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Abstract

This paper is concerned with a combinatorial, multi-attribute procurement mechanism

called combinatorial scoring auction. In the setting that we analyze, private information

of the suppliers is multi-dimensional. The buyer wants to procure several items at once.

Subsets of these items are characterized by a price as well as by a number of non-monetary

attributes called quality (e.g. completion time). The suppliers submit offers specifying

prices and quality levels for these subsets. These offers are evaluated according to a quasi-

linear scoring rule. Based on the resulting scores suppliers win contracts for the delivery

of certain items. Such a contract only specifies the set of items a supplier has to deliver

and a score that he has to meet. The decision about the specific price-quality combination

yielding this contracted score is at the discretion of the supplier who aims at optimizing

his own profit.

We analyze the equilibria in such auctions and show the link between combinatorial

scoring auctions and combinatorial price-only auctions. We demonstrate how this link

can be used to employ preexisting knowledge about the equilibrium behavior in regular

price-only auctions in the strategic analysis of combinatorial scoring auctions. Our results

are the multi-item extension to the results of Asker and Cantillon (2007).
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1 Introduction

The design and analysis of combinatorial auctions is a flourishing field in auction theory

drawing the interest of researchers from the area of game theory as well as from the area of

computer science. (Or as Roger B. Myerson puts it on the back cover of Cramton, Shoham

and Steinberg (2006): “Combinatorial auctions are the great frontier of auction theory today,

. . . ”.) While single item auctions only allocate one item at a time, combinatorial auctions are

used to allocate multiple items all at once. By doing this, complementary or substitutable

preferences of the bidders for different item sets can be taken into account. The majority of

research conducted on combinatorial auctions (but this also holds for single item auctions)

considers the price as the unique strategic dimension for bidders. That is, bidders offer prices

for different sets of items based on which the items are allocated.

However, there are situations in which auction participants are not only concerned with

the price of items but also with other non-monetary attributes of the items (called quality).

Take for example the construction of a building. The construction process can be subdivided

into several tasks on which contractors can bid. The building owner does not only care about

the prices at which these tasks are executed by the contractors but also about non-monetary

attributes of these tasks, like the completion time, the quality of the used materials, the

construction quality or the probability that the contractor goes bankrupt during the job

and leaves the task unfinished. On the other side, due to different levels of specialization,

contractors might be able to take over several tasks or only some special tasks. Also, the

contractor having the lowest cost for a specific task might differ depending on the quality

level. That is, the low cost contractor for a task at a low quality level might not be the

same as the low cost contractor for the same task at a higher quality level. Thus, it can be

important to consider other strategic dimensions than just price.

One way to deal with combinatorial, multi-attribute procurement problems, like the one

described above, is using combinatorial scoring auctions. In our paper we analyze the equi-

libria in such combinatorial scoring auctions. Specifically, we aim at extending the results

of Asker and Cantillon (2007) who consider a setting for single item scoring auctions where

item quality and bidders’ types are multi-dimensional. For each bidder they construct a

one-dimensional pseudo-type which is the maximum level of apparent social surplus that this

bidder can generate (“apparent” because for its construction the scoring rule is used, which
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can differ from the buyer’s true valuation function). Asker and Cantillon (2007) show that

knowledge of bidders’ pseudo-type distributions is sufficient for describing equilibrium out-

comes and the buyer’s expected equilibrium utility. This finding allows them to establish a

link between single item scoring auctions and standard single item independent private value

(IPV) price-only auctions. Specifically, for each single item scoring auction in their setting

they identify a corresponding single item IPV price-only auction in which a bidder’s type is

his pseudo-type. They then show that the strategic analysis of a scoring auction reduces to

the strategic analysis of the corresponding price-only auction. We establish the multi-item

extension of this result. That is, we also construct pseudo-types, now consisting of the maxi-

mum levels of apparent social surplus that a bidder can generate for the different item sets,

and we show a link between combinatorial scoring auctions and combinatorial price-only auc-

tions. This link is again established by identifying for each combinatorial scoring auction a

corresponding price-only auction.

1.1 Related Work

Che (1993) analyzes single item scoring auctions where the supplier bidding the highest score

is contracted the delivery of the item. He considers a setting where the item quality is one-

dimensional, suppliers’ private information is also one-dimensional and suppliers’ production

costs depend on the quality level as well as on their own private information. Furthermore,

he considers scoring rules that are linear in price. In order to construct equilibria in these

auctions he makes use of the maximum level of social welfare that a supplier can produce

(which is well defined once the scoring rule is given), also called a supplier’s pseudo-type.

By employing a relatively simple change in variables, he is able to transform the problem of

finding equilibria in the scoring auctions into the problem of finding equilibria in standard

single item IPV price-only auctions, which are well-studied. He also designs an optimal scoring

rule, maximizing the buyer’s utility.

Branco (1997) extends Che’s (1993) analysis of the independent cost setting to the case

where suppliers’ production costs are correlated. He characterizes an optimal direct revelation

mechanism, the implementation of which requires a two-stage auction. David, Azoulay-

Schwartz and Kraus (2002a), (2002b), (2003) and (2006) propose and analyze simultaneous

and sequential (with and without deadline) English auctions on suppliers’ scores. Their
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settings allow for two-dimensional quality and two-dimensional private information, or general

multi-dimensional quality and one-dimensional private information, respectively. However, in

the settings that they consider the functional form of the suppliers’ utility functions and the

scoring rules are more restrictive than in the foregoing papers. They also identify optimal

scoring rules for the considered settings.

Asker and Cantillon (2006), (2007) extend Che’s (1993) analysis to a single item scoring

auction setting that allows for multi-dimensional quality as well as multi-dimensional private

information for the suppliers. Asker and Cantillon (2006) show that, unlike in Che’s (1993)

one-dimensional setting, the optimal buying mechanism cannot be implemented by a scoring

auction with a scoring rule which is linear in price if suppliers information is multi-dimensional.

Furthermore, they analyze the performance of scoring auctions in comparison to the optimal

mechanism. Asker and Cantillon (2007) prove that in order to describe equilibrium outcomes

in single item scoring auctions it is sufficient to make use of suppliers’ one-dimensional pseudo-

types. However, if suppliers’ original private information is multi-dimensional, this proof is

more involved than using the simple variable transformation employed by Che (1993). As

Che (1993), Asker and Cantillon (2007) show that the problem of finding equilibria in single

item scoring auctions can be transformed into the problem of finding equilibria in standard

single item IPV price-only auctions. In this paper we deliver the multi-item extension of

this result. Furthermore, Asker and Cantillon (2007) find that scoring auctions dominate

other procedures for buying differentiated objects, like menu auctions, beauty contests and

price-only auctions with minimum quality thresholds.

Milgrom (2000) shows that an item can be efficiently allocated by a scoring auction which

employs the buyer’s valuation function as the scoring rule and runs a Vickrey auction on

suppliers’ submitted scores. Suyama and Yokoo (2005) investigate a combinatorial multi-

attribute procurement auction setting that allows for multi-dimensional quality as well as for

multi-dimensional private information of the suppliers. Their setting is a bit more restrictive

than the one considered in this paper as the vector of quality levels for an item set is composed

of the quality vectors of the individual items in the set. They propose a direct revelation

Vickrey-Clarke-Groves (VCG) mechanism (Vickrey (1961), Clarke (1971), Groves (1973)) that

determines the social surplus maximizing allocation of items and quality levels for the items.

In this mechanism it is a dominant strategy for a supplier to report his private information
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truthfully. The combinatorial VCG scoring auction presented in Section 4.1 is quite similar in

that it is essentially a direct revelation VCG mechanism based on suppliers’ pseudo-types. In

our auction the welfare maximizing allocation is determined by the auction mechanism while

the optimal quality levels are determined by the suppliers themselves. This combinatorial

VCG scoring auction is the multi-item extension of Milgrom’s (2000) scoring auction.

In addition to the theoretical work presented above, also some experimental work on single

item multi-attribute auctions has been done: Bichler (2000), Chen-Ritzo, Harrison, Kwasnica

and Thomas (2005), Strecker and Seifert (2004), Bichler and Kalagnanam (2005). In these

papers theoretical equilibrium predictions are verified and different scoring auction formats

are compared. A finding of these experiments is that multi-attribute auction mechanisms

dominate price-only auction mechanisms in terms of the buyer’s and suppliers’ utilities.

