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Abstract

This paper considers a cointegrated panel data model with common factors. Starting
from the triangular representation of the model as used by Bai et al. (2008) a Granger
type representation theorem is derived. The conditional error correction representation is
obtained, which is used as a basis for developing two new tests for the null hypothesis of no
error correction. The asymptotic distributions of the tests are shown to be free of nuisance
parameters, depending only on the number of non-stationary variables. However, the
tests are not cross-sectionally independent, which makes pooling difficult. Nevertheless,
the averages of the tests converge in distribution. This makes pooling possible in spite
of the cross-sectional dependence. We investigate the finite sample performance of the
proposed tests in a Monte Carlo experiment and compare them to the tests proposed by

Westerlund (2007). We also present two empirical applications of the new tests.
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1 Introduction

Consider two non-stationary panel data variables X;; and Y;;, where ¢ = 1,...,N and t =
1,...,T indexes the cross-sectional and time series dimensions, respectively. The analysis of
such variables has been a growing field of econometric research in recent years. See for example
Breitung and Pesaran (2008) for an overview. In particular, in many economic applications it
is an important question whether X;; and Y;; are cointegrated, that is whether there exists
a meaningful long-run relationship between them, or whether the relationship is spurious.

Kao (1999) and Pedroni (1999, 2004) were among the first to propose residual-based tests
for the null hypothesis of no cointegration in cross-sectionally independent panels. But cross-
sectional independence is a restrictive assumption that is unlikely to be met in practice, in
which case the properties of this kind of tests become suspect. In fact, in a recent paper,
Gengenbach et al. (2006) show that the presence of cross-section dependence in the form
of non-stationary common factors can actually cause the residual-based tests of Kao (1999)
and Pedroni (2004) to become divergent. As a response to this, they propose to estimate
separately the common and idiosyncratic components of X;; and Y;; using the principal
components method of Bai and Ng (2004), and then to test for cointegration in the resulting
component estimates.

Banerjee and Carrion-i-Silvestre (2006) propose a similar test but instead of applying
the Bai and Ng (2004) approach to X;; and Y;, directly, they apply it to the residuals of
a first-stage regression of Y;; onto X;;. Cointegration requires that both the common and
idiosyncratic components of the residuals are stationary. The tests of Bai and Carrion-i-
Silvestre (2007), Westerlund (2007) and Westerlund and Edgerton (2008) are basically the
same in the sense that they are also based on applying the Bai and Ng (2004) approach to
the residuals of a first-stage regression.

However, although very popular, this testing approach has at least two major drawbacks.
One lies with the use of residual rather than structural dynamics, which makes it subject to
the common factor critique of Kremers et al. (1992), that may lead to tests with low power.
The second drawback is that the testing must be carried out in steps, with the estimation
error from one step being imported into subsequent steps, and it is not fully clear what effect
this has on the final test, see Westerlund and Larsson (2008).

By contrast to the test proposed by Pedroni for example, the tests of Westerlund (2007)
are not based on residuals but rather on the significance of the error correction term in a
conditional panel error correction model (ECM), and therefore do not impose any common
factor restriction. However, the tests are derived under cross-sectional independence, and the
use of the bootstrap in case of violations does not fit well with the otherwise parametric flavor
of the tests. Another drawback is that the bootstrap used is not equipped to handle the case

with non-stationary common factors.



The current paper can be seen as an attempt to overcome the drawbacks of both these
approaches. We begin by developing alternative representations of a cointegrated panel that
allows for the possibility of non-stationary common factors. In particular, starting from the
triangular representation of the system used by for example Bai et al. (2008), we derive a
Granger type representation theorem that is similar to the one obtained by Cappuccio and
Lubian (1996) in the case of a single time series.

The Granger representation theorem provides not only moving average (MA) and au-
toregressive moving average (ARMA) representations of the system, but also the conditional
ECM representation, which we use as a basis for developing tests for the null hypothesis of
no error correction. In particular, paralleling the development of the time series literature
in this field, as pioneered by Banerjee et al. (1998) and Boswijk (1994), we consider both
a t-ratio type test, as well as a Wald type test. Besides eliminating the need for a common
factor assumption and a stepwise testing procedure, as shown by Pesavento (2004), these tests
are not only more powerful than most residual-based tests around, but are also not worse in
terms of size distortions.

It is shown that at the level of the individual unit the asymptotic distribution of the
Wald tests is free of nuisance parameters and only depends on the number of non-stationary
variables in the system. For the ¢t-ratio an appropriate correction has to be employed to remove
the nuisance parameter dependence from the limiting distribution. Nevertheless, because of
the common factors, the individual tests are not independent, which of course makes pooling,
or cross-sectional averaging, difficult, as it invalidates the use of the conventional limit theory.
However, although not analytically tractable, the average still converges to a random variable
with a distribution that can be easily simulated, which makes pooling possible in spite of the
dependence. We begin by considering the case when the common factors are known, and then
we show how the results extend to the case when the factors are approximated by means of
cross-sectional averages of the observed data, as suggested by Pesaran (2007).

The rest of this paper is organized as follows. Section 2 presents the model of interest and
our version of the Granger representation theorem. Sections 3 and 4 then present the error
correction tests and their asymptotic properties, which are verified using both simulated and
real data in Sections 5 and 6, respectively. Section 7 concludes.

A word on notation. The symbols — and 2, will be used to signify weak convergence
and convergence in probability, respectively. As usual, X7 = O,(T") will be used to signify
that X7 is at most order 7" in probability, while X7 = 0,(T") will be used in case Xr is
of smaller order in probability than 7". In the case of a double indexed sequence Xy 7,
N, T — oo will be used to signify that the limit has been taken while passing both indices to
infinity jointly. For a square matrix A, rk(A), adj(A) and ||A|| will denote its rank, adjoint

and Euclidian norm, respectively. For simplicity, the Brownian motion B(s) defined on the



interval s € [0 1] will be written B, with the measure of integration omitted. We write the
integral fo s)ds as [ B and fo s)dB(s)" as [ BdB'. Finally, |x] will be used to denote
the integer part of x.

2 Model representation

In this section we discuss the model under consideration, and some alternative representations
thereof. We start from the triangular representation for a single unit ¢, which is the same as
the one used by Bai et al. (2008). However, these authors focus on how to conduct inference
if the variables are in fact long-run related, and do not consider the problem of how to test
for cointegration. Moreover, the triangular representation is taken as given, and there is no
consideration of other alternatives. Thus, the results reported herein can in many ways be
seen as complementary to those reported in Bai et al. (2008).

The data generating process has two basic building blocks, a (r + m)-dimensional vector
of idiosyncratic variables, which is denoted by Z; + = (YZ’ " X,L{t)' , where Y; ; is r x 1 while X,
is m x 1, and a k-dimensional vector of common factors, which is denoted by F;. The grand
vector containing all three variables is denoted Z; -+ = (Z{ +» F{)', and for later use we will also
let Vi, = (X] i F})" denote the augmented X ; vector

The data generating process can be written in the following way

Yii — 7Tl1iGt = b;Xi,t + XuFt + U142, (1)
AXiy — o9t = Ny AF; 4 ugig, (2)
AF, —m90 = fi, (3)

where G; and ¢; are vectors of deterministic components such that g = AG; with associated
coefficients m; = ( Ty To; T3 )

We further assume that the vector u), = (u};,;, ub;,, f/)' is a stationary linear process

given by
[y1i(L) Thgi(L) 0 10t
’ Ii(L 0 ;
0 0 \IJ(L) Nt Tt
= F;’(L)&?:t, @

where W(L) = I}, — Z;’il I'33;L7 and L is the lag operator. Similarly,

Ti(L) = Igem) — ZFZ]L

Equations (1) to (4) constitute the triangular representation of the model. The rest of
the assumptions can be summarized in the following way, where M < oo denotes a generic

positive real number.



Assumption 1. (i) n; ~ 4.i.d.(0, Iy) with finite fourth moments, (ii) 37207 - ;]| < M,
(i41) rk(¥(1)) = k.

Assumption 2. (i) g;; ~ i.1.d.(0, ;) with finite eighth moments and

Y g
Y = = cov(git),
‘ < Yot Moo > v(Eie)

(i1) E(gigejs) = 0 for all i # j and t # s, (iit) I';(L) fulfils the random coefficient and
summability conditions of Phillips and Moon (1999, Assumptions 1 and 2), (iv) rk(I;(1)) =

r+m.

Assumption 3. (i) A; = (M4, \e;) is a random matriz such that |A;|] < M, (ii) A =
LSV A —E(A) =A< M as N — oo, (iii) k(R) = k <7 +m.

Assumption 4. 1, €;; and A; are mutually independent.

Assumptions 1, 2 and 4 imply that for any 4, 527; ~ 4.i.d.(0,%;) with

; 0
T = ( OZ I > = cov(sz’rt).

They also imply that 7k(T'j (1)) = r 4+ m + k. Under these assumptions, it is easy to see that

the system has r cointegrating relationships ﬁgZ;ft, where by assumption
!/
Bi = ( I _b; _Allz )

is the cointegrating matrix.

