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Abstract

This paper considers a cointegrated panel data model with common factors. Starting

from the triangular representation of the model as used by Bai et al. (2008) a Granger

type representation theorem is derived. The conditional error correction representation is

obtained, which is used as a basis for developing two new tests for the null hypothesis of no

error correction. The asymptotic distributions of the tests are shown to be free of nuisance

parameters, depending only on the number of non-stationary variables. However, the

tests are not cross-sectionally independent, which makes pooling difficult. Nevertheless,

the averages of the tests converge in distribution. This makes pooling possible in spite

of the cross-sectional dependence. We investigate the finite sample performance of the

proposed tests in a Monte Carlo experiment and compare them to the tests proposed by

Westerlund (2007). We also present two empirical applications of the new tests.
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1 Introduction

Consider two non-stationary panel data variables Xi,t and Yi,t, where i = 1, . . . , N and t =

1, . . . , T indexes the cross-sectional and time series dimensions, respectively. The analysis of

such variables has been a growing field of econometric research in recent years. See for example

Breitung and Pesaran (2008) for an overview. In particular, in many economic applications it

is an important question whether Xi,t and Yi,t are cointegrated, that is whether there exists

a meaningful long-run relationship between them, or whether the relationship is spurious.

Kao (1999) and Pedroni (1999, 2004) were among the first to propose residual-based tests

for the null hypothesis of no cointegration in cross-sectionally independent panels. But cross-

sectional independence is a restrictive assumption that is unlikely to be met in practice, in

which case the properties of this kind of tests become suspect. In fact, in a recent paper,

Gengenbach et al. (2006) show that the presence of cross-section dependence in the form

of non-stationary common factors can actually cause the residual-based tests of Kao (1999)

and Pedroni (2004) to become divergent. As a response to this, they propose to estimate

separately the common and idiosyncratic components of Xi,t and Yi,t using the principal

components method of Bai and Ng (2004), and then to test for cointegration in the resulting

component estimates.

Banerjee and Carrion-i-Silvestre (2006) propose a similar test but instead of applying

the Bai and Ng (2004) approach to Xi,t and Yi,t directly, they apply it to the residuals of

a first-stage regression of Yi,t onto Xi,t. Cointegration requires that both the common and

idiosyncratic components of the residuals are stationary. The tests of Bai and Carrion-i-

Silvestre (2007), Westerlund (2007) and Westerlund and Edgerton (2008) are basically the

same in the sense that they are also based on applying the Bai and Ng (2004) approach to

the residuals of a first-stage regression.

However, although very popular, this testing approach has at least two major drawbacks.

One lies with the use of residual rather than structural dynamics, which makes it subject to

the common factor critique of Kremers et al. (1992), that may lead to tests with low power.

The second drawback is that the testing must be carried out in steps, with the estimation

error from one step being imported into subsequent steps, and it is not fully clear what effect

this has on the final test, see Westerlund and Larsson (2008).

By contrast to the test proposed by Pedroni for example, the tests of Westerlund (2007)

are not based on residuals but rather on the significance of the error correction term in a

conditional panel error correction model (ECM), and therefore do not impose any common

factor restriction. However, the tests are derived under cross-sectional independence, and the

use of the bootstrap in case of violations does not fit well with the otherwise parametric flavor

of the tests. Another drawback is that the bootstrap used is not equipped to handle the case

with non-stationary common factors.
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The current paper can be seen as an attempt to overcome the drawbacks of both these

approaches. We begin by developing alternative representations of a cointegrated panel that

allows for the possibility of non-stationary common factors. In particular, starting from the

triangular representation of the system used by for example Bai et al. (2008), we derive a

Granger type representation theorem that is similar to the one obtained by Cappuccio and

Lubian (1996) in the case of a single time series.

The Granger representation theorem provides not only moving average (MA) and au-

toregressive moving average (ARMA) representations of the system, but also the conditional

ECM representation, which we use as a basis for developing tests for the null hypothesis of

no error correction. In particular, paralleling the development of the time series literature

in this field, as pioneered by Banerjee et al. (1998) and Boswijk (1994), we consider both

a t-ratio type test, as well as a Wald type test. Besides eliminating the need for a common

factor assumption and a stepwise testing procedure, as shown by Pesavento (2004), these tests

are not only more powerful than most residual-based tests around, but are also not worse in

terms of size distortions.

It is shown that at the level of the individual unit the asymptotic distribution of the

Wald tests is free of nuisance parameters and only depends on the number of non-stationary

variables in the system. For the t-ratio an appropriate correction has to be employed to remove

the nuisance parameter dependence from the limiting distribution. Nevertheless, because of

the common factors, the individual tests are not independent, which of course makes pooling,

or cross-sectional averaging, difficult, as it invalidates the use of the conventional limit theory.

However, although not analytically tractable, the average still converges to a random variable

with a distribution that can be easily simulated, which makes pooling possible in spite of the

dependence. We begin by considering the case when the common factors are known, and then

we show how the results extend to the case when the factors are approximated by means of

cross-sectional averages of the observed data, as suggested by Pesaran (2007).

The rest of this paper is organized as follows. Section 2 presents the model of interest and

our version of the Granger representation theorem. Sections 3 and 4 then present the error

correction tests and their asymptotic properties, which are verified using both simulated and

real data in Sections 5 and 6, respectively. Section 7 concludes.

A word on notation. The symbols w−→ and
p−→ will be used to signify weak convergence

and convergence in probability, respectively. As usual, XT = Op(T r) will be used to signify

that XT is at most order T r in probability, while XT = op(T r) will be used in case XT is

of smaller order in probability than T r. In the case of a double indexed sequence XN,T ,

N, T →∞ will be used to signify that the limit has been taken while passing both indices to

infinity jointly. For a square matrix A, rk(A), adj(A) and ||A|| will denote its rank, adjoint

and Euclidian norm, respectively. For simplicity, the Brownian motion B(s) defined on the
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interval s ∈ [0, 1] will be written B, with the measure of integration omitted. We write the

integral
∫ 1
0 B(s)ds as

∫
B and

∫ 1
0 B(s)dB(s)′ as

∫
BdB′. Finally, bxc will be used to denote

the integer part of x.

2 Model representation

In this section we discuss the model under consideration, and some alternative representations

thereof. We start from the triangular representation for a single unit i, which is the same as

the one used by Bai et al. (2008). However, these authors focus on how to conduct inference

if the variables are in fact long-run related, and do not consider the problem of how to test

for cointegration. Moreover, the triangular representation is taken as given, and there is no

consideration of other alternatives. Thus, the results reported herein can in many ways be

seen as complementary to those reported in Bai et al. (2008).

The data generating process has two basic building blocks, a (r + m)-dimensional vector

of idiosyncratic variables, which is denoted by Zi,t = (Y ′
i,t, X

′
i,t)

′, where Yi,t is r× 1 while Xi,t

is m× 1, and a k-dimensional vector of common factors, which is denoted by Ft. The grand

vector containing all three variables is denoted Z+
i,t = (Z ′i,t, F

′
t)
′, and for later use we will also

let Vi,t = (X ′
i,t, F

′
t)
′ denote the augmented Xi,t vector.

The data generating process can be written in the following way

Yi,t − π′1iGt = b′iXi,t + λ′1iFt + u1i,t, (1)

∆Xi,t − π′2igt = λ′2i∆Ft + u2i,t, (2)

∆Ft − π′3gt = ft, (3)

where Gt and gt are vectors of deterministic components such that gt = ∆Gt with associated

coefficients πi =
(

π1i π2i π3

)
.

We further assume that the vector u+
i,t = (u′1i,t, u

′
2i,t, f

′
t)
′ is a stationary linear process

given by

u+
i,t =




Γ11i(L) Γ12i(L) 0
Γ21i(L) Γ22i(L) 0

0 0 Ψ(L)







ε1i,t

ε2i,t

ηt


 =

(
Γi(L) 0

0 Ψ(L)

) (
εi,t

ηt

)

= Γ+
i (L)ε+

i,t, (4)

where Ψ(L) = Ik −
∑∞

j=1 Γ33jL
j and L is the lag operator. Similarly,

Γi(L) = I(r+m) −
∞∑

j=1

ΓijL
j .

Equations (1) to (4) constitute the triangular representation of the model. The rest of

the assumptions can be summarized in the following way, where M < ∞ denotes a generic

positive real number.
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Assumption 1. (i) ηt ∼ i.i.d.(0, Ik) with finite fourth moments, (ii)
∑∞

j=0 j · ‖Ψj‖ < M ,

(iii) rk(Ψ(1)) = k.

Assumption 2. (i) εi,t ∼ i.i.d.(0, Σi) with finite eighth moments and

Σi =
(

Σ11i Σ12i

Σ21i Σ22i

)
= cov(εi,t),

(ii) E(εi,tεj,s) = 0 for all i 6= j and t 6= s, (iii) Γi(L) fulfils the random coefficient and

summability conditions of Phillips and Moon (1999, Assumptions 1 and 2), (iv) rk(Γi(1)) =

r + m.

Assumption 3. (i) Λi = (λ1i, λ2i)′ is a random matrix such that ‖Λi‖ < M , (ii) Λ =
1
N

∑N
i=1 Λi → E(Λi) = Λ < M as N →∞, (iii) rk(Λ) = k ≤ r + m.

Assumption 4. ηt, εi,t and Λi are mutually independent.

Assumptions 1, 2 and 4 imply that for any i, ε+
i,t ∼ i.i.d.(0, Σi) with

Σ+
i =

(
Σi 0
0 Ik

)
= cov(ε+

i,t).

They also imply that rk(Γ+
i (1)) = r + m + k. Under these assumptions, it is easy to see that

the system has r cointegrating relationships β′iZ
+
i,t, where by assumption

βi =
(

Ir −b′i −λ′1i

)′

is the cointegrating matrix.

Similar to the time series case considered by Cappuccio and Lubian (1996), given the

triangular representation in (1) to (4), we can derive a Granger type representation theorem

for a given panel member. This provides us with alternative model representations that are

better suited for testing the hypothesis of no cointegration.

Theorem 1. Given the triangular representation in (1) to (4), Z+
i,t is non-stationary with

cointegration rank r.

