during

the Asian crisis, the impact on neighboring markets of shocks originating from Thailand’s stock

market disappeared after about 4 days. Latin American countries’ results are reported in figures 4

to 6, whilst Asian ones are plotted in figures 7 to 9. For each system, we eliminated outliers using

the MAD algorithm. 11 We can then assume that the residuals are free from autocorrelation and

outliers, and thus that the models are correctly specified.

Contagion in Latin America

Evidence for contagion after the Mexican crisis is found in three countries, namely Argentina,

Brazil and Chile (figure 4). For these countries, there is at least one range of frequencies within

the high frequencies window defined above (For Chili ω ∈ [2.2, 2.8], for Brazil ω ∈ [2, 2.8] and

for Argentina ω ∈ [2, 2.2]), at which causality is not rejected for the post-crisis period, whereas

it is rejected for the pre-crisis period. This indicates that the linkages between these countries

and Mexico did indeed increased after the Tequila crisis, supporting the idea of ”shift-contagion”.

In the case of Venezuela, causality at any frequency is rejected for the post-crisis period, which

suggests that the country was not contagiously affected by the Tequila crisis. Our results partly

differ from those reported by Forbes and Rigobon (2002): while these authors conclude that there

has been no shift-contagion in Latin America during the Tequila crisis, we find that there has

been shift-contagion from Mexico to at least three Latin American countries. Such a difference

11Results are available from the authors upon request.
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is a result of our methodology. It appears from figure 4 that our analysis, performed in the time

domain (i.e. for the whole range of frequencies), would have matched Forbes and Rigobon (2002)’s

conclusions. It is also worth noting that long-run interdependence between Mexico and the other

Latin American countries, as measured by causality in the neighborhood of frequency (ω = 0), has

not increased after the crisis. Instead, we observe that when there was interdependence before the

crisis, it has disappeared after the crisis (see Argentina and Venezuela).

Figures 5 and 6 indicate that the Asian crisis had only minor spillover effect in Latin America,

whichever the selected ”ground-zero” country. We can only detect support for contagion in Chile,

if Thailand is considered the origin of the Asian crisis, and in Argentina, if Hong-Kong is the

”ground-zero” country. This result indicates that contagion occurs mainly within a region, rather

than across regions, as it has already been documented in Glick and Rose (1999) and in Kaminsky

and Reinhart (2000).

Include Figures 4 to 9 about here

Contagion in Asian countries

Regarding the Asian flu and its impact in Asia, shift-contagion is also detected. When the Thai

Baht devaluation is assumed to be at the origin of the crisis, our analysis provides evidence for

contagion from Thailand to Indonesia, Taiwan and the Philippines (figure 8). Alternatively, if

we consider that the Asian crisis was triggered by the crash of the Hong Kong stock market,

our causality test indicates contagion from Hong Kong to Malaysia, Thailand and the Philippines
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(figure 9). It is interesting to point out that, with the exception of the Philippines, the set of

countries contagiously affected by the Asian flu differs whether the ground-zero country is Thailand

or Hong Kong. It also appears from figures 8 and 9 that for the set of countries affected by

contagion, higher long-run interdependence with the ground-zero country is also detected after the

crisis. This result suggests that both shift-contagion and higher interdependence among equity

markets contributed to the transmission of the crisis from Hong Kong or Thailand to the other

Asian countries. This feature distinguishes the Asian flu from the Tequila crisis, for which shift-

contagion was not associated with higher interdependence.

With respect to spillovers of the Tequila crisis in Asia, it is found that apart from Philippines,

the contagion to Asian countries was weak. This result suggests once again that the contagion

occurred mainly at a regional level.

5 Conclusion

The international financial crises of the last decade have shown that financial shocks in one country

can have rapid and large impacts in other countries. This phenomenon revived the literature on

contagion, with a surge of papers investigating whether contagion is responsible for this strong

linkage among markets during periods of crisis. Measuring financial contagion is not an easy task,

because of both conceptual and statistical problems.