Similar to the time series case considered by Cappuccio and Lubian (1996), given the
triangular representation in (1) to (4), we can derive a Granger type representation theorem
for a given panel member. This provides us with alternative model representations that are

better suited for testing the hypothesis of no cointegration.

Theorem 1. Given the triangular representation in (1) to (4), Z;, is non-stationary with

2,
cointegration rank .

(a) The MA representation of AZ; is
AZf — (7)) g = Ci(L)ef, (5)

where C;(L) is given in the appendiz, rk(C;(1)) =m+ k and

TF;k = ( 7T1,‘+7T2ibi+71'3()\1i+)\2¢bi) To; + M3A9; T3 )



(b) The ARMA representation of Zi'; is given by
A(L)(Z5 = (7)) gi) = ei(L)edy, (6)

where ¢;(L) = |Tf (L)| is a scalar lag polynomial, and where the blocks of

Ai(L)  Ai(L)  Agsi(L)
Ai(L) = | A2ui(L) Ai(L) Azsi(L)
0 0 Aszsi(L)

are given by

(L) = |¥(L)|[F22i(L)|adj(I11.2:(L)),
(L) = —|9(L)|[To2i(L)|adj(T112i(L))((1 = L)T124(L)Ta2i(L) " 4 b7),
Azi(L) = [O(L)|T22i(L)|adj(T11.2:(L)) (1 = L)T12i(L)Ta2i (L)~ Ay — XYy),
(L) = —|¥(L)]adj(T22i(L))21:(L)adj(T11.2(L)),

(L) = |¥(L)|adj(T22:(L))(Tari(L)adj(T11.2:(L))((1 = L)T1i(L)Ta2i(L) ™" + b))
+ (1= ID)Tuaa(L)]),
Apsi(L) = —|¥(L)|adj(Ta2i(L))(T21i(L)adj(T11.2i(L))

X (1= D)T1gi(L)T224(L) "' Aoy = Ay) + (1 = L)[T1124(L)[Ay;),

Assi(L) = (1= L)|Ta2i(L)[[T11.24(L)|adj (Y (L)),

with Fll.gi(L) = Fllz(L) — F12i(L)F2Qi(L)_1F21i(L)‘

(¢) Ai(1) has reduced rank r and can be decomposed as A;(1) = a3,

( I‘I’(l)\lfzzi%)adj(Tn‘m(l)) )

where

*_
o =

—[¥(1)|adj(T22:(1))21i(1)ad)j(T'11.2:(1))
0

(d) The vector ECM representation is
AJ(L)(AZ, = (7]) Agr) = —ai Bi(Zf 1 — (7]) ge-1) + ci(L)e, (7)

where AF(L) = A} (L) + A;(1) with Af (L) satisfying A;(L) = A;(1) + (1 — L)A} (L),
AF(L) = Y720 ALY and Al = =772, Ay

(e) &, = (Z,)'Bi has the following representation

Sio = Bi(m))'Gi+ ( Twa(L) T(L) ) ey,
Ay — Ki(L)(7]) g0 = —Biaf (&1 — Bi(7}) gt) + Ji( L)y,

where K;(L) and J;(L) can be obtained as in Engle and Granger (1987).



From the vector ECM representation given in (7) we can obtain the conditional ECM for
Y;;+ and the marginal ECM for V;;. Towards this end, let a; = —A4;(0)"'af and A¥(L) =

A;(0)7'A7(L), where A7*(L) = 3222, A7 L7 with A7f = — A7, such that

AZY, = A5 (L) (n}) Agy = iB(Zif,_y — (7)) g11) + AT (L)AZY,_y + ci(L)ef,

1
Defining B} = (S12:X50 + b —X12;550Ay; + Ay;) and k; = (I, —B}), the conditional ECM
for Y;; is given by

AYiy — ki Af (L) (7)) Agy = BiAViy+ ki3 (Zf,_ — (7)) gi-1) + wi A (L)AZ,

7

+  ci(L)er2ip, (8)
where €1.9;+ = €14t — ZlgiEQ_;iezi,t, while the marginal models for X;; and F} are

AXip = A(L)(m}) Age = anilBi(Z,_y — (n]) ge-1) + A5 (L)AZ, | + ei(L)esi e (9)

7 3

AF, — Ay (L)mhAg = A33(L)AF_y + ci(L)n, (10)

where A3, (L) and A3*(L) are the second rows of A*(L) and A¥*(L), respectively, and where
€54 = €2it T Aot

Some remarks can be made here.

Remark 1. What this theorem shows is that alternative representations may lead naturally
to alternative approaches to cointegration testing. In particular, while the triangular represen-
tation is better suited for developing residual-based tests, the vector ECM, and more precisely
its factorization into conditional and marginal models, is more suitable for developing tests

based on error correction.

Remark 2. If F?‘(L) is a unimodular matrix polynomial, the MA part in the vector ECM
in (7) vanishes. Furthermore, if I (L) is of order p;, 4;(L) is of order ¢; < (r + m+k — 1)p;.

Remark 3. The common factor F; is by assumption strongly exogenous for 3;, see for example
Urbain (1992) for weak and strong exogeneity conditions in this class of models. Similarly,
X+ is weakly exogenous for f; if o, = 0, which will be the case when T'y;(1) = 0. It is
strongly exogenous if in addition I'1;(L) = 0. The relevance of the two latter assumptions

will be discussed later.

Remark 4. Depending on the specification of the deterministic component g;, we can dis-
tinguish at least five variations of the ECM in (8) to (10). If g; = 0, henceforth referred to
as Model 1, then there are no deterministic components present. If 71; = 0, then g(7})' =0
and hence g; do not appear in the error correction term. If in addition g; = (1,¢)’, then a con-
stant should be included, while if g; = (1,,¢?)’, then a linear trend should also be included.



These specifications are henceforth referred to as Models 2 and 3, respectively. Moreover,
if m; # 0, we have a constant restricted to the error correction term if g, = 1, henceforth
referred to as Model 4, or an unrestricted constant and a linear trend in the error correction
term if ¢4 = (1,t)’, henceforth referred to as Model 5. Although higher order trend terms
are certainly possible, such models are rarely used in practice, and we therefore restrict our

attention to these five.

3 Individual tests for no error correction

In this section we show how the conditional ECM in (8) can be used as a basis for constructing
cointegration tests. In particular, we propose two test statistics that are designed to test
the null hypothesis that unit ¢ is not error correcting versus the alternative that it is error
correcting. We begin by considering the baseline case with known factors, and then we show

how the testing can be carried out in the more realistic case when F} is no longer observed.

3.1 Observed factors

Assumptions 1 to 4 are quite relaxed in the sense that even at the level of the individual unit,
the models they imply are multivariate, which makes a full-blown system approach necessary.
However, the purpose of this section is not to devise the most general test possible, but rather

to derive tests that are simple, and easy to implement. This requires more assumptions.

Assumption 5. (i) r = 1, (ii) ¢;(L) = ¢; for some constant ¢; < M, (iii) X;; is weakly

exogenous for ay; and f3;.

Remark 5. Assumption 5 implies that the r-dimensional conditional model in (8) can be
written as a well-specified single equation, with no serial correlation and with the scalar

coefficient ar; measuring the extent of the error correcting behavior in Y; ;.

Under Assumption 5, and omitting any deterministic component for now, the conditional
ECM in (8) reduces to

AY; ;= Oélzﬂz{Z;rt,l + Bi1i(L)AY -1 + Bi2i(L)AX; ¢ + B13i(L)AF; + €1.2i 4 (11)
while the marginal models for X;; and F} become

AXiy = Boi(L)AYj -1+ Baoi(L)AX; 11+ Bazi(L)AF, 1 + &5, 4, (12)
AF; = Basi(L)AF,_1 +n, (13)

where the lag polynomials Bj;(L) are obtained by simply collecting the appropriate terms
from (8) to (10).



Assumptions 1 to 5 ensure that the following functional central limit theorem holds as

T — oo
1 [sT] [ €1.2i¢

No Dol
t=1

M

w
Biv

where s € [0,1] and B; = (By;, B);, BS) is a (14+m+ k)-dimensional vector Brownian motion,
which can be partitioned as B; = (B, BS,;)' with By.; = (BY;, B})' having dimension m + k.

The covariance matrix of B; is given by

o? 0 0
Ei = 0 2221‘ + AIQiAQi AIQz = COV(Bi>,
0 A2i Iy,

1
where 02 = Y11; — %12;555:%01;. Thus, B; = E2W;, where W is a (1 + m + k)-dimensional
standard Brownian motion that is partitioned conformably with B;. Furthermore, the long-

run covariance matrix of th is given by
K

1

~ ~ 1 1
Q;, = B;(1)Z;B,(L) = Q2(Q?),

(2

where the lag polynomial B;(L) is obtained from collecting the appropriate terms from (11)
F 1
o (13) and 7 = B;(1)=7.