(a) The MA representation of ∆Z+
i,t is

∆Z+
i,t − (π∗i )

′gt = Ci(L)ε+
i,t, (5)

where Ci(L) is given in the appendix, rk(Ci(1)) = m + k and

π∗i =
(

π1i + π2ibi + π3(λ1i + λ2ibi) π2i + π3λ2i π3

)
.
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(b) The ARMA representation of Z+
i,t is given by

Ai(L)
(
Z+

i,t − (π∗i )
′gt

)
= ci(L)ε+

i,t, (6)

where ci(L) = |Γ+
i (L)| is a scalar lag polynomial, and where the blocks of

Ai(L) =




A11i(L) A12i(L) A13i(L)
A21i(L) A22i(L) A23i(L)

0 0 A33i(L)




are given by

A11i(L) = |Ψ(L)||Γ22i(L)|adj(Γ11·2i(L)),

A12i(L) = −|Ψ(L)||Γ22i(L)|adj(Γ11·2i(L))((1− L)Γ12i(L)Γ22i(L)−1 + b′i),

A13i(L) = |Ψ(L)||Γ22i(L)|adj(Γ11·2i(L))((1− L)Γ12i(L)Γ22i(L)−1λ′2i − λ′1i),

A21i(L) = −|Ψ(L)|adj(Γ22i(L))Γ21i(L)adj(Γ11·2i(L)),

A22i(L) = |Ψ(L)|adj(Γ22i(L))
(
Γ21i(L)adj(Γ11·2i(L))((1− L)Γ12i(L)Γ22i(L)−1 + b′i)

+ (1− L)|Γ11·2i(L)|),
A23i(L) = −|Ψ(L)|adj(Γ22i(L))

(
Γ21i(L)adj(Γ11·2i(L))

× ((1− L)Γ12i(L)Γ22i(L)−1λ′2i − λ′1i) + (1− L)|Γ11·2i(L)|λ′2i

)
,

A33i(L) = (1− L)|Γ22i(L)||Γ11·2i(L)|adj(Ψ(L)),

with Γ11·2i(L) = Γ11i(L)− Γ12i(L)Γ22i(L)−1Γ21i(L).

(c) Ai(1) has reduced rank r and can be decomposed as Ai(1) = α∗i β
′
i, where

α∗i =




|Ψ(1)||Γ22i(1)|adj(Γ11·2i(1))
−|Ψ(1)|adj(Γ22i(1))Γ21i(1)adj(Γ11·2i(1))

0


 .

(d) The vector ECM representation is

A∗i (L)
(
∆Z+

i,t − (π∗i )
′∆gt

)
= −α∗i β

′
i

(
Z+

i,t−1 − (π∗i )
′gt−1

)
+ ci(L)ε+

i,t, (7)

where A∗i (L) = A+
i (L) + Ai(1) with A+

i (L) satisfying Ai(L) = Ai(1) + (1 − L)A+
i (L),

A+
i (L) =

∑∞
j=0 A+

ijL
J and A+

ij = −∑∞
l=j+1 Ail.

(e) ξ′i,t = (Z+
i,t)

′βi has the following representation

ξi,t = β′i(π
∗
i )
′Gt +

(
Γ11i(L) Γ12i(L)

)
ε+
i,t,

∆ξi,t −Ki(L)(π∗i )
′gt = −β′iα

∗
i

(
ξi,t−1 − β′i(π

∗
i )
′gt

)
+ Ji(L)ε+

i,t,

where Ki(L) and Ji(L) can be obtained as in Engle and Granger (1987).
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From the vector ECM representation given in (7) we can obtain the conditional ECM for

Yi,t and the marginal ECM for Vi,t. Towards this end, let αi = −Ai(0)−1α∗i and Ã∗i (L) =

Ai(0)−1A∗i (L), where Ã∗∗i (L) =
∑∞

j=1 Ã∗∗ij Lj with Ã∗∗ij = −Ã∗ij+1 such that

∆Z+
i,t − Ã∗i (L)(π∗i )

′∆gt = αiβ
′
i

(
Z+

i,t−1 − (π∗i )
′gt−1

)
+ Ã∗∗i (L)∆Z+

i,t−1 + ci(L)ε+
i,t.

Defining B∗
i =

(
Σ12iΣ−1

22i + b′i,−Σ12iΣ−1
22iλ

′
2i + λ′1i

)
and κi = (Ir,−B∗

i ), the conditional ECM

for Yi,t is given by

∆Yi,t − κiÃ
∗
i (L)(π∗i )

′∆gt = B∗
i ∆Vi,t + κiαiβ

′
i

(
Z+

i,t−1 − (π∗i )
′gt−1

)
+ κiÃ

∗∗
i (L)∆Z+

i,t−1

+ ci(L)ε1·2i,t, (8)

where ε1·2i,t = ε1i,t − Σ12iΣ−1
22iε2i,t, while the marginal models for Xi,t and Ft are

∆Xi,t − Ã∗2i(L)(π∗i )
′∆gt = α2iβ

′
i

(
Z+

i,t−1 − (π∗i )
′gt−1

)
+ Ã∗∗2i (L)∆Z+

i,t−1 + ci(L)ε∗2i,t, (9)

∆Ft − Ã∗33i(L)π′3∆gt = A∗∗33i(L)∆Ft−1 + ci(L)ηt, (10)

where Ã∗2i(L) and Ã∗∗2i (L) are the second rows of Ã∗i (L) and Ã∗∗i (L), respectively, and where

ε∗2i,t = ε2i,t + λ′2iηt.

Some remarks can be made here.

Remark 1. What this theorem shows is that alternative representations may lead naturally

to alternative approaches to cointegration testing. In particular, while the triangular represen-

tation is better suited for developing residual-based tests, the vector ECM, and more precisely

its factorization into conditional and marginal models, is more suitable for developing tests

based on error correction.

Remark 2. If Γ+
i (L) is a unimodular matrix polynomial, the MA part in the vector ECM

in (7) vanishes. Furthermore, if Γ+
i (L) is of order pi, Ai(L) is of order qi ≤ (r + m + k− 1)pi.

Remark 3. The common factor Ft is by assumption strongly exogenous for βi, see for example

Urbain (1992) for weak and strong exogeneity conditions in this class of models. Similarly,

Xi,t is weakly exogenous for βi if α∗2i = 0, which will be the case when Γ21i(1) = 0. It is

strongly exogenous if in addition Γ21i(L) = 0. The relevance of the two latter assumptions

will be discussed later.

Remark 4. Depending on the specification of the deterministic component gt, we can dis-

tinguish at least five variations of the ECM in (8) to (10). If gt = 0, henceforth referred to

as Model 1, then there are no deterministic components present. If π1i = 0, then β′i(π
∗
i )
′ = 0

and hence gt do not appear in the error correction term. If in addition gt = (1, t)′, then a con-

stant should be included, while if gt = (1, t, t2)′, then a linear trend should also be included.
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These specifications are henceforth referred to as Models 2 and 3, respectively. Moreover,

if π1i 6= 0, we have a constant restricted to the error correction term if gt = 1, henceforth

referred to as Model 4, or an unrestricted constant and a linear trend in the error correction

term if gt = (1, t)′, henceforth referred to as Model 5. Although higher order trend terms

are certainly possible, such models are rarely used in practice, and we therefore restrict our

attention to these five.

3 Individual tests for no error correction

In this section we show how the conditional ECM in (8) can be used as a basis for constructing

cointegration tests. In particular, we propose two test statistics that are designed to test

the null hypothesis that unit i is not error correcting versus the alternative that it is error

correcting. We begin by considering the baseline case with known factors, and then we show

how the testing can be carried out in the more realistic case when Ft is no longer observed.

3.1 Observed factors

Assumptions 1 to 4 are quite relaxed in the sense that even at the level of the individual unit,

the models they imply are multivariate, which makes a full-blown system approach necessary.

However, the purpose of this section is not to devise the most general test possible, but rather

to derive tests that are simple, and easy to implement. This requires more assumptions.

Assumption 5. (i) r = 1, (ii) ci(L) = ci for some constant ci < M , (iii) Xi,t is weakly

exogenous for α1i and βi.

Remark 5. Assumption 5 implies that the r-dimensional conditional model in (8) can be

written as a well-specified single equation, with no serial correlation and with the scalar

coefficient α1i measuring the extent of the error correcting behavior in Yi,t.

Under Assumption 5, and omitting any deterministic component for now, the conditional

ECM in (8) reduces to

∆Yi,t = α1iβ
′
iZ

+
i,t−1 + B11i(L)∆Yi,t−1 + B12i(L)∆Xi,t + B13i(L)∆Ft + ε1·2i,t, (11)

while the marginal models for Xi,t and Ft become

∆Xi,t = B21i(L)∆Yi,t−1 + B22i(L)∆Xi,t−1 + B23i(L)∆Ft−1 + ε∗2i,t, (12)

∆Ft = B33i(L)∆Ft−1 + ηt, (13)

where the lag polynomials Bjli(L) are obtained by simply collecting the appropriate terms

from (8) to (10).
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Assumptions 1 to 5 ensure that the following functional central limit theorem holds as

T →∞
1√
T

bsT c∑

t=1




ε1·2i,t

ε∗2i,t

ηt


 w−→ Bi,

where s ∈ [0, 1] and Bi = (B1i, B
′
2i, B

′
3)
′ is a (1+m+k)-dimensional vector Brownian motion,

which can be partitioned as Bi = (B1i, B
′
2·i)

′ with B2·i = (B′
2i, B

′
3)
′ having dimension m + k.

The covariance matrix of Bi is given by

Ξi =




σ2
i 0 0
0 Σ22i + λ′2iλ2i λ′2i

0 λ2i Ik


 = cov(Bi),

where σ2
i = Σ11i − Σ12iΣ−1

22iΣ21i. Thus, Bi = Ξ
1
2
i Wi, where Wi is a (1 + m + k)-dimensional

standard Brownian motion that is partitioned conformably with Bi. Furthermore, the long-

run covariance matrix of Z+
i,t is given by

Ωi = B̃i(1)ΞiB̃i(L)′ = Ω
1
2
i (Ω

1
2
i )′,

where the lag polynomial B̃i(L) is obtained from collecting the appropriate terms from (11)

to (13) and Ω
1
2
i = B̃i(1)Ξ

1
2
i .

For later reference it is useful to consider the continuous time regression of W1i, the first

element of Wi, onto some vector Xi,

W1i = Pi(Xi)′Xi + QXW1i,

where

Pi(Xi) =
(∫

XiX
′
i

)−1 ∫
XiW1i = V (Xi)pi(Xi) (14)

is the ordinary least squares (OLS) projection with QXW1i being the associated projection

error. For example, if Xi = 1, then Pi(Xi) =
∫

W1i in which case Q1W1i = W1i −
∫

W1i is

the demeaned version of W1i.