1.2 Paper Outline

In Section 2 we state some basic assumptions and definitions and describe our combinato-

rial scoring auction model which is an extension of the single item scoring auction models

considered by Che (1993) and Asker and Cantillon (2007).

Contrary to the commonly analyzed single item scoring auctions, a buyer wants to procure

several items at once in our setting. Item sets are characterized by a price as well as by a

number of non-monetary attributes. A supplier’s production costs for the different item sets

are influenced by the chosen quality level and his type which is private information. We

allow for multi-dimensional, independently distributed private information for the suppliers

and multi-dimensional non-monetary attributes for the sets of items. The suppliers submit

offers on the different item sets specifying prices as well as quality levels for the non-monetary

attributes. Each offer is evaluated according to a scoring rule which assigns to each price-

quality offer for an item set a one-dimensional score.1 We only consider scoring rules that are

linear in price.

Based on the resulting scores an allocation rule determines which suppliers are contracted

to deliver certain sets of items. This yields for each supplier an allocation vector which has an

element for each item set (including the empty one) specifying the supplier’s probability to win
1For an introduction to scoring rules and multi-attribute decision making in general see Yoon and Hwang

(1995).
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the corresponding item set. (For example, in the case that the allocation rule is deterministic,

one element of a suppliers allocation vector is equal to one, whereas the remaining elements

are equal to zero.) The delivery contract for an item set specifies only a score that the winning

supplier has to meet. The final decision about the specific price-quality combination for the

delivered item set yielding this contracted score is at the discretion of the winning supplier.

We find that winning suppliers choose the delivered quality level independent of the score

that they contractually have to meet. That is, the contracted score effectively determines

the price a winning supplier is charging the buyer for his item set. This finding is analogous

to findings in single item scoring auction settings, see for example Che (1993) or Asker and

Cantillon (2007).

In Section 2.2 we observe that, given the scoring rule, the maximum level of apparent social

surplus that a supplier with a certain type can generate by producing and subsequently selling

a set if items is well defined. We use this finding to construct for each supplier a pseudo-type

which has an element for each set of items. Each of these elements is defined as the maximum

level of apparent social surplus that the supplier can create for the corresponding item set.

This definition of pseudo-types is analogous to the definition of one-dimensional pseudo-types

in single item scoring auction settings (see Asker and Cantillon (2007)).

Based on the possible pseudo-types, we can partition a supplier’s type space into equiv-

alence classes of types yielding the same pseudo-type. A supplier’s bidding function assigns

a bid to each of his possible types. On a particular equivalence class, a supplier’s bidding

function is doing one of the following two things. Either the bidding function assigns the same

bid to all types, in which case we say that it is not mixing on this equivalence class, or the

bidding function assigns differing bids to the types, in which case we say that it is mixing on

this equivalence class. This mixing can happen in two ways. If, given the bidding strategies of

the others, differing bids yield also differing expected allocation vectors for the supplier then

we speak of allocation mixing. However, if differing bids yield the same expected allocation

vector then we speak of allocation equivalent mixing. Note that the bidding function can do

both types of mixing on the same equivalence class.

In Section 3 we assume that in equilibrium suppliers’ bidding functions employ allocation

equivalent mixing only for a zero measure of types. Under this assumption we show (Theorem

1) that for the equilibrium analysis of a scoring auction it is sufficient to concentrate on bidding
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functions which are constant on equivalence classes of types, that is, they assign the same

bid to all types yielding the same pseudo-type. Specifically, we show that for any equilibrium

in a scoring auction we can construct a new equilibrium with bidding strategies that are

constant on equivalence classes of types. A supplier’s new bidding strategy is constructed by

picking a representative type from each equivalence class in his type space and assigning the

old equilibrium bids for these representative types also to all other types in their respective

equivalence classes. In order to ensure that the new bidding strategies indeed constitute an

equilibrium, it is sufficient to show that they differ from the suppliers’ original equilibrium

bidding strategies only on a set of types with zero measure (see proof of Theorem 1).

Unproblematic in this respect are the equivalence classes of types on which a supplier’s

original equilibrium bidding function is not mixing, since for these types his new bidding

function is identical to his original one. Potentially troublesome are the equivalence classes

on which the original bidding function is mixing, since for those types the new bidding strategy

is differing from the original one. However, by assumption we have that the set of types for

which the original bidding function employs allocation equivalent mixing has measure zero.

In addition we prove (Lemma 4) that the set of types for which the original bidding function

employs allocation mixing has also measure zero.2 This implies that the set of types for which

the original bidding function employs mixing (that is, the union of the two aforementioned

sets) has measure zero and hence, the new bidding strategy is almost everywhere the same as

the original one.

Similar to Asker and Cantillon (2007) we use two main steps in order to establish Lemma

4 (stating that the set of types for which suppliers’ equilibrium strategies employ allocation

mixing has zero measure). First, we construct for every equilibrium in the scoring auction

an auxiliary equilibrium (Lemma 2) in which suppliers’ bidding strategies are based on their

pseudo-types. This auxiliary equilibrium is constructed in such a way that a supplier’s aux-

iliary equilibrium bidding strategy specifies a mixed bid for each of his pseudo-types. The

support of such a mixed bid for a certain pseudo-type consists of all the pure bids that the

original equilibrium bidding function specifies for types in the corresponding equivalence class.
2We have to exclude allocation equivalent mixing for a non-zero measure of types by assumption because

we cannot exclude it analytically like in the case of allocation mixing. Asker and Cantillon (2007) consider

only allocation mixing. Although they do not mention it explicitly, in order to derive their results, they also

implicitly assume that in equilibrium allocation equivalent mixing is essentially excluded.
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In a second step we proof that for almost all pseudo-types this support does not contain pure

bids that yield different expected allocations for the supplier (Lemma 3).

In Section 4 we show how the existing literature on combinatorial IPV price-only auctions

can be used for the strategic analysis of scoring auctions, for example to establish equilibrium

existence, revenue equivalence and so on. Specifically, for each scoring auction we identify a

corresponding combinatorial price-only auction in which a bidder’s type, on which he bases

his bidding strategy, is his pseudo-type. By making use of the main result of the foregoing

section (Theorem 1) we establish that every equilibrium in a scoring auction corresponds to

an equilibrium in the related price-only auction which differs only on a zero measure of types,

and vice versa, every equilibrium in the price-only auction is also an equilibrium in the related

scoring auction (Corollary 1). This result is the multi-item analogue to Asker and Cantillon’s

(2007) finding that the equilibrium analysis of single item scoring auctions can be done by

analyzing corresponding single item price-only auctions instead. With Corollary 2 we also

extend Asker and Cantillon’s (2007) “Expected Utility Equivalence”-Theorem for the buyer

from single item to combinatorial scoring auctions.

In Section 4.1 we describe a combinatorial scoring auction that allocates items efficiently.

As mentioned earlier in this section, this auction relates to the direct revelation VCG mech-

anism described by Suyama and Yokoo (2005) and is the multi-item extension of a single

item scoring auction analyzed by Milgrom (2000). The above mentioned link to price-only

auctions is used to establish an equilibrium in this auction.

2 The Model

A buyer wants to procure a set of distinct items A = {1, . . . , a}. There is a set of potential

suppliers N = {1, . . . , n}. Each supplier is able to produce every item.3 The buyer does not

need to purchase from only one supplier. He can buy different subsets of items from different

suppliers. There are 2a possible subsets of items, including the empty set which we associate

with index 0. Each non-empty subset of items j, j ∈ {1, . . . , 2a − 1}, is characterized by a

sales price pj ∈ R+ and a quality level qj ∈ Rmj

+ for its mj ≥ 1 non-monetary attributes. In

3In case a supplier is not able to produce certain items, this can be modeled by letting him bid infinitely

high prices for the item sets that he is unable to produce. That way he is not chosen as the supplier for item

sets that he cannot deliver.
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order to ease notation later on let us define d = 2a − 1 and m =
∑d

j=1 mj .

The buyer’s valuation for the purchase of item set j with quality level qj at price pj is

vj (qj)− pj . Each supplier i has a type θi ∈ Θ with Θ ⊂ Rk. Θ−i denotes the set of all type

profiles θ−i =
(
θ1, . . . , θi−1, θi+1, . . . , θn

)
. Supplier i’s type influences his production cost.

The cost he incurs for producing the set of items j with quality qj is denoted by cj

(
qj , θ

i
)
.

Note that all suppliers have the same cost function for item set j.4 We assume that cj is

twice continuously differentiable as well as strictly increasing in both quality and his type.