KA
For later reference it is useful to consider the continuous time regression of W1y;, the first

element of W;, onto some vector Xj,
Wi = Py(X3)' Xi + Qx Wi,

where
P(X) = ( / Xixg) B [ X = vixom(x) (14)

is the ordinary least squares (OLS) projection with @ xW7; being the associated projection
error. For example, if X; = 1, then P;(X;) = [ Wi; in which case Qi Wy; = Wy, — [ Wy, is
the demeaned version of Wy;.
As (11) makes clear, as long as F; is observed, the problem of testing the null of no error

correction is equivalent to testing

Ho; o0 =0
against

Hy; a4 <0.
The problem is that, unless one resorts to nonlinear techniques, this parameter is not easily

estimated. One way to get around this is to assume that 3; is known, and to estimate aq;

using OLS. However, as shown by Boswijk (1994) and Zivot (2000), apart from the obvious



drawback that §; is almost never known in practice, tests based on a prespecified §; are
generally not similar and depend on nuisance parameters, even asymptotically.

As an alternative approach, note that (11) can be reparameterized as

AYiy = oY1+ Xii—1 + Y9 Fi—1 + Bi1i(L)AY; 1 + Biai(L)AX;
+ Bi3i(L)AF; + 1.4, (15)

where v}, = —ay;b, and 75, = —ay;\|;. The advantage of rewriting (11) in this way is that
because y1; and ~9; are unrestricted, the cointegrating vector is implicitly estimated under the
alternative hypothesis. Hence, as long as we are not interested in [3;, all the parameters of (15)
can be consistently estimated by simple OLS, which in turn suggests the OLS estimator of ay;
as a natural candidate for constructing asymptotically similar tests of the null hypothesis of
no error correction. In this section we propose two such tests, whose construction is described
next.

One obvious candidate is the ¢-test. Suppose that the lag polynomial Byj;(L) is of order
qi, and let

Wit = (AYipo1,..., AYip g, AX],, ..., AX],  AF/,...,AF]_)

,t—‘h ’
denote the vector of stationary, first-differenced, regressors, while V; ; again denotes the vector
of weakly exogenous non-stationary, level, variables, then (15) can be written as
AYiy = oY1+ Vig—1 + IEWig + e1.9i4
= a1+ PiSic + 12, (16)

where ®; = (7/,1I), S;y = (V’,t_l,Wict)’, vi = (V14 75;)" and II; is the vector stacking the

7

coefficient vectors of the lag polynomials By1;(L), Bi2;(L) and Bjs;(L). This equation can in

turn be written as

A(QsYit) = a1i(QsYit—1) + Qser.2it,

where again Qg is the OLS projection error operator, with

T T -1
QsYis =Yis — > Yii1Si, (Z S@-,tsgyt> S
t=2 t=2

being the residual from projecting Y; ; onto S ;.

In this notation, the OLS estimator of ay; is given by

T -1
by = (Z(an,t_1)2> > QsYii1A(QsYin),

t=2 t=2

10



whose estimated variance is given by
T -1
var(éi;) = (Z QsYit—1 ) ;
t

where 67 = T Zt 5(A(QsYit) — 41i(QsYit—1))%. The t-statistic for testing Hy; can now be

written a R
o aq;

T, — —F———.
o V&I‘(dli)

Another possibility is to follow Boswijk (1994), and to use a Wald statistic to test if ay;

and ~y; are jointly zero. In so doing, note that (16) can be rewritten as
AY;, = 0y, ” L H Wit + e1.2i4,
where §1; = (au4,7})’, or in terms of projection residuals,
A(QwYiy) = 61,(QwZ], it— 1)+ Qweroig.
The Wald statistic for testing the restriction that d1; = 0 is given by
ws, = o, (Var((?u))_lgli,
where

-1 4
611— (ZQW it— 1 Zzt 1)/> ZQW it—1 QW}/zt)

is the OLS estimator of §1;, and

is the associated variance.
The t-statistic 74,, and the Wald statistic wj =~ are the two test statistics considered in
this paper. Their limiting distributions under the no error correction null are given in the

following theorem.
Theorem 2. Under Hy; and Assumptions 1 to 5, as T — oo

(a) w5, == Diw = pi(Wi)' P;(Wy),

w dz
(b) Tay, — ng,z =

i

11



where pi(+) and P;(-) are defined in (14),

D; ai?wl_f_%V(U,»)
2, =2 /r0f \—1 ry—1
in11.2iW11iV(Ui) (Pz( 92:) " Pi(Wa.i) +V (Wa.i)pi(Wa.) QQQip’i)

Pl i1l (Vo) (V(Wait) + Pi(Wai)V (Us)V (Wi )pi(Wass)') Qa4

O‘.
inl_ll-QiPi(Ui) + wl_ll-Ziwllip;‘( ,221‘)_13(W2~i>(Pi(Ui) -1),

+ o+

d;

1
2
77

with wi1.9;, w11, 229; and p; depending on the parameters of Q02 , as defined in the appendiz.

The asymptotic distribution of 74,, simplifies substantially if X ; is strongly exogenous.
Assumption 6. X;; is strongly exogenous for o; and [3;.
This is shown in the following corollary.

Corollary 1. Under Assumption 6 and the conditions of Theorem 2, as T — oo,

w o Pz(Uz)
V(U;)

Tay — Dir =

Theorem 2 shows that the distribution of wg - as T — oo is nuisance parameter free and
only depends on m + k, the number of non-stationary exogenous variables in the system.
By contrast, the distribution of 74,, depends on several nuisance parameters, and although
these vanish under Assumption 6, strong exogeneity is quite restrictive. Fortunately, as Zivot
(2000) points out relying on results obtained by for example Saikkonen (1991), there is a
simple modification available that eliminates the nuisance parameters that are there under
Assumption 5 (iii). The idea is to model these parameters by making the lag polynomial
Bi2;(L) double-sided, as in

0o
Bipi(L+L7") = > BugL’,
j=—00
where L~! is the lead operator, which in in turn requires augmenting (16) not only by the lags,
but also by the leads of AX;;. If the number of leads is large enough, then the asymptotic
distribution of the resulting test statistic is given in Corollary 1.

In this sense, the results in Theorem 1 are basically the same as those provided by Banerjee
et al. (1998) and Boswijk (1994) for the pure time series case. The proof is therefore very
similar. The difference lies with the presence of F;, which has two effects. One is that the
number of unit roots increases from 1+ m to 1+ m + k, which is reflected through W3 in the
asymptotic distribution of the test. The second effect is that the test statistics across units
are no longer independent of each other, although the degree of the dependence between all

pairs of units is the same.

12



In the presence of nonzero deterministic constant and trend terms, as in Models 2 to 5, the
above theorem needs to be modified in order to obtain similar tests. This requires replacing
U; in (a) and W; in (b) by their appropriately detrended counterparts. Specifically, U; and
W; should be demeaned in Model 1, and demeaned and detrended in Model 2. The t-test
cannot be used in Models 4 and 5, and so for these models there is only the Wald test. In
Model 4, W; is replaced by (W/,1)’, while in Model 5, W; is replaced by (W}, 1,s)’, where s
is the limiting trend function, see Boswijk (1994).

Furthermore, under the alternative hypothesis of cointegration, 74,, — —oo whereas
ws - — 00 as T — oo, suggesting that the tests are consistent. A proof of this is provided by
Boswijk (1994).

3.2 Unobserved factors

So far we have assumed F; to be observed, an assumption which is generally not true. To
account for this, in a recent unit root paper Bai and Ng (2004) propose using the method
of principal components to estimate Fy, and then to use this estimate in place of F} in the
subsequent analysis. This approach has proven very fruitful, and has also been extended to
the case of cointegration, see for example Bai et al. (2008), Banerjee and Carrio-i-Silvestre
(2007), Gengenbach et al. (2006) and Westerlund (2008). The problem with this approach
is that, regardless of whether one considers unit roots or cointegration, the analysis must
be carried out in steps, which means that the estimation error from one step is imported in
subsequent steps.

As a response to this, Pesaran (2007) proposes a joint approach, which is based on us-
ing cross-sectional averages of the observed variables as proxies for the unobserved common
factors. Apart from the advantage that it eliminates the need for a two-step estimation pro-
cedure, this approach fits very well with the parametric flavor of our conditional ECM, and
it will therefore be used in this paper.