As (11) makes clear, as long as Ft is observed, the problem of testing the null of no error

correction is equivalent to testing

H0i : α1i = 0

against

H1i : α1i < 0.

The problem is that, unless one resorts to nonlinear techniques, this parameter is not easily

estimated. One way to get around this is to assume that βi is known, and to estimate α1i

using OLS. However, as shown by Boswijk (1994) and Zivot (2000), apart from the obvious
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drawback that βi is almost never known in practice, tests based on a prespecified βi are

generally not similar and depend on nuisance parameters, even asymptotically.

As an alternative approach, note that (11) can be reparameterized as

∆Yi,t = α1iYi,t−1 + γ′1iXi,t−1 + γ′2iFt−1 + B11i(L)∆Yi,t−1 + B12i(L)∆Xi,t

+ B13i(L)∆Ft + ε1·2i,t, (15)

where γ′1i = −α1ib
′
i and γ′2i = −α1iλ

′
1i. The advantage of rewriting (11) in this way is that

because γ1i and γ2i are unrestricted, the cointegrating vector is implicitly estimated under the

alternative hypothesis. Hence, as long as we are not interested in βi, all the parameters of (15)

can be consistently estimated by simple OLS, which in turn suggests the OLS estimator of α1i

as a natural candidate for constructing asymptotically similar tests of the null hypothesis of

no error correction. In this section we propose two such tests, whose construction is described

next.

One obvious candidate is the t-test. Suppose that the lag polynomial B1ji(L) is of order

qi, and let

Wi,t =
(
∆Yi,t−1, . . . ,∆Yi,t−qi , ∆X ′

i,t, . . . ,∆X ′
i,t−qi

, ∆F ′
t , . . . , ∆F ′

t−qi

)′

denote the vector of stationary, first-differenced, regressors, while Vi,t again denotes the vector

of weakly exogenous non-stationary, level, variables, then (15) can be written as

∆Yi,t = α1iYi,t−1 + γ′iVi,t−1 + Π′iWi,t + ε1·2i,t

= α1iYi,t−1 + Φ′iSi,t + ε1·2i,t, (16)

where Φi = (γ′i, Π
′
i)
′, Si,t = (V ′

i,t−1,W
′
i,t)

′, γi = (γ′1i, γ
′
2i)
′ and Πi is the vector stacking the

coefficient vectors of the lag polynomials B11i(L), B12i(L) and B13i(L). This equation can in

turn be written as

∆(QSYi,t) = α1i(QSYi,t−1) + QSε1·2i,t,

where again QS is the OLS projection error operator, with

QSYi,t = Yi,t −
T∑

t=2

Yi,t−1S
′
i,t

(
T∑

t=2

Si,tS
′
i,t

)−1

Si,t

being the residual from projecting Yi,t onto Si,t.

In this notation, the OLS estimator of α1i is given by

α̂1i =

(
T∑

t=2

(QSYi,t−1)2
)−1 T∑

t=2

QSYi,t−1∆(QSYi,t),
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whose estimated variance is given by

var(α̂1i) = σ̂2
i

(
T∑

t=2

(QSYi,t−1)2
)−1

,

where σ̂2
i = 1

T

∑T
t=2(∆(QSYi,t) − α̂1i(QSYi,t−1))2. The t-statistic for testing H0i can now be

written as

τα̂1i =
α̂1i√

var(α̂1i)
.

Another possibility is to follow Boswijk (1994), and to use a Wald statistic to test if α1i

and γi are jointly zero. In so doing, note that (16) can be rewritten as

∆Yi,t = δ′1iZ
+
i,t−1 + Π′iWi,t + ε1·2i,t,

where δ1i = (α1i, γ
′
i)
′, or in terms of projection residuals,

∆(QW Yi,t) = δ′1i(QW Z+
i,t−1) + QW ε1·2i,t.

The Wald statistic for testing the restriction that δ1i = 0 is given by

wδ̂1i
= δ̂′1i

(
var(δ̂1i)

)−1
δ̂1i,

where

δ̂1i =

(
T∑

t=2

QW Z+
i,t−1(QW Z+

i,t−1)
′
)−1 T∑

t=2

QW Z+
i,t−1∆(QW Yi,t)

is the OLS estimator of δ1i, and

var(δ̂1i) = σ̂2
i

(
T∑

t=2

QW Z+
i,t−1(QW Z+

i,t−1)
′
)−1

is the associated variance.

The t-statistic τα̂1i and the Wald statistic wδ̂1i
are the two test statistics considered in

this paper. Their limiting distributions under the no error correction null are given in the

following theorem.

Theorem 2. Under H0i and Assumptions 1 to 5, as T →∞

(a) wδ̂1i

w−→ Di,w = pi(Wi)′Pi(Wi),

(b) τα̂1i

w−→ DΩ
i,τ =

di√
Di

,

11



where pi(·) and Pi(·) are defined in (14),

Di = σ2
i ω

−2
11·2iV (Ui)

+ σ2
i ω

−2
11·2iω11iV (Ui)

(
ρ′i(Ω

′
22i)

−1Pi(W2·i) + V (W2·i)pi(W2·i)′Ω−1
22iρi

)

+ σ2
i ω

−2
11·2iω

2
11iρ

′
i(Ω

′
22i)

−1
(
V (W2·i) + Pi(W2·i)V (Ui)V (W2·i)pi(W2·i)′

)
Ω−1

22iρi,

di = σiω
−1
11·2iPi(Ui) + ω−1

11·2iω11iρ
′
i(Ω

′
22i)

−1Pi(W2·i)(Pi(Ui)− 1),

with ω11·2i, ω11i, Ω22i and ρi depending on the parameters of Ω
1
2
i , as defined in the appendix.

The asymptotic distribution of τα̂1i simplifies substantially if Xi,t is strongly exogenous.

Assumption 6. Xi,t is strongly exogenous for α1i and βi.

This is shown in the following corollary.

Corollary 1. Under Assumption 6 and the conditions of Theorem 2, as T →∞,

τα̂1i

w−→ Di,τ =
Pi(Ui)√
V (Ui)

.

Theorem 2 shows that the distribution of wδ̂1i
as T →∞ is nuisance parameter free and

only depends on m + k, the number of non-stationary exogenous variables in the system.

By contrast, the distribution of τα̂1i
depends on several nuisance parameters, and although

these vanish under Assumption 6, strong exogeneity is quite restrictive. Fortunately, as Zivot

(2000) points out relying on results obtained by for example Saikkonen (1991), there is a

simple modification available that eliminates the nuisance parameters that are there under

Assumption 5 (iii). The idea is to model these parameters by making the lag polynomial

B12i(L) double-sided, as in

B12i(L + L−1) =
∞∑

j=−∞
B12ijL

j ,

where L−1 is the lead operator, which in in turn requires augmenting (16) not only by the lags,

but also by the leads of ∆Xi,t. If the number of leads is large enough, then the asymptotic

distribution of the resulting test statistic is given in Corollary 1.

In this sense, the results in Theorem 1 are basically the same as those provided by Banerjee

et al. (1998) and Boswijk (1994) for the pure time series case. The proof is therefore very

similar. The difference lies with the presence of Ft, which has two effects. One is that the

number of unit roots increases from 1 + m to 1 + m + k, which is reflected through W3 in the

asymptotic distribution of the test. The second effect is that the test statistics across units

are no longer independent of each other, although the degree of the dependence between all

pairs of units is the same.
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In the presence of nonzero deterministic constant and trend terms, as in Models 2 to 5, the

above theorem needs to be modified in order to obtain similar tests. This requires replacing

Ui in (a) and Wi in (b) by their appropriately detrended counterparts. Specifically, Ui and

Wi should be demeaned in Model 1, and demeaned and detrended in Model 2. The t-test

cannot be used in Models 4 and 5, and so for these models there is only the Wald test. In

Model 4, Wi is replaced by (W ′
i , 1)′, while in Model 5, Wi is replaced by (W ′

i , 1, s)′, where s

is the limiting trend function, see Boswijk (1994).

Furthermore, under the alternative hypothesis of cointegration, τα̂1i → −∞ whereas

wδ̂1i
→∞ as T →∞, suggesting that the tests are consistent. A proof of this is provided by

Boswijk (1994).

3.2 Unobserved factors

So far we have assumed Ft to be observed, an assumption which is generally not true. To

account for this, in a recent unit root paper Bai and Ng (2004) propose using the method

of principal components to estimate Ft, and then to use this estimate in place of Ft in the

subsequent analysis. This approach has proven very fruitful, and has also been extended to

the case of cointegration, see for example Bai et al. (2008), Banerjee and Carrio-i-Silvestre

(2007), Gengenbach et al. (2006) and Westerlund (2008). The problem with this approach

is that, regardless of whether one considers unit roots or cointegration, the analysis must

be carried out in steps, which means that the estimation error from one step is imported in

subsequent steps.

As a response to this, Pesaran (2007) proposes a joint approach, which is based on us-

ing cross-sectional averages of the observed variables as proxies for the unobserved common

factors. Apart from the advantage that it eliminates the need for a two-step estimation pro-

cedure, this approach fits very well with the parametric flavor of our conditional ECM, and

it will therefore be used in this paper.

Part (b) of Theorem 1 implies that Zi,t can be written as

Zi,t = ΛiFt + Ei,t,

where Λi is the (1 + m)× k matrix of factor loadings, and where Ei,t is a vector representing

the idiosyncratic component of Zi,t. Denoting by Zt, Λ and Et the cross-sectional averages

of Zi,t, Λi and Ei,t, respectively, it is clear that

Zt = ΛFt + Et,

which, via Assumption 3 (iii) and the fact that Ei,t is cross-sectionally independent, suggests

that Ft can be written as

Ft = (Λ′Λ)−1Λ′Zt + (Λ′Λ)−1Λ′Et = (Λ′Λ)−1Λ′Zt + Op

(
1√
N

)
.
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The implication is that the common factors can be approximated by the cross-sectional av-

erages Zt, and that the resulting approximation error should become negligible as N → ∞.