Supplier i’s profit πi
j from producing the set of items j with quality qj and selling it at price

pj is

πi
j

(
pj , qj , θ

i
)

= pj − cj

(
qj , θ

i
)
. (1)

We assume that suppliers’ type spaces are convex and compact. Types are privately observed

and independently distributed. The probability densities are common knowledge. Let γi

denote supplier i’s density on Θ. The joint density γ−i on Θ−i is then given by

γ−i
(
θ−i

)
=

∏
h 6=i

γh
(
θh

)
.

2.1 The Scoring Auction

The scoring auction works as follows. Based on his type each supplier i makes a price-quality

bid
(
pi, qi

)
∈ Rd+m

+ consisting of a price-quality offer for each of the possible non-empty item

sets, that is
(
pi, qi

)
=

((
pi
1, q

i
1

)
, . . . ,

(
pi

d, q
i
d

))
with

(
pi

j , q
i
j

)
∈ R1+mj

+ .5 There is a scoring rule

Sj : R1+mj

+ 7→ R,

for every possible set of items j. Using this scoring rule, each price-quality offer (pj , qj) for

the item set j is associated with a one-dimensional score Sj (pj , qj). The scoring rules for all

item sets are fixed before the bidding starts and known to every supplier. We assume that
4The assumption of suppliers having the same type spaces and the same cost functions is made for notational

convenience and can easily be relaxed.
5We are aware of the potential complexity of suppliers’ bids. Specifying a price-quality offer for each of the

2a − 1 non-empty subsets of items is highly impractical for larger sets of items. Bid complexity and represen-

tation are generally an issue in combinatorial auctions. However, concerns about the representation of bids

and bidding languages go beyond the scope of this paper and are not addressed henceforth. A comprehensive

introduction to bidding languages for combinatorial auctions is given by Nisan (2006).
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the scoring rules are quasi-linear, that is

Sj (pj , qj) = φj (qj)− pj . (2)

In addition it is assumed that φj is twice continuously differentiable and strictly increasing

in qj . Furthermore, we assume that for φj (qj) − cj

(
qj , θ

i
)

the matrix comprised of the

second-order partial derivatives w.r.t. qj is negative definite. More specifically, for g
(
qj , θ

i
)

=

φj (qj)− cj

(
qj , θ

i
)

we assume that the matrix

H
(
qj , θ

i
)

=


∂2g

∂qj,1qj,1

(
qj , θ

i
)

. . . ∂2g
∂qj,1qj,mj

(
qj , θ

i
)

...
. . .

...
∂2g

∂qj,mj
qj,1

(
qj , θ

i
)

. . . ∂2g
∂qj,mj

qj,mj

(
qj , θ

i
)

 ,

where qj,h denotes the hth element of qj , is negative definite for all qj and θi. Thus, g is

strictly concave in qj for all θi.

By applying the scoring rules each supplier’s original price-quality bid
(
pi, qi

)
∈ Rd+m

+ is

transformed into a vector of scores si ∈ Rd consisting of a score si
j ∈ R for every set of items

j. An allocation rule maps each profile of scores s =
(
s1, . . . , sn

)
into an allocation of items to

suppliers (or a distribution over such allocations in case the allocation rule is probabilistic),

that is it determines which supplier is allowed to provide which items to the buyer. Every

item is provided by at most one supplier which allows for the case that some items are not

procured at all. The allocation rule implies for each supplier i and each profile of scores s

an allocation vector xi(s) =
(
xi

0(s), x
i
1(s) . . . , xi

d(s)
)

where xi
0(s) denotes the probability that

i is awarded the empty set, that is he does not sell any items to the buyer. Similarly, for

j ∈ {1, . . . , d}, xi
j(s) denotes supplier i’s probability for winning the contract giving him the

right to provide the buyer with the set of items j. In order to simplify notation we define the

allocation rule

x : Rnd 7→ [0, 1]n2a

directly as a mapping that maps each profile of scores s ∈ Rnd into an allocation vector

xi(s) ∈ [0, 1]2
a

for every supplier i.

Based on a profile of scores s, the winning score rule

w : Rnd 7→ Rn2a
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assigns each supplier i with a vector of winning scores wi(s) =
(
wi

0(s), w
i
1(s), . . . , w

i
d(s)

)
where

wi
0(s) is the payment that i has to make in case he is awarded the empty set. Thus, we allow

for the case that a supplier has to make a payment to the buyer if he did not win any delivery

contract. For j ∈ {1, . . . , d}, wi
j(s) is the score that supplier i has to meet in case he wins the

contract to provide the buyer with item set j. That is, he has to provide the set of items with

a quality level qj at a price pj such that Sj (pj , qj) = wi
j(s). This means that the buyer and

the supplier only contract a score for the item set. The actual sales price and the delivered

quality is chosen by the supplier in such a way that the contracted score is met.

2.2 Pseudo-types

Suppose that supplier i of type θi has won the contract to provide the set of items j to the

buyer and has to meet a score ω. He will choose a price-quality pair (pj , qj) that maximizes

his profit πi
j

(
pj , qj , θ

i
)

while meeting the score, that is Sj (pj , qj) = ω. Using (1) and (2), his

optimization problem becomes

max
(pj ,qj)

(
pj − cj

(
qj , θ

i
))

(3)

s.t. φj (qj)− pj = ω.

Substituting for pj in the objective function yields

max
qj

(
φj (qj)− cj

(
qj , θ

i
))
− ω. (4)

As can be seen in (4), the supplier chooses the optimal quality level independent of the

winning score that he has to meet. We assume that for every θi ∈ Θ there exits a q∗j > 0 that

maximizes φj (qj)− cj

(
qj , θ

i
)
. Together with the strict concavity of φj (qj)− cj

(
qj , θ

i
)

in qj

for all θi (see assumptions made earlier) this implies that q∗j is the only maximum and hence

arg maxqj

(
φj (qj)− cj

(
qj , θ

i
))

is well defined. Furthermore, we find the following:

Lemma 1 The set
{
maxqj

(
φj (qj)− cj

(
qj , θ

i
))
|θi ∈ Θ

}
is a closed interval in R.

Proof

Define g
(
qj , θ

i
)

= φj (qj) − cj

(
qj , θ

i
)
. Given the assumptions about g

(
qj , θ

i
)

made earlier,

we have that for each θi there exists a unique quality level q∗j that maximizes g
(
qj , θ

i
)
.

Furthermore, we have that the first-order partial derivatives of g w.r.t. qj are equal to zero
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at q∗j . That is,
∂g

∂qj,1

(
q∗j , θ

i
)

= . . . =
∂g

∂qj,mj

(
q∗j , θ

i
)

= 0,

where qj,h denotes the hth element of qj . From this and the assumptions about the second-

order partial derivatives of g made earlier it follows by the Implicit Function Theorem6 that

q∗j is a continuous function of θi. Thus,

max
qj

(
φj (qj)− cj

(
qj , θ

i
))

= φj

(
q∗j

(
θi

))
− cj

(
q∗j

(
θi

)
, θi

)
is a continuous mapping from Θ to R. Since Θ is compact and connected also its image under

this mapping is compact and connected. This implies that the image is a closed interval in

R.

2

Based on the above we define for every θi in supplier i’s type space

t
(
θi

)
=

(
max

q1

(
φ1 (q1)− c1

(
q1, θ

i
))

, . . . ,max
qd

(
φd (qd)− cd

(
qd, θ

i
)))

. (5)

We call t
(
θi

)
the supplier’s pseudo-type. Note that suppliers’ pseudo-types are dependent

on their types as well as on the chosen scoring rules and the production cost functions.

Supplier i’s pseudo-type is monotonically decreasing in his type: Take θ̂i, θi ∈ Θ such that θ̂i

is componentwise smaller than θi and let q∗ij (.) denote the optimal quality level that supplier

i picks for item set j in (4) based on his type. Then, for each element j of his pseudo-type,

tj
(
θi

)
= φj

(
q∗ij

(
θi

))
− cj

(
q∗ij

(
θi

)
, θi

)
< φj

(
q∗ij

(
θi

))
− cj

(
q∗ij

(
θi

)
, θ̂i

)
≤ φj

(
q∗ij

(
θ̂i

))
− cj

(
q∗ij

(
θ̂i

)
, θ̂i

)
= tj

(
θ̂i

)
,

where the first inequality follows from the fact that costs are increasing in the type, and the

second inequality follows from the optimality of q∗ij (.).