Part (b) of Theorem 1 implies that Z;; can be written as
Ziy = NiFy + By,

where A; is the (14 m) x k matrix of factor loadings, and where E;; is a vector representing
the idiosyncratic component of Z;;. Denoting by Z;i, A and E; the cross-sectional averages

of Z;iy, A; and E; 4, respectively, it is clear that
Zy = AF; + Ey,

which, via Assumption 3 (iii) and the fact that E;; is cross-sectionally independent, suggests

that I} can be written as

P e, P 1
F=(ANMN'NZ, + (NN NE, = AN NZ, +0 <>
p = (AA) t+ (AA) t = (AA) O\ 7%
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The implication is that the common factors can be approximated by the cross-sectional av-
erages Z;, and that the resulting approximation error should become negligible as N — oc.
Following this argument, we propose using Z; to approximate Fy. In so doing, it is convenient
to let Wiyt, f/i’t and Z:rt denote W4, V;; and Zift, respectively, with Z; in place of F;. Starting

with (16) the approximate test regression can now be written as
AYiy = ayYi 1+ 058 + &1y,

or equivalently,
A(QgYit) = 014(QgYii—1) + Qgé1.2i 1,

where the error €1.9;; depends on the accuracy of the approximation. Nevertheless, by regress-
ing A(QgYi) on QgYi—1, we obtain another OLS estimator of a;, which we will henceforth
denote by ay;. The associated t-statistic of Hy; can be written in an obvious notation as

aq;

Tay; = )

Var(o?h')
while the Wald statistic can be written as
wgh_ = (Sli)/(var(gli))_lgli,
where 41; and V&I‘(Sli) are defined just as in Section 3.1 but with Q;, in place of Q.

Theorem 3 provides the limiting null distributions of these test statistics.
Theorem 3. Under the conditions of Theorem 2, as N, T — oo,

(a) wsu i> Divu“

() 7, 2 DY, =

1,7 \/Ez

where d; and D; are defined analogously to d; and D; but depending on the parameters on ,

S ol

as defined in the appendiz.

Theorem 3 shows that the asymptotic distributions of ws 18 the same as that of wg
provided in Theorem 2, which is based on observed factors. The limiting distribution of
Ta,; is similar to that of 74,, but depending on different nuisance parameter due to the
approximation of F; by Z;. The difference is that Theorem 2 only requires that 7" — oco. If
F, is not observed, we require N — oo as well to ensure that Z; provides a sufficiently good
approximation for Fy.

Similarly to the case of observed factors, if X;; is strongly exogenous the asymptotic

distribution of 74,, simplifies and is the same as that of 74,,. This is shown in Corollary 2.
Corollary 2. Under Assumption 6 and the conditions of Theorem 8, as N, T — oo,
i’ Di,T-

Téy,
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3.3 Critical values

As in the simple case with cross-sectionally independent units, our tests are one-sided. The
t-test is left-tailed, while the Wald test is right-tailed. The difference is that in our case the
asymptotic test distribution, and hence also the simulation of the critical values, is complicated
by the dependence across i. However, conditional on W3, the Brownian motion associated
with Fj, the random variables D1 ), ..., DN, are identically and independently distributed
for all values of N. We say that Dy, ..., Dy, form an exchangeable sequence, similar to for
example Pesaran (2007) and Gregoir (2005). Thus, since D;,, is the same for all N, we can
just as well set N = 1 in the simulations, a finding also confirmed by our results. The same
argument applies to D; ». However, this is only valid for the limiting distribution of the ¢-test
under strong exogeneity of X, or if an appropriate correction is employed to remove the
nuisance parameter dependence. Otherwise, the individual test statistics are not identically
distributed across .

The simulated critical values at the 1%, 5% and 10% significance levels are reported in
Table 1 for the t-test, and in Table 2 for the Wald test. These are based on making 1,000,000
draws from the limiting test distributions, with normal random walks of length T" = 1, 000.

The results are reported for all five deterministic model specifications, and for m = 1,...,5.

4 Panel tests for no error correction

In this section we build on the results of Section 3, and show how these can be used to
construct pooled tests for the null of no error correction at the overall panel level. As an

example, we will consider the t-statistic in the most simple case with known factors.

4.1 The tests

There are many ways in which one can combine a set of individual test statistics into a pooled
test. The by far most common way is to follow Im et al. (2003) and to take the average,

which for the t-statistic in case of known factors amounts to computing

1 N
?561 = N E Téy,
i=1

This is a test of the null of no error correction against the alternative that there is a non-
vanishing fraction of error correcting units. Formally, the null and alternative hypotheses are
formulated as

Hy : aq; = 0 for all ¢

against

N
Hi:o;<0fori=1,...,NV; Withﬁl—>5>0
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as N1, N — oo. However, due to the dependence across i, in our case it is not possible to
follow the usual practice in applying a central limit theorem to obtain a normal distribution
for /N times Té, -

One possibility is to look directly at the average. Following similar arguments as Pesaran
(2007), because D1 r, ..., Dy, are identically and independently distributed given W3, a law
of large numbers applies to the conditional average of these random variables. That is, we

have that as N — oo

]

N
1
= 2 Dir = E(D:|W3),
i=1

where the ¢ index in the expectation has been suppressed because all D; have the same
conditional expectation. Thus, unconditionally the average converges to some random dis-
tribution. However, unless 74,, has finite moments for all N and T, this distribution is not
necessarily the same as the one that applies to 74, .

In order to get around this technical difficulty, we follow Pesaran (2007) and base our
pooled test on a truncated version of 74,,. Because this test has finite moments by construc-
tion, the associated cross-sectional average converges to the same asymptotic distribution as
D,.

The truncated statistic is defined as

K, if 74, <K
TE =R Tay, U K <Ta, <Ky o,
K, if 74, > K,
where the thresholds K; and K, are such that the probability of observing 74,, < K; and
Ta,; = K, is sufficiently small. In particular, by using the normal approximation of 74,;,
K, =E(D;)— @ '(1-5)y/var(D;) and K, = E(D;) + ®~!(1 — §)/var(D;), where ¢ > 0
is a small number, while ® is the standard normal cumulative distribution function.

The corresponding truncated version of 74, is given by

N
T _ 1 E T
&1 T N a1
i=1

Making use of Theorem 2, it is not difficult to see that as T" — oo

75— D, :iZD*
i=1

where
K, if D, <K
D;'k,r = Diﬂ- if K< Di’T < K,
Ku if D’i,T > Ku

But all moments of D] _ exist, so by conditioning on W3, as N — oo
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where
E(D;|W3) = K;-Prob(D; < K;|W3) + K, - Prob(D, > K,|W3)
+ E(D:|Ws,K; < D; < K,) — E(D,|W3)

as K;, K, — 00, and so we get the same result as for D,. This suggests that T4, can be used

for the test of Hy versus Hi. Another possibility is to use @E , the average of the truncated
1

Wald test statistics.

4.2 Critical values

The above results show that if K;, K, — oo, T4, converges to a distribution that only depends
on number of non-stationary variables in the system. With K; and K, finite, however, then
there is not just this dependence, but also a dependence on the specific threshold values.
Similarly, if N is finite, then there is also a dependence on the size of the cross-section. The
generation of the critical values has to account for all these dependencies.

We begin by simulating values of E(D;) and var(D;) for all five deterministic model
specifications, and for m = 1,...,5. These are needed in order to compute K; and K,. Just
as in Section 3.3 we make 1,000,000 draws from the limiting test distribution, with normal
random walks of length T" = 1,000. The results for the ¢-test are reported in Table 1, while
the results for the Wald test are reported in Table 2.

The next step is to simulate N-tuples D _,... ,D}"V’T using € = ﬁ, and the first-step
moments to compute K; and K,. The average is then taken, which yields one simulated
value of b: By repeating this exercise 10,000 times, we obtain the simulated distribution of
D.. The critical values at the 1%, 5% and 10% levels are reported in Table 3 for the t-test
and in Table 4 for the Wald test, in which case ﬁi is replaced by ﬁ;, the average of the
truncated Wald test distributions.

5 Monte Carlo simulations

In this section we report the findings of a small set of simulations. We do not intend to give
a comprehensive account of all the merits and drawbacks of the tests, but rather we want to
convey a rough idea of their relative performance, also when compared to some of the more
conventional tests from the literature.

The data generating conditional ECM is given by
AY;p = (Yipo1 — Xig—1 — 15F—1) + AX;p + BisiAF; + €1.9i4,
while the marginal models for X;; and F; are generated as
AX;y = BogiAFy 1+ ¢34,
AFy = m,
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where the elements of Bas; and Bis; are drawn from N(1,1), while 1o = (1,1)" is a two-
dimensional vector of ones. Thus, in this setup X;; is a scalar, while F} is two-dimensional.
For simplicity, we assume that there are no deterministic components in the data generating
process, and that there is a common error correction parameter «;, which is equal to zero
under the null hypothesis, and equal to —0.05 under the alternative.

The results are organized in four parts depending on whether there is any serial correlation
present or not. If there is no serial correlation, then ei.9;¢, €5, and 7y are drawn from the
standard normal distribution, while if there is serial correlation, then one of these errors is
specified as a first-order autoregressive (AR) process with standard normal innovations, and
a common AR coefficient of magnitude 0.5, while the remaining two errors are again drawn
from the standard normal distribution.

All experiments are based on generating 5,000 panels with NV individual and T + 50 time
series observations, where the first 50 observations for each series are discarded in order to
attenuate the effect of the initial conditions, which are all set to zero.