Following this argument, we propose using Zt to approximate Ft. In so doing, it is convenient

to let W̃i,t, Ṽi,t and Z̃+
i,t denote Wi,t, Vi,t and Z+

i,t, respectively, with Zt in place of Ft. Starting

with (16) the approximate test regression can now be written as

∆Yi,t = α1iYi,t−1 + Φ′iS̃i,t + ε̃1·2i,t,

or equivalently,

∆(QS̃Yi,t) = α1i(QS̃Yi,t−1) + QS̃ ε̃1·2i,t,

where the error ε̃1·2i,t depends on the accuracy of the approximation. Nevertheless, by regress-

ing ∆(QS̃Yi,t) on QS̃Yi,t−1, we obtain another OLS estimator of α1i, which we will henceforth

denote by α̃1i. The associated t-statistic of H0i can be written in an obvious notation as

τα̃1i =
α̃1i√

var(α̃1i)
,

while the Wald statistic can be written as

wδ̃1i
= (δ̃1i)′

(
var(δ̃1i)

)−1
δ̃1i,

where δ̃1i and var(δ̃1i) are defined just as in Section 3.1 but with QW̃ in place of QW .

Theorem 3 provides the limiting null distributions of these test statistics.

Theorem 3. Under the conditions of Theorem 2, as N, T →∞,

(a) wδ̃1i

w−→ Di,w,

(b) τα̃1i

w−→ D̃Ω
i,τ =

d̃i√
D̃i

,

where d̃i and D̃i are defined analogously to di and Di but depending on the parameters of Ω̃
1
2
i ,

as defined in the appendix.

Theorem 3 shows that the asymptotic distributions of wδ̃1i
is the same as that of wδ̂1i

provided in Theorem 2, which is based on observed factors. The limiting distribution of

τα̃1i is similar to that of τα̂1i but depending on different nuisance parameter due to the

approximation of Ft by Zt. The difference is that Theorem 2 only requires that T → ∞. If

Ft is not observed, we require N →∞ as well to ensure that Zt provides a sufficiently good

approximation for Ft.

Similarly to the case of observed factors, if Xi,t is strongly exogenous the asymptotic

distribution of τα̃1i simplifies and is the same as that of τα̂1i . This is shown in Corollary 2.

Corollary 2. Under Assumption 6 and the conditions of Theorem 3, as N, T →∞,

τα̂1i

w−→ Di,τ .
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3.3 Critical values

As in the simple case with cross-sectionally independent units, our tests are one-sided. The

t-test is left-tailed, while the Wald test is right-tailed. The difference is that in our case the

asymptotic test distribution, and hence also the simulation of the critical values, is complicated

by the dependence across i. However, conditional on W3, the Brownian motion associated

with Ft, the random variables D1,w, . . . , DN,w, are identically and independently distributed

for all values of N . We say that D1,w, . . . , DN,w form an exchangeable sequence, similar to for

example Pesaran (2007) and Gregoir (2005). Thus, since Di,w is the same for all N , we can

just as well set N = 1 in the simulations, a finding also confirmed by our results. The same

argument applies to Di,τ . However, this is only valid for the limiting distribution of the t-test

under strong exogeneity of Xi,t, or if an appropriate correction is employed to remove the

nuisance parameter dependence. Otherwise, the individual test statistics are not identically

distributed across i.

The simulated critical values at the 1%, 5% and 10% significance levels are reported in

Table 1 for the t-test, and in Table 2 for the Wald test. These are based on making 1,000,000

draws from the limiting test distributions, with normal random walks of length T = 1, 000.

The results are reported for all five deterministic model specifications, and for m = 1, . . . , 5.

4 Panel tests for no error correction

In this section we build on the results of Section 3, and show how these can be used to

construct pooled tests for the null of no error correction at the overall panel level. As an

example, we will consider the t-statistic in the most simple case with known factors.

4.1 The tests

There are many ways in which one can combine a set of individual test statistics into a pooled

test. The by far most common way is to follow Im et al. (2003) and to take the average,

which for the t-statistic in case of known factors amounts to computing

τ α̂1 =
1
N

N∑

i=1

τα̂1i .

This is a test of the null of no error correction against the alternative that there is a non-

vanishing fraction of error correcting units. Formally, the null and alternative hypotheses are

formulated as

H0 : α1i = 0 for all i

against

H1 : α1i < 0 for i = 1, . . . , N1 with
N1

N
→ δ > 0
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as N1, N → ∞. However, due to the dependence across i, in our case it is not possible to

follow the usual practice in applying a central limit theorem to obtain a normal distribution

for
√

N times τ α̂1 .

One possibility is to look directly at the average. Following similar arguments as Pesaran

(2007), because D1,τ , . . . , DN,τ are identically and independently distributed given W3, a law

of large numbers applies to the conditional average of these random variables. That is, we

have that as N →∞
Dτ =

1
N

N∑

i=1

Di,τ
p−→ E(Dτ |W3),

where the i index in the expectation has been suppressed because all Di,τ have the same

conditional expectation. Thus, unconditionally the average converges to some random dis-

tribution. However, unless τα̂1i has finite moments for all N and T , this distribution is not

necessarily the same as the one that applies to τ α̂1 .

In order to get around this technical difficulty, we follow Pesaran (2007) and base our

pooled test on a truncated version of τα̂1i . Because this test has finite moments by construc-

tion, the associated cross-sectional average converges to the same asymptotic distribution as

Dτ .

The truncated statistic is defined as

τ∗α̂1i
=





Kl if τα̂1i ≤ Kl

τα̂1i if Kl < τα̂1i < Ku

Ku if τα̂1i ≥ Ku

,

where the thresholds Kl and Ku are such that the probability of observing τα̂1i
≤ Kl and

τα̂1i ≥ Ku is sufficiently small. In particular, by using the normal approximation of τα̂1i ,

Kl = E(Dτ ) − Φ−1
(
1 − ε

2

)√
var(Dτ ) and Ku = E(Dτ ) + Φ−1

(
1 − ε

2

)√
var(Dτ ), where ε > 0

is a small number, while Φ is the standard normal cumulative distribution function.

The corresponding truncated version of τ α̂1 is given by

τ∗α̂1
=

1
N

N∑

i=1

τ∗α̂1i
.

Making use of Theorem 2, it is not difficult to see that as T →∞

τ∗α̂1

w−→ D
∗
τ =

1
N

N∑

i=1

D∗
i,τ ,

where

D∗
i,τ =





Kl if Di,τ ≤ Kl

Di,τ if Kl < Di,τ < Ku

Ku if Di,τ ≥ Ku

.

But all moments of D∗
i,τ exist, so by conditioning on W3, as N →∞

D
∗
τ

p−→ E(D∗
τ |W3),
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where

E(D∗
τ |W3) = Kl · Prob(Dτ ≤ Kl|W3) + Ku · Prob(Dτ ≥ Ku|W3)

+ E(Dτ |W3,Kl < Dτ < Ku) → E(Dτ |W3)

as Kl, Ku →∞, and so we get the same result as for Dτ . This suggests that τ∗α̂1
can be used

for the test of H0 versus H1. Another possibility is to use w∗
δ̂1

, the average of the truncated

Wald test statistics.

4.2 Critical values

The above results show that if Kl, Ku →∞, τ∗α̂1
converges to a distribution that only depends

on number of non-stationary variables in the system. With Kl and Ku finite, however, then

there is not just this dependence, but also a dependence on the specific threshold values.

Similarly, if N is finite, then there is also a dependence on the size of the cross-section. The

generation of the critical values has to account for all these dependencies.

We begin by simulating values of E(Dτ ) and var(Dτ ) for all five deterministic model

specifications, and for m = 1, . . . , 5. These are needed in order to compute Kl and Ku. Just

as in Section 3.3 we make 1,000,000 draws from the limiting test distribution, with normal

random walks of length T = 1, 000. The results for the t-test are reported in Table 1, while

the results for the Wald test are reported in Table 2.

The next step is to simulate N -tuples D∗
1,τ , . . . , D

∗
N,τ using ε = 1

106 , and the first-step

moments to compute Kl and Ku. The average is then taken, which yields one simulated

value of D
∗
τ . By repeating this exercise 10,000 times, we obtain the simulated distribution of

D
∗
τ . The critical values at the 1%, 5% and 10% levels are reported in Table 3 for the t-test

and in Table 4 for the Wald test, in which case D
∗
τ is replaced by D

∗
w, the average of the

truncated Wald test distributions.

5 Monte Carlo simulations

In this section we report the findings of a small set of simulations. We do not intend to give

a comprehensive account of all the merits and drawbacks of the tests, but rather we want to

convey a rough idea of their relative performance, also when compared to some of the more

conventional tests from the literature.

The data generating conditional ECM is given by

∆Yi,t = α1

(
Yi,t−1 −Xi,t−1 − ι′2Ft−1

)
+ ∆Xi,t + B13i∆Ft + ε1·2i,t,

while the marginal models for Xi,t and Ft are generated as

∆Xi,t = B23i∆Ft−1 + ε∗2i,t,

∆Ft = ηt,
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where the elements of B23i and B13i are drawn from N(1, 1), while ι2 = (1, 1)′ is a two-

dimensional vector of ones. Thus, in this setup Xi,t is a scalar, while Ft is two-dimensional.

For simplicity, we assume that there are no deterministic components in the data generating

process, and that there is a common error correction parameter α1, which is equal to zero

under the null hypothesis, and equal to −0.05 under the alternative.

The results are organized in four parts depending on whether there is any serial correlation

present or not. If there is no serial correlation, then ε1·2i,t, ε∗2i,t and ηt are drawn from the

standard normal distribution, while if there is serial correlation, then one of these errors is

specified as a first-order autoregressive (AR) process with standard normal innovations, and

a common AR coefficient of magnitude 0.5, while the remaining two errors are again drawn

from the standard normal distribution.

All experiments are based on generating 5, 000 panels with N individual and T + 50 time

series observations, where the first 50 observations for each series are discarded in order to

attenuate the effect of the initial conditions, which are all set to zero.

For comparison, the error correction tests of Westerlund (2007) are also simulated. Two

are based on the group mean, or between, principle and are denoted Gτ and Gρ, while the

corresponding panel, or within, type statistics are denoted Pτ and Pρ. Analogous to τ∗α̂1
, Gτ

and Pτ are constructed as t-ratios, while Gρ and Pρ are coefficient type statistics.

The problem with these tests is that they are based on assuming cross-sectional indepen-

dence, as explained earlier, and are therefore not expected to work in a setup as general as

this one. Therefore, for better comparability, we follow the suggestion of Gengenbach et al.

(2006), and run the tests on the defactored data. Specifically, we begin by estimating sepa-

rately the common component of Xi,t and Yi,t using the method of Bai and Ng (2004), which

involves applying the principal components method to the variables in their first differences.