Θt denotes the set of all types θi ∈ Θ yielding the same t as pseudo-type, that is

Θt =
{
θi ∈ Θ | t

(
θi

)
= t

}
. A supplier’s pseudo-type space is denoted T with T ⊂ Rd. It

is convex and compact. Pseudo-types are privately observed and independently distributed.

The distributions are common knowledge (since the scoring rules, the production cost func-

tions and suppliers’ type distributions are common knowledge). For technical reasons we
6The Implicit Function Theorem can be found in a variety of books on advanced calculus, for example

Adams (2003), p.769.
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make the additional assumption that the pseudo-type mapping has the following property: If

a set of pseudo-types has Lebesgue measure zero then also the set of types yielding this set

of pseudo-types has Lebesgue measure zero.7

Suppose that suppliers have types θ =
(
θ1, . . . , θn

)
and make reports

(
p1, q1

)
, . . . , (pn, qn)

implying the profile of scores s =
(
s1, . . . , sn

)
. The utility that supplier i derives from the

resulting outcome (x(s), w(s)) is

ui
(
s | θi

)
=

d∑
j=1

xi
j(s)

(
max

qj

(
φj (qj)− cj

(
qj , θ

i
))
− wi

j(s)
)
− xi

0(s)w
i
0(s).

Defining x̃i(s) =
(
xi

1(s), . . . , x
i
d(s)

)
(that is, x̃i(s) is the allocation vector xi(s) without the

winning probability for the empty set xi
0(s)) and using (5) this can be written as

ui
(
s | θi

)
= x̃i(s)t

(
θi

)
− xi(s)wi(s).8 (6)

Notice that supplier i’s pseudo-type captures his preference over outcomes (x(.), w(.)). (As

shown by Asker and Cantillon (2007) only quasi-linear scoring rules exhibit this property if

suppliers’ types are multi-dimensional.) By defining

yi(s) = xi(s)wi(s) (7)

we can simplify (6) to

ui
(
s | θi

)
= x̃i(s)t

(
θi

)
− yi(s). (8)

7We believe that this assumption is rather innocuous given that a supplier’s pseudo-type is monotonically

decreasing in his type. It may well be that it follows from the other properties, but this question is still open.

This property of the pseudo-type mapping is also needed in order to derive the results in Asker and Cantillon

(2007). However, they do not make it an explicit assumption and also do not show, how it may follow from

other properties. We consider this question also in their setting as still open.
8Note that x̃i(s)t

(
θi

)
and xi(s)wi(s) are dot products. Other instances of dot products in the remainder

of the paper are not especially pointed out.
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The corresponding buyer utility for the outcome (x(s), w(s)) if suppliers have the type

profile θ is

u0 (s | θ) =
n∑

i=1

d∑
j=1

xi
j(s)

(
vj

(
q∗ij

(
θi

))
− pi

j

(
s, qi∗

j

(
θi

)))
+

n∑
i=1

xi
0(s)w

i
0(s)

=
n∑

i=1

d∑
j=1

xi
j(s)

(
vj

(
q∗ij

(
θi

))
− φj

(
q∗ij

(
θi

))
+ wi

j(s)
)

+
n∑

i=1

xi
0(s)w

i
0(s)

=
n∑

i=1

x̃i(s)
(
v

(
q∗i

(
θi

))
− φ

(
q∗i

(
θi

)))
+ xi(s)wi(s)

=
n∑

i=1

x̃i(s)
(
v

(
q∗i

(
θi

))
− φ

(
q∗i

(
θi

)))
+ yi(s). (9)

The second equality follows from the fact that the price supplier i is asking for item set j

is determined by his optimal quality level and the winning score that he has to satisfy (see

also (3)). Specifically, pi
j

(
s, q∗ij

(
θi

))
= φj

(
q∗ij

(
θi

))
−wi

j(s). The third equality follows from

defining v
(
q∗i

(
θi

))
=

(
v1

(
q∗i1

(
θi

))
, . . . , vd

(
q∗id

(
θi

)))
and a similar definition for φ

(
q∗i

(
θi

))
.

The last equality follows from (7).

Supplier i’s bidding strategy βi maps each of his possible types θi ∈ Θ into a price-quality

bid
(
pi, qi

)
∈ Rd+m

+ . Together with the scoring rule, βi implies a scored bidding strategy bi

mapping each of i’s types into a vector of scores si ∈ Rd. Note that for the determination

of outcomes (allocation vectors and winning scores), and hence the determination of the

buyer’s and suppliers’ utilities, only the reported scores are of importance and not the price-

quality bids that generated them. Therefore we concentrate in the following on scored bidding

strategies.9

If supplier i of type θi believes that all other suppliers bid according to the profile of scored

bidding strategies b−i =
(
b1, . . . , bi−1, bi+1, . . . , bn

)
, his expected utility if making a scored bid

si is

U i
(
si | θi

)
=

∫
Θ−i

(
x̃i

(
si, b−i

(
θ−i

))
t
(
θi

)
− yi

(
si, b−i

(
θ−i

)))
γ−i

(
θ−i

)
dθ−i

= E−i

[
x̃i

(
si, b−i

(
θ−i

))
t
(
θi

)
− yi

(
si, b−i

(
θ−i

))]
. (10)

9The analysis done in the following section goes also through (in slightly adapted form) if one allows for

mixed strategies, that is, bi maps each of supplier i’s types into a distribution over finitely many score vectors.

To simplify matters we stick to pure strategies.
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The expected utility of the buyer if suppliers bid according to the profile of scored bidding

strategies b =
(
b1, . . . , bn

)
is

U0(b) =
∫

θ∈Θn

[
n∑

i=1

x̃i(b(θ))
(
v

(
q∗i

(
θi

))
− φ

(
q∗i

(
θi

)))
+ yi(b(θ))

]
γ(θ)dθ. (11)

The profile of scored bidding strategies b constitutes a Bayes-Nash equilibrium if for every

supplier i and all types θi ∈ Θ

E−i

[
x̃i

(
bi

(
θi

)
, b−i

(
θ−i

))
t
(
θi

)
− yi

(
bi

(
θi

)
, b−i

(
θ−i

))]
≥ E−i

[
x̃i

(
si, b−i

(
θ−i

))
t
(
θi

)
− yi

(
si, b−i

(
θ−i

))]
∀si. (12)

Supplier i’s scored bidding strategy might assign different bids to types yielding the same

pseudo-type. Given a profile of scored bidding strategies of the other suppliers, those bids

either induce the same expected allocation vector for i or differing expected allocation vectors.

We conclude this section by formalizing this observation and introduce the following properties

for suppliers’ scored bidding strategies:

Definition 1 (Allocation Mixing) Consider the profile of scored bidding strategies b. Sup-

plier i’s strategy bi employs allocation mixing if there exist types θi, θ̂i ∈ Θ with t
(
θi

)
= t

(
θ̂i

)
for which bi

(
θi

)
6= bi

(
θ̂i

)
and

E−i

[
x̃i

(
bi

(
θi

)
, b−i

(
θ−i

))]
6= E−i

[
x̃i

(
bi

(
θ̂i

)
, b−i

(
θ−i

))]
.

This property deals with the expected allocation vectors induced by bids from types yielding

the same pseudo-type. Suppose that there are some types yielding the same pseudo-type for

which supplier i makes different scored bids. Allocation mixing means that, given a strategy

profile b−i of the others, the expected allocation vectors for i induced by those bids are not

the same. Furthermore, we define

Definition 2 (Allocation Equivalent Mixing) Consider the profile of scored bidding strate-

gies b. Supplier i’s strategy bi employs allocation equivalent mixing if there exist types θi, θ̂i ∈

Θ with t
(
θi

)
= t

(
θ̂i

)
for which bi

(
θi

)
6= bi

(
θ̂i

)
but

E−i

[
x̃i

(
bi

(
θi

)
, b−i

(
θ−i

))]
= E−i

[
x̃i

(
bi

(
θ̂i

)
, b−i

(
θ−i

))]
.
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Similar to the first property this one also deals with the expected allocation vectors induced

by bids from types yielding the same pseudo-type. Suppose that there are some types yielding

the same pseudo-type for which supplier i makes different scored bids. Allocation equivalent

mixing means that, given a strategy profile b−i of the others, the expected allocation vectors

for i induced by those bids are the same.