For comparison, the error correction tests of Westerlund (2007) are also simulated. Two
are based on the group mean, or between, principle and are denoted G, and G,, while the
corresponding panel, or within, type statistics are denoted P- and P,. Analogous to ?21, G-
and P. are constructed as t-ratios, while G, and P, are coefficient type statistics.

The problem with these tests is that they are based on assuming cross-sectional indepen-
dence, as explained earlier, and are therefore not expected to work in a setup as general as
this one. Therefore, for better comparability, we follow the suggestion of Gengenbach et al.
(2006), and run the tests on the defactored data. Specifically, we begin by estimating sepa-
rately the common component of X;; and Y;; using the method of Bai and Ng (2004), which
involves applying the principal components method to the variables in their first differences.
The estimated common component is then removed, and the defactored data are cumulated
back to levels again. The number of factors are determined using the IC] information criterion
of Bai and Ng (2002) with a maximum of five factors.

For the number of lags and leads to use in the conditional ECM, we used the Schwarz
Bayesian information criterion, which facilitates a data dependent choice. Consistent with

the results of Ng and Perron (1995), the maximum number of lags and leads is permitted to

2/9
o)

constructing G, and P,. Also, for better comparability across all tests, we do not consider

grow with 71" at rate 4( . The same rate is used for picking the bandwidth needed for
Models 4 and 5 when the deterministic constant and trend terms are restricted to the error
correction term. All tests are performed at the 5% significance level, and all powers are
adjusted for size.

The results for the case with no deterministic components are reported in Table 5. The

first thing to note is the relative performance of the new t-tests, which is very good. This is
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especially true when the data are serially correlated, in which case there are only one other
test with roughly the same performance as ours, G,. The overall best performance is obtained
by using the individual 74,, and 74,, tests, which seem to maintain the nominal level very well
in all cases considered. At the other end of the scale we have the wy, test, which generally
suffers from severe distortions, even if it is based on the true factors.

Pesavento (2004) reports some results for the original Wald test of Boswijk (1994), and
find it to be oversized when the serial correlation is of the positive AR type considered here.
The overall poor performance of the new Wald tests is therefore not very surprising. On the
other hand, unreported results suggest that the relative performance of these tests is much
improved if the serial correlation is of the negative MA type, which is also what Pesavento
(2004) finds in her simulation study. In any case, the size distortions generally decrease
substantially as T" increases, which corroborates our asymptotic results.!

Among the different versions of the new tests considered, the best size accuracy is not
surprisingly obtained by using the true factors. The tests based on using the cross-sectional
averages of the observed data as proxies for the factors are, however, almost as accurate, and
perform only slightly less well. Thus, the approximation seem to be effective even when N is
as small as 10. The defactored versions of the tests of Westerlund (2007) also seem to perform
quite well, which is in agreement with consistency of the principal components method, as
shown by Bai and Ng (2004). However, although improving in N, we also see that the size
accuracy is basically unaffected by 7', which is unexpected because theoretically the precision
of the principal components estimator should get better as T' grows.

Consider next the results reported in Table 5 for the power of the tests, which can be
summarized as follows. Firstly, the power increases rapidly as T and N increase, which is
presumably a reflection of the consistency of the tests. Secondly, the Westerlund (2007) tests
generally suffer from poor power, especially when e1.9;; is serially correlated, in which case
the power is only rarely in excess of the size. The G, test suffers most, and can actually be
less powerful than some of the individual tests. Thirdly, as expected, the power of the new
tests is generally greatly improved by pooling. Similarly, the tests based on the true factors
are generally more powerful than those based on the cross-sectional averages of the observed
data.

The results for the models with a constant, and constant and trend reported in Tables
6 and 7, respectively, are very similar to those reported in Table 5. Nevertheless, there
are still a few differences that are noteworthy. One difference is the magnitude of the size
distortions, which has a slight tendency to increase as more deterministic components are

added. Similarly, we see that inclusion of more deterministic components reduces the power

'One possibility here is to follow Palm et al. (2007), and to use bootstrap methods to eliminate the size
distortions of the Wald test.
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of the tests, especially for the individual ones. Another difference is that the relative power
of the Wald tests is generally much higher in Tables 6 and 7 than in Table 5.

We also examined the effects of a violation of the weak exogeneity assumption. We used
the same data generating process as before but this time we allowed the equation for AX;; to
be error correcting. The results, which are not reported but available from the corresponding
author upon request, conforms well with our expectations. In particular, while the size of the
tests is not effected, the power can be very low in cases when it is mainly AX;; that is error
correcting. Thus, even though the tests continue to perform well in some setups, in general
we need the weak exogeneity assumption to ensure that they work properly.?

The above results are all based on the truncated panel statistics. We carried out the same
simulations for their non-truncated versions, and obtained identical results. In fact, the two
types of statistics differ only for very small values of T, and are basically indistinguishable
for T' > 20. Thus, although little is gained in the present case, the truncation of the extreme
test statistics seem to pay out when T is very small. This effect is particularly strong when

the number parameters of the underlying ECM regressions is large.

6 Empirical Applications

In this section we present two empirical applications of the tests developed in this paper. The
first is concerned with the Fisher effect, while the second is concerned with the monetary

exchange rate model.

6.1 The Fisher effect

There are very few theoretical economic relationships with as much intuitive appeal as the
Fisher effect, which states that a one-time permanent shock in monetary variables has no
long-run effect on the real economy. A simple implication of this theory is that changes in
inflation should be reflected fully in subsequent movements of the nominal interest rate, thus
leaving the real interest rate constant over time. Yet, oddly, for a theory so widely accepted,
the postulated long-run relationship between inflation and nominal interest rates has proven
extremely difficult to establish empirically. In fact, most studies are unable to reject the null
hypothesis of no cointegration between inflation and nominal interest rates.

Westerlund (2008) argues that this lack of empirical support can be partly explained by
the poor precision of the routinely applied time series approach, and that the use of panel
data can produce more accurate tests. Consistent with this story, drawing upon a panel
of 20 OECD countries between the first quarter of 1980 and the fourth quarter of 2004,

the author shows that while the null hypothesis of no cointegration cannot be rejected at

2Zivot (2000) examines the performance of the time series tests of Banerjee et al. (1998) and Boswijk
(1994), and reach the same conclusions.
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conventional significance levels when using data on individual countries, panel testing leads
to a safe rejection. Low power in the tests is therefore one possible explanation for why
cointegration has been so difficult to find.

Our findings suggest that there is an alternative interpretation of these results. Namely,
that inflation and nominal interest rates are cross-sectionally correlated via the presence of
non-stationary common factors, which then invalidates the use of conventional critical values.?
Thus, according to this view, it is the factors, and not a lack of power, that make the tests
unable to reject the no cointegration null at the individual country level.*

In this section, we therefore apply our new tests to the same data to reevaluate the
cointegration test results reported by Westerlund (2008). In so doing, we will assume that
his unit root test results hold, and hence that the rates of inflation and nominal interest are
non-stationary. Hence, in this application Y;; = 4;; and X;; = m;;, where 4;; is the nominal
interest rate for country 7 in quarter ¢, while m; ; is inflation.

The tests are constructed in the same way as in Section 5, using the Schwarz Bayesian
information criterion with the same maximum to determine the number of lags and leads.
One difference in comparison to the simulations is that the common factors are no longer
observed, which means that we cannot evaluate the tests at the true factors. Therefore, as a
feasible alternative, in this section we consider replacing the factors by their first differenced
and cumulated principal components estimates, which are consistent even if the factors are
non-stationary, see Bai and Ng (2004). In agreement with the so-called full Fisher effect, the
estimation is carried out while imposing a unit slope coefficient on inflation. That is, the
factors are estimated from the real interest rate, ;¢ — m; ¢, which is consistent with the idea
of the existence of a world real interest rate, see for example Lee (2002).

The principal components method is implemented as described in Section 5, but with the
number of factors restricted to two, which ensures that the rank condition in Assumption 3
(iii) is fulfilled. As in the simulations, the defactored versions of the error correction tests
of Westerlund (2007) are also considered. We focus on the results for Model 2 with an
unrestricted constant, but include the results for Model 3 with both constant and trend for
comparison.

The results reported in Table 8 suggest that there is strong evidence against the no
cointegration null, even at the individual country level, which goes against the power argument
of Westerlund (2008). Indeed, looking at the baseline specification with no trend, we end up

rejecting the null for 13 out of the 20 countries when using the 74,, test, and for 11 countries

3 Although the panel tests of Westerlund (2008) are immune to the presence of common factors, his time
series tests are not. This means that the two sets of results are not really comparable in the sense that the
observed non-rejections at the individual country level could be due to the factors.

4One rationale for these factors is that they represent in part oil price shocks and other unanticipated
changes in inflation.
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when using the wg, . test. Similarly, the pooled tests are way out in the critical region and
lead to a safe rejection, even at the conservative 1% level. In other words, there is not much
evidence against the Fisher effect. This conclusion is not altered by the inclusion of a linear
trend.