The estimated common component is then removed, and the defactored data are cumulated

back to levels again. The number of factors are determined using the IC1 information criterion

of Bai and Ng (2002) with a maximum of five factors.

For the number of lags and leads to use in the conditional ECM, we used the Schwarz

Bayesian information criterion, which facilitates a data dependent choice. Consistent with

the results of Ng and Perron (1995), the maximum number of lags and leads is permitted to

grow with T at rate 4
(

T
100

)2/9. The same rate is used for picking the bandwidth needed for

constructing Gρ and Pρ. Also, for better comparability across all tests, we do not consider

Models 4 and 5 when the deterministic constant and trend terms are restricted to the error

correction term. All tests are performed at the 5% significance level, and all powers are

adjusted for size.

The results for the case with no deterministic components are reported in Table 5. The

first thing to note is the relative performance of the new t-tests, which is very good. This is
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especially true when the data are serially correlated, in which case there are only one other

test with roughly the same performance as ours, Gτ . The overall best performance is obtained

by using the individual τα̂1i
and τα̃1i tests, which seem to maintain the nominal level very well

in all cases considered. At the other end of the scale we have the wδ̂1
test, which generally

suffers from severe distortions, even if it is based on the true factors.

Pesavento (2004) reports some results for the original Wald test of Boswijk (1994), and

find it to be oversized when the serial correlation is of the positive AR type considered here.

The overall poor performance of the new Wald tests is therefore not very surprising. On the

other hand, unreported results suggest that the relative performance of these tests is much

improved if the serial correlation is of the negative MA type, which is also what Pesavento

(2004) finds in her simulation study. In any case, the size distortions generally decrease

substantially as T increases, which corroborates our asymptotic results.1

Among the different versions of the new tests considered, the best size accuracy is not

surprisingly obtained by using the true factors. The tests based on using the cross-sectional

averages of the observed data as proxies for the factors are, however, almost as accurate, and

perform only slightly less well. Thus, the approximation seem to be effective even when N is

as small as 10. The defactored versions of the tests of Westerlund (2007) also seem to perform

quite well, which is in agreement with consistency of the principal components method, as

shown by Bai and Ng (2004). However, although improving in N , we also see that the size

accuracy is basically unaffected by T , which is unexpected because theoretically the precision

of the principal components estimator should get better as T grows.

Consider next the results reported in Table 5 for the power of the tests, which can be

summarized as follows. Firstly, the power increases rapidly as T and N increase, which is

presumably a reflection of the consistency of the tests. Secondly, the Westerlund (2007) tests

generally suffer from poor power, especially when ε1·2i,t is serially correlated, in which case

the power is only rarely in excess of the size. The Gρ test suffers most, and can actually be

less powerful than some of the individual tests. Thirdly, as expected, the power of the new

tests is generally greatly improved by pooling. Similarly, the tests based on the true factors

are generally more powerful than those based on the cross-sectional averages of the observed

data.

The results for the models with a constant, and constant and trend reported in Tables

6 and 7, respectively, are very similar to those reported in Table 5. Nevertheless, there

are still a few differences that are noteworthy. One difference is the magnitude of the size

distortions, which has a slight tendency to increase as more deterministic components are

added. Similarly, we see that inclusion of more deterministic components reduces the power
1One possibility here is to follow Palm et al. (2007), and to use bootstrap methods to eliminate the size

distortions of the Wald test.
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of the tests, especially for the individual ones. Another difference is that the relative power

of the Wald tests is generally much higher in Tables 6 and 7 than in Table 5.

We also examined the effects of a violation of the weak exogeneity assumption. We used

the same data generating process as before but this time we allowed the equation for ∆Xi,t to

be error correcting. The results, which are not reported but available from the corresponding

author upon request, conforms well with our expectations. In particular, while the size of the

tests is not effected, the power can be very low in cases when it is mainly ∆Xi,t that is error

correcting. Thus, even though the tests continue to perform well in some setups, in general

we need the weak exogeneity assumption to ensure that they work properly.2

The above results are all based on the truncated panel statistics. We carried out the same

simulations for their non-truncated versions, and obtained identical results. In fact, the two

types of statistics differ only for very small values of T , and are basically indistinguishable

for T > 20. Thus, although little is gained in the present case, the truncation of the extreme

test statistics seem to pay out when T is very small. This effect is particularly strong when

the number parameters of the underlying ECM regressions is large.

6 Empirical Applications

In this section we present two empirical applications of the tests developed in this paper. The

first is concerned with the Fisher effect, while the second is concerned with the monetary

exchange rate model.

6.1 The Fisher effect

There are very few theoretical economic relationships with as much intuitive appeal as the

Fisher effect, which states that a one-time permanent shock in monetary variables has no

long-run effect on the real economy. A simple implication of this theory is that changes in

inflation should be reflected fully in subsequent movements of the nominal interest rate, thus

leaving the real interest rate constant over time. Yet, oddly, for a theory so widely accepted,

the postulated long-run relationship between inflation and nominal interest rates has proven

extremely difficult to establish empirically. In fact, most studies are unable to reject the null

hypothesis of no cointegration between inflation and nominal interest rates.

Westerlund (2008) argues that this lack of empirical support can be partly explained by

the poor precision of the routinely applied time series approach, and that the use of panel

data can produce more accurate tests. Consistent with this story, drawing upon a panel

of 20 OECD countries between the first quarter of 1980 and the fourth quarter of 2004,

the author shows that while the null hypothesis of no cointegration cannot be rejected at
2Zivot (2000) examines the performance of the time series tests of Banerjee et al. (1998) and Boswijk

(1994), and reach the same conclusions.
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conventional significance levels when using data on individual countries, panel testing leads

to a safe rejection. Low power in the tests is therefore one possible explanation for why

cointegration has been so difficult to find.

Our findings suggest that there is an alternative interpretation of these results. Namely,

that inflation and nominal interest rates are cross-sectionally correlated via the presence of

non-stationary common factors, which then invalidates the use of conventional critical values.3

Thus, according to this view, it is the factors, and not a lack of power, that make the tests

unable to reject the no cointegration null at the individual country level.4

In this section, we therefore apply our new tests to the same data to reevaluate the

cointegration test results reported by Westerlund (2008). In so doing, we will assume that

his unit root test results hold, and hence that the rates of inflation and nominal interest are

non-stationary. Hence, in this application Yi,t = ii,t and Xi,t = πi,t, where ii,t is the nominal

interest rate for country i in quarter t, while πi,t is inflation.

The tests are constructed in the same way as in Section 5, using the Schwarz Bayesian

information criterion with the same maximum to determine the number of lags and leads.

One difference in comparison to the simulations is that the common factors are no longer

observed, which means that we cannot evaluate the tests at the true factors. Therefore, as a

feasible alternative, in this section we consider replacing the factors by their first differenced

and cumulated principal components estimates, which are consistent even if the factors are

non-stationary, see Bai and Ng (2004). In agreement with the so-called full Fisher effect, the

estimation is carried out while imposing a unit slope coefficient on inflation. That is, the

factors are estimated from the real interest rate, ii,t − πi,t, which is consistent with the idea

of the existence of a world real interest rate, see for example Lee (2002).

The principal components method is implemented as described in Section 5, but with the

number of factors restricted to two, which ensures that the rank condition in Assumption 3

(iii) is fulfilled. As in the simulations, the defactored versions of the error correction tests

of Westerlund (2007) are also considered. We focus on the results for Model 2 with an

unrestricted constant, but include the results for Model 3 with both constant and trend for

comparison.

The results reported in Table 8 suggest that there is strong evidence against the no

cointegration null, even at the individual country level, which goes against the power argument

of Westerlund (2008). Indeed, looking at the baseline specification with no trend, we end up

rejecting the null for 13 out of the 20 countries when using the τα̃1i test, and for 11 countries

3Although the panel tests of Westerlund (2008) are immune to the presence of common factors, his time
series tests are not. This means that the two sets of results are not really comparable in the sense that the
observed non-rejections at the individual country level could be due to the factors.

4One rationale for these factors is that they represent in part oil price shocks and other unanticipated
changes in inflation.
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when using the wδ̃1i
test. Similarly, the pooled tests are way out in the critical region and

lead to a safe rejection, even at the conservative 1% level. In other words, there is not much

evidence against the Fisher effect. This conclusion is not altered by the inclusion of a linear

trend.

In fact, the no cointegration null is rejected even when the factors are estimated with the

slope on inflation fixed at unity. Specifically, although weaker at the individual level, the

evidence at the overall panel level is still strong. Thus, we also have some evidence of the full

Fisher effect.

To formally test for the presence of unit roots in the estimated factors, we follow the

recommendation of Bai and Ng (2004) and use the augmented Dickey and Fuller (1979)

test, ADF henceforth.5 The estimated first order AR coefficient for the two factors are 0.81

and 0.89, indicating that there is considerable persistency in the factors. This evidence is

reinforced by the associated ADF test values, −1.69 and −1.79, respectively, which lead to an

acceptance of the unit root null for both factors. Thus, if these factors are to be interpreted

as emanating from the world real interest rate, then this rate must be non-stationary.

The lesson we draw from these results is that a failure to reject the null of no cointegration

at the individual country level need not be taken as an indication of low power, as the

possibility remains that it can be due to the presence of non-stationary common factors.

6.2 The monetary exchange rate model

In this section we take a closer look at the monetary exchange rate model, which postulates a

strong link between the nominal exchange rate and a set of monetary fundamentals. The by

far most scrutinized proposition being that the nominal exchange rate between the domestic

and the foreign reference country, usually the United States, should cointegrate with the

relative money supply and relative output of these countries.

However, as with the Fisher effect, despite its strong theoretical appeal, the empirical

success of the monetary model has been rather limited, to say the least. Westerlund (2008),

Mark and Sul (2001) and Rapach and Wohar (2004) for example argue that this is due to low

power. They then proceed to show that the use of panel data leads to a much more favorable

picture, with strong evidence of cointegration at the aggregate panel level. Therefore, since

the countries appear to be cointegrated, the authors proceed to estimate the cointegration

vector.