The purpose of this paper is to propose a new measure of contagion. We restrict our analysis

to contagion defined as a temporary and significant increase in cross-market linkages after a shock.
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Our approach to testing contagion is based on the frequency analysis of causality developed re-

cently by Breitung and Candelon (2004). This approach has two main advantages over existing

methods of measuring contagion. First, it provides an elegant way to deal with several of the

statistical problems identified in the literature in a unified framework. Second, it permits clearly

differentiation between temporary and permanent shifts in cross-market linkages: the first case is

contagion, while the second is simply a measure of interdependence among markets.

With this new approach, we test for the existence of contagion among several stock markets

in Latin America and Asia during the international financial crises of 1994 and 1997. Our paper

provides three main results. While several studies using a time series framework reject the existence

of contagion, we find support for contagion during the two crises. In addition, our approach

highlights that during the Asian crisis, both contagion and higher interdependence were responsible

for the stronger linkages across markets. Such a feature is not observed during the Tequila crisis.

Finally, it appears that the spillover effects of these crises have been geographically confined to

the region where the shock occurred. This supports the view that contagion is more regional than

global, as already suggested by Glick and Rose (1999) and Kaminsky and Reinhart (2000). These

three results suggest that causality in the frequency domain is a proper framework for studying

contagion.
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Table 1: Empirical Size analysis

ω t = 500 t = 1.000
Outlier at t/2 3π/4 0.040 0.047

π/2 0.047 0.046
π/4 0.053 0.048

Outliers 3π/4 0.031 0.033
π/2 0.039 0.040
π/4 0.047 0.048

GARCH(0.01,0.2,0.79) 3π/4 0.060 0.057
π/2 0.066 0.065
π/4 0.064 0.062

Note: Rejection frequencies of 5,000 Monte Carlo repli-
cations based on the previous model. The 0.05 signifi-
cance level is used.
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Figure 3: Empirical power
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Table 2: Optimal Lag length
Tequila crisis Asian Flu Asian Flu
Mexico ground-
zero

Thailand
ground-zero

Hong-Kong
ground-zero

pre-crisis post-crisis Pre-crisis post-crisis pre-crisis post-crisis

Argentina 14 8 17 7 20 6
Brazil 11 7 17 4 16 4
Chile 13 9 16 9 14 6

Venezuela 13 3 18 3 20 3
Mexico – – 15 3 20 4

Indonesia 11 5 17 2 17 4
Korea 16 10 16 2 13 8

Malaysia 13 13 16 2 29 4
Philippines 13 7 16 4 21 4

Taiwan 13 4 18 4 22 9
Hong-Kong 14 16 17 4 – –
Thailand 13 19 – – 20 5

Note: Lag length have been selected using the Akaike information criterion (AIC). For The tequila crisis,
the pre-crisis period is 1/01/1993 − 16/12/1994 and the post-crisis period 2/01/1995 − 29/12/1995. For
the Asian flu, if Thailand is considered as the ground-zero country, the pre-crisis period is 1/01/1996 −
02/07/1997 and the post-crisis period is 28/07/1997 − 31/12/1998. If Hong-Kong is the ground-zero
country, the pre-crisis period is 1/01/1996 − 16/10/1997 and the post-crisis period is 03/11/1997 −
31/12/1998

27



Figure 4: Causality in Latin America (Mexico as ”ground-zero” country)
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Figure 5: Causality in Latin America (Thailand as ”ground-zero” country)
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Figure 6: Causality in Latin America (Hong-Kong as ”ground-zero” country)
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Figure 7: Causality in Asia (Mexico as ”ground-zero” country)
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Figure 8: Causality in Asia (Thailand as ”ground-zero” country)
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Figure 9: Causality in Asia (Hong-Kong as ”ground-zero” country)
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 Figure 2: Causality test with contagion  