In the next section we are going establish a link between equilibria in the scoring auction

which are based on types (that is, suppliers’ bidding strategies can specify different bids for

different types) and the ones which are based on pseudo-types (that is, suppliers’ bidding

strategies specify the same bid for all types yielding the same pseudo-type). For this we

finally define

Definition 3 (Almost Everywhere (A.E.) Coinciding Strategies) We say that the pro-

file of scored bidding strategies b based on types coincides with the strategy profile b̂ based on

pseudo-types a.e. if b and b̂ differ only on a set of types with Lebesque measure zero.

3 Pseudo-types are Sufficient Statistics

In this section we show that if every supplier’s bidding strategy employs allocation equivalent

mixing (see Definition 2) only for a set of types with Lebesgue measure zero, then in order

to analyse the set of possible equilibria in a scoring auction and the corresponding expected

utilities of the buyer it is sufficient to consider a restricted setting where suppliers bid based

on their pseudo-types. That is, suppliers make the same scored bid for all types yielding

the same pseudo-type. Thus, we show that pseudo-types are sufficient statistics, rendering

suppliers original types redundant for the analysis of the scoring auction equilibria.

In a first step we show that every equilibrium in the scoring auction is outcome equivalent

to a mixed strategy equilibrium where each supplier i associates all types yielding the same

pseudo-type with the same mixed bid. Two equilibria are outcome equivalent if they both

induce the same distribution over outcomes (that is allocation vectors and winning scores).

Lemma 2 For every equilibrium b in the scoring auction there exists an outcome equivalent

mixed strategy equilibrium b̃ such that b̃i
(
θi

)
= b̃i

(
θ̂i

)
whenever t

(
θi

)
= t

(
θ̂i

)
.

Proof

Let b =
(
b1 . . . , bn

)
be an equilibrium in the scoring auction. For each supplier i and each
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pseudo-type ti ∈ T consider the mixed bid ri
(
ti

)
mapping ti into a distribution over vectors

of scores. The support of ri
(
ti

)
consists of the different scored bids generated by bi for all

the types yielding pseudo-type ti, that is, the support set is
{
bi

(
θi

)
| θi ∈ Θti

}
. Furthermore,

each scored bid in the support of ri
(
ti

)
is played with the relative frequency with which it is

played by all the types in Θti . Now, we can construct a new equilibrium where each supplier

i has the same bidding strategy for all types yielding the same pseudo-type by assigning to

all θi ∈ Θti the same mixed bid ri
(
ti

)
. That is, for all θi ∈ Θ we define b̃i

(
θi

)
= ri

(
t
(
θi

))
.

That b̃ =
(
b̃1, . . . , b̃n

)
is indeed an equilibrium can be seen as follows.

First, note that by construction the distribution of bids coming from each supplier i

remains unchanged when he switches from bi to b̃i. Second, consider supplier i’s expected

utility. Since b is an equilibrium we have by definition (see (12)) for all θi ∈ Θ that

bi
(
θi

)
∈ arg max

si
E−i

[
x̃i

(
si, b−i

(
θ−i

))
t
(
θi

)
− yi

(
si, b−i

(
θ−i

))]
.

Since supplier i’s private information enters his expected utility only via his pseudo-type, he

is indifferent about the bids adapted by all the types yielding the same pseudo-type. That is,

the bid bi
(
θi

)
is also a best reply for all other θ̂i ∈ Θt(θi). Hence, every bid in the support

of b̃i
(
θi

)
is a best reply for all θ̂i ∈ Θt(θi). It follows that b̃i is a best response for supplier

i against b−i. Since, as mentioned before, the distribution of bids coming from the other

suppliers is not changing when switching from b−i to b̃−i, b̃i is also a best response against

b̃−i. So, b̃ is an equilibrium. Furthermore, b and b̃ are outcome equivalent as both equilibria

induce the same distribution over scored bids and therefore also the same distribution over

outcomes.

2

Above we have seen that the suppliers are indifferent between an equilibrium b and its

outcome equivalent mixed counterpart b̃ constructed as in the proof of Lemma 2 since their

expected utilities are the same in both. The buyer is also indifferent between these two

equilibria. However, this cannot as easily be observed as in the suppliers’ case, and we have

to make use of the following lemma in order to show it. (Asker and Cantillon (2007) illustrate

this difficulty for a special case of our model where only one item is to be allocated among

the suppliers.)

The next result considers the equilibrium b̃ constructed for Lemma 2 above where all

types yielding the same pseudo-type ti have the same mixed bid ri(ti). We show that for
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every supplier i, ri(.) is not mixing over pure bids which induce different expected allocations

for i, except possibly on a set of measure zero.

Lemma 3 Consider the equilibrium b̃ constructed in Lemma 2 where every type yielding

pseudo-type ti has the same mixed bid ri
(
ti

)
. For every supplier i, the set of pseudo-types

ti ∈ T for which there exist elements si, ŝi in the support of ri
(
ti

)
such that

E−i

[
x̃i

(
si, b̃−i

(
θ−i

))]
6= E−i

[
x̃i

(
ŝi, b̃−i

(
θ−i

))]
has Lebesgue measure zero. 10

Proof

Suppose that b =
(
b1, . . . , bn

)
is an equilibrium in the scoring auction and that b̃ =

(
b̃1, . . . , b̃n

)
is the mixed strategy equilibrium constructed as described in the proof of Lemma 2. Remem-

ber that in b̃ all of supplier i’s types yielding the same pseudo-type ti have the same mixed

bid ri(ti). Take some supplier i and some pseudo-type ti ∈ T . Each scored bid si in the

support of ri
(
ti

)
yields an expected allocation vector E−i

[
xi

(
si, b̃−i

(
θ−i

))]
∈ [0, 1]2

a
. The

first element of this expected allocation vector, consisting of i’s expected probability to win

item set 1, is denoted by E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1
. Let si and si denote the elements in the

support of ri
(
ti

)
for which

E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1
≤ E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1

and

E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1
≥ E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1

for all si in the support of ri
(
ti

)
. Thus, considering all the elements in the support of ri

(
ti

)
,

si is yielding the lowest expected probability for supplier i to win item set 1, whereas si is

yielding the highest expected winning probability.11 Let ti∗ ∈ T be a pseudo-type that differs

from ti only in its first element, that is ti∗1 6= ti1 but ti∗h = tih ∀h ∈ {2, . . . , d}. In the same

way as above we define si
∗ and si

∗.

10E−i

[
x̃i

(
si, b̃−i

(
θ−i

))]
is the expected allocation vector for supplier i if he makes a scored bid si and

the other suppliers bid according to b̃−i. Given that b̃−i is a profile of mixed bidding strategies, note that in

this case E−i[.] denotes the expectation taken over all type profiles θ−i as well as the corresponding mixed

strategies b̃−i
(
θ−i

)
.

11If ri
(
ti

)
is not mixing then by construction si = si and consequently E−i

[
xi

(
si, b̃−i

(
θ−i

))]
=

E−i

[
xi

(
si, b̃−i

(
θ−i

))]
.
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From b̃ being an equilibrium and every element in the support of ri
(
ti

)
being a best

response against b̃−i for all types θi ∈ Θti (see also explanation in the proof of Lemma 2) it

follows that

E−i

[
xi

(
si, b̃−i

(
θ−i

))
ti − yi

(
si, b̃−i

(
θ−i

))]
≥ E−i

[
xi

(
si
∗, b̃

−i
(
θ−i

))
ti − yi

(
si
∗, b̃

−i
(
θ−i

))]
(13)

and

E−i

[
xi

(
si
∗, b̃

−i
(
θ−i

))
ti∗ − yi

(
si
∗, b̃

−i
(
θ−i

))]
≥ E−i

[
xi

(
si, b̃−i

(
θ−i

))
ti∗ − yi

(
si, b̃−i

(
θ−i

))]
. (14)

Adding (13) and (14) yields

E−i

[
xi

(
si, b̃−i

(
θ−i

))]
ti + E−i

[
xi

(
si
∗, b̃

−i
(
θ−i

))]
ti∗

≥ E−i

[
xi

(
si
∗, b̃

−i
(
θ−i

))]
ti + E−i

[
xi

(
si, b̃−i

(
θ−i

))]
ti∗.

By rearranging the terms in the above inequality we get(
E−i

[
xi

(
si, b̃−i

(
θ−i

))]
− E−i

[
xi

(
si
∗, b̃

−i
(
θ−i

))]) (
ti − ti∗

)
≥ 0.

Since only ti∗1 6= ti1, whereas all the other elements of the two pseudo-types are the same, this

inequality becomes(
E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1
− E−i

[
xi

(
si
∗, b̃

−i
(
θ−i

))]
1

) (
ti1 − ti∗1

)
≥ 0.