The problem is that since all variables are measured relative to the United States, this

means that the common factors are there by construction. Furthermore, both money supply

and output are generally believed to possess unit roots, even for the United States, such that
5The test allow for an intercept and the lag orders are determined using the Schwarz Bayesian information

criterion.
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the common factors must be non-stationary as well. The potential consequences of unat-

tended non-stationary factors on residual-based panel cointegration tests have been studied

by Banerjee et al. (2004) and Gengenbach et al. (2006). The effects may lead to size dis-

tortions in small samples or even divergence in large samples. While Mark and Sul (2001)

employ a block bootstrap to correct for some weak cross section dependence among the error

term. It is not clear whether their test can correct for strong cross sectional dependence

induced by non-stationary common factors. Rapach and Wohar (2004) only allow for cross

section dependence in form of a common time effect.

In this section we revisit the results of Mark and Sul (2001) and Rapach and Wohar (2004).

The data are taken directly from Mark and Sul (2001), and cover 18 countries between the

first quarter of 1973 and the first quarter of 1997. Thus, in this application, Yi,t = ei,t and

Xi,t =
(

m∗
t −mi,t

y∗t − yi,t

)
,

where ei,t, mi,t and yi,t are the logarithm of the nominal exchange rate, money supply and

real income for country i at quarter t, respectively. Asterisks denote the United States.

The average-based tests are computed in the same ways as before, but now we consider

two new versions of the factor-based tests. The first is based on using m∗
t and y∗t as observed

factors, which is very interesting in the sense that it provides an example of the scenario

considered in Section 3.1. The second version is based on pre-specifying the cointegrating

relationship as in Mark and Sul (2001). In particular, it is assumed that the relationship can

be written as

β′Zi,t =
(

1, −1, 1
)(

Yi,t

Xi,t

)
= ei,t − (m∗

t −mi,t) + (y∗t − yi,t),

which imposes monetary neutrality and a unit negative income elasticity.6 Three factors are

estimated from this relationship, which again ensures that Assumption 6 is satisfied. Once

again we focus on Model 2 with an unrestricted constant as the deterministic component. For

simplicity, in this section we drop the Westerlund (2007) tests.

The results are reported in Table 9. The first thing to note is that for the first 11

countries there is almost no evidence of cointegration at all, except possibly for Belgium,

where we count four rejections at the 5% level. The pooled tests are generally much more

significant, especially the Wald tests, displaying evidence of cointegration for all five panels.

Just as before the results show almost no variation at all depending on whether the trend is

included or not.
6In order to avoid the problem with nuisance parameter dependency discussed in Section 3.1, the cointe-

grating relationship is only pre-specified for the purpose of estimating the factors. In other words, although
restricted in the factor estimation, in the implementation of the error correction tests the cointegrating rela-
tionship is still unrestricted.
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These two sets of results suggest that the evidence at the aggregate panel level could very

well be due to only a few cointergrated countries. Indeed, a closer look at the different panel

members reveals that the significance at the aggregate panel level is mainly due to three

individually cointegrated countries, Italy, Spain and Korea. Although these differences could

of course also be due to the relatively low power of the individual tests, they nevertheless

show that one should take caution in interpreting test results at the aggregate panel level.

Indeed, based on the results reported here it seems very hazardous, and borderline erroneous,

to treat all five panels as cointegrated, and to proceed with the analysis as if all members are

individually cointegrated.

When we compare the results from across the different tests, in agreement with our sim-

ulations, we see that the average-based Wald test leads to most rejections. As a final piece

of evidence, Table 10 reports some summary statistics for the estimated factors. As in the

Fisher application, we see that the estimated AR coefficients are very close to one, indicating

the presence of unit roots, which is again supported by the ADF test results.

7 Conclusions

In this paper we consider the issue of testing for cointegration in a panel data model with

non-stationary common factors. We begin by showing that the model admits to an ECM

representation, a result that is then used for developing two new cointegration tests based on

the significance of the error correction term.

It is shown that under the null of no error correction the asymptotic distributions of the

tests are free of nuisance parameters, and that they only depend on the number of non-

stationary variables in the system. However, the individual tests are not independent along

the cross-sectional dimension, which makes pooling difficult. Nonetheless, the cross-sectional

averages of these tests are shown to converge to well-defined distributions. These results hold

regardless of whether the factors are treated as known or if they are estimated using the

averages of the observed data. Some simulation evidence is also provided showing that the

tests behave quite well in small samples.

A number of concluding remarks can be made. Firstly, the assumption of weak exogeneity

of the regressors in the ECM is crucial for correct interpretation of the tests. This assumption

is clearly a weakness in comparison to the residual-based test approach, in which the regressors

can be fully endogenous by means of a non-parametric correction. However, it should be

pointed out that in principle there is nothing that precludes the use of a similar correction

in the current setup. An alternative approach would be to pre-test the validity of the weak

exogeneity assumption using panel extensions of the Lagrange multiplier tests proposed by

Boswijk and Urbain (1997).

Secondly, the simulations show that the new tests can still be distorted in some cases
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when the factors are treated as unknown. One possibility towards this end would be to follow

Palm et al. (2007), and to consider bootstrap versions of our tests, which are expected to

have better size properties in small samples.

Finally, a crucial assumption is that of a single cointegrating vector under the alternative.

This is obviously an important limitation of our tests that is shared with most existing

residual-based tests. When the dimension of the cointegrating space is unknown it is probably

best to analyze the data using system-based approaches, see for example Larsson et al. (2001).
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A Appendix

A.1 Proof of Theorem 1.

Consider (a). From (3) and (4) we have ∆Ft − π′3gt = Ψ(L)ηt. Substituting for ∆Ft in (2)

and using (4) we obtain

∆Xi,t − π∗2i
′gt = Γ21i(L)ε1i,t + Γ22i(L)ε2i,t + λ′2iΨ(L)ηt. (A1)

Taking first differences of (1) and substituting for ∆Ft and ∆Xi,t from (A1) we obtain the

following MA representation

∆Yi,t − π∗1i
′gt = ((1− L)Γ11ib

′
iΓ21i(L))ε1i,t

+((1− L)Γ21i + b′iΓ22i(L))ε2i,t + (λ′1i + b′iλ
′
2i)Ψ(L)ηt. (A2)

Combining the results above we find

Ci(L) =




(1− L)Γ11i(L) + b′iΓ21i(L) (1− L)Γ12i(L) + b′iΓ22i(L) (λ′1i + b′iλ
′
2i)Ψ(L)

Γ21i(L) Γ22i(L) λ′2iΨ(L)
0 0 Ψ(L)


 .

Furthermore,

Ci(1) =




b′i (λ′1i + b′iλ
′
2i)

Im λ′2i

0 Ik




(
Γ21i(1) Γ22i(1) 0

0 0 Ψ(1)

)

such that Ci(1) has rank m + k. This establishes part (a) of the theorem.

Next, consider (b). Partition Ci(L) such that the diagonal blocks C11i(L) and C22i(L) are

of dimension r × r and (m + k)× (m + k), respectively. Since

C22i(L) =
(

Γ22i(L) λ′2iΨ(L)
0 Ψ(L)

)

is invertible, we can decompose Ci(L) as

Ci(L) =
(

Ir C12i(L)C22i(L)−1

0 I(m+k)

)(
C11·2i(L) 0
C21i(L) C22i(L)

)
.

As C11·2i = (1− L)Γ11·2i(L) we can further write

Ci(L) =
(

Ir C12i(L)C22i(L)−1

0 I(m+k)

)(
(1− L)Ir 0

0 I(m+k)

)(
Γ11·2i(L) 0
C21i(L) C22i(L)

)

= Ui(L)−1M(L)Vi(L)−1, (A3)

where the lag polynomials

Vi(L) =




Γ11·2i(L)−1 0 0
−Γ22i(L)−1Γ21i(L)Γ11·2i(L)−1 Γ22i(L)−1 −Γ22i(L)−1λ′2i

0 0 Ψ(L)−1



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and

Ui(L) =




Ir −((1− L)Γ12i(L)Γ22i(L)−1 + b′i) (1− L)Γ12i(L)Γ22i(L)−1λ′2i − λ′1i

0 Im 0
0 0 Ik




are invertible.

Substituting (A3) for Ci(L) in the MA representation of ∆Z+
i,t and pre-multiplying by

Ui(L) and M̄(L), where

M̄(L) =
(

Ir 0
0 (1− L)I(m+k)

)
,

we obtain

M̄(L)Ui(L)(1− L)
(
Z+

i,t − (π∗i )
′gt

)
= (1− L)Vi(L)−1ε+

i,t.

Eliminating (1−L) from both sides and pre-multiplying by Vi(L) yields the following possibly

infinite AR representation for Z+
i,t

Vi(L)M̄(L)Ui(L)
(
Z+

i,t − (π∗i )
′gt

)
= ε+

i,t.

Using that Γ11·2i(L)−1 = |Γ11·2i(L)|−1adj(Γ11·2i(L)), Γ22i(L)−1 = |Γ22i(L)|−1adj(Γ22i(L)),

Ψ(L)−1 = |Ψ(L)|−1adj(Ψ(L)) and |Γ+
i (L)| = |Γ11·2i(L)||Γ22i(L)||Ψ(L)|, we can recover both

the scalar lag polynomial ci(L) = |Γ+
i (L)| and the lag polynomial matrix Ai(L) given in the

theorem. This establishes part (b).

Consider (c). Direct computation of Ai(1) yields

Ai(1) =




|Ψ(1)||Γ22i(1)|adj(Γ11·2i(1))
−|Ψ(1)|adj(Γ22i(1))Γ21i(1)adj(Γ11·2i(1))

0


(

Ir −b′i −λ′1i

)
= α∗i β

′
i.

Since

Ci(1) =




b′i (λ′1i + b′iλ
′
2i)

Im λ′2i

0 Ik




(
Γ21i(1) Γ22i(1) 0

0 0 Ψ(1)

)
= β̃i(α̃∗i )

′,

where α̃∗i and β̃i denote the matrices orthogonal to α∗i and βi, respectively. It follows that

β′iCi(1) = 0 and Ci(1)αi = 0, and so the proof of (c) is complete.

Parts (d) and (e) follow by manipulating of the lag polynomial matrix Ai(L) and rear-

ranging terms, as in Engle and Granger (1987).

A.2 Proof of Theorem 2.

Before we come to the proof of the theorem we need some preliminary results, which are

summarized in Lemma 1.