In fact, the no cointegration null is rejected even when the factors are estimated with the
slope on inflation fixed at unity. Specifically, although weaker at the individual level, the
evidence at the overall panel level is still strong. Thus, we also have some evidence of the full
Fisher effect.

To formally test for the presence of unit roots in the estimated factors, we follow the
recommendation of Bai and Ng (2004) and use the augmented Dickey and Fuller (1979)
test, ADF henceforth.> The estimated first order AR coefficient for the two factors are 0.81
and 0.89, indicating that there is considerable persistency in the factors. This evidence is
reinforced by the associated ADF test values, —1.69 and —1.79, respectively, which lead to an
acceptance of the unit root null for both factors. Thus, if these factors are to be interpreted
as emanating from the world real interest rate, then this rate must be non-stationary.

The lesson we draw from these results is that a failure to reject the null of no cointegration
at the individual country level need not be taken as an indication of low power, as the

possibility remains that it can be due to the presence of non-stationary common factors.

6.2 The monetary exchange rate model

In this section we take a closer look at the monetary exchange rate model, which postulates a
strong link between the nominal exchange rate and a set of monetary fundamentals. The by
far most scrutinized proposition being that the nominal exchange rate between the domestic
and the foreign reference country, usually the United States, should cointegrate with the
relative money supply and relative output of these countries.

However, as with the Fisher effect, despite its strong theoretical appeal, the empirical
success of the monetary model has been rather limited, to say the least. Westerlund (2008),
Mark and Sul (2001) and Rapach and Wohar (2004) for example argue that this is due to low
power. They then proceed to show that the use of panel data leads to a much more favorable
picture, with strong evidence of cointegration at the aggregate panel level. Therefore, since
the countries appear to be cointegrated, the authors proceed to estimate the cointegration
vector.

The problem is that since all variables are measured relative to the United States, this
means that the common factors are there by construction. Furthermore, both money supply

and output are generally believed to possess unit roots, even for the United States, such that

5The test allow for an intercept and the lag orders are determined using the Schwarz Bayesian information
criterion.
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the common factors must be non-stationary as well. The potential consequences of unat-
tended non-stationary factors on residual-based panel cointegration tests have been studied
by Banerjee et al. (2004) and Gengenbach et al. (2006). The effects may lead to size dis-
tortions in small samples or even divergence in large samples. While Mark and Sul (2001)
employ a block bootstrap to correct for some weak cross section dependence among the error
term. It is not clear whether their test can correct for strong cross sectional dependence
induced by non-stationary common factors. Rapach and Wohar (2004) only allow for cross
section dependence in form of a common time effect.

In this section we revisit the results of Mark and Sul (2001) and Rapach and Wohar (2004).
The data are taken directly from Mark and Sul (2001), and cover 18 countries between the
first quarter of 1973 and the first quarter of 1997. Thus, in this application, Y;; = e;; and

X, = my — Myt
it — 3
yZ‘ — VUit

where e; ¢, m;; and y;; are the logarithm of the nominal exchange rate, money supply and
real income for country ¢ at quarter ¢, respectively. Asterisks denote the United States.

The average-based tests are computed in the same ways as before, but now we consider
two new versions of the factor-based tests. The first is based on using m; and y; as observed
factors, which is very interesting in the sense that it provides an example of the scenario
considered in Section 3.1. The second version is based on pre-specifying the cointegrating
relationship as in Mark and Sul (2001). In particular, it is assumed that the relationship can

be written as

Y; . .
BZip=(1, -1, 1) < th ) = eit — (Mg —mit) + (Y — Yit),
1y

which imposes monetary neutrality and a unit negative income elasticity.> Three factors are
estimated from this relationship, which again ensures that Assumption 6 is satisfied. Once
again we focus on Model 2 with an unrestricted constant as the deterministic component. For
simplicity, in this section we drop the Westerlund (2007) tests.

The results are reported in Table 9. The first thing to note is that for the first 11
countries there is almost no evidence of cointegration at all, except possibly for Belgium,
where we count four rejections at the 5% level. The pooled tests are generally much more
significant, especially the Wald tests, displaying evidence of cointegration for all five panels.
Just as before the results show almost no variation at all depending on whether the trend is

included or not.

5In order to avoid the problem with nuisance parameter dependency discussed in Section 3.1, the cointe-
grating relationship is only pre-specified for the purpose of estimating the factors. In other words, although
restricted in the factor estimation, in the implementation of the error correction tests the cointegrating rela-
tionship is still unrestricted.
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These two sets of results suggest that the evidence at the aggregate panel level could very
well be due to only a few cointergrated countries. Indeed, a closer look at the different panel
members reveals that the significance at the aggregate panel level is mainly due to three
individually cointegrated countries, Italy, Spain and Korea. Although these differences could
of course also be due to the relatively low power of the individual tests, they nevertheless
show that one should take caution in interpreting test results at the aggregate panel level.
Indeed, based on the results reported here it seems very hazardous, and borderline erroneous,
to treat all five panels as cointegrated, and to proceed with the analysis as if all members are
individually cointegrated.

When we compare the results from across the different tests, in agreement with our sim-
ulations, we see that the average-based Wald test leads to most rejections. As a final piece
of evidence, Table 10 reports some summary statistics for the estimated factors. As in the
Fisher application, we see that the estimated AR coefficients are very close to one, indicating

the presence of unit roots, which is again supported by the ADF test results.

7 Conclusions

In this paper we consider the issue of testing for cointegration in a panel data model with
non-stationary common factors. We begin by showing that the model admits to an ECM
representation, a result that is then used for developing two new cointegration tests based on
the significance of the error correction term.

It is shown that under the null of no error correction the asymptotic distributions of the
tests are free of nuisance parameters, and that they only depend on the number of non-
stationary variables in the system. However, the individual tests are not independent along
the cross-sectional dimension, which makes pooling difficult. Nonetheless, the cross-sectional
averages of these tests are shown to converge to well-defined distributions. These results hold
regardless of whether the factors are treated as known or if they are estimated using the
averages of the observed data. Some simulation evidence is also provided showing that the
tests behave quite well in small samples.

A number of concluding remarks can be made. Firstly, the assumption of weak exogeneity
of the regressors in the ECM is crucial for correct interpretation of the tests. This assumption
is clearly a weakness in comparison to the residual-based test approach, in which the regressors
can be fully endogenous by means of a non-parametric correction. However, it should be
pointed out that in principle there is nothing that precludes the use of a similar correction
in the current setup. An alternative approach would be to pre-test the validity of the weak
exogeneity assumption using panel extensions of the Lagrange multiplier tests proposed by
Boswijk and Urbain (1997).

Secondly, the simulations show that the new tests can still be distorted in some cases
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when the factors are treated as unknown. One possibility towards this end would be to follow
Palm et al. (2007), and to consider bootstrap versions of our tests, which are expected to
have better size properties in small samples.

Finally, a crucial assumption is that of a single cointegrating vector under the alternative.
This is obviously an important limitation of our tests that is shared with most existing
residual-based tests. When the dimension of the cointegrating space is unknown it is probably

best to analyze the data using system-based approaches, see for example Larsson et al. (2001).
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A Appendix
A.1 Proof of Theorem 1.

Consider (a). From (3) and (4) we have AF; — mg; = W(L)n:. Substituting for AF; in (2)

and using (4) we obtain
AXiy = m5i'ge = Tari(L)eri + Dai(L)eaie + Aoy U (L) (A1)

Taking first differences of (1) and substituting for AF; and AX;; from (Al) we obtain the

following MA representation

AYi —mi'ge = (1= L)T1abiTo1i(L))erie
+((1 = L)Ta1; + biTa2;(L))e2i e + (Ny; + biAy; ) U (L) (A2)

Combining the results above we find

(1= L)114(L) + biT21(L) (1 — L)T12i(L) 4 bjT0s(L) (N + biA5;) ¥ (L)
Cy(L) = Tyyi(L) Taoi(L) 2, U(L) |
0 0 U(L)
Furthermore,

b, (N + U,
Ci(1) = IZ O X.Z 2) [o1i(1) Tagi(1) 0O
0 I,

such that C;(1) has rank m + k. This establishes part (a) of the theorem.
Next, consider (b). Partition C;(L) such that the diagonal blocks C11;(L) and Cag;(L) are

of dimension r x r and (m + k) x (m + k), respectively. Since

Ca2i(L) = < F226(L) )\lz\f,%jL()L) >

is invertible, we can decompose C;(L) as

I, Ci2i(L)C;(L)~! C11.2:(L) 0
Gill) = ( 0 ’ I(mii) ) < é;li(L) Ca2i(L) >

As Ch1.92i = (1 — L)T'11.9,(L) we can further write

' . I, Clzi(L)022i(L)_l (1—L)IT 0 FH,QZ‘(L) 0
GiL) = ( 0 L) >( 0 Tt >< Coni(L) sz(L))

= Ui(L)"'M(L)Vy(L)™, (A3)

where the lag polynomials

]:\11'21,([1)71 0 0
Vi(L) = | —To2i(L) o1 (L)T11.2i(L) ™1 Tagi (L)~ —Tagi(L) 71N,
0 0 W(L)"!
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I —((1 = L)T12i(L)Tazi(L) " +0}) (1= L)T1ai(L)T22i (L)' Xy, — A
0 I, 0
0 0 Iy,
are invertible.
Substituting (A3) for C;(L) in the MA representation of AZ;’Q and pre-multiplying by
U;(L) and M (L), where

M(L) = < {)r (1- L[))I(m+k) > ’

M(L)U(L)(1 = L)(Zf;, = (7})'g:) = (1 = L)Vi(L) "¢},

,t°

we obtain

Eliminating (1 — L) from both sides and pre-multiplying by V;(L) yields the following possibly
infinite AR representation for Z;rt

ViAD)M(L)USL)(Z5 = (77)'9:) = &

)

Using that Ti1.0:(L)™! = |Ti1.2i(L)| adj(T11.2:(L)), Ta2i(L)™' = |Tooi(L)|tadj(Ta2i (L)),
W(L)™t = |¥(L)|tadj(¥(L)) and |} (L)| = |T11.2i(L)||T22:(L)||¥(L)], we can recover both
the scalar lag polynomial ¢;(L) = | (L)| and the lag polynomial matrix A;(L) given in the
theorem. This establishes part (b).