Thus, E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1

is monotonically increasing in ti1. This implies that

E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1

is Riemann integrable (see for example Khuri (2003), Theorem 6.3.2)

and hence continuous a.e. (see for example Wrede and Spiegel (2002), p.91). By performing

the same steps as above for si and si
∗ we find that also E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1

is continuous

a.e..

Similar to the above, from b̃ being an equilibrium and every element in the support of

ri
(
ti

)
being a best response against b̃−i for all types θi ∈ Θti it also follows that

E−i

[
xi

(
si, b̃−i

(
θ−i

))
ti − yi

(
si, b̃−i

(
θ−i

))]
≥ E−i

[
xi

(
si
∗, b̃

−i
(
θ−i

))
ti − yi

(
si
∗, b̃

−i
(
θ−i

))]
(15)
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and

E−i

[
xi

(
si
∗, b̃

−i
(
θ−i

))
ti∗ − yi

(
si
∗, b̃

−i
(
θ−i

))]
≥ E−i

[
xi

(
si, b̃−i

(
θ−i

))
ti∗ − yi

(
si, b̃−i

(
θ−i

))]
. (16)

Performing the same steps as above, (15) and (16) imply that(
E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1
− E−i

[
xi

(
si
∗, b̃

−i
(
θ−i

))]
1

) (
ti1 − ti∗1

)
≥ 0.

Thus, if ti1 > ti∗1 then

E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1
≥ E−i

[
xi

(
si
∗, b̃

−i
(
θ−i

))]
1
.

Since E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1

is continuous a.e. we have that

E−i

[
xi

(
si
∗, b̃

−i
(
θ−i

))]
1
→ E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1

a.e.

as ti∗1 → ti1. It follows that

E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1
≥ E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1

a.e.

Since by definition of si and si

E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1
≥ E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1

this implies that

E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1

= E−i

[
xi

(
si, b̃−i

(
θ−i

))]
1

a.e.

By repeating the procedure described above for the remaining d−1 elements of the pseudo-

type we find that almost everywhere it holds, that for all scored bids si, ŝi in the support of

ri
(
ti

)
E−i

[
xi

(
si, b̃−i

(
θ−i

))]
= E−i

[
xi

(
ŝi, b̃−i

(
θ−i

))]
.

That is, the set of pseudo-types ti for which there exist elements si, ŝi in the support of ri
(
ti

)
such that E−i

[
x̃i

(
si, b̃−i

(
θ−i

))]
6= E−i

[
x̃i

(
ŝi, b̃−i

(
θ−i

))]
has Lebesgue measure zero.

2

Before we have already seen that, because their expected utilities are same in both, the

suppliers are indifferent between an equilibrium b and its outcome equivalent counterpart b̃,
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constructed as in the proof of Lemma 2. Using the above Lemma 3 we can now claim the

same for the buyer. The details of the proof are stated in the appendix.

Remember that the support of the mixed bid ri
(
ti

)
, used in the construction of supplier

i’s new equilibrium strategy b̃i in the proof of Lemma 2, consists of the different scored bids

generated by the original equilibrium strategy bi for all the types in Θti . Suppose that for

some pseudo-type ti there exist scored bids in the support of ri
(
ti

)
which yield different

expected allocation vectors for i. Then, this means that bi employs allocation mixing (see

Definition 1 in the foregoing section) for the types in Θti . Similarly, if such scored bids do

not exist in the support of ri
(
ti

)
then bi does not employ allocation mixing for the types in

Θti . Based on this observation we find the following result:

Lemma 4 In every equilibrium b in the scoring auction, supplier i’s bidding strategy bi em-

ploys allocation mixing only for a set of types θi ∈ Θ that has Lebesgue measure zero.

Proof

Suppose that b is an equilibrium in the scoring auction. Take some pseudo-type ti ∈ T

and consider the types yielding this pseudo-type. If there exist θi, θ̂i ∈ Θti such that

E−i

[
x̃i

(
bi

(
θi

)
, b−i

(
θ−i

))]
6= E−i

[
x̃i

(
bi

(
θ̂i

)
, b−i

(
θ−i

))]
then bi employs allocation mixing for

Θi
ti
. From Lemma 3 it follows that the set of pseudo-types for which this happens has

Lebesgue measure zero. This implies that also the corresponding set of types yielding these

pseudo-types has Lebesgue measure zero. (Remember from the foregoing section that one

property of the pseudo-type mapping is: If a set of pseudo-types has Lebesgue measure zero

then the set of types yielding this set of pseudo-types has also Lebesgue measure zero.)

2

Now, restricting our attention to the class of equilibria in the scoring auction where

suppliers employ allocation equivalent mixing only for a zero measure of types, we can state

based on Lemma 4 the following main result of this section:

Theorem 1 Suppose that the set of types for which suppliers employ allocation equivalent

mixing in their bidding strategies has Lebesgue measure zero. Then, for every equilibrium

in the scoring auction based on types there exists an equilibrium based on pseudo-types that

coincides with it a.e. (see Definition 3). Vice versa, every equilibrium in the restricted setting,

where strategies are based on pseudo-types, is also an equilibrium in the unrestricted setting.
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Proof

Trivially, all equilibria in the scoring auction where suppliers are constrained to make the

same bid for all types yielding the same pseudo-type are also equilibria in the unconstrained

scoring auction.

For the opposite direction, suppose that suppliers employ allocation equivalent mixing

in their biding strategies only for a zero measure of types and that b is an equilibrium in

the unconstrained scoring auction. Based on b we can construct an equilibrium b̂ in which

suppliers make the same bid for types yielding the same pseudo-type and which differs from

b at most on a set of measure zero. This is done as follows: For every supplier i and every

ti ∈ T pick some θ̄i ∈ Θti and set b̂i
(
θi

)
= bi

(
θ̄i

)
, ∀θi ∈ Θti . Since i’s private information

enters his expected utility only via his pseudo-type, b̂i is also best response against b−i (see

argument in the proof of Lemma 2). From Lemma 4 it follows that for every supplier i, b̂i

differs from bi only for a set of types θi ∈ Θ that has Lebesgue measure zero. Hence, b̂i is

also a best response against b̂−i.

2

Considering the proof above, note that supplier i switching from his original, uncon-

strained scored bidding strategy bi to the constrained one, b̂i, is inconsequential to his own

expected utility because his private information enters it only via the pseudo-type (again, see

argument in the proof of Lemma 2). However, if b̂i differs from bi on a non-zero measure

of types then we cannot guarantee that for the other suppliers the strategy profile b−i (and

hence also b̂−i) is still a best reply.12 We can ensure that b̂i differs from bi only on a zero

measure of types if bi employs allocation mixing and allocation equivalent mixing only for a
12In order to illustrate this point consider the following simple game. There are only two players and each

player has two possible actions - player 1 has action set {U, D}, and player 2’s action set is {L, R}. The

resulting utilities for both players are as follows:

L R

U 0,2 0,1

D 0,0 0,1

Notice that, no matter what player 2 does, player 1’s utility is always 0. One can easily see that for example

player 1 playing U with probability 1
3

and D with probability 2
3

and player 2 playing R is an equilibrium. If

player 1 switches to playing U with probability 1, this is inconsequential to his own expected utility. However,

player 2 could now increase his expected utility by switching from playing R to playing L.

22



zero measure of types. With respect to allocation mixing we can verify this analytically (see

Lemma 4). However, for allocation equivalent mixing we cannot do this and have to exclude

it by assumption.

Thus, if allocation equivalent mixing is essentially absent, we can confine ourselves for the

analysis of the set of possible equilibria in the scoring auction to a restricted setting where

suppliers bid only based on their pseudo-types. Note that the expected utilities of the buyer

and the suppliers are the same in a type-based equilibrium and in the corresponding pseudo-

type based equilibrium that coincides with it almost everywhere (constructed as above in the

proof of Theorem 1).

Concerning the link between Theorem 1 and the main result of Asker and Cantillon (2007,

Theorem 1) with regard to the sufficiency of pseudo-types for the analysis of single item scoring

auctions, we observe the following. Suppliers’ equilibrium bidding strategies, mapping their

possible types into vectors of scores, together with the allocation rule and the winning score

rule imply an equilibrium outcome function, mapping suppliers’ possible types into outcomes

(x(.), y(.)). From Theorem 1 it readily follows that, again if suppliers essentially do not

employ allocation equivalent mixing, for every equilibrium in the scoring auction based on

types there exists an equilibrium based on pseudo-types that induces the same equilibrium

outcome function, except possibly on a set of types with Lebesgue measure zero. This finding

is the direct combinatorial scoring auction extension of Asker and Cantillon’s (2007) main

result about the role of pseudo-types as sufficient statistics in single item scoring auctions

(their Theorem 1) which is stated in terms of equilibrium outcome functions rather than the

underlying equilibrium bidding strategies (like our Theorem 1).