Lemma 1. Under H0i and Assumptions 1, 2, 4 and 5, as T →∞
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(a) T−
1
2 Z+

i,t−1
w−→ Ω

1
2
i Wi,

(b) T−2
T∑

t=2

QW Z+
i,t−1(QW Z+

i,t−1)
′ w−→ Ω

1
2
i

∫
WiW

′
i (Ω

1
2
i )′,

(c) T−1
T∑

t=2

QW Z+
i,t−1QW ε1·2i,t

w−→ σiΩ
1
2
i pi(Wi),

where

Ω
1
2
i =

(
σiB̃

−1
11·2i B̃−1

11·2iM1iM2i

σiB̃
−1
11·2iρi (M2i + B̃−1

11·2iρiM1iM2i)

)

=
(

ω11i Ω12i

Ω21i Ω22i

)
,

where B̃jji(L) = I−Bjji(L)L, Bjli = Bjli(1), B̃jli = B̃jli(1), B̃−1
11·2i = (B̃11i−B12iB̃

−1
22iB21i)−1,

ρ′i =
(

B′
21i(B̃

−1
22i)

′ 0
)
, M1i =

(
B12i B13i

)
and

M2i =

(
B̃−1

22iΣ
1
2
22i B̃−1

22i(B23iB̃
−1
33i + λ′2i)

0 B̃−1
33i

)
.

Note that Ω21i = ω11iρi and define for future use ω11·2i = ω11i − ω11iΩ12Ω−1
22iρi.

Proof of Lemma 1.

Consider (a). Note that under H0i,




B̃11i(1) −B12i(1) −B13i(1)
−B21i(1)L B̃22i(1) −B23i(1)L

0 0 B̃33i(1)


∆Z+

i,t =




ε1·2i,t

ε∗2i,t

ηt


 ,

such that

Z+
i,t =




B̃11i(1) −B12i(1) −B13i(1)
−B21i(1) B̃22i(1) −B23i(1)

0 0 B̃33i(1)



−1 


t∑

s=1




ε1·2i,t

ε∗2i,t

ηt




+



−B̃+

11i(L) B+
12i(L) B+

13i(L)
B+

21i(L)L −B̃+
22i(L) B+

23i(L)L
0 0 −B̃+

33i(L)


∆Z+

i,t


 , (A4)

where B+
jli(L) and B̃+

jli(L) are obtained from the Beveridge-Nelson decompositions of Bjli(L)

and B̃jli(L) as Bjli(L) = Bjli(1) + B+
jli(L)(1 − L) and B̃jli(L) = B̃jli(1) + B̃+

jli(L)(1 − L),

respectively.
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Substituting ε∗2i,t = ε2i,t + λ′2iηt into (A4) we obtain

T−
1
2 Z+

i,t =




B̃11i(1) −B12i(1) −B13i(1)
−B21i(1) B̃22i(1) −B23i(1)

0 0 B̃33i(1)



−1




σi 0 0

0 Σ
1
2
22i λ′2i

0 0 Ik




× T−
1
2

t∑

s=1




σ−1
i ε1·2i,t

Σ
− 1

2
22i ε2i,t

ηt


 + op(1),

such that

T−
1
2 Z+

i,t
w−→ Ω

1
2
i Wi (A5)

as T →∞, proving (a).

Now, by using the rules for projections,
∑T

t=2 QW Z+
i,t−1(QW Z+

i,t−1)
′ can be written as

T∑

t=2

QW Z+
i,t−1(QW Z+

i,t−1)
′ =

T∑

t=2

Z+
i,t−1(Z

+
i,t−1)

′

−
T∑

t=2

Z+
i,t−1W

′
i,t

(
T∑

t=2

Wi,tW
′
i,t

)−1 T∑

t=2

Wi,t(Z+
i,t−1)

′. (A6)

By Lemma 2.1 of Park and Phillips (1989),
∑T

t=2 Z+
i,t−1W

′
i,t = Op(T ),

∑T
t=2 Z+

i,t−1(Z
+
i,t−1)

′ =

Op(T 2) and
∑T

t=2 Wi,tW
′
i,t = Op(T ) such that (A6) reduces to

T−2
T∑

t=2

QW Z+
i,t−1(QW Z+

i,t−1)
′ = T−2

T∑

t=2

Z+
i,t−1(Z

+
i,t−1)

′ + T−2Op(T )Op(T−1)Op(T )

= T−2
T∑

t=2

Z+
i,t−1(Z

+
i,t−1)

′ + Op(T−1),

where we can make use of (a) to show that as T →∞

T−2
T∑

t=2

Z+
i,t−1(Z

+
i,t−1)

′ w−→ Ω
1
2
i

∫
WiW

′
i (Ω

1
2
i )′.

This proves (b).

Finally, consider (c). By definition,

T∑

t=2

QW Z+
i,t−1(QW ε1·2i,t) =

T∑

t=2

Z+
i,t−1ε1·2i,t −

T∑

t=2

Z+
i,t−1W

′
i,t

(
T∑

t=2

Wi,tW
′
i,t

)−1 T∑

t=2

Wi,tε1·2i,t,

where
∑T

t=2 Wi,tε1·2i,t = Op(
√

T ). Thus, by using the same arguments as above,

T−1
T∑

t=2

QW Z+
i,t−1(QW ε1·2i,t) = T−1

T∑

t=2

Z+
i,t−1ε1·2i,t + Op(T−

1
2 ), (A7)
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where the limit of the first term on the right-hand side is given by

T−1
T∑

t=2

Z+
i,t−1ε1·2i,t

w−→ σiΩ
1
2
i

∫
WidW1i = σiΩ

1
2
i pi(Wi).

This establishes (c), and hence the proof of Lemma 1 is complete. ¤

Now, since under the null hypothesis,

∆(QW Yi,t) = δ′1i(QW Z+
i,t−1) + QW ε1·2i,t = QW ε1·2i,t,

we have

δ̂1i =

(
T∑

t=2

QW Z+
i,t−1(QW Z+

i,t−1)
′
)−1 T∑

t=2

QW Z+
i,t−1(QW ε1·2i,t).

From Lemma 1 (b) and (c) we have that

T δ̂1i
w−→ σi

(
Ω

1
2
i

∫
WiW

′
i (Ω

1
2
i )′

)−1

Ω
1
2
i

∫
WidW1i = σi(Ω

− 1
2

i )′Pi(Wi). (A8)

Similarly, under the null the Wald statistic is given by

wδ̂1i
= σ̂−2

i

T∑

t=2

QW ε1·2i,t(QW Z+
i,t)

′
(

T∑

t=2

QW Z+
i,t−1(QW Z+

i,t−1)
′
)−1 T∑

t=2

QW Z+
i,t−1(QW ε1·2i,t).

Consider σ̂2
i = T−1

∑T
t=2(∆(QW Yi,t)− δ̂′1i(QW Z+

i,t−1))
2. By making use of Lemma 1, and the

fact that under the null, ∆(QW Yi,t) = QW ε1·2i,t, we get

σ̂2
i = T−1

T∑

t=2

(∆(QW Yi,t − δ̂1i(QW Z+
i,t−1))

2

= T−1
T∑

t=2

(QW ε1·2i,t)2 − 2δ̂′1iT
−1

T∑

t=2

QW Z+
i,t−1(QW ε1·2i,t)

+ δ̂′1iT
−1

T∑

t=2

QW Z+
i,t−1(QW Z+

i,t−1)
′δ̂1i

= T−1
T∑

t=2

(QW ε1·2i,t)2 + Op(T−1)Op(1) + T−1Op(T−1)Op(T 2)Op(T−1)

= T−1
T∑

t=2

(QW ε1·2i,t)2 + Op(T−1). (A9)

As for the first term on the right-hand side, we have

T∑

t=2

(QW ε1·2i,t)2 =
T∑

t=2

ε2
1·2i,t −

T∑

t=2

ε1·2i,tW
′
i,t

(
T∑

t=2

Wi,tW
′
i,t

)−1 T∑

t=2

Wi,tε1·2i,t

=
T∑

t=2

ε2
1·2i,t + Op(

√
T )Op(T−1)Op(

√
T ).
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Hence, by inserting this into (A9), and then taking the limit as T →∞, we obtain

σ̂2
i = T−1

T∑

t=2

ε2
1·2i,t + Op(T−1)

p−→ σ2
i . (A10)

Combining this result with Lemma 1 (b) and (c) we get the following limit as T →∞

wδ̂1i

w−→ σ−2
i σi

∫
dW1iW

′
i (Ω

1
2
i )′

(
Ω

1
2
i

∫
WiW

′
i (Ω

1
2
i )′

)−1

σiΩ
1
2
i

∫
WidW1i

= pi(Wi)′Pi(Wi), (A11)

which establishes part (a) of the theorem.

Consider (b). Under the null hypothesis, ∆(QSYi,t) = QSε1·2i,t. By using this result, (A8)

and the rules for partitioned regressions, we obtain as T →∞

T α̂1i =

(
T−2

T∑

t=2

(QSYi,t−1)2
)−1

T−1
T∑

t=2

QSYi,t−1(QSε1·2i,t)

w−→ σiω
−1
11·2iPi(Ui) + ω−1

11·2iω11iρ
′
i(Ω

′
22i)

−1Pi(W2·i)(Pi(Ui)− 1) = di. (A12)

Next, consider

var(α̂1i) = σ̂2
i

(
T−2

T∑

t=2

(QSYi,t−1)2
)−1

.

We have already shown that σ̂2
i

p−→ σ2
i as T → ∞. From this result and arguments similar

to those used in the proof of Lemma 1 we obtain as T →∞

T 2var(α̂1i)
w−→ σ2

i ω
−2
11·2iV (Ui)

+ σ2
i ω

−2
11·2iω11iV (Ui)

(
ρ′i(Ω

′
22i)

−1Pi(W2·i) + V (W2·i)pi(W2·i)′Ω−1
22iρi

)

+ σ2
i ω

−2
11·2iω

2
11iρ

′
i(Ω

′
22i)

−1

× (
V (W2·i) + Pi(W2·i)V (Ui)V (W2·i)pi(W2·i)′

)
Ω−1

22iρi = Di. (A13)

The proof is completed by noting that

DΩ
i,τ = lim

T→∞
T α̂1i√

T 2var(α̂1i)
=

di√
Di

. (A14)

¤

A.2.1 Proof of Corollary 1

If Xi,t is strongly exogenous, B21i = 0 such that ρi = 0. Thus, (A14) simplifies to

Di,τ =
di√
Di

=
B̃11iPi(Ui)√
B̃2

11iV (Ui)
=

Pi(Ui)√
V (Ui)

. (A15)

This completes the proof. ¤
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A.3 Proof of Theorem 3

We begin with the following lemma.