Consider (c). Direct computation of A;(1) yields

| (1)]|T22i(
Ai(D) = | —¥(1)|adj(T22:(1

)ladj(T11.2:(1))
JTori(Dadj(Ti12i(1)) | (I —b; —Xy; ) = .
0

1
)

Since

b, (N + By
P bt I215(1) Tagi(1) 0\ _ 5 sy
Cl(l) - Im >‘2i < 0 0 \If(l) - ﬁz(ai) ’

0 I,
where & and B; denote the matrices orthogonal to o and f3;, respectively. It follows that
BiCi(1) = 0 and C;(1)ey; = 0, and so the proof of (c) is complete.

Parts (d) and (e) follow by manipulating of the lag polynomial matrix A;(L) and rear-
ranging terms, as in Engle and Granger (1987).

A.2 Proof of Theorem 2.

Before we come to the proof of the theorem we need some preliminary results, which are

summarized in Lemma 1.

Lemma 1. Under Hy; and Assumptions 1, 2, 4 and 5, as T — oo
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Sl

()T_fert L= Q2W,

1
QZQWZM I(QWZzt ) —)QZ/WW, 0?),

t=2

1ZQW it— 1QW51 2i,t _’UzQ pz(Wz)

where

Q% = < Bllllm Bn 21M1zM21 >
0B api (Mai + Biyy;pi My Ma;)

_ < witi Q12 >
Qo1 Qoo )7
where Bjj;(L) = I—Bj;i(L)L, By; = Byi(1), Bji = Bjui(1), Byy'y; = (B11i— B2 Bag; Ba1i) L,
pi = ( Byyi(Bay )’ 0 ), Mii=( Bi2i Bizi ) and

- 1
Moy; = 32_211'22221' 3222(323133& "‘)‘ ) .
0 Bg_32

Note that €291; = wi1;p; and define for future use wi1.9; = wi1; — w11i91292_21ipi-

Proof of Lemma 1.

Consider (a). Note that under Hy;,

Bi1i(1) —B12i(1)  —Bisi(1) €12t
—Boi(1)L  Bagi(1)  —Basi(DL | AZf, = | ey |,
0 0 ngi(l) Nt
such that
- 1
Bi1i(1)  —Bigi(1) —Bisi(1) t €1.2i,t
ZZQ = —B21i(1)  Ba2i(1) —Basi(1) Z it
0 0 B33i(1) s=1 us
+ Byu(L)L BQE(L) B;E’;z(L AZS | (Ad)

)L
0 0 — B, (L)
where B;.gi(L) and Eﬁz(L) are obtained from the Beveridge-Nelson decompositions of Bj;;(L)

and Bj(L) as Bji(L) = Bji(1) + B}, (L)(1 — L) and Byi(L) = Bji(1) + Bj,(L)(1 - L),

respectively.
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Substituting €3, , = 2;¢ + Ay;n: into (A4) we obtain

-1

) Bi1i(1) —~B12@'(1) —Bi3(1) 0 q 0

TV 7, = —B21i(1)  Ba2i(1) —Basi(1) 0 %3, Ay

0 0 Bssi(1) 0 0 I

L J;lfl-Zz,t
x T2y | Syren | +op(l),
s=1 Nt
such that
1
T 27 - Q2 W; (A5)

as T'— oo, proving (a).

Now, by using the rules for projections, Zthz QWZ;;A(QWZ;;&)’ can be written as

T T
ZQWZ;e—l(QWZZFt—QI = ZZ;S:A(Z; 1),
t=2 t=2
T -7
B Z it— 1Wi/,t (ZWi,tWi/,t> ZWM(Z:Q 1)/ (A6)
t=2 t=2

By Lemma 2.1 of Park and Phillips (1989), 3/, zt W =0,(T), L, ” 1(2;;_1)' =

1y

O,(T?) and Zt o WitW/, = Op(T) such that (A6) reduces to

T T
T2Y Qwzfi (QwZi ) = T72) Zh ((Z 1) + T 20p(T)0p(T1)0,(T)
t=2 t=2

= Z AT Zz+t D+ 0T,

where we can make use of (a) to show that as T'— oo

w 1 1
T? Z ZiJ,rt—l(Z;Ss—ﬂ/ — 7 /WiWi,(912 ).

This proves (b).
Finally, consider (c). By definition,

T T -1 7
/ !
E QWZ” (Qwerait) = E ” 161268 — g ” Wiy E Wi Wi, E Wi e1.2it,
t—2 t—2

t=2 t=2
where Zt o Witer0it = Op(\/T). Thus, by using the same arguments as above,

T

T
71! Z QWZi—t—t—l(QWEl'Qi,t) =71 Z Z{:g_151~2z‘,t + Op<T7%), (A7)

t=2 t=2
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where the limit of the first term on the right-hand side is given by

122115 15121t—)UlQZ/WdWIz—UzQ pz(W)
t=2

This establishes (c), and hence the proof of Lemma 1 is complete. O
Now, since under the null hypothesis,

AQwYis) = 01,(Qw Z;,_1) + Qwerair = Qwerir,

we have

511_ (ZQW it—1 QW@EQ’) ZQW it—1 (Qwer2it)-

From Lemma 1 (b) and (c) we have that

. 1 1 1 1
T61; N o; (Qf /VVZVVZ/(QZZ) > 02 /WdWll = O'Z(Q 2),R(Wz) (AS)
Similarly, under the null the Wald statistic is given by
T -1 7
572 Qweri(QwZf,) (Z QwZ},_, QWZ;H)’) > QwZ_(Qwerain).
t—2 t=2

Consider 67 = T~ L (A(QwYis) — Sii(QwZ{;_l))? By making use of Lemma 1, and the
fact that under the null, A(QwYi+) = Qwer.2it, we get
& = T 12 (QwYir — 0u(QwZ,_1))?

T

T! Z(QW€1-2i,t)2 1ZQW it—1 (Qwer2it)
t—2

T
+ Ty QwZl L (QwZ ) b

= 7! (Qng'Qi,t)2 + Op(Til)Op(l) + TﬁlO’p(Til)Op(TZ)Op(Til)

M= 1M~
U
(&)

= 71 (QwE1.2i7t)2 + Op(Tfl). (Ag)

&~
||
(]

As for the first term on the right-hand side, we have

T -1 7

T T T
2 2 ! !
E (Qwerait)” = g €1.2i4 — E e1.2it Wit E WiiWiy g Wi te1.2i¢
t—2 =2 t—2 =2 =2

T

= 3 i+ O,(VT)O(T O, (VT).
t=2
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Hence, by inserting this into (A9), and then taking the limit as 7" — oo, we obtain

T
o7 =T 25%2@75 +0,(T") 5 o7 (A10)
=

Combining this result with Lemma 1 (b) and (c) we get the following limit as T — oo

1 1 -1 1
ws, . v, o; az/dWhW’ f ( 2/WW’ ) aiQZ?/WidWli

= pi(Wi) P(Wy), (A11)

which establishes part (a) of the theorem.
Consider (b). Under the null hypothesis, A(QsY; ) = Qse1.2i. By using this result, (A8)

and the rules for partitioned regressions, we obtain as T' — oo

T -1 T
Téay; = (T_2 Z(QSYi,tl)2> T QsVir1(Qser2i)
=2

t=2
— inﬂl.QiPi(Ui) +Wﬂ%ziwllipé(glzzz‘)_lpi(W2-i)(Pi(Ui) —1)=d;. (A12)

Next, consider

T -1
var(dy;) = 67 (T_2 Z(QSYi,t—l)2> :

We have already shown that 67 - o?

as T — oco. From this result and arguments similar
to those used in the proof of Lemma 1 we obtain as T' — oo

TPvar(dn;) ——  ojwileV(Ui)

+ olwitewitiV (Us) (05 () T Pi(Waa) + V (Wai)pi(Wa.i) Qo i)

2 =2 2 / /
+ o wiowiils (92:)

X (V(WQ.Z‘) + Pz‘(Wg.i)V(Ui)V(WQ.i)pi(WQ.Z‘)I) 92_211-,0,‘ =D;. (A13)
The proof is completed by noting that
Téy; d;
D = lim i M. S (A14)
T?var(&;) vV D;
O
A.2.1 Proof of Corollary 1
If X;; is strongly exogenous, Ba1; = 0 such that p; = 0. Thus, (A14) simplifies to
i Bllz z z P(
Dz T = (A15)
Vo \/ B}V vV
This completes the proof. O
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A.3 Proof of Theorem 3

We begin with the following lemma.