4 Application

The main result of the foregoing section is the multi-item extension of Asker and Cantillon’s

(2007) result that pseudo-types are a sufficient statistic in quasi-linear single item scoring

auctions. They use their result to establish a link to the well studied standard single item IPV

(independent private values) auctions and demonstrate how knowledge about these auctions

can be used for the equilibrium analysis in single item scoring auctions. Similar to them,

we can establish a link between combinatorial scoring auctions and the regular price-only

combinatorial IPV auctions.
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Observe that for every combinatorial scoring auction described in Section 2 there exists a

related combinatorial price-only auction allocating a items to n bidders where

• the allocation rule is x,

• the payment rule is y =
(
y1, . . . , yn

)
(see (7) for definition),

• bidder i’s type is his pseudo-type and is distributed accordingly,

• bidder i’s utility function is specified according to (8), that is given a true type ti his

utility for a profile of reports s =
(
s1, . . . , sn

)
is

ui
(
s | ti

)
= x̃i(s)ti − yi(s)

(see right above (6) for the definition of x̃i).

Note that a bidding strategy in the above price-only auction is a mapping T 7→ Rd. Every

bidding strategy like that can be seen as a pseudo-type based bidding strategy Θ 7→ Rd

that specifies the same bid for all types yielding the same pseudo-type. Based on the above

observations and Theorem 1 we can state the following:

Corollary 1 Suppose that the set of types for which suppliers employ allocation equivalent

mixing in their bidding strategies has Lebesgue measure zero. Then, for every equilibrium in

the scoring auction based on types there exists an equilibrium based on pseudo-types in the

corresponding combinatorial price-only auction described above that coincides with it a.e. (see

Definition 3). Vice versa, every equilibrium in the combinatorial price-only auction, where

strategies are based on pseudo-types, is also an equilibrium in the associated scoring auction.

This result is the multi-item extension of Asker and Cantillon’s (2007) Corollary 1. It implies

that if allocation equivalent mixing is essentially absent then we can use the existing literature

on combinatorial price-only auctions to analyze the equilibria in the scoring auction. In

the following we illustrate this by constructing an efficient scoring auction based on the

probably most famous combinatorial auction, the Vickrey-Clarke-Groves (VCG) mechanism

(Vickrey (1961), Clarke (1971), Groves (1973)). However, note that the classic combinatorial

auctions literature has to offer much more than just the standard VCG auction (see Cramton,

Shoham and Steinberg (2006) for an overview). A recent stream of literature for example is

dealing with sufficient conditions for the existence of equilibria, see e.g. Saks and Yu (2005)
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for dominant strategy implementation and Müller, Perea and Wolf (2007) for Bayes-Nash

implementation. Another interesting stream of literature is concerned with ways to reduce

the communication complexity and the computational complexity of the allocation algorithm

in combinatorial auctions, see e.g. Holzman, Kfir-Dahav, Monderer and Tennenholtz (2004),

Nisan and Ronen (2000), Bartal, Gonen and Nisan (2003), Dobzinski, Nisan, Shapira (2006).

An additional example of auction literature that can be used for the equilibrium analysis of

combinatorial scoring auctions is the work of Krishna and Maenner (2001) on the bidder utility

in direct revelation mechanisms with multi-dimensional private information. Their results

imply the following extension of Asker and Cantillon’s (2007) “Expected Utility Equivalence”-

Theorem for single item scoring auctions to combinatorial scoring auctions. Note that in the

following we consider pseudo-type based equilibria where a supplier assigns the same scored

bid to all types yielding the same pseudo-type. We are going to denote a supplier’s bidding

strategy as bi
(
ti

)
, that is directly as a mapping T 7→ Rd.

Corollary 2 Consider two scoring auctions (S1, . . . , Sd, x, w) and (S′
1, . . . , S

′
d, x

′, w′) as well

as a pair of corresponding pseudo-type based equilibria b and b′. If

1) Sj = S′
j, ∀j ∈ {1, . . . , d},

2) x(b(t)) = x′(b′(t)), ∀t ∈ Tn and

3) U i
(
bi

(
ti∗

)
| ti

)
= U ′i (b′i (ti∗) | ti) for some fixed ti∗ ∈ T , ∀i ∈ N ,

then the equilibria b and b′ of the two auctions generate the same expected utility for the buyer.

Condition 1 states that both scoring auctions employ the same scoring rules. Condition 2

asserts that both allocation rules and equilibria yield the same allocation vectors for each

possible pseudo-type realization of the suppliers. Finally, Condition 3 states that both equi-

libria generate the same expected utility for supplier i with fixed pseudo-type ti∗. In order to

see why Corollary 2 holds, it is useful to observe that the buyer’s expected utility (see also

(11)) can be rewritten as

U0(b) =
∫

t∈T n

[
n∑

i=1

x̃i(b(t))Eθi∈Θti

[
v

(
q∗i

(
θi

))
− c

(
q∗i

(
θi

)
, θi

)]]
g(t)dt (17)

−
n∑

i=1

∫
ti∈T

U i
(
bi

(
ti

)
| ti

)
gi

(
ti

)
dti,

where gi denotes supplier i’s density on T , g denotes the joint density on Tn and c
(
q∗i

(
θi

)
, θi

)
=(

c1

(
q∗i1

(
θi

)
, θi

)
, . . . , cd

(
q∗id

(
θi

)
, θi

))
. Since the optimal quality levels chosen by a supplier
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(qi∗) depend only on his type and the scoring rules, it follows from Conditions 1 and 2 that

the first part of (17) is the same for both equilibria. Given Conditions 2 and 3, Proposition

1 of Krishna and Maenner (2001) implies that U i
(
bi

(
ti

)
| ti

)
is the same for both equilibria

and hence the second part of (17) is the same for both equilibria as well.

4.1 The VCG Scoring Auction

The VCG scoring auction is specified by the scoring rules (S∗
1 , . . . , S∗

d), the allocation rule x∗

and the winning score rule w∗ which we define as follows. First of all, the scoring rules (see

(2)) reflect the buyer’s valuation, that is for all j ∈ {1, . . . , d},

S∗
j (pj , qj) = vj (qj)− pj .

Note that in this case the jth element of a supplier’s pseudo-type is the maximum level of

welfare that this supplier can create by producing and subsequently selling the set of item j.

The welfare generated by a profile of allocation vectors χ if suppliers have the pseudo-type

profile t is

W (χ, t) =
n∑

i=1

χ̃iti,

where χ̃i denotes supplier i’s allocation vector χi without the element for the empty item set

(see also right above (6) for definition).13

Based on a reported profile of scores s the allocation rule in the VCG scoring auction

distributes items over suppliers in such a way that welfare is maximized. This yields for every

supplier one set of items j∗ (possibly the empty set) that he is contracted to deliver. So, in

his corresponding allocation vector x∗i(s) we have that x∗ij∗(s) = 1 whereas x∗ij (s) = 0 for all

j 6= j∗. Furthermore, x∗(s) maximizes W (., s). So, denoting the maximal level of welfare
13To see this, note that if φj(.) = vj(.) ∀j then the buyer utility in (9) reduces to

u0 (s | θ) =

n∑
i=1

yi(s).

Adding the suppliers’ utilities (given in 8) now yields

u0 (s | θ) +

n∑
i=1

ui
(
s | θi

)
=

n∑
i=1

x̃i(s)t
(
θi

)
,

so welfare depends only on the suppliers’ allocation vectors and pseudo-types.
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achievable based on score profile s by Wmax(s), we have that

Wmax(s) =
n∑

i=1

x̃∗i(s)si.

The part of this generated by other suppliers than i is

W−i
max(s) =

∑
h 6=i

x̃∗h(s)sh.

Similarly to the above we define Ŵmax

(
s−i

)
as the maximum level of welfare that can be

achieved by the others without supplier i being present.

The winning score rule w∗ is now defined as follows. For the item set that he is winning

(j∗), every supplier is contracted a score reflecting the marginal impact that his presence has

on the welfare generated by all the others. For all other item sets the assigned score is zero.