Lemma 2. Under H0i and Assumptions 1 to 6, as N, T →∞

(a) T−
1
2 Zt

w−→ M3W3,

(b) T−
1
2 Z̃+

i,t−1
w−→ Ω̃

1
2
i Wi,

(c) T−2
T∑

t=2

QW̃ Z̃+
i,t(QW̃ Z̃+

i,t)
′ w−→ Ω̃

1
2
i

(∫
WiW

′
i

)
(Ω̃

1
2
i )′,

(d) T−1
T∑

t=2

QW̃ Z̃+
i,t−1(QW̃ ε̃1·2i,t)

w−→ σiΩ̃
1
2
i pi(Wi),

where M3 = lim
N→∞

M3, M3 = 1
N

∑N
i=1 M3i,

M3i =
(

B̃−1
11·2i

(
B12iB̃

−1
22i(B23iB̃

−1
33i + λ′2i) + B13iB̃

−1
33i

)
B̃−1

22i(B23iB̃
−1
33i + λ′2i) + B̃−1

22iB21iB̃
−1
11·2i

(
B12iB̃

−1
22i(B23iB̃

−1
33i + λ′2i) + B13iB̃

−1
33i

)
)

,

M4i =

(
B̃−1

22iΣ
1
2
22i B̃−1

22i(B23iB̃
−1
33i + λ′2i)

0 M3

)
,

ρ̃i =
(

B′
21i(B̃

−1
22i)

′ 0
)

and

Ω̃
1
2
i =

(
σiB̃

−1
11·2i B̃−1

11·2iM1iM2i

σiB̃
−1
11·2iφ̃i (M4i + B̃−1

11·2iφ̃iM1iM2i)

)

=
(

ω̃11i Ω̃12i

Ω̃21i Ω̃22i

)
.

Furthermore, we have Ω̃21i = ω̃11iρ̃i and we define ω̃11·2i = ω̃11i − ω̃11iΩ̃12iΩ̃−1
22iρ̃i.

Proof of Lemma 2

Letting ϕi = B̃−1
11·2iB12i(1)B̃22i(1)−1, we have

T−
1
2 Zt = M3T

− 1
2

t∑

s=1

ε3s +
1
N

N∑

i=1

(
B̃−1

11·2i ϕi

ϕ′i (B̃22i(1)−1 + B̃22i(1)−1B21i(1)ϕi)

)

× T−
1
2

t∑

s=1

(
ε1·2i,s

ε2i,s

)
+ Op

(
1√
NT

)
+ Op

(
1√
T

)
,

from which it follows that as N, T →∞

T−
1
2 Zt = M3T

− 1
2

t∑

s=1

ε3s + Op

(
1√
N

)
+ Op

(
1√
NT

)
+ Op

(
1√
T

)

w−→ M3W3. (A16)
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This proves (a).

Moreover, by combining (a) with (A5), we find that as N, T →∞

T−
1
2 Z̃+

i,t
w−→ Ω̃

1
2
i Wi,

which proves (b).

Analogous to the prove of Lemma 1, we have

T∑

t=2

QW̃ Z̃+
i,t−1(QW̃ Z̃+

i,t−1)
′ =

T∑

t=2

Z̃+
i,t−1(Z̃

+
i,t−1)

′ −
T∑

t=2

Z̃+
i,t−1(W̃i,t)′

(
T∑

t=2

W̃i,t(W̃i,t)′
)−1

×
T∑

t=2

W̃i,t(Z̃+
i,t−1)

′

=
T∑

t=2

Z̃+
i,t−1(Z̃

+
i,t−1)

′ + Op(T ).

Combining this with (b) we obtain as N, T →∞

T−2
T∑

t=2

QW̃ Z̃+
i,t−1(QW̃ Z̃+

i,t−1)
′ = T−2

T∑

t=2

Z̃+
i,t−1(Z̃

+
i,t−1)

′ + Op(T−1)

w−→ Ω̃
1
2
i

(∫
WiW

′
i

)
(Ω̃

1
2
i )′. (A17)

This proves (c).

Finally,

T∑

t=2

QW̃ Z̃+
i,t−1(QW̃ ε̃1·2i,t) =

T∑

t=2

Z̃+
i,t−1ε̃1·2i,t −

T∑

t=2

Z̃+
i,t−1(W̃i,t)′

(
T∑

t=2

W̃i,t(W̃i,t)′
)−1

×
T∑

t=2

W̃i,t(ε̃1·2i,t)

=
T∑

t=2

Z̃+
i,t−1ε̃1·2i,t + Op(T )Op(T−1)Op(

√
T ).

Thus,

T−1
T∑

t=2

QW̃ Z̃+
i,t−1(QW̃ ε̃1·2i,t) = T−1

T∑

t=2

Z̃+
i,t−1ε̃1·2i,t + Op(T−

1
2 )

w−→ σiΩ̃
1
2
i pi(Wi) (A18)

as N, T →∞. This proves (d) and hence the proof of Lemma 2 is complete. ¤

The proof of Theorem 2 follows similar arguments as the proof of Theorem 3. However,

if k < m + 1, Ω̃
1
2
i and Ω̃22i are no longer square matrices such that we have to make use of

generalized inverse in that case.
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The Wald statistic wδ̃1i
is given by

wδ̃1i
= σ̌−2

i

T∑

t=2

QW̃ ε̃1·2i,t(QW̃ Z̃+
i,t)

′
(

T∑

t=2

QW̃ Z̃+
i,t−1(QW̃ Z̃+

i,t−1)
′
)−1

(A19)

×
T∑

t=2

QW̃ Z̃+
i,t−1(QW̃ ε̃1·2i,t), (A20)

where σ̃2
i is σ̂2

i with QW̃ in place of QW . By using the same steps as for σ̂2
i in Theorem 2,

we obtain σ̃2
i

p−→ σ2
i as N,T →∞. This result, together with Lemma 2 (c) and (d), implies

that as N,T →∞

wδ̃1i

w−→ σ−2
i σi

∫
dW1iW

′
i (Ω̃

1
2
i )′

(
Ω̃

1
2
i

∫
WiW

′
i (Ω̃

1
2
i )′

)−1

σiΩ̃
1
2
i

∫
WidW1i

= pi(Wi)′Pi(Wi), (A21)

which establishes the required result for (a).

Furthermore, similarly to the prove of Theorem 1, by the rules for partitioned regressions,

T α̃1i
w−→ d̃i and T 2var(α̃1i)

w−→ D̃i as N, T →∞, where d̃i and D̃i are defined similarly to di

and Di above, but replacing ω11i, ω11·2i and Ω22i with ω̃11i, ω̃11·2i and Ω̃22i respectively. This

yields the required result for (b). ¤

A.3.1 Proof of Corollary 1

The proof of Corollary 2 is completed by noting that ρ̃i = 0 if Xi,t is strongly exogenous. ¤
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A.4 Tables

Table 1: Critical values and moments for the individual t-tests.

Critical values Moments
Model m 10% 5% 1% E(Dτ ) var(Dτ )

1 1 −2.985 −3.315 −3.932 −1.709 1.069
2 −3.484 −3.819 −4.434 −2.212 1.044
3 −3.883 −4.219 −4.848 −2.617 1.026
4 −4.233 −4.570 −5.191 −2.965 1.020
5 −4.538 −4.876 −5.503 −3.272 1.012

2 1 −3.426 −3.744 −4.339 −2.250 0.884
2 −3.845 −4.168 −4.775 −2.644 0.915
3 −4.199 −4.528 −5.138 −2.985 0.931
4 −4.512 −4.841 −5.454 −3.287 0.943
5 −4.792 −5.123 −5.747 −3.564 0.947

3 1 −3.814 −4.122 −4.697 −2.704 0.779
2 −4.175 −4.488 −5.078 −3.024 0.837
3 −4.494 −4.815 −5.411 −3.316 0.872
4 −4.780 −5.103 −5.703 −3.589 0.892
5 −5.043 −5.370 −5.973 −3.841 0.904

Notes: Model 1 refers to the specification with no deterministic component,
while Models 2 and 3 refer to the specifications with an unrestricted constant,
and unrestricted constant and trend, respectively. The value m refers to the
number of regressors contained in Xi,t.
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Table 2: Critical values and moments for the individual Wald tests.

Critical values Moments
Model m 10% 5% 1% E(Dw) var(Dw)

1 1 12.209 14.291 18.726 6.979 15.188
2 17.399 19.839 24.913 10.937 23.438
3 22.344 25.010 30.634 14.872 31.381
4 27.108 30.061 36.132 18.785 39.317
5 31.795 34.966 41.435 22.709 47.043

2 1 14.821 17.081 21.870 8.944 19.467
2 19.870 22.460 27.817 12.886 27.601
3 24.750 27.571 33.400 16.833 35.554
4 29.484 32.542 38.789 20.756 43.392
5 34.076 37.329 43.941 24.639 50.867

3 1 17.525 19.940 24.973 11.091 23.396
2 22.424 25.113 30.674 14.988 31.266
3 27.190 30.127 36.200 18.891 39.200
4 31.840 34.992 41.404 22.767 46.941
5 36.389 39.768 46.581 26.639 54.563

4 1 15.769 18.012 22.789 9.964 18.782
2 20.781 23.337 28.680 13.898 26.598
3 25.629 28.422 34.305 17.824 34.284
4 30.368 33.430 39.625 21.756 42.014
5 34.995 38.236 44.840 25.648 49.671

5 1 18.412 20.800 25.830 12.093 22.321
2 23.297 25.968 31.550 15.982 30.128
3 28.084 31.016 37.034 19.888 37.981
4 32.708 35.839 42.256 23.757 45.521
5 37.293 40.612 47.334 27.628 53.097

Notes: Models 4 and 5 refer to the specifications with a constant, and
constant and trend in the error correction term, respectively. See Table 1
for an explanation of the remaining features of the table.
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Table 10: Descriptive statistics for the common factors in the monetary exchange rate model.

Principal components Observed
Value Factor 1 Factor 2 Factor 3 m∗

t y∗t
AR 0.97 0.98 0.97 1.00 1.00
SE 0.03 0.05 0.02 0.00 0.01
ADF −1.09 −0.34 −1.79 −3.06∗∗ −0.42

Notes: AR refers to the estimated first order AR coefficient, SE refers to its
standard error and ADF refers to the augmented Dickey and Fuller (1979)
test. The autoregressions are fitted with an intercept and the lag orders
are determined using the Schwarz Bayesian criterion. See Table 8 for an
explanation of the remaining features of the table.
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