Lemma 2. Under Hy; and Assumptions 1 to 6, as N, T — oo
(a) T"3Z, % M3Ws,

- ~ 1
(b) T732Zf,_, % Q2W;,

e Fansonsr = () o

T . 1
(d) 77 ZQWZ;;,l(Qwé-%,t) — 0 Q2 pi(W5),

t=2
where M3 = lim M;J,, Mg = % Zz]il Mgi,
N—oo
1
Ms; = ( - Bn 2i (31213221(3231 33i i+ Ay) + 31313331) ) 7
By (Bu3iByg; + Xo;) + Bagy Bo1i Brly; (B12i Bagy (Basi Bag; + Xo;) + Bi3iBag;)

~ 1 - ~
My; = 32_212'22221' 32_212'(3231‘33_311 + )‘/21) ,
0 Ms

( BQlZ(BQZZ), 0 ) and

— ( U%Bl_l 2 B11 22M11M2z >
oiB 11 2z¢1 (M4z + B11 QZd)ZMleQz)

_ <Ci)11i @121;)
Dori Qoo )

Furthermore, we have QQ]_i = 5)111',51' and we define @11.21' = (:)111' — @111'9121922%[)1

~ 1
2
Qi

Proof of Lemma 2

Letting ; = Bl_ll‘%Blgi(l)nggi(l)_l, we have

1 — T .
T-37, = MsT" 2 ¢ 11 g )
t 3 Z BTN Z < go; (Bo2i(1) ™! + Bogi(1) ™' Ba1i(1)g)

t
1 £1.2i,s 1 1 )
x T QE T4+ 0, — | +0,( — |,
s=1< €2,s ) p(vNT) P <\/T

from which it follows that as N, T" — oo

t
- ., 1
T 27, = M3Tzngs+Op< +0
VN

s=1
(A16)

PR

ﬁy
~

~——

_|_
RS

/7~
Si-
~——
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This proves (a).
Moreover, by combining (a) with (A5), we find that as N, T' — oo

S|

ZiH =5

w\»—t

T Wi,

which proves (b).

Analogous to the prove of Lemma 1, we have

T T T T -1
Z QWZ;QA(QWZ;A)/ = Z ZZ'J,rtq(Z;ﬁfl)/ - Z Z;‘/fl(Wi,t)/ (Z Wi,t(Wi,t)/>

T
= > Zf, 1(Zf,_1) + 0,(T).

Combining this with (b) we obtain as N, T'— oo

T
ZZ@W @zt ) = T ZE (ZE )+ 0p(T )

TG (jww) Q7). (A17)

This proves (c).

Finally,
T T T ) T -1
SCIE ISR DY S S Lt (z Wi,t<wi,t>f)
= t=2 t=2 t=2
T ~
X Z Wz,t(El Qz,t)
t=2
T ~
= Y ZfisEr1au + Op(T)0p(TH)Op(VT)
t=2
Thus,
T . T )
! Z Qw2 1(Qpéray) = T Z Z €19t + Op(T72)
t=2 t=2
1
0, Q7 pi(W7) (A18)
as N, T'— oo. This proves (d) and hence the proof of Lemma 2 is complete. ]

The proof of Theorem 2 follows similar arguments as the proof of Theorem 3. However,
L1 ~
if k. <m+1, Q7 and (z9; are no longer square matrices such that we have to make use of

generalized inverse in that case.
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The Wald statistic wg, - is given by

—1
Ws, = 7QZQW51 21t (Qu 21, i) (ZQW i ( Zert 1)/> (A19)

t=2
T
X ZQW it-1(Qyfr2it), (A20)
t=2
where 67 is 67 with Qyi; in place of Qw. By using the same steps as for 62 in Theorem 2,

we obtain 2

that as N,T — oo

~1 1 L ~ 1
wy,  — oi2ai/dW1iW/ 0Z) < 2/WW’ 0Z) ) 2/WdWh

= pi(Wi) P(Wy), (A21)

2, 02 as N,T — oco. This result, together with Lemma 2 (c) and (d), implies

which establishes the required result for (a).

Furthermore, similarly to the prove of Theorem 1, by the rules for partitioned regressions,
Téq; — LL and Tzvar(&u) - Di as N, T — oo, where CL and l~)¢ are defined similarly to d;
and D; above, but replacing w11, wi1.2; and Q99; with w115, @11.2; and ngi respectively. This

yields the required result for (b). O

A.3.1 Proof of Corollary 1

The proof of Corollary 2 is completed by noting that p; = 0 if X;; is strongly exogenous. [
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A.4 Tables

Table 1: Critical values and moments for the individual ¢-tests.

Critical values Moments
Model m 10% 5% 1% E(D,) var(D;)
1 1 —2985 -3.315 —3.932 —1.709 1.069
2 —3.484 —3.819 —4.434 —2.212 1.044
3 —3.883 —4.219 —4.848 —2.617 1.026
4 —4.233 —4.570 —5.191 —2.965 1.020
5 —4.538 —4.876 —5.503 —3.272 1.012
2 1 —3.426 —3.744 —4.339 —2.250 0.884
2 —3.845 —4.168 —4.775 —2.644 0.915
3 —4.199 —4.528 —5.138 —2.985 0.931
4 —4.512 —4.841 —5.454 —3.287 0.943
5 —4.792 —5.123 —5.747 —3.564  0.947
3 1 —3.814 —4.122 —4.697 —2.704 0.779
2 —4.175 —4.488 —5.078 —-3.024  0.837
3 —4.494 —4.815 —5.411 —3.316 0.872
4 —4.780 —5.103 —5.703 —3.589 0.892
5 —5.043 —-5.370 —-5.973 —3.841 0.904

Notes: Model 1 refers to the specification with no deterministic component,
while Models 2 and 3 refer to the specifications with an unrestricted constant,
and unrestricted constant and trend, respectively. The value m refers to the

number of regressors contained in Xj ;.
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Table 2: Critical values and moments for the individual Wald tests.

Critical values Moments

Model m 10% 5% 1% E(Dy) var(Dy)
1 1 12.209 14.291 18.726 6.979  15.188
2 17.399 19.839 24.913 10.937  23.438

3 22.344  25.010 30.634 14.872 31.381

4 27.108 30.061 36.132 18.785  39.317

5 31.795 34.966 41.435 22.709  47.043

2 1 14.821 17.081 21.870 8.944 19.467
2 19.870 22.460 27.817 12.886  27.601

3 24.750 27.571 33.400 16.833  35.554

4 29.484 32.542 38.789 20.756  43.392

5 34.076 37.329 43.941 24.639  50.867

3 1 17.525 19.940 24.973 11.091  23.396
2 22.424 25.113 30.674 14.988  31.266

3 27.190 30.127 36.200 18.891  39.200

4 31.840 34.992 41.404 22.767  46.941

5 36.389 39.768 46.581 26.639  54.563

4 1 15.769 18.012 22.789 9.964  18.782
2 20.781 23.337 28.680 13.898  26.598

3 25.629 28.422 34.305 17.824  34.284

4 30.368 33.430 39.625 21.756  42.014

5 34.995 38.236 44.840 25.648  49.671

5 1 18.412 20.800 25.830 12.093  22.321
2 23.297 25.968 31.550 15.982  30.128

3 28.084 31.016 37.034 19.888  37.981

4 32.708 35.839 42.256 23.757  45.521

5 37.293 40.612 47.334 27.628  53.097

Notes: Models 4 and 5 refer to the specifications with a constant, and
constant and trend in the error correction term, respectively. See Table 1

for an explanation of the remaining features of the table.
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Table 10: Descriptive statistics for the common factors in the monetary exchange rate model.

Principal components Observed
Value Factor 1 Factor 2 Factor 3 my Yi
AR 0.97 0.98 0.97 1.00 1.00
SE 0.03 0.05 0.02 0.00 0.01
ADF —1.09 —0.34 -1.79 —-3.06" —0.42

Notes: AR refers to the estimated first order AR coefficient, SE refers to its
standard error and ADF refers to the augmented Dickey and Fuller (1979)
test. The autoregressions are fitted with an intercept and the lag orders

are determined using the Schwarz Bayesian criterion. See Table 8 for an

explanation of the remaining features of the table.
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