That is, given a report profile s,

w∗i
j∗(s) = Ŵmax

(
s−i

)
−W−i

max(s),

whereas w∗i
j (s) = 0 for all j 6= j∗. Using (7) this implies that

y∗i(s) = x∗i(s)w∗i(s)

= Ŵmax

(
s−i

)
−W−i

max(s).

In the VCG scoring auction described above, it is a dominant strategy for suppliers to

make a scored bid that corresponds to their pseudo-type. That is, b =
(
b1, . . . , bn

)
with

bi
(
θi

)
= t

(
θi

)
is a dominant strategy equilibrium in the VCG scoring auction. This result

can be obtained directly by observing that the combinatorial price-only auction that relates

to the VCG scoring auction above as described in the beginning of Section 4 is the renowned

VCG mechanism which efficiently allocates the items and charges bidder i with a payment yi

that corresponds to the impact that his presence in the auction has on the welfare generated

by the others. It is a well-known result (see for example Ausubel and Milgrom (2006)) that

in the VCG mechanism it is a dominant strategy for bidders to truthfully bid their type ti.

For completeness we state again the rationale for this result: Suppose that the other

bidders have a fixed report s−i. Then, the utility of bidder i of type ti for making a report si
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is

ui
(
s | ti

)
= x̃∗i(s)ti − y∗i(s)

= x̃∗i(s)ti + W−i
max(s)− Ŵmax

(
s−i

)
≤ Wmax

(
ti, s−i

)
− Ŵmax

(
s−i

)
= x̃∗i

(
ti, s−i

)
ti + W−i

max

(
ti, s−i

)
− Ŵmax

(
s−i

)
= x̃∗i

(
ti, s−i

)
ti − y∗i

(
ti, s−i

)
= ui

(
ti, s−i | ti

)
,

where the first and fifth equality follow from (8), the second and fourth equality follow from

the definition of y∗i and the third equality follows from the definition of x∗. Thus, truthful

reporting is indeed optimal.

However, note that the close link to the VCG mechanism does not only imply that the

VCG scoring auction shares the same merits, like for example the implementation in dominant

startegies (so a supplier does not need to know the cost functions of the other bidders in order

to play his dominant strategy). It also implies that the VCG scoring auction exhibits the same

weaknesses, like the communication and computational complexity. A detailed discussion of

the pros and cons of the VCG mechanism can be found in Ausubel and Milgrom (2006).
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6 Appendix

Let b =
(
b1, . . . , bn

)
be an equilibrium in the scoring auction. In Lemma 2 we have constructed

a new mixed strategy equilibrium b̃ which is outcome equivalent to b. That is, b̃ induces the

same distribution over scored bids as b and hence also the same distribution over outcomes.

As pointed out before, it can be easily observed that suppliers are indifferent between b and

b̃ as their expected utilities are the same in both. The same can be claimed for the buyer,
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however the argument is not as straightforward as in the suppliers’ case. The reason is that

for the buyer’s expected utility not only the overall distribution of outcomes is of interest, but

also the question which outcomes are associated with which type-realizations of the suppliers.

To illustrate this point we start by considering a simplified setting where we only change the

bidding strategy of one supplier.

Consider b̂ =
(
b̂1, b2, . . . , bn

)
where b̂1 is constructed based on b1 as described in the proof

to Lemma 2. By the logic described in this proof, b̂ is an outcome equivalent equilibrium to

b. The expected utility of the buyer (given in (11)) if suppliers bid according to b can be

decomposed into two terms. Specifically,

U0(b) =
∫

θ∈Θn

[
n∑

i=1

x̃i(b(θ))
(
v

(
q∗i

(
θi

))
− φ

(
q∗i

(
θi

)))
+ yi(b(θ))

]
γ(θ)dθ

=
∫

θ∈Θn

[
n∑

i=2

x̃i(b(θ))
(
v

(
q∗i

(
θi

))
− φ

(
q∗i

(
θi

)))
+ yi(b(θ))

]
γ(θ)dθ (18)

+
∫

θ∈Θn

[
x̃1(b(θ))

(
v

(
q∗1

(
θ1

))
− φ

(
q∗1

(
θ1

)))
+ y1(b(θ))

]
γ(θ)dθ.

Let us consider the first term in (18). Take some i ∈ {2, . . . , n} and look at∫
θ∈Θn

[
x̃i(b(θ))

(
v

(
q∗i

(
θi

))
− φ

(
q∗i

(
θi

)))
+ yi(b(θ))

]
γ(θ)dθ

=
∫

θi∈Θi

[
E−i

[
x̃i

(
bi

(
θi

)
, b−i

(
θ−i

))] (
v

(
q∗i

(
θi

))
− φ

(
q∗i

(
θi

)))]
γi

(
θi

)
dθi (19)

+
∫

θ∈Θn

[
yi(b(θ))

]
γ(θ)dθ.

Since by construction the distribution of suppliers’ bids under b is the same as under b̂, the

second term of (19) is not changing if we switch from equilibrium b to b̂, that is14∫
θ∈Θn

[
yi(b(θ))

]
γ(θ)dθ =

∫
θ∈Θn

[
yi(b̂(θ))

]
γ(θ)dθ.

Similarly, since by construction b̂i = bi and the distribution of bids coming from the other

suppliers is the same under b and b̂ we find that for all θi ∈ Θ

E−i

[
x̃i

(
bi

(
θi

)
, b−i

(
θ−i

))]
= E−i

[
x̃i

(
b̂i

(
θi

)
, b̂−i

(
θ−i

))]
.

14Given that supplier 1 has mixed strategies under b̂1, yi(b̂(.)) already incorporates the expectation over

supplier 1’s mixed strategies. The same applies to y1(b̂(.)) later in this section.
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Thus, the first term of (19) is also not changing if we switch from b to b̂.15 Hence, we find

that overall the first term in (18) is not changing if we switch from b to b̂.

Now, let us consider supplier 1 and the second term in (18). Similar to (19) we have that∫
θ∈Θn

[
x̃1(b(θ))

(
v

(
q∗1

(
θ1

))
− φ

(
q∗1

(
θ1

)))
+ y1(b(θ))

]
γ(θ)dθ

=
∫

θ1∈Θ1

[
E−1

[
x̃1

(
b1

(
θ1

)
, b−1

(
θ−1

))] (
v

(
q∗1

(
θ1

))
− φ

(
q∗1

(
θ1

)))]
γ1

(
θ1

)
dθ1 (20)

+
∫

θ∈Θn

[
y1(b(θ))

]
γ(θ)dθ.

Again, since by construction the distribution of suppliers’ bids under b is the same as under

b̂, the second term of (20) is not changing if we switch from b to b̂, that is∫
θ∈Θn

[
y1(b(θ))

]
γ(θ)dθ =

∫
θ∈Θn

[
y1(b̂(θ))

]
γ(θ)dθ.

Also as before, the distribution of bids coming from the other suppliers (suppliers other than

1 that is) is by construction the same under both b and b̂. However, since b̂1 is not necessarily

equal to b1, we cannot guarantee that for all θ1 ∈ Θ

E−1

[
x̃1

(
b1

(
θ1

)
, b−1

(
θ−1

))]
= E−1

[
x̃1

(
b̂1

(
θ1

)
, b̂−1

(
θ−1

))]
.16

Nevertheless, from Lemma 3 it follows that the set of types θ1 ∈ Θ for which

E−1

[
x̃1

(
b1

(
θ1

)
, b−1

(
θ−1

))]
6= E−1

[
x̃1

(
b̂1

(
θ1

)
, b−1

(
θ−1

))]
has Lebesque measure zero. Thus, we can still guarantee that the first term of (20) is not

changing if we switch from b to b̂.

Based on the above analysis we find that

U0(b)− U0(b̂) = 0,

that is, the expected utility for the buyer in equilibrium b is the same as in b̂. Furthermore,

changing the bidding strategies of the other suppliers (2, . . . , n) one by one and applying the

above analysis yields that also

U0(b)− U0(b̃) = 0,

that is, the expected utility for the buyer in equilibrium b is the same as in b̃.
15Given that supplier 1 has mixed strategies under b̂1, E−i[.] denotes the expectation taken over all type

profiles θ−i as well as the corresponding mixed strategies of supplier 1.
16Given that supplier 1 has mixed strategies under b̂1, E−1[.] denotes the expectation taken over all type

profiles θ−1 as well as the corresponding mixed strategies of supplier 1.